]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/yellowfin.c
[ETH]: Make eth_type_trans set skb->dev like the other *_type_trans
[mirror_ubuntu-bionic-kernel.git] / drivers / net / yellowfin.c
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 Written 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
23
24 */
25
26 #define DRV_NAME "yellowfin"
27 #define DRV_VERSION "2.1"
28 #define DRV_RELDATE "Sep 11, 2006"
29
30 #define PFX DRV_NAME ": "
31
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50 #endif
51
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
55
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
59 */
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
66
67 /* Operational parameters that are set at compile time. */
68
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
79
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85 #define yellowfin_debug debug
86
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
107 #include <asm/io.h>
108
109 /* These identify the driver base version and may not be removed. */
110 static char version[] __devinitdata =
111 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
112 KERN_INFO " http://www.scyld.com/network/yellowfin.html\n"
113 KERN_INFO " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
114
115 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
116 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
117 MODULE_LICENSE("GPL");
118
119 module_param(max_interrupt_work, int, 0);
120 module_param(mtu, int, 0);
121 module_param(debug, int, 0);
122 module_param(rx_copybreak, int, 0);
123 module_param_array(options, int, NULL, 0);
124 module_param_array(full_duplex, int, NULL, 0);
125 module_param(gx_fix, int, 0);
126 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
127 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
128 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
129 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
130 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
131 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
132 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
133
134 /*
135 Theory of Operation
136
137 I. Board Compatibility
138
139 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
140 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
141 Symbios 53C885E dual function chip.
142
143 II. Board-specific settings
144
145 PCI bus devices are configured by the system at boot time, so no jumpers
146 need to be set on the board. The system BIOS preferably should assign the
147 PCI INTA signal to an otherwise unused system IRQ line.
148 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
149 interrupt lines.
150
151 III. Driver operation
152
153 IIIa. Ring buffers
154
155 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
156 This is a descriptor list scheme similar to that used by the EEPro100 and
157 Tulip. This driver uses two statically allocated fixed-size descriptor lists
158 formed into rings by a branch from the final descriptor to the beginning of
159 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160
161 The driver allocates full frame size skbuffs for the Rx ring buffers at
162 open() time and passes the skb->data field to the Yellowfin as receive data
163 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
164 a fresh skbuff is allocated and the frame is copied to the new skbuff.
165 When the incoming frame is larger, the skbuff is passed directly up the
166 protocol stack and replaced by a newly allocated skbuff.
167
168 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
169 using a full-sized skbuff for small frames vs. the copying costs of larger
170 frames. For small frames the copying cost is negligible (esp. considering
171 that we are pre-loading the cache with immediately useful header
172 information). For large frames the copying cost is non-trivial, and the
173 larger copy might flush the cache of useful data.
174
175 IIIC. Synchronization
176
177 The driver runs as two independent, single-threaded flows of control. One
178 is the send-packet routine, which enforces single-threaded use by the
179 dev->tbusy flag. The other thread is the interrupt handler, which is single
180 threaded by the hardware and other software.
181
182 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
183 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
184 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
185 the 'yp->tx_full' flag.
186
187 The interrupt handler has exclusive control over the Rx ring and records stats
188 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
189 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
190 clears both the tx_full and tbusy flags.
191
192 IV. Notes
193
194 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
195 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
196 and an AlphaStation to verifty the Alpha port!
197
198 IVb. References
199
200 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
201 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
202 Data Manual v3.0
203 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
204 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
205
206 IVc. Errata
207
208 See Packet Engines confidential appendix (prototype chips only).
209 */
210
211
212
213 enum capability_flags {
214 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
215 HasMACAddrBug=32, /* Only on early revs. */
216 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
217 };
218
219 /* The PCI I/O space extent. */
220 enum {
221 YELLOWFIN_SIZE = 0x100,
222 };
223
224 struct pci_id_info {
225 const char *name;
226 struct match_info {
227 int pci, pci_mask, subsystem, subsystem_mask;
228 int revision, revision_mask; /* Only 8 bits. */
229 } id;
230 int drv_flags; /* Driver use, intended as capability flags. */
231 };
232
233 static const struct pci_id_info pci_id_tbl[] = {
234 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
235 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
236 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
237 HasMII | DontUseEeprom },
238 { }
239 };
240
241 static const struct pci_device_id yellowfin_pci_tbl[] = {
242 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
243 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
244 { }
245 };
246 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
247
248
249 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
250 enum yellowfin_offsets {
251 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
252 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
253 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
254 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
255 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
256 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
257 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
258 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
259 MII_Status=0xAE,
260 RxDepth=0xB8, FlowCtrl=0xBC,
261 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
262 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
263 EEFeature=0xF5,
264 };
265
266 /* The Yellowfin Rx and Tx buffer descriptors.
