]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/yellowfin.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next-2.6
[mirror_ubuntu-jammy-kernel.git] / drivers / net / yellowfin.c
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 Written 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
23
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #define DRV_NAME "yellowfin"
29 #define DRV_VERSION "2.1"
30 #define DRV_RELDATE "Sep 11, 2006"
31
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50 #endif
51
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
55
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
59 */
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
66
67 /* Operational parameters that are set at compile time. */
68
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
79
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85 #define yellowfin_debug debug
86
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
107 #include <asm/io.h>
108
109 /* These identify the driver base version and may not be removed. */
110 static const char version[] __devinitconst =
111 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
112 " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
113
114 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116 MODULE_LICENSE("GPL");
117
118 module_param(max_interrupt_work, int, 0);
119 module_param(mtu, int, 0);
120 module_param(debug, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124 module_param(gx_fix, int, 0);
125 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
132
133 /*
134 Theory of Operation
135
136 I. Board Compatibility
137
138 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
139 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
140 Symbios 53C885E dual function chip.
141
142 II. Board-specific settings
143
144 PCI bus devices are configured by the system at boot time, so no jumpers
145 need to be set on the board. The system BIOS preferably should assign the
146 PCI INTA signal to an otherwise unused system IRQ line.
147 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
148 interrupt lines.
149
150 III. Driver operation
151
152 IIIa. Ring buffers
153
154 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155 This is a descriptor list scheme similar to that used by the EEPro100 and
156 Tulip. This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
159
160 The driver allocates full frame size skbuffs for the Rx ring buffers at
161 open() time and passes the skb->data field to the Yellowfin as receive data
162 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
163 a fresh skbuff is allocated and the frame is copied to the new skbuff.
164 When the incoming frame is larger, the skbuff is passed directly up the
165 protocol stack and replaced by a newly allocated skbuff.
166
167 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168 using a full-sized skbuff for small frames vs. the copying costs of larger
169 frames. For small frames the copying cost is negligible (esp. considering
170 that we are pre-loading the cache with immediately useful header
171 information). For large frames the copying cost is non-trivial, and the
172 larger copy might flush the cache of useful data.
173
174 IIIC. Synchronization
175
176 The driver runs as two independent, single-threaded flows of control. One
177 is the send-packet routine, which enforces single-threaded use by the
178 dev->tbusy flag. The other thread is the interrupt handler, which is single
179 threaded by the hardware and other software.
180
181 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184 the 'yp->tx_full' flag.
185
186 The interrupt handler has exclusive control over the Rx ring and records stats
187 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
188 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189 clears both the tx_full and tbusy flags.
190
191 IV. Notes
192
193 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195 and an AlphaStation to verifty the Alpha port!
196
197 IVb. References
198
199 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
201 Data Manual v3.0
202 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
204
205 IVc. Errata
206
207 See Packet Engines confidential appendix (prototype chips only).
208 */
209
210
211
212 enum capability_flags {
213 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214 HasMACAddrBug=32, /* Only on early revs. */
215 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
216 };
217
218 /* The PCI I/O space extent. */
219 enum {
220 YELLOWFIN_SIZE = 0x100,
221 };
222
223 struct pci_id_info {
224 const char *name;
225 struct match_info {
226 int pci, pci_mask, subsystem, subsystem_mask;
227 int revision, revision_mask; /* Only 8 bits. */
228 } id;
229 int drv_flags; /* Driver use, intended as capability flags. */
230 };
231
232 static const struct pci_id_info pci_id_tbl[] = {
233 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
236 HasMII | DontUseEeprom },
237 { }
238 };
239
240 static DEFINE_PCI_DEVICE_TABLE(yellowfin_pci_tbl) = {
241 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
243 { }
244 };
245 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
246
247
248 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
249 enum yellowfin_offsets {
250 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
258 MII_Status=0xAE,
259 RxDepth=0xB8, FlowCtrl=0xBC,
260 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
262 EEFeature=0xF5,
263 };
264
265 /* The Yellowfin Rx and Tx buffer descriptors.
266 Elements are written as 32 bit for endian portability. */
267 struct yellowfin_desc {
268 __le32 dbdma_cmd;
269 __le32 addr;
270 __le32 branch_addr;
271 __le32 result_status;
272 };
273
274 struct tx_status_words {
275 #ifdef __BIG_ENDIAN
276 u16 tx_errs;
277 u16 tx_cnt;
278 u16 paused;
279 u16 total_tx_cnt;
280 #else /* Little endian chips. */
281 u16 tx_cnt;
282 u16 tx_errs;
283 u16 total_tx_cnt;
284 u16 paused;
285 #endif /* __BIG_ENDIAN */
286 };
287
288 /* Bits in yellowfin_desc.cmd */
289 enum desc_cmd_bits {
290 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293 BRANCH_IFTRUE=0x040000,
294 };
295
296 /* Bits in yellowfin_desc.status */
297 enum desc_status_bits { RX_EOP=0x0040, };
298
299 /* Bits in the interrupt status/mask registers. */
300 enum intr_status_bits {
301 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303 IntrEarlyRx=0x100, IntrWakeup=0x200, };
304
305 #define PRIV_ALIGN 31 /* Required alignment mask */
306 #define MII_CNT 4
307 struct yellowfin_private {
308 /* Descriptor rings first for alignment.
