]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/ntb/ntb_transport.c
Merge tag 'armsoc-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-eoan-kernel.git] / drivers / ntb / ntb_transport.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * BSD LICENSE
15 *
16 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above copy
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 * * Neither the name of Intel Corporation nor the names of its
30 * contributors may be used to endorse or promote products derived
31 * from this software without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 *
45 * PCIe NTB Transport Linux driver
46 *
47 * Contact Information:
48 * Jon Mason <jon.mason@intel.com>
49 */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION 4
66 #define NTB_TRANSPORT_VER "4"
67 #define NTB_TRANSPORT_NAME "ntb_transport"
68 #define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB"
69
70 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
71 MODULE_VERSION(NTB_TRANSPORT_VER);
72 MODULE_LICENSE("Dual BSD/GPL");
73 MODULE_AUTHOR("Intel Corporation");
74
75 static unsigned long max_mw_size;
76 module_param(max_mw_size, ulong, 0644);
77 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
78
79 static unsigned int transport_mtu = 0x10000;
80 module_param(transport_mtu, uint, 0644);
81 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
82
83 static unsigned char max_num_clients;
84 module_param(max_num_clients, byte, 0644);
85 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
86
87 static unsigned int copy_bytes = 1024;
88 module_param(copy_bytes, uint, 0644);
89 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
90
91 static bool use_dma;
92 module_param(use_dma, bool, 0644);
93 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
94
95 static struct dentry *nt_debugfs_dir;
96
97 struct ntb_queue_entry {
98 /* ntb_queue list reference */
99 struct list_head entry;
100 /* pointers to data to be transferred */
101 void *cb_data;
102 void *buf;
103 unsigned int len;
104 unsigned int flags;
105
106 struct ntb_transport_qp *qp;
107 union {
108 struct ntb_payload_header __iomem *tx_hdr;
109 struct ntb_payload_header *rx_hdr;
110 };
111 unsigned int index;
112 };
113
114 struct ntb_rx_info {
115 unsigned int entry;
116 };
117
118 struct ntb_transport_qp {
119 struct ntb_transport_ctx *transport;
120 struct ntb_dev *ndev;
121 void *cb_data;
122 struct dma_chan *dma_chan;
123
124 bool client_ready;
125 bool link_is_up;
126
127 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */
128 u64 qp_bit;
129
130 struct ntb_rx_info __iomem *rx_info;
131 struct ntb_rx_info *remote_rx_info;
132
133 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
134 void *data, int len);
135 struct list_head tx_free_q;
136 spinlock_t ntb_tx_free_q_lock;
137 void __iomem *tx_mw;
138 dma_addr_t tx_mw_phys;
139 unsigned int tx_index;
140 unsigned int tx_max_entry;
141 unsigned int tx_max_frame;
142
143 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
144 void *data, int len);
145 struct list_head rx_post_q;
146 struct list_head rx_pend_q;
147 struct list_head rx_free_q;
148 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
149 spinlock_t ntb_rx_q_lock;
150 void *rx_buff;
151 unsigned int rx_index;
152 unsigned int rx_max_entry;
153 unsigned int rx_max_frame;
154 dma_cookie_t last_cookie;
155 struct tasklet_struct rxc_db_work;
156
157 void (*event_handler)(void *data, int status);
158 struct delayed_work link_work;
159 struct work_struct link_cleanup;
160
161 struct dentry *debugfs_dir;
162 struct dentry *debugfs_stats;
163
164 /* Stats */
165 u64 rx_bytes;
166 u64 rx_pkts;
167 u64 rx_ring_empty;
168 u64 rx_err_no_buf;
169 u64 rx_err_oflow;
170 u64 rx_err_ver;
171 u64 rx_memcpy;
172 u64 rx_async;
173 u64 tx_bytes;
174 u64 tx_pkts;
175 u64 tx_ring_full;
176 u64 tx_err_no_buf;
177 u64 tx_memcpy;
178 u64 tx_async;
179 };
180
181 struct ntb_transport_mw {
182 phys_addr_t phys_addr;
183 resource_size_t phys_size;
184 resource_size_t xlat_align;
185 resource_size_t xlat_align_size;
186 void __iomem *vbase;
187 size_t xlat_size;
188 size_t buff_size;
189 void *virt_addr;
190 dma_addr_t dma_addr;
191 };
192
193 struct ntb_transport_client_dev {
194 struct list_head entry;
195 struct ntb_transport_ctx *nt;
196 struct device dev;
197 };
198
199 struct ntb_transport_ctx {
200 struct list_head entry;
201 struct list_head client_devs;
202
203 struct ntb_dev *ndev;
204
205 struct ntb_transport_mw *mw_vec;
206 struct ntb_transport_qp *qp_vec;
207 unsigned int mw_count;
208 unsigned int qp_count;
209 u64 qp_bitmap;
210 u64 qp_bitmap_free;
211
212 bool link_is_up;
213 struct delayed_work link_work;