267 Elements are written as 32 bit for endian portability. */
268 struct yellowfin_desc {
269 u32 dbdma_cmd;
270 u32 addr;
271 u32 branch_addr;
272 u32 result_status;
273 };
274
275 struct tx_status_words {
276 #ifdef __BIG_ENDIAN
277 u16 tx_errs;
278 u16 tx_cnt;
279 u16 paused;
280 u16 total_tx_cnt;
281 #else /* Little endian chips. */
282 u16 tx_cnt;
283 u16 tx_errs;
284 u16 total_tx_cnt;
285 u16 paused;
286 #endif /* __BIG_ENDIAN */
287 };
288
289 /* Bits in yellowfin_desc.cmd */
290 enum desc_cmd_bits {
291 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
292 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
293 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
294 BRANCH_IFTRUE=0x040000,
295 };
296
297 /* Bits in yellowfin_desc.status */
298 enum desc_status_bits { RX_EOP=0x0040, };
299
300 /* Bits in the interrupt status/mask registers. */
301 enum intr_status_bits {
302 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
303 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
304 IntrEarlyRx=0x100, IntrWakeup=0x200, };
305
306 #define PRIV_ALIGN 31 /* Required alignment mask */
307 #define MII_CNT 4
308 struct yellowfin_private {
309 /* Descriptor rings first for alignment.
310 Tx requires a second descriptor for status. */
311 struct yellowfin_desc *rx_ring;
312 struct yellowfin_desc *tx_ring;
313 struct sk_buff* rx_skbuff[RX_RING_SIZE];
314 struct sk_buff* tx_skbuff[TX_RING_SIZE];
315 dma_addr_t rx_ring_dma;
316 dma_addr_t tx_ring_dma;
317
318 struct tx_status_words *tx_status;
319 dma_addr_t tx_status_dma;
320
321 struct timer_list timer; /* Media selection timer. */
322 struct net_device_stats stats;
323 /* Frequently used and paired value: keep adjacent for cache effect. */
324 int chip_id, drv_flags;
325 struct pci_dev *pci_dev;
326 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
327 unsigned int rx_buf_sz; /* Based on MTU+slack. */
328 struct tx_status_words *tx_tail_desc;
329 unsigned int cur_tx, dirty_tx;
330 int tx_threshold;
331 unsigned int tx_full:1; /* The Tx queue is full. */
332 unsigned int full_duplex:1; /* Full-duplex operation requested. */
333 unsigned int duplex_lock:1;
334 unsigned int medialock:1; /* Do not sense media. */
335 unsigned int default_port:4; /* Last dev->if_port value. */
336 /* MII transceiver section. */
337 int mii_cnt; /* MII device addresses. */
338 u16 advertising; /* NWay media advertisement */
339 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
340 spinlock_t lock;
341 void __iomem *base;
342 };
343
344 static int read_eeprom(void __iomem *ioaddr, int location);
345 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
346 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
347 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
348 static int yellowfin_open(struct net_device *dev);
349 static void yellowfin_timer(unsigned long data);
350 static void yellowfin_tx_timeout(struct net_device *dev);
351 static void yellowfin_init_ring(struct net_device *dev);
352 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
353 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
354 static int yellowfin_rx(struct net_device *dev);
355 static void yellowfin_error(struct net_device *dev, int intr_status);
356 static int yellowfin_close(struct net_device *dev);
357 static struct net_device_stats *yellowfin_get_stats(struct net_device *dev);
358 static void set_rx_mode(struct net_device *dev);
359 static const struct ethtool_ops ethtool_ops;
360
361
362 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
363 const struct pci_device_id *ent)
364 {
365 struct net_device *dev;
366 struct yellowfin_private *np;
367 int irq;
368 int chip_idx = ent->driver_data;
369 static int find_cnt;
370 void __iomem *ioaddr;
371 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
372 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
373 void *ring_space;
374 dma_addr_t ring_dma;
375 #ifdef USE_IO_OPS
376 int bar = 0;
377 #else
378 int bar = 1;
379 #endif
380
381 /* when built into the kernel, we only print version if device is found */
382 #ifndef MODULE
383 static int printed_version;
384 if (!printed_version++)
385 printk(version);
386 #endif
387
388 i = pci_enable_device(pdev);
389 if (i) return i;
390
391 dev = alloc_etherdev(sizeof(*np));
392 if (!dev) {
393 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
394 return -ENOMEM;
395 }
396 SET_MODULE_OWNER(dev);
397 SET_NETDEV_DEV(dev, &pdev->dev);
398
399 np = netdev_priv(dev);
400
401 if (pci_request_regions(pdev, DRV_NAME))
402 goto err_out_free_netdev;
403
404 pci_set_master (pdev);
405
406 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
407 if (!ioaddr)
408 goto err_out_free_res;
409
410 irq = pdev->irq;
411
412 if (drv_flags & DontUseEeprom)
413 for (i = 0; i < 6; i++)
414 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
415 else {
416 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
417 for (i = 0; i < 6; i++)
418 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
419 }
420
421 /* Reset the chip. */