309 Tx requires a second descriptor for status. */
310 struct yellowfin_desc *rx_ring;
311 struct yellowfin_desc *tx_ring;
312 struct sk_buff* rx_skbuff[RX_RING_SIZE];
313 struct sk_buff* tx_skbuff[TX_RING_SIZE];
314 dma_addr_t rx_ring_dma;
315 dma_addr_t tx_ring_dma;
316
317 struct tx_status_words *tx_status;
318 dma_addr_t tx_status_dma;
319
320 struct timer_list timer; /* Media selection timer. */
321 /* Frequently used and paired value: keep adjacent for cache effect. */
322 int chip_id, drv_flags;
323 struct pci_dev *pci_dev;
324 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
325 unsigned int rx_buf_sz; /* Based on MTU+slack. */
326 struct tx_status_words *tx_tail_desc;
327 unsigned int cur_tx, dirty_tx;
328 int tx_threshold;
329 unsigned int tx_full:1; /* The Tx queue is full. */
330 unsigned int full_duplex:1; /* Full-duplex operation requested. */
331 unsigned int duplex_lock:1;
332 unsigned int medialock:1; /* Do not sense media. */
333 unsigned int default_port:4; /* Last dev->if_port value. */
334 /* MII transceiver section. */
335 int mii_cnt; /* MII device addresses. */
336 u16 advertising; /* NWay media advertisement */
337 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
338 spinlock_t lock;
339 void __iomem *base;
340 };
341
342 static int read_eeprom(void __iomem *ioaddr, int location);
343 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
344 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
345 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
346 static int yellowfin_open(struct net_device *dev);
347 static void yellowfin_timer(unsigned long data);
348 static void yellowfin_tx_timeout(struct net_device *dev);
349 static int yellowfin_init_ring(struct net_device *dev);
350 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
351 struct net_device *dev);
352 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
353 static int yellowfin_rx(struct net_device *dev);
354 static void yellowfin_error(struct net_device *dev, int intr_status);
355 static int yellowfin_close(struct net_device *dev);
356 static void set_rx_mode(struct net_device *dev);
357 static const struct ethtool_ops ethtool_ops;
358
359 static const struct net_device_ops netdev_ops = {
360 .ndo_open = yellowfin_open,
361 .ndo_stop = yellowfin_close,
362 .ndo_start_xmit = yellowfin_start_xmit,
363 .ndo_set_multicast_list = set_rx_mode,
364 .ndo_change_mtu = eth_change_mtu,
365 .ndo_validate_addr = eth_validate_addr,
366 .ndo_set_mac_address = eth_mac_addr,
367 .ndo_do_ioctl = netdev_ioctl,
368 .ndo_tx_timeout = yellowfin_tx_timeout,
369 };
370
371 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
372 const struct pci_device_id *ent)
373 {
374 struct net_device *dev;
375 struct yellowfin_private *np;
376 int irq;
377 int chip_idx = ent->driver_data;
378 static int find_cnt;
379 void __iomem *ioaddr;
380 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
381 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
382 void *ring_space;
383 dma_addr_t ring_dma;
384 #ifdef USE_IO_OPS
385 int bar = 0;
386 #else
387 int bar = 1;
388 #endif
389
390 /* when built into the kernel, we only print version if device is found */
391 #ifndef MODULE
392 static int printed_version;
393 if (!printed_version++)
394 printk(version);
395 #endif
396
397 i = pci_enable_device(pdev);
398 if (i) return i;
399
400 dev = alloc_etherdev(sizeof(*np));
401 if (!dev) {
402 pr_err("cannot allocate ethernet device\n");
403 return -ENOMEM;
404 }
405 SET_NETDEV_DEV(dev, &pdev->dev);
406
407 np = netdev_priv(dev);
408
409 if (pci_request_regions(pdev, DRV_NAME))
410 goto err_out_free_netdev;
411
412 pci_set_master (pdev);
413
414 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
415 if (!ioaddr)
416 goto err_out_free_res;
417
418 irq = pdev->irq;
419
420 if (drv_flags & DontUseEeprom)
421 for (i = 0; i < 6; i++)
422 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
423 else {
424 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
425 for (i = 0; i < 6; i++)
426 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
427 }
428
429 /* Reset the chip. */
430 iowrite32(0x80000000, ioaddr + DMACtrl);
431
432 dev->base_addr = (unsigned long)ioaddr;
433 dev->irq = irq;
434
435 pci_set_drvdata(pdev, dev);
436 spin_lock_init(&np->lock);
437
438 np->pci_dev = pdev;
439 np->chip_id = chip_idx;
440 np->drv_flags = drv_flags;
441 np->base = ioaddr;
442