422 iowrite32(0x80000000, ioaddr + DMACtrl);
423
424 dev->base_addr = (unsigned long)ioaddr;
425 dev->irq = irq;
426
427 pci_set_drvdata(pdev, dev);
428 spin_lock_init(&np->lock);
429
430 np->pci_dev = pdev;
431 np->chip_id = chip_idx;
432 np->drv_flags = drv_flags;
433 np->base = ioaddr;
434
435 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
436 if (!ring_space)
437 goto err_out_cleardev;
438 np->tx_ring = (struct yellowfin_desc *)ring_space;
439 np->tx_ring_dma = ring_dma;
440
441 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
442 if (!ring_space)
443 goto err_out_unmap_tx;
444 np->rx_ring = (struct yellowfin_desc *)ring_space;
445 np->rx_ring_dma = ring_dma;
446
447 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
448 if (!ring_space)
449 goto err_out_unmap_rx;
450 np->tx_status = (struct tx_status_words *)ring_space;
451 np->tx_status_dma = ring_dma;
452
453 if (dev->mem_start)
454 option = dev->mem_start;
455
456 /* The lower four bits are the media type. */
457 if (option > 0) {
458 if (option & 0x200)
459 np->full_duplex = 1;
460 np->default_port = option & 15;
461 if (np->default_port)
462 np->medialock = 1;
463 }
464 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
465 np->full_duplex = 1;
466
467 if (np->full_duplex)
468 np->duplex_lock = 1;
469
470 /* The Yellowfin-specific entries in the device structure. */
471 dev->open = &yellowfin_open;
472 dev->hard_start_xmit = &yellowfin_start_xmit;
473 dev->stop = &yellowfin_close;
474 dev->get_stats = &yellowfin_get_stats;
475 dev->set_multicast_list = &set_rx_mode;
476 dev->do_ioctl = &netdev_ioctl;
477 SET_ETHTOOL_OPS(dev, &ethtool_ops);
478 dev->tx_timeout = yellowfin_tx_timeout;
479 dev->watchdog_timeo = TX_TIMEOUT;
480
481 if (mtu)
482 dev->mtu = mtu;
483
484 i = register_netdev(dev);
485 if (i)
486 goto err_out_unmap_status;
487
488 printk(KERN_INFO "%s: %s type %8x at %p, ",
489 dev->name, pci_id_tbl[chip_idx].name,
490 ioread32(ioaddr + ChipRev), ioaddr);
491 for (i = 0; i < 5; i++)
492 printk("%2.2x:", dev->dev_addr[i]);
493 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
494
495 if (np->drv_flags & HasMII) {
496 int phy, phy_idx = 0;
497 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
498 int mii_status = mdio_read(ioaddr, phy, 1);
499 if (mii_status != 0xffff && mii_status != 0x0000) {
500 np->phys[phy_idx++] = phy;
501 np->advertising = mdio_read(ioaddr, phy, 4);
502 printk(KERN_INFO "%s: MII PHY found at address %d, status "
503 "0x%4.4x advertising %4.4x.\n",
504 dev->name, phy, mii_status, np->advertising);
505 }
506 }
507 np->mii_cnt = phy_idx;
508 }
509
510 find_cnt++;
511
512 return 0;
513
514 err_out_unmap_status:
515 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
516 np->tx_status_dma);
517 err_out_unmap_rx:
518 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
519 err_out_unmap_tx:
520 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
521 err_out_cleardev:
522 pci_set_drvdata(pdev, NULL);
523 pci_iounmap(pdev, ioaddr);
524 err_out_free_res:
525 pci_release_regions(pdev);
526 err_out_free_netdev:
527 free_netdev (dev);
528 return -ENODEV;
529 }
530
531 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
532 {
533 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
534
535 iowrite8(location, ioaddr + EEAddr);
536 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
537 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
538 ;
539 return ioread8(ioaddr + EERead);
540 }
541
542 /* MII Managemen Data I/O accesses.
543 These routines assume the MDIO controller is idle, and do not exit until
544 the command is finished. */
545
546 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
547 {
548 int i;
549
550 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
551 iowrite16(1, ioaddr + MII_Cmd);
552 for (i = 10000; i >= 0; i--)
553 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
554 break;
555 return ioread16(ioaddr + MII_Rd_Data);
556 }
557
558 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
559 {
560 int i;
561
562 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
563 iowrite16(value, ioaddr + MII_Wr_Data);
564
565 /* Wait for the command to finish. */
566 for (i = 10000; i >= 0; i--)
567 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
568 break;
569 return;
570 }
571
572
573 static int yellowfin_open(struct net_device *dev)
574 {
575 struct yellowfin_private *yp = netdev_priv(dev);
576 void __iomem *ioaddr = yp->base;
577 int i;
578
579 /* Reset the chip. */
580 iowrite32(0x80000000, ioaddr + DMACtrl);
581
582 i = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
583 if (i) return i;
584
585 if (yellowfin_debug > 1)
586 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
587 dev->name, dev->irq);
588
589 yellowfin_init_ring(dev);
590
591 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
592 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
593
594 for (i = 0; i < 6; i++)
595 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
596
597 /* Set up various condition 'select' registers.