443 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
444 if (!ring_space)
445 goto err_out_cleardev;
446 np->tx_ring = (struct yellowfin_desc *)ring_space;
447 np->tx_ring_dma = ring_dma;
448
449 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
450 if (!ring_space)
451 goto err_out_unmap_tx;
452 np->rx_ring = (struct yellowfin_desc *)ring_space;
453 np->rx_ring_dma = ring_dma;
454
455 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
456 if (!ring_space)
457 goto err_out_unmap_rx;
458 np->tx_status = (struct tx_status_words *)ring_space;
459 np->tx_status_dma = ring_dma;
460
461 if (dev->mem_start)
462 option = dev->mem_start;
463
464 /* The lower four bits are the media type. */
465 if (option > 0) {
466 if (option & 0x200)
467 np->full_duplex = 1;
468 np->default_port = option & 15;
469 if (np->default_port)
470 np->medialock = 1;
471 }
472 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
473 np->full_duplex = 1;
474
475 if (np->full_duplex)
476 np->duplex_lock = 1;
477
478 /* The Yellowfin-specific entries in the device structure. */
479 dev->netdev_ops = &netdev_ops;
480 SET_ETHTOOL_OPS(dev, &ethtool_ops);
481 dev->watchdog_timeo = TX_TIMEOUT;
482
483 if (mtu)
484 dev->mtu = mtu;
485
486 i = register_netdev(dev);
487 if (i)
488 goto err_out_unmap_status;
489
490 netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n",
491 pci_id_tbl[chip_idx].name,
492 ioread32(ioaddr + ChipRev), ioaddr,
493 dev->dev_addr, irq);
494
495 if (np->drv_flags & HasMII) {
496 int phy, phy_idx = 0;
497 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
498 int mii_status = mdio_read(ioaddr, phy, 1);
499 if (mii_status != 0xffff && mii_status != 0x0000) {
500 np->phys[phy_idx++] = phy;
501 np->advertising = mdio_read(ioaddr, phy, 4);
502 netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n",
503 phy, mii_status, np->advertising);
504 }
505 }
506 np->mii_cnt = phy_idx;
507 }
508
509 find_cnt++;
510
511 return 0;
512
513 err_out_unmap_status:
514 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
515 np->tx_status_dma);
516 err_out_unmap_rx:
517 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
518 err_out_unmap_tx:
519 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
520 err_out_cleardev:
521 pci_set_drvdata(pdev, NULL);
522 pci_iounmap(pdev, ioaddr);
523 err_out_free_res:
524 pci_release_regions(pdev);
525 err_out_free_netdev:
526 free_netdev (dev);
527 return -ENODEV;
528 }
529
530 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
531 {
532 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
533
534 iowrite8(location, ioaddr + EEAddr);
535 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
536 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
537 ;
538 return ioread8(ioaddr + EERead);
539 }
540
541 /* MII Managemen Data I/O accesses.
542 These routines assume the MDIO controller is idle, and do not exit until
543 the command is finished. */
544
545 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
546 {
547 int i;
548
549 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
550 iowrite16(1, ioaddr + MII_Cmd);
551 for (i = 10000; i >= 0; i--)
552 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
553 break;
554 return ioread16(ioaddr + MII_Rd_Data);
555 }
556
557 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
558 {
559 int i;
560
561 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
562 iowrite16(value, ioaddr + MII_Wr_Data);
563
564 /* Wait for the command to finish. */
565 for (i = 10000; i >= 0; i--)
566 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
567 break;
568 return;
569 }
570
571
572 static int yellowfin_open(struct net_device *dev)
573 {
574 struct yellowfin_private *yp = netdev_priv(dev);
575 void __iomem *ioaddr = yp->base;
576 int i, ret;
577
578 /* Reset the chip. */
579 iowrite32(0x80000000, ioaddr + DMACtrl);
580
581 ret = request_irq(dev->irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
582 if (ret)
583 return ret;
584
585 if (yellowfin_debug > 1)
586 netdev_printk(KERN_DEBUG, dev, "%s() irq %d\n",
587 __func__, dev->irq);
588
589 ret = yellowfin_init_ring(dev);
590 if (ret) {
591 free_irq(dev->irq, dev);
592 return ret;
593 }
594
595 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
596 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
597
598 for (i = 0; i < 6; i++)
599 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
600
601 /* Set up various condition 'select' registers.