598 There are no options here. */
599 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
600 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
601 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
602 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
603 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
604 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
605
606 /* Initialize other registers: with so many this eventually this will
607 converted to an offset/value list. */
608 iowrite32(dma_ctrl, ioaddr + DMACtrl);
609 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
610 /* Enable automatic generation of flow control frames, period 0xffff. */
611 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
612
613 yp->tx_threshold = 32;
614 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
615
616 if (dev->if_port == 0)
617 dev->if_port = yp->default_port;
618
619 netif_start_queue(dev);
620
621 /* Setting the Rx mode will start the Rx process. */
622 if (yp->drv_flags & IsGigabit) {
623 /* We are always in full-duplex mode with gigabit! */
624 yp->full_duplex = 1;
625 iowrite16(0x01CF, ioaddr + Cnfg);
626 } else {
627 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
628 iowrite16(0x1018, ioaddr + FrameGap1);
629 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
630 }
631 set_rx_mode(dev);
632
633 /* Enable interrupts by setting the interrupt mask. */
634 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
635 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
636 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
637 iowrite32(0x80008000, ioaddr + TxCtrl);
638
639 if (yellowfin_debug > 2) {
640 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
641 dev->name);
642 }
643
644 /* Set the timer to check for link beat. */
645 init_timer(&yp->timer);
646 yp->timer.expires = jiffies + 3*HZ;
647 yp->timer.data = (unsigned long)dev;
648 yp->timer.function = &yellowfin_timer; /* timer handler */
649 add_timer(&yp->timer);
650
651 return 0;
652 }
653
654 static void yellowfin_timer(unsigned long data)
655 {
656 struct net_device *dev = (struct net_device *)data;
657 struct yellowfin_private *yp = netdev_priv(dev);
658 void __iomem *ioaddr = yp->base;
659 int next_tick = 60*HZ;
660
661 if (yellowfin_debug > 3) {
662 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
663 dev->name, ioread16(ioaddr + IntrStatus));
664 }
665
666 if (yp->mii_cnt) {
667 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
668 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
669 int negotiated = lpa & yp->advertising;
670 if (yellowfin_debug > 1)
671 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
672 "link partner capability %4.4x.\n",
673 dev->name, yp->phys[0], bmsr, lpa);
674
675 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
676
677 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
678
679 if (bmsr & BMSR_LSTATUS)
680 next_tick = 60*HZ;
681 else
682 next_tick = 3*HZ;
683 }
684
685 yp->timer.expires = jiffies + next_tick;
686 add_timer(&yp->timer);
687 }
688
689 static void yellowfin_tx_timeout(struct net_device *dev)
690 {
691 struct yellowfin_private *yp = netdev_priv(dev);
692 void __iomem *ioaddr = yp->base;
693
694 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
695 "status %4.4x, Rx status %4.4x, resetting...\n",
696 dev->name, yp->cur_tx, yp->dirty_tx,
697 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
698
699 /* Note: these should be KERN_DEBUG. */
700 if (yellowfin_debug) {
701 int i;
702 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
703 for (i = 0; i < RX_RING_SIZE; i++)
704 printk(" %8.8x", yp->rx_ring[i].result_status);
705 printk("\n"KERN_WARNING" Tx ring %p: ", yp->tx_ring);
706 for (i = 0; i < TX_RING_SIZE; i++)
707 printk(" %4.4x /%8.8x", yp->tx_status[i].tx_errs,
708 yp->tx_ring[i].result_status);
709 printk("\n");
710 }
711
712 /* If the hardware is found to hang regularly, we will update the code
713 to reinitialize the chip here. */
714 dev->if_port = 0;
715
716 /* Wake the potentially-idle transmit channel. */
717 iowrite32(0x10001000, yp->base + TxCtrl);
718 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
719 netif_wake_queue (dev); /* Typical path */
720
721 dev->trans_start = jiffies;
722 yp->stats.tx_errors++;
723 }
724
725 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
726 static void yellowfin_init_ring(struct net_device *dev)
727 {
728 struct yellowfin_private *yp = netdev_priv(dev);
729 int i;
730
731 yp->tx_full = 0;
732 yp->cur_rx = yp->cur_tx = 0;
733 yp->dirty_tx = 0;
734
735 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
736
737 for (i = 0; i < RX_RING_SIZE; i++) {
738 yp->rx_ring[i].dbdma_cmd =
739 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
740 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
741 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
742 }
743
744 for (i = 0; i < RX_RING_SIZE; i++) {
745 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
746 yp->rx_skbuff[i] = skb;
747 if (skb == NULL)
748 break;
749 skb->dev = dev; /* Mark as being used by this device. */
750 skb_reserve(skb, 2); /* 16 byte align the IP header. */
751 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
752 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
753 }
754 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
755 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
756
757 #define NO_TXSTATS
758 #ifdef NO_TXSTATS
759 /* In this mode the Tx ring needs only a single descriptor. */
760 for (i = 0; i < TX_RING_SIZE; i++) {
761 yp->tx_skbuff[i] = NULL;
762 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