602 There are no options here. */
603 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
604 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
605 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
606 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
607 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
608 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
609
610 /* Initialize other registers: with so many this eventually this will
611 converted to an offset/value list. */
612 iowrite32(dma_ctrl, ioaddr + DMACtrl);
613 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
614 /* Enable automatic generation of flow control frames, period 0xffff. */
615 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
616
617 yp->tx_threshold = 32;
618 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
619
620 if (dev->if_port == 0)
621 dev->if_port = yp->default_port;
622
623 netif_start_queue(dev);
624
625 /* Setting the Rx mode will start the Rx process. */
626 if (yp->drv_flags & IsGigabit) {
627 /* We are always in full-duplex mode with gigabit! */
628 yp->full_duplex = 1;
629 iowrite16(0x01CF, ioaddr + Cnfg);
630 } else {
631 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
632 iowrite16(0x1018, ioaddr + FrameGap1);
633 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
634 }
635 set_rx_mode(dev);
636
637 /* Enable interrupts by setting the interrupt mask. */
638 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
639 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
640 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
641 iowrite32(0x80008000, ioaddr + TxCtrl);
642
643 if (yellowfin_debug > 2) {
644 netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__);
645 }
646
647 /* Set the timer to check for link beat. */
648 init_timer(&yp->timer);
649 yp->timer.expires = jiffies + 3*HZ;
650 yp->timer.data = (unsigned long)dev;
651 yp->timer.function = &yellowfin_timer; /* timer handler */
652 add_timer(&yp->timer);
653
654 return 0;
655 }
656
657 static void yellowfin_timer(unsigned long data)
658 {
659 struct net_device *dev = (struct net_device *)data;
660 struct yellowfin_private *yp = netdev_priv(dev);
661 void __iomem *ioaddr = yp->base;
662 int next_tick = 60*HZ;
663
664 if (yellowfin_debug > 3) {
665 netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n",
666 ioread16(ioaddr + IntrStatus));
667 }
668
669 if (yp->mii_cnt) {
670 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
671 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
672 int negotiated = lpa & yp->advertising;
673 if (yellowfin_debug > 1)
674 netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n",
675 yp->phys[0], bmsr, lpa);
676
677 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
678
679 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
680
681 if (bmsr & BMSR_LSTATUS)
682 next_tick = 60*HZ;
683 else
684 next_tick = 3*HZ;
685 }
686
687 yp->timer.expires = jiffies + next_tick;
688 add_timer(&yp->timer);
689 }
690
691 static void yellowfin_tx_timeout(struct net_device *dev)
692 {
693 struct yellowfin_private *yp = netdev_priv(dev);
694 void __iomem *ioaddr = yp->base;
695
696 netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n",
697 yp->cur_tx, yp->dirty_tx,
698 ioread32(ioaddr + TxStatus),
699 ioread32(ioaddr + RxStatus));
700
701 /* Note: these should be KERN_DEBUG. */
702 if (yellowfin_debug) {
703 int i;
704 pr_warning(" Rx ring %p: ", yp->rx_ring);
705 for (i = 0; i < RX_RING_SIZE; i++)
706 pr_cont(" %08x", yp->rx_ring[i].result_status);
707 pr_cont("\n");
708 pr_warning(" Tx ring %p: ", yp->tx_ring);
709 for (i = 0; i < TX_RING_SIZE; i++)
710 pr_cont(" %04x /%08x",
711 yp->tx_status[i].tx_errs,
712 yp->tx_ring[i].result_status);
713 pr_cont("\n");
714 }
715
716 /* If the hardware is found to hang regularly, we will update the code
717 to reinitialize the chip here. */
718 dev->if_port = 0;
719
720 /* Wake the potentially-idle transmit channel. */
721 iowrite32(0x10001000, yp->base + TxCtrl);
722 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
723 netif_wake_queue (dev); /* Typical path */
724
725 dev->trans_start = jiffies; /* prevent tx timeout */
726 dev->stats.tx_errors++;
727 }
728
729 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
730 static int yellowfin_init_ring(struct net_device *dev)
731 {
732 struct yellowfin_private *yp = netdev_priv(dev);
733 int i, j;
734
735 yp->tx_full = 0;
736 yp->cur_rx = yp->cur_tx = 0;
737 yp->dirty_tx = 0;
738
739 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
740
741 for (i = 0; i < RX_RING_SIZE; i++) {
742 yp->rx_ring[i].dbdma_cmd =
743 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
744 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
745 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
746 }
747
748 for (i = 0; i < RX_RING_SIZE; i++) {
749 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
750 yp->rx_skbuff[i] = skb;
751 if (skb == NULL)
752 break;
753 skb->dev = dev; /* Mark as being used by this device. */
754 skb_reserve(skb, 2); /* 16 byte align the IP header. */
755 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
756 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
757 }
758 if (i != RX_RING_SIZE) {
759 for (j = 0; j < i; j++)
760 dev_kfree_skb(yp->rx_skbuff[j]);
761 return -ENOMEM;
762 }
763 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
764 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
765
766 #define NO_TXSTATS
767 #ifdef NO_TXSTATS
768 /* In this mode the Tx ring needs only a single descriptor. */
769 for (i = 0; i < TX_RING_SIZE; i++) {
770 yp->tx_skbuff[i] = NULL;
771 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
772 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
773 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
774 }
775 /* Wrap ring */
776 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
777 #else
778 {
779 /* Tx ring needs a pair of descriptors, the second for the status. */
780 for (i = 0; i < TX_RING_SIZE; i++) {
781 j = 2*i;
782 yp->tx_skbuff[i] = 0;
783 /* Branch on Tx error. */
784 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
785 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
786 (j+1)*sizeof(struct yellowfin_desc));
787 j++;
788 if (yp->flags & FullTxStatus) {
789 yp->tx_ring[j].dbdma_cmd =
790 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
791 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
792 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
793 i*sizeof(struct tx_status_words));
794 } else {
795 /* Symbios chips write only tx_errs word. */
796 yp->tx_ring[j].dbdma_cmd =
797 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
798 yp->tx_ring[j].request_cnt = 2;
799 /* Om pade ummmmm... */
800 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
801 i*sizeof(struct tx_status_words) +
802 &(yp->tx_status[0].tx_errs) -
803 &(yp->tx_status[0]));
804 }
805 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
806 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
807 }
808 /* Wrap ring */
809 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
810 }
811 #endif
812 yp->tx_tail_desc = &yp->tx_status[0];
813 return 0;
814 }
815
816 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
817 struct net_device *dev)
818 {
819 struct yellowfin_private *yp = netdev_priv(dev);
820 unsigned entry;
821 int len = skb->len;
822
823 netif_stop_queue (dev);
824
825 /* Note: Ordering is important here, set the field with the
826 "ownership" bit last, and only then increment cur_tx. */
827
828 /* Calculate the next Tx descriptor entry. */
829 entry = yp->cur_tx % TX_RING_SIZE;
830
831 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
832 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
833 /* Fix GX chipset errata. */
834 if (cacheline_end > 24 || cacheline_end == 0) {
835 len = skb->len + 32 - cacheline_end + 1;
836 if (skb_padto(skb, len)) {
837 yp->tx_skbuff[entry] = NULL;
838 netif_wake_queue(dev);
839 return NETDEV_TX_OK;
840 }
841 }
842 }
843 yp->tx_skbuff[entry] = skb;
844
845 #ifdef NO_TXSTATS
846 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
847 skb->data, len, PCI_DMA_TODEVICE));
848 yp->tx_ring[entry].result_status = 0;
849 if (entry >= TX_RING_SIZE-1) {
850 /* New stop command. */
851 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
852 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
853 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
854 } else {
855 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
856 yp->tx_ring[entry].dbdma_cmd =
857 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
858 }
859 yp->cur_tx++;
860 #else
861 yp->tx_ring[entry<<1].request_cnt = len;
862 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
863 skb->data, len, PCI_DMA_TODEVICE));
864 /* The input_last (status-write) command is constant, but we must
865 rewrite the subsequent 'stop' command. */
866
867 yp->cur_tx++;
868 {
869 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
870 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
871 }
872 /* Final step -- overwrite the old 'stop' command. */
873
874 yp->tx_ring[entry<<1].dbdma_cmd =
875 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
876 CMD_TX_PKT | BRANCH_IFTRUE) | len);
877 #endif
878
879 /* Non-x86 Todo: explicitly flush cache lines here. */
880
881 /* Wake the potentially-idle transmit channel. */
882 iowrite32(0x10001000, yp->base + TxCtrl);
883
884 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
885 netif_start_queue (dev); /* Typical path */
886 else
887 yp->tx_full = 1;
888
889 if (yellowfin_debug > 4) {
890 netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n",
891 yp->cur_tx, entry);
892 }
893 return NETDEV_TX_OK;
894 }
895
896 /* The interrupt handler does all of the Rx thread work and cleans up
897 after the Tx thread. */
898 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
899 {
900 struct net_device *dev = dev_instance;
901 struct yellowfin_private *yp;
902 void __iomem *ioaddr;
903 int boguscnt = max_interrupt_work;
904 unsigned int handled = 0;
905
906 yp = netdev_priv(dev);
907 ioaddr = yp->base;
908
909 spin_lock (&yp->lock);
910
911 do {
912 u16 intr_status = ioread16(ioaddr + IntrClear);
913
914 if (yellowfin_debug > 4)
915 netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n",
916 intr_status);
917
918 if (intr_status == 0)
919 break;
920 handled = 1;
921
922 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
923 yellowfin_rx(dev);
924 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
925 }
926
927 #ifdef NO_TXSTATS
928 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
929 int entry = yp->dirty_tx % TX_RING_SIZE;
930 struct sk_buff *skb;
931
932 if (yp->tx_ring[entry].result_status == 0)
933 break;
934 skb = yp->tx_skbuff[entry];
935 dev->stats.tx_packets++;
936 dev->stats.tx_bytes += skb->len;
937 /* Free the original skb. */
938 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