763 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
764 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
765 }
766 /* Wrap ring */
767 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
768 #else
769 {
770 int j;
771
772 /* Tx ring needs a pair of descriptors, the second for the status. */
773 for (i = 0; i < TX_RING_SIZE; i++) {
774 j = 2*i;
775 yp->tx_skbuff[i] = 0;
776 /* Branch on Tx error. */
777 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
778 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
779 (j+1)*sizeof(struct yellowfin_desc);
780 j++;
781 if (yp->flags & FullTxStatus) {
782 yp->tx_ring[j].dbdma_cmd =
783 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
784 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
785 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
786 i*sizeof(struct tx_status_words);
787 } else {
788 /* Symbios chips write only tx_errs word. */
789 yp->tx_ring[j].dbdma_cmd =
790 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
791 yp->tx_ring[j].request_cnt = 2;
792 /* Om pade ummmmm... */
793 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
794 i*sizeof(struct tx_status_words) +
795 &(yp->tx_status[0].tx_errs) -
796 &(yp->tx_status[0]));
797 }
798 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
799 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
800 }
801 /* Wrap ring */
802 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
803 }
804 #endif
805 yp->tx_tail_desc = &yp->tx_status[0];
806 return;
807 }
808
809 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
810 {
811 struct yellowfin_private *yp = netdev_priv(dev);
812 unsigned entry;
813 int len = skb->len;
814
815 netif_stop_queue (dev);
816
817 /* Note: Ordering is important here, set the field with the
818 "ownership" bit last, and only then increment cur_tx. */
819
820 /* Calculate the next Tx descriptor entry. */
821 entry = yp->cur_tx % TX_RING_SIZE;
822
823 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
824 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
825 /* Fix GX chipset errata. */
826 if (cacheline_end > 24 || cacheline_end == 0) {
827 len = skb->len + 32 - cacheline_end + 1;
828 if (skb_padto(skb, len)) {
829 yp->tx_skbuff[entry] = NULL;
830 netif_wake_queue(dev);
831 return 0;
832 }
833 }
834 }
835 yp->tx_skbuff[entry] = skb;
836
837 #ifdef NO_TXSTATS
838 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
839 skb->data, len, PCI_DMA_TODEVICE));
840 yp->tx_ring[entry].result_status = 0;
841 if (entry >= TX_RING_SIZE-1) {
842 /* New stop command. */
843 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
844 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
845 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
846 } else {
847 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
848 yp->tx_ring[entry].dbdma_cmd =
849 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
850 }
851 yp->cur_tx++;
852 #else
853 yp->tx_ring[entry<<1].request_cnt = len;
854 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
855 skb->data, len, PCI_DMA_TODEVICE));
856 /* The input_last (status-write) command is constant, but we must
857 rewrite the subsequent 'stop' command. */
858
859 yp->cur_tx++;
860 {
861 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
862 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
863 }
864 /* Final step -- overwrite the old 'stop' command. */
865
866 yp->tx_ring[entry<<1].dbdma_cmd =
867 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
868 CMD_TX_PKT | BRANCH_IFTRUE) | len);
869 #endif
870
871 /* Non-x86 Todo: explicitly flush cache lines here. */
872
873 /* Wake the potentially-idle transmit channel. */
874 iowrite32(0x10001000, yp->base + TxCtrl);
875
876 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
877 netif_start_queue (dev); /* Typical path */
878 else
879 yp->tx_full = 1;
880 dev->trans_start = jiffies;
881
882 if (yellowfin_debug > 4) {
883 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
884 dev->name, yp->cur_tx, entry);
885 }
886 return 0;
887 }
888
889 /* The interrupt handler does all of the Rx thread work and cleans up
890 after the Tx thread. */
891 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
892 {
893 struct net_device *dev = dev_instance;
894 struct yellowfin_private *yp;
895 void __iomem *ioaddr;
896 int boguscnt = max_interrupt_work;
897 unsigned int handled = 0;
898
899 yp = netdev_priv(dev);
900 ioaddr = yp->base;
901
902 spin_lock (&yp->lock);
903
904 do {
905 u16 intr_status = ioread16(ioaddr + IntrClear);
906
907 if (yellowfin_debug > 4)
908 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
909 dev->name, intr_status);
910
911 if (intr_status == 0)
912 break;
913 handled = 1;
914
915 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
916 yellowfin_rx(dev);
917 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
918 }
919
920 #ifdef NO_TXSTATS
921 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
922 int entry = yp->dirty_tx % TX_RING_SIZE;
923 struct sk_buff *skb;
924
925 if (yp->tx_ring[entry].result_status == 0)
926 break;
927 skb = yp->tx_skbuff[entry];
928 yp->stats.tx_packets++;
929 yp->stats.tx_bytes += skb->len;
930 /* Free the original skb. */
931 pci_unmap_single(yp->pci_dev, yp->tx_ring[entry].addr,
932 skb->len, PCI_DMA_TODEVICE);
933 dev_kfree_skb_irq(skb);
934 yp->tx_skbuff[entry] = NULL;
935 }
936 if (yp->tx_full
937 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
938 /* The ring is no longer full, clear tbusy. */
939 yp->tx_full = 0;
940 netif_wake_queue(dev);
941 }
942 #else
943 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
944 unsigned dirty_tx = yp->dirty_tx;
945