939 skb->len, PCI_DMA_TODEVICE);
940 dev_kfree_skb_irq(skb);
941 yp->tx_skbuff[entry] = NULL;
942 }
943 if (yp->tx_full &&
944 yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
945 /* The ring is no longer full, clear tbusy. */
946 yp->tx_full = 0;
947 netif_wake_queue(dev);
948 }
949 #else
950 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
951 unsigned dirty_tx = yp->dirty_tx;
952
953 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
954 dirty_tx++) {
955 /* Todo: optimize this. */
956 int entry = dirty_tx % TX_RING_SIZE;
957 u16 tx_errs = yp->tx_status[entry].tx_errs;
958 struct sk_buff *skb;
959
960 #ifndef final_version
961 if (yellowfin_debug > 5)
962 netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n",
963 entry,
964 yp->tx_status[entry].tx_cnt,
965 yp->tx_status[entry].tx_errs,
966 yp->tx_status[entry].total_tx_cnt,
967 yp->tx_status[entry].paused);
968 #endif
969 if (tx_errs == 0)
970 break; /* It still hasn't been Txed */
971 skb = yp->tx_skbuff[entry];
972 if (tx_errs & 0xF810) {
973 /* There was an major error, log it. */
974 #ifndef final_version
975 if (yellowfin_debug > 1)
976 netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n",
977 tx_errs);
978 #endif
979 dev->stats.tx_errors++;
980 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
981 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
982 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
983 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
984 } else {
985 #ifndef final_version
986 if (yellowfin_debug > 4)
987 netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n",
988 tx_errs);
989 #endif
990 dev->stats.tx_bytes += skb->len;
991 dev->stats.collisions += tx_errs & 15;
992 dev->stats.tx_packets++;
993 }
994 /* Free the original skb. */
995 pci_unmap_single(yp->pci_dev,
996 yp->tx_ring[entry<<1].addr, skb->len,
997 PCI_DMA_TODEVICE);
998 dev_kfree_skb_irq(skb);
999 yp->tx_skbuff[entry] = 0;
1000 /* Mark status as empty. */
1001 yp->tx_status[entry].tx_errs = 0;
1002 }
1003
1004 #ifndef final_version
1005 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
1006 netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n",
1007 dirty_tx, yp->cur_tx, yp->tx_full);
1008 dirty_tx += TX_RING_SIZE;
1009 }
1010 #endif
1011
1012 if (yp->tx_full &&
1013 yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1014 /* The ring is no longer full, clear tbusy. */
1015 yp->tx_full = 0;
1016 netif_wake_queue(dev);
1017 }
1018
1019 yp->dirty_tx = dirty_tx;
1020 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1021 }
1022 #endif
1023
1024 /* Log errors and other uncommon events. */
1025 if (intr_status & 0x2ee) /* Abnormal error summary. */
1026 yellowfin_error(dev, intr_status);
1027
1028 if (--boguscnt < 0) {
1029 netdev_warn(dev, "Too much work at interrupt, status=%#04x\n",
1030 intr_status);
1031 break;
1032 }
1033 } while (1);
1034
1035 if (yellowfin_debug > 3)
1036 netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n",
1037 ioread16(ioaddr + IntrStatus));
1038
1039 spin_unlock (&yp->lock);
1040 return IRQ_RETVAL(handled);
1041 }
1042
1043 /* This routine is logically part of the interrupt handler, but separated
1044 for clarity and better register allocation. */
1045 static int yellowfin_rx(struct net_device *dev)
1046 {
1047 struct yellowfin_private *yp = netdev_priv(dev);
1048 int entry = yp->cur_rx % RX_RING_SIZE;
1049 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1050
1051 if (yellowfin_debug > 4) {
1052 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n",
1053 entry, yp->rx_ring[entry].result_status);
1054 printk(KERN_DEBUG " #%d desc. %08x %08x %08x\n",
1055 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1056 yp->rx_ring[entry].result_status);
1057 }
1058
1059 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1060 while (1) {
1061 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1062 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1063 s16 frame_status;
1064 u16 desc_status;
1065 int data_size;
1066 u8 *buf_addr;
1067
1068 if(!desc->result_status)
1069 break;
1070 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1071 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1072 desc_status = le32_to_cpu(desc->result_status) >> 16;
1073 buf_addr = rx_skb->data;
1074 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1075 le32_to_cpu(desc->result_status)) & 0xffff;
1076 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1077 if (yellowfin_debug > 4)
1078 printk(KERN_DEBUG " %s() status was %04x\n",
1079 __func__, frame_status);
1080 if (--boguscnt < 0)
1081 break;
1082 if ( ! (desc_status & RX_EOP)) {
1083 if (data_size != 0)
1084 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n",
1085 desc_status, data_size);
1086 dev->stats.rx_length_errors++;
1087 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1088 /* There was a error. */
1089 if (yellowfin_debug > 3)
1090 printk(KERN_DEBUG " %s() Rx error was %04x\n",
1091 __func__, frame_status);
1092 dev->stats.rx_errors++;
1093 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1094 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1095 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1096 if (frame_status < 0) dev->stats.rx_dropped++;
1097 } else if ( !(yp->drv_flags & IsGigabit) &&
1098 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1099 u8 status1 = buf_addr[data_size-2];
1100 u8 status2 = buf_addr[data_size-1];