946 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
947 dirty_tx++) {
948 /* Todo: optimize this. */
949 int entry = dirty_tx % TX_RING_SIZE;
950 u16 tx_errs = yp->tx_status[entry].tx_errs;
951 struct sk_buff *skb;
952
953 #ifndef final_version
954 if (yellowfin_debug > 5)
955 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
956 "%4.4x %4.4x %4.4x %4.4x.\n",
957 dev->name, entry,
958 yp->tx_status[entry].tx_cnt,
959 yp->tx_status[entry].tx_errs,
960 yp->tx_status[entry].total_tx_cnt,
961 yp->tx_status[entry].paused);
962 #endif
963 if (tx_errs == 0)
964 break; /* It still hasn't been Txed */
965 skb = yp->tx_skbuff[entry];
966 if (tx_errs & 0xF810) {
967 /* There was an major error, log it. */
968 #ifndef final_version
969 if (yellowfin_debug > 1)
970 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
971 dev->name, tx_errs);
972 #endif
973 yp->stats.tx_errors++;
974 if (tx_errs & 0xF800) yp->stats.tx_aborted_errors++;
975 if (tx_errs & 0x0800) yp->stats.tx_carrier_errors++;
976 if (tx_errs & 0x2000) yp->stats.tx_window_errors++;
977 if (tx_errs & 0x8000) yp->stats.tx_fifo_errors++;
978 } else {
979 #ifndef final_version
980 if (yellowfin_debug > 4)
981 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
982 dev->name, tx_errs);
983 #endif
984 yp->stats.tx_bytes += skb->len;
985 yp->stats.collisions += tx_errs & 15;
986 yp->stats.tx_packets++;
987 }
988 /* Free the original skb. */
989 pci_unmap_single(yp->pci_dev,
990 yp->tx_ring[entry<<1].addr, skb->len,
991 PCI_DMA_TODEVICE);
992 dev_kfree_skb_irq(skb);
993 yp->tx_skbuff[entry] = 0;
994 /* Mark status as empty. */
995 yp->tx_status[entry].tx_errs = 0;
996 }
997
998 #ifndef final_version
999 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
1000 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1001 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
1002 dirty_tx += TX_RING_SIZE;
1003 }
1004 #endif
1005
1006 if (yp->tx_full
1007 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1008 /* The ring is no longer full, clear tbusy. */
1009 yp->tx_full = 0;
1010 netif_wake_queue(dev);
1011 }
1012
1013 yp->dirty_tx = dirty_tx;
1014 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1015 }
1016 #endif
1017
1018 /* Log errors and other uncommon events. */
1019 if (intr_status & 0x2ee) /* Abnormal error summary. */
1020 yellowfin_error(dev, intr_status);
1021
1022 if (--boguscnt < 0) {
1023 printk(KERN_WARNING "%s: Too much work at interrupt, "
1024 "status=0x%4.4x.\n",
1025 dev->name, intr_status);
1026 break;
1027 }
1028 } while (1);
1029
1030 if (yellowfin_debug > 3)
1031 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1032 dev->name, ioread16(ioaddr + IntrStatus));
1033
1034 spin_unlock (&yp->lock);
1035 return IRQ_RETVAL(handled);
1036 }
1037
1038 /* This routine is logically part of the interrupt handler, but separated
1039 for clarity and better register allocation. */
1040 static int yellowfin_rx(struct net_device *dev)
1041 {
1042 struct yellowfin_private *yp = netdev_priv(dev);
1043 int entry = yp->cur_rx % RX_RING_SIZE;
1044 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1045
1046 if (yellowfin_debug > 4) {
1047 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1048 entry, yp->rx_ring[entry].result_status);
1049 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1050 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1051 yp->rx_ring[entry].result_status);
1052 }
1053
1054 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1055 while (1) {
1056 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1057 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1058 s16 frame_status;
1059 u16 desc_status;
1060 int data_size;
1061 u8 *buf_addr;
1062
1063 if(!desc->result_status)
1064 break;
1065 pci_dma_sync_single_for_cpu(yp->pci_dev, desc->addr,
1066 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1067 desc_status = le32_to_cpu(desc->result_status) >> 16;
1068 buf_addr = rx_skb->data;
1069 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1070 le32_to_cpu(desc->result_status)) & 0xffff;
1071 frame_status = le16_to_cpu(get_unaligned((s16*)&(buf_addr[data_size - 2])));
1072 if (yellowfin_debug > 4)
1073 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1074 frame_status);
1075 if (--boguscnt < 0)
1076 break;
1077 if ( ! (desc_status & RX_EOP)) {
1078 if (data_size != 0)
1079 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1080 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1081 yp->stats.rx_length_errors++;
1082 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1083 /* There was a error. */
1084 if (yellowfin_debug > 3)
1085 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1086 frame_status);
1087 yp->stats.rx_errors++;
1088 if (frame_status & 0x0060) yp->stats.rx_length_errors++;
1089 if (frame_status & 0x0008) yp->stats.rx_frame_errors++;
1090 if (frame_status & 0x0010) yp->stats.rx_crc_errors++;
1091 if (frame_status < 0) yp->stats.rx_dropped++;
1092 } else if ( !(yp->drv_flags & IsGigabit) &&
1093 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1094 u8 status1 = buf_addr[data_size-2];
1095 u8 status2 = buf_addr[data_size-1];
1096 yp->stats.rx_errors++;
1097 if (status1 & 0xC0) yp->stats.rx_length_errors++;
1098 if (status2 & 0x03) yp->stats.rx_frame_errors++;
1099 if (status2 & 0x04) yp->stats.rx_crc_errors++;
1100 if (status2 & 0x80) yp->stats.rx_dropped++;
1101 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1102 } else if ((yp->flags & HasMACAddrBug) &&
1103 memcmp(le32_to_cpu(yp->rx_ring_dma +
1104 entry*sizeof(struct yellowfin_desc)),
1105 dev->dev_addr, 6) != 0 &&
1106 memcmp(le32_to_cpu(yp->rx_ring_dma +
1107 entry*sizeof(struct yellowfin_desc)),