1101 dev->stats.rx_errors++;
1102 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1103 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1104 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1105 if (status2 & 0x80) dev->stats.rx_dropped++;
1106 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1107 } else if ((yp->flags & HasMACAddrBug) &&
1108 memcmp(le32_to_cpu(yp->rx_ring_dma +
1109 entry*sizeof(struct yellowfin_desc)),
1110 dev->dev_addr, 6) != 0 &&
1111 memcmp(le32_to_cpu(yp->rx_ring_dma +
1112 entry*sizeof(struct yellowfin_desc)),
1113 "\377\377\377\377\377\377", 6) != 0) {
1114 if (bogus_rx++ == 0)
1115 netdev_warn(dev, "Bad frame to %pM\n",
1116 buf_addr);
1117 #endif
1118 } else {
1119 struct sk_buff *skb;
1120 int pkt_len = data_size -
1121 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1122 /* To verify: Yellowfin Length should omit the CRC! */
1123
1124 #ifndef final_version
1125 if (yellowfin_debug > 4)
1126 printk(KERN_DEBUG " %s() normal Rx pkt length %d of %d, bogus_cnt %d\n",
1127 __func__, pkt_len, data_size, boguscnt);
1128 #endif
1129 /* Check if the packet is long enough to just pass up the skbuff
1130 without copying to a properly sized skbuff. */
1131 if (pkt_len > rx_copybreak) {
1132 skb_put(skb = rx_skb, pkt_len);
1133 pci_unmap_single(yp->pci_dev,
1134 le32_to_cpu(yp->rx_ring[entry].addr),
1135 yp->rx_buf_sz,
1136 PCI_DMA_FROMDEVICE);
1137 yp->rx_skbuff[entry] = NULL;
1138 } else {
1139 skb = dev_alloc_skb(pkt_len + 2);
1140 if (skb == NULL)
1141 break;
1142 skb_reserve(skb, 2); /* 16 byte align the IP header */
1143 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1144 skb_put(skb, pkt_len);
1145 pci_dma_sync_single_for_device(yp->pci_dev,
1146 le32_to_cpu(desc->addr),
1147 yp->rx_buf_sz,
1148 PCI_DMA_FROMDEVICE);
1149 }
1150 skb->protocol = eth_type_trans(skb, dev);
1151 netif_rx(skb);
1152 dev->stats.rx_packets++;
1153 dev->stats.rx_bytes += pkt_len;
1154 }
1155 entry = (++yp->cur_rx) % RX_RING_SIZE;
1156 }
1157
1158 /* Refill the Rx ring buffers. */
1159 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1160 entry = yp->dirty_rx % RX_RING_SIZE;
1161 if (yp->rx_skbuff[entry] == NULL) {
1162 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1163 if (skb == NULL)
1164 break; /* Better luck next round. */
1165 yp->rx_skbuff[entry] = skb;
1166 skb->dev = dev; /* Mark as being used by this device. */
1167 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1168 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1169 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1170 }
1171 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1172 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1173 if (entry != 0)
1174 yp->rx_ring[entry - 1].dbdma_cmd =
1175 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1176 else
1177 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1178 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1179 | yp->rx_buf_sz);
1180 }
1181
1182 return 0;
1183 }
1184
1185 static void yellowfin_error(struct net_device *dev, int intr_status)
1186 {
1187 netdev_err(dev, "Something Wicked happened! %04x\n", intr_status);
1188 /* Hmmmmm, it's not clear what to do here. */
1189 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1190 dev->stats.tx_errors++;
1191 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1192 dev->stats.rx_errors++;
1193 }
1194
1195 static int yellowfin_close(struct net_device *dev)
1196 {
1197 struct yellowfin_private *yp = netdev_priv(dev);
1198 void __iomem *ioaddr = yp->base;
1199 int i;
1200
1201 netif_stop_queue (dev);
1202
1203 if (yellowfin_debug > 1) {
1204 netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n",
1205 ioread16(ioaddr + TxStatus),
1206 ioread16(ioaddr + RxStatus),
1207 ioread16(ioaddr + IntrStatus));
1208 netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n",
1209 yp->cur_tx, yp->dirty_tx,
1210 yp->cur_rx, yp->dirty_rx);
1211 }
1212
1213 /* Disable interrupts by clearing the interrupt mask. */
1214 iowrite16(0x0000, ioaddr + IntrEnb);
1215
1216 /* Stop the chip's Tx and Rx processes. */
1217 iowrite32(0x80000000, ioaddr + RxCtrl);
1218 iowrite32(0x80000000, ioaddr + TxCtrl);
1219
1220 del_timer(&yp->timer);
1221
1222 #if defined(__i386__)
1223 if (yellowfin_debug > 2) {
1224 printk(KERN_DEBUG " Tx ring at %08llx:\n",
1225 (unsigned long long)yp->tx_ring_dma);
1226 for (i = 0; i < TX_RING_SIZE*2; i++)
1227 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n",
1228 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1229 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1230 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1231 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1232 for (i = 0; i < TX_RING_SIZE; i++)
1233 printk(KERN_DEBUG " #%d status %04x %04x %04x %04x\n",
1234 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1235 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1236
1237 printk(KERN_DEBUG " Rx ring %08llx:\n",
1238 (unsigned long long)yp->rx_ring_dma);
1239 for (i = 0; i < RX_RING_SIZE; i++) {
1240 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n",
1241 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1242 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1243 yp->rx_ring[i].result_status);
1244 if (yellowfin_debug > 6) {
1245 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1246 int j;
1247
1248 printk(KERN_DEBUG);
1249 for (j = 0; j < 0x50; j++)
1250 pr_cont(" %04x",
1251 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1252 pr_cont("\n");
1253 }
1254 }
1255 }
1256 }
1257 #endif /* __i386__ debugging only */
1258
1259 free_irq(dev->irq, dev);
1260
1261 /* Free all the skbuffs in the Rx queue. */
1262 for (i = 0; i < RX_RING_SIZE; i++) {
1263 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1264 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1265 if (yp->rx_skbuff[i]) {
1266 dev_kfree_skb(yp->rx_skbuff[i]);
1267 }
1268 yp->rx_skbuff[i] = NULL;
1269 }
1270 for (i = 0; i < TX_RING_SIZE; i++) {
1271 if (yp->tx_skbuff[i])
1272 dev_kfree_skb(yp->tx_skbuff[i]);
1273 yp->tx_skbuff[i] = NULL;
1274 }
1275
1276 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1277 if (yellowfin_debug > 0) {
1278 netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n",
1279 bogus_rx);
1280 }
1281 #endif
1282
1283 return 0;
1284 }
1285
1286 /* Set or clear the multicast filter for this adaptor. */
1287
1288 static void set_rx_mode(struct net_device *dev)
1289 {
1290 struct yellowfin_private *yp = netdev_priv(dev);
1291 void __iomem *ioaddr = yp->base;
1292 u16 cfg_value = ioread16(ioaddr + Cnfg);
1293
1294 /* Stop the Rx process to change any value. */
1295 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1296 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1297 iowrite16(0x000F, ioaddr + AddrMode);
1298 } else if ((netdev_mc_count(dev) > 64) ||
1299 (dev->flags & IFF_ALLMULTI)) {
1300 /* Too many to filter well, or accept all multicasts. */
1301 iowrite16(0x000B, ioaddr + AddrMode);
1302 } else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */
1303 struct dev_mc_list *mclist;
1304 u16 hash_table[4];
1305 int i;
1306
1307 memset(hash_table, 0, sizeof(hash_table));
1308 netdev_for_each_mc_addr(mclist, dev) {
1309 unsigned int bit;
1310
1311 /* Due to a bug in the early chip versions, multiple filter
1312 slots must be set for each address. */
1313 if (yp->drv_flags & HasMulticastBug) {
1314 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1315 hash_table[bit >> 4] |= (1 << bit);
1316 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1317 hash_table[bit >> 4] |= (1 << bit);
1318 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1319 hash_table[bit >> 4] |= (1 << bit);
1320 }
1321 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1322 hash_table[bit >> 4] |= (1 << bit);
1323 }
1324 /* Copy the hash table to the chip. */
1325 for (i = 0; i < 4; i++)
1326 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1327 iowrite16(0x0003, ioaddr + AddrMode);
1328 } else { /* Normal, unicast/broadcast-only mode. */
1329 iowrite16(0x0001, ioaddr + AddrMode);
1330 }
1331 /* Restart the Rx process. */
1332 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1333 }
1334
1335 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1336 {
1337 struct yellowfin_private *np = netdev_priv(dev);
1338 strcpy(info->driver, DRV_NAME);
1339 strcpy(info->version, DRV_VERSION);
1340 strcpy(info->bus_info, pci_name(np->pci_dev));
1341 }
1342
1343 static const struct ethtool_ops ethtool_ops = {
1344 .get_drvinfo = yellowfin_get_drvinfo
1345 };
1346
1347 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1348 {
1349 struct yellowfin_private *np = netdev_priv(dev);
1350 void __iomem *ioaddr = np->base;
1351 struct mii_ioctl_data *data = if_mii(rq);
1352
1353 switch(cmd) {
1354 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1355 data->phy_id = np->phys[0] & 0x1f;
1356 /* Fall Through */
1357
1358 case SIOCGMIIREG: /* Read MII PHY register. */
1359 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1360 return 0;
1361
1362 case SIOCSMIIREG: /* Write MII PHY register. */
1363 if (data->phy_id == np->phys[0]) {
1364 u16 value = data->val_in;
1365 switch (data->reg_num) {
1366 case 0:
1367 /* Check for autonegotiation on or reset. */
1368 np->medialock = (value & 0x9000) ? 0 : 1;
1369 if (np->medialock)
1370 np->full_duplex = (value & 0x0100) ? 1 : 0;
1371 break;
1372 case 4: np->advertising = value; break;
1373 }
1374 /* Perhaps check_duplex(dev), depending on chip semantics. */
1375 }
1376 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1377 return 0;
1378 default:
1379 return -EOPNOTSUPP;
1380 }
1381 }
1382
1383
1384 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1385 {
1386 struct net_device *dev = pci_get_drvdata(pdev);
1387 struct yellowfin_private *np;
1388
1389 BUG_ON(!dev);
1390 np = netdev_priv(dev);
1391
1392 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1393 np->tx_status_dma);
1394 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1395 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1396 unregister_netdev (dev);
1397
1398 pci_iounmap(pdev, np->base);
1399
1400 pci_release_regions (pdev);
1401
1402 free_netdev (dev);
1403 pci_set_drvdata(pdev, NULL);
1404 }
1405
1406
1407 static struct pci_driver yellowfin_driver = {
1408 .name = DRV_NAME,
1409 .id_table = yellowfin_pci_tbl,
1410 .probe = yellowfin_init_one,
1411 .remove = __devexit_p(yellowfin_remove_one),
1412 };
1413
1414
1415 static int __init yellowfin_init (void)
1416 {
1417 /* when a module, this is printed whether or not devices are found in probe */
1418 #ifdef MODULE
1419 printk(version);
1420 #endif
1421 return pci_register_driver(&yellowfin_driver);
1422 }
1423
1424
1425 static void __exit yellowfin_cleanup (void)
1426 {
1427 pci_unregister_driver (&yellowfin_driver);
1428 }
1429
1430
1431 module_init(yellowfin_init);
1432 module_exit(yellowfin_cleanup);