1108 "\377\377\377\377\377\377", 6) != 0) {
1109 if (bogus_rx++ == 0)
1110 printk(KERN_WARNING "%s: Bad frame to %2.2x:%2.2x:%2.2x:%2.2x:"
1111 "%2.2x:%2.2x.\n",
1112 dev->name, buf_addr[0], buf_addr[1], buf_addr[2],
1113 buf_addr[3], buf_addr[4], buf_addr[5]);
1114 #endif
1115 } else {
1116 struct sk_buff *skb;
1117 int pkt_len = data_size -
1118 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1119 /* To verify: Yellowfin Length should omit the CRC! */
1120
1121 #ifndef final_version
1122 if (yellowfin_debug > 4)
1123 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1124 " of %d, bogus_cnt %d.\n",
1125 pkt_len, data_size, boguscnt);
1126 #endif
1127 /* Check if the packet is long enough to just pass up the skbuff
1128 without copying to a properly sized skbuff. */
1129 if (pkt_len > rx_copybreak) {
1130 skb_put(skb = rx_skb, pkt_len);
1131 pci_unmap_single(yp->pci_dev,
1132 yp->rx_ring[entry].addr,
1133 yp->rx_buf_sz,
1134 PCI_DMA_FROMDEVICE);
1135 yp->rx_skbuff[entry] = NULL;
1136 } else {
1137 skb = dev_alloc_skb(pkt_len + 2);
1138 if (skb == NULL)
1139 break;
1140 skb_reserve(skb, 2); /* 16 byte align the IP header */
1141 eth_copy_and_sum(skb, rx_skb->data, pkt_len, 0);
1142 skb_put(skb, pkt_len);
1143 pci_dma_sync_single_for_device(yp->pci_dev, desc->addr,
1144 yp->rx_buf_sz,
1145 PCI_DMA_FROMDEVICE);
1146 }
1147 skb->protocol = eth_type_trans(skb, dev);
1148 netif_rx(skb);
1149 dev->last_rx = jiffies;
1150 yp->stats.rx_packets++;
1151 yp->stats.rx_bytes += pkt_len;
1152 }
1153 entry = (++yp->cur_rx) % RX_RING_SIZE;
1154 }
1155
1156 /* Refill the Rx ring buffers. */
1157 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1158 entry = yp->dirty_rx % RX_RING_SIZE;
1159 if (yp->rx_skbuff[entry] == NULL) {
1160 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1161 if (skb == NULL)
1162 break; /* Better luck next round. */
1163 yp->rx_skbuff[entry] = skb;
1164 skb->dev = dev; /* Mark as being used by this device. */
1165 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1166 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1167 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1168 }
1169 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1170 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1171 if (entry != 0)
1172 yp->rx_ring[entry - 1].dbdma_cmd =
1173 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1174 else
1175 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1176 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1177 | yp->rx_buf_sz);
1178 }
1179
1180 return 0;
1181 }
1182
1183 static void yellowfin_error(struct net_device *dev, int intr_status)
1184 {
1185 struct yellowfin_private *yp = netdev_priv(dev);
1186
1187 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1188 dev->name, intr_status);
1189 /* Hmmmmm, it's not clear what to do here. */
1190 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1191 yp->stats.tx_errors++;
1192 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1193 yp->stats.rx_errors++;
1194 }
1195
1196 static int yellowfin_close(struct net_device *dev)
1197 {
1198 struct yellowfin_private *yp = netdev_priv(dev);
1199 void __iomem *ioaddr = yp->base;
1200 int i;
1201
1202 netif_stop_queue (dev);
1203
1204 if (yellowfin_debug > 1) {
1205 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1206 "Rx %4.4x Int %2.2x.\n",
1207 dev->name, ioread16(ioaddr + TxStatus),
1208 ioread16(ioaddr + RxStatus),
1209 ioread16(ioaddr + IntrStatus));
1210 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1211 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1212 }
1213
1214 /* Disable interrupts by clearing the interrupt mask. */
1215 iowrite16(0x0000, ioaddr + IntrEnb);
1216
1217 /* Stop the chip's Tx and Rx processes. */
1218 iowrite32(0x80000000, ioaddr + RxCtrl);
1219 iowrite32(0x80000000, ioaddr + TxCtrl);
1220
1221 del_timer(&yp->timer);
1222
1223 #if defined(__i386__)
1224 if (yellowfin_debug > 2) {
1225 printk("\n"KERN_DEBUG" Tx ring at %8.8llx:\n",
1226 (unsigned long long)yp->tx_ring_dma);
1227 for (i = 0; i < TX_RING_SIZE*2; i++)
1228 printk(" %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1229 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1230 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1231 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1232 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1233 for (i = 0; i < TX_RING_SIZE; i++)
1234 printk(" #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1235 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1236 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1237
1238 printk("\n"KERN_DEBUG " Rx ring %8.8llx:\n",
1239 (unsigned long long)yp->rx_ring_dma);
1240 for (i = 0; i < RX_RING_SIZE; i++) {
1241 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1242 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1243 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1244 yp->rx_ring[i].result_status);
1245 if (yellowfin_debug > 6) {
1246 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1247 int j;
1248 for (j = 0; j < 0x50; j++)
1249 printk(" %4.4x",
1250 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1251 printk("\n");
1252 }
1253 }
1254 }
1255 }
1256 #endif /* __i386__ debugging only */
1257
1258 free_irq(dev->irq, dev);
1259
1260 /* Free all the skbuffs in the Rx queue. */
1261 for (i = 0; i < RX_RING_SIZE; i++) {
1262 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1263 yp->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
1264 if (yp->rx_skbuff[i]) {
1265 dev_kfree_skb(yp->rx_skbuff[i]);
1266 }
1267 yp->rx_skbuff[i] = NULL;
1268 }
1269 for (i = 0; i < TX_RING_SIZE; i++) {
1270 if (yp->tx_skbuff[i])
1271 dev_kfree_skb(yp->tx_skbuff[i]);
1272 yp->tx_skbuff[i] = NULL;
1273 }
1274
1275 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1276 if (yellowfin_debug > 0) {
1277 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1278 dev->name, bogus_rx);
1279 }
1280 #endif
1281
1282 return 0;
1283 }
1284
1285 static struct net_device_stats *yellowfin_get_stats(struct net_device *dev)
1286 {
1287 struct yellowfin_private *yp = netdev_priv(dev);
1288 return &yp->stats;
1289 }
1290
1291 /* Set or clear the multicast filter for this adaptor. */
1292
1293 static void set_rx_mode(struct net_device *dev)
1294 {
1295 struct yellowfin_private *yp = netdev_priv(dev);
1296 void __iomem *ioaddr = yp->base;
1297 u16 cfg_value = ioread16(ioaddr + Cnfg);
1298
1299 /* Stop the Rx process to change any value. */
1300 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1301 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1302 iowrite16(0x000F, ioaddr + AddrMode);
1303 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1304 /* Too many to filter well, or accept all multicasts. */
1305 iowrite16(0x000B, ioaddr + AddrMode);
1306 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1307 struct dev_mc_list *mclist;
1308 u16 hash_table[4];
1309 int i;
1310 memset(hash_table, 0, sizeof(hash_table));
1311 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1312 i++, mclist = mclist->next) {
1313 unsigned int bit;
1314
1315 /* Due to a bug in the early chip versions, multiple filter
1316 slots must be set for each address. */
1317 if (yp->drv_flags & HasMulticastBug) {
1318 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1319 hash_table[bit >> 4] |= (1 << bit);
1320 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1321 hash_table[bit >> 4] |= (1 << bit);
1322 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1323 hash_table[bit >> 4] |= (1 << bit);
1324 }
1325 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1326 hash_table[bit >> 4] |= (1 << bit);
1327 }
1328 /* Copy the hash table to the chip. */
1329 for (i = 0; i < 4; i++)
1330 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1331 iowrite16(0x0003, ioaddr + AddrMode);
1332 } else { /* Normal, unicast/broadcast-only mode. */
1333 iowrite16(0x0001, ioaddr + AddrMode);
1334 }
1335 /* Restart the Rx process. */
1336 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1337 }
1338
1339 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1340 {
1341 struct yellowfin_private *np = netdev_priv(dev);
1342 strcpy(info->driver, DRV_NAME);
1343 strcpy(info->version, DRV_VERSION);
1344 strcpy(info->bus_info, pci_name(np->pci_dev));
1345 }
1346
1347 static const struct ethtool_ops ethtool_ops = {
1348 .get_drvinfo = yellowfin_get_drvinfo
1349 };
1350
1351 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1352 {
1353 struct yellowfin_private *np = netdev_priv(dev);
1354 void __iomem *ioaddr = np->base;
1355 struct mii_ioctl_data *data = if_mii(rq);
1356
1357 switch(cmd) {
1358 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1359 data->phy_id = np->phys[0] & 0x1f;
1360 /* Fall Through */
1361
1362 case SIOCGMIIREG: /* Read MII PHY register. */
1363 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1364 return 0;
1365
1366 case SIOCSMIIREG: /* Write MII PHY register. */
1367 if (!capable(CAP_NET_ADMIN))
1368 return -EPERM;
1369 if (data->phy_id == np->phys[0]) {
1370 u16 value = data->val_in;
1371 switch (data->reg_num) {
1372 case 0:
1373 /* Check for autonegotiation on or reset. */
1374 np->medialock = (value & 0x9000) ? 0 : 1;
1375 if (np->medialock)
1376 np->full_duplex = (value & 0x0100) ? 1 : 0;
1377 break;
1378 case 4: np->advertising = value; break;
1379 }
1380 /* Perhaps check_duplex(dev), depending on chip semantics. */
1381 }
1382 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1383 return 0;
1384 default:
1385 return -EOPNOTSUPP;
1386 }
1387 }
1388
1389
1390 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1391 {
1392 struct net_device *dev = pci_get_drvdata(pdev);
1393 struct yellowfin_private *np;
1394
1395 BUG_ON(!dev);
1396 np = netdev_priv(dev);
1397
1398 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1399 np->tx_status_dma);
1400 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1401 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1402 unregister_netdev (dev);
1403
1404 pci_iounmap(pdev, np->base);
1405
1406 pci_release_regions (pdev);
1407
1408 free_netdev (dev);
1409 pci_set_drvdata(pdev, NULL);
1410 }
1411
1412
1413 static struct pci_driver yellowfin_driver = {
1414 .name = DRV_NAME,
1415 .id_table = yellowfin_pci_tbl,
1416 .probe = yellowfin_init_one,
1417 .remove = __devexit_p(yellowfin_remove_one),
1418 };
1419
1420
1421 static int __init yellowfin_init (void)
1422 {
1423 /* when a module, this is printed whether or not devices are found in probe */
1424 #ifdef MODULE
1425 printk(version);
1426 #endif
1427 return pci_register_driver(&yellowfin_driver);
1428 }
1429
1430
1431 static void __exit yellowfin_cleanup (void)
1432 {
1433 pci_unregister_driver (&yellowfin_driver);
1434 }
1435
1436
1437 module_init(yellowfin_init);
1438 module_exit(yellowfin_cleanup);
1439
1440 /*
1441 * Local variables:
1442 * compile-command: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c yellowfin.c"
1443 * compile-command-alphaLX: "gcc -DMODULE -Wall -Wstrict-prototypes -O2 -c yellowfin.c -fomit-frame-pointer -fno-strength-reduce -mno-fp-regs -Wa,-m21164a -DBWX_USABLE -DBWIO_ENABLED"
1444 * simple-compile-command: "gcc -DMODULE -O6 -c yellowfin.c"
1445 * c-indent-level: 4
1446 * c-basic-offset: 4
1447 * tab-width: 4
1448 * End:
1449 */