214 struct work_struct link_cleanup;
215
216 struct dentry *debugfs_node_dir;
217 };
218
219 enum {
220 DESC_DONE_FLAG = BIT(0),
221 LINK_DOWN_FLAG = BIT(1),
222 };
223
224 struct ntb_payload_header {
225 unsigned int ver;
226 unsigned int len;
227 unsigned int flags;
228 };
229
230 enum {
231 VERSION = 0,
232 QP_LINKS,
233 NUM_QPS,
234 NUM_MWS,
235 MW0_SZ_HIGH,
236 MW0_SZ_LOW,
237 MW1_SZ_HIGH,
238 MW1_SZ_LOW,
239 MAX_SPAD,
240 };
241
242 #define dev_client_dev(__dev) \
243 container_of((__dev), struct ntb_transport_client_dev, dev)
244
245 #define drv_client(__drv) \
246 container_of((__drv), struct ntb_transport_client, driver)
247
248 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count)
249 #define NTB_QP_DEF_NUM_ENTRIES 100
250 #define NTB_LINK_DOWN_TIMEOUT 10
251
252 static void ntb_transport_rxc_db(unsigned long data);
253 static const struct ntb_ctx_ops ntb_transport_ops;
254 static struct ntb_client ntb_transport_client;
255
256 static int ntb_transport_bus_match(struct device *dev,
257 struct device_driver *drv)
258 {
259 return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
260 }
261
262 static int ntb_transport_bus_probe(struct device *dev)
263 {
264 const struct ntb_transport_client *client;
265 int rc = -EINVAL;
266
267 get_device(dev);
268
269 client = drv_client(dev->driver);
270 rc = client->probe(dev);
271 if (rc)
272 put_device(dev);
273
274 return rc;
275 }
276
277 static int ntb_transport_bus_remove(struct device *dev)
278 {
279 const struct ntb_transport_client *client;
280
281 client = drv_client(dev->driver);
282 client->remove(dev);
283
284 put_device(dev);
285
286 return 0;
287 }
288
289 static struct bus_type ntb_transport_bus = {
290 .name = "ntb_transport",
291 .match = ntb_transport_bus_match,
292 .probe = ntb_transport_bus_probe,
293 .remove = ntb_transport_bus_remove,
294 };
295
296 static LIST_HEAD(ntb_transport_list);
297
298 static int ntb_bus_init(struct ntb_transport_ctx *nt)
299 {
300 list_add(&nt->entry, &ntb_transport_list);
301 return 0;
302 }
303
304 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
305 {
306 struct ntb_transport_client_dev *client_dev, *cd;
307
308 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
309 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
310 dev_name(&client_dev->dev));
311 list_del(&client_dev->entry);
312 device_unregister(&client_dev->dev);
313 }
314
315 list_del(&nt->entry);
316 }
317
318 static void ntb_transport_client_release(struct device *dev)
319 {
320 struct ntb_transport_client_dev *client_dev;
321
322 client_dev = dev_client_dev(dev);
323 kfree(client_dev);
324 }
325
326 /**
327 * ntb_transport_unregister_client_dev - Unregister NTB client device
328 * @device_name: Name of NTB client device
329 *
330 * Unregister an NTB client device with the NTB transport layer
331 */
332 void ntb_transport_unregister_client_dev(char *device_name)
333 {
334 struct ntb_transport_client_dev *client, *cd;
335 struct ntb_transport_ctx *nt;
336
337 list_for_each_entry(nt, &ntb_transport_list, entry)
338 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
339 if (!strncmp(dev_name(&client->dev), device_name,
340 strlen(device_name))) {
341 list_del(&client->entry);
342 device_unregister(&client->dev);
343 }
344 }
345 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
346
347 /**
348 * ntb_transport_register_client_dev - Register NTB client device
349 * @device_name: Name of NTB client device
350 *
351 * Register an NTB client device with the NTB transport layer
352 */
353 int ntb_transport_register_client_dev(char *device_name)
354 {
355 struct ntb_transport_client_dev *client_dev;
356 struct ntb_transport_ctx *nt;
357 int node;
358 int rc, i = 0;
359
360 if (list_empty(&ntb_transport_list))
361 return -ENODEV;
362
363 list_for_each_entry(nt, &ntb_transport_list, entry) {
364 struct device *dev;
365
366 node = dev_to_node(&nt->ndev->dev);
367
368 client_dev = kzalloc_node(sizeof(*client_dev),
369 GFP_KERNEL, node);
370 if (!client_dev) {
371 rc = -ENOMEM;
372 goto err;
373 }
374
375 dev = &client_dev->dev;
376
377 /* setup and register client devices */
378 dev_set_name(dev, "%s%d", device_name, i);
379 dev->bus = &ntb_transport_bus;
380 dev->release = ntb_transport_client_release;
381 dev->parent = &nt->ndev->dev;
382
383 rc = device_register(dev);
384 if (rc) {
385 kfree(client_dev);
386 goto err;
387 }
388
389 list_add_tail(&client_dev->entry, &nt->client_devs);
390 i++;
391 }
392
393 return 0;
394
395 err:
396 ntb_transport_unregister_client_dev(device_name);
397
398 return rc;
399 }
400 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
401
402 /**
403 * ntb_transport_register_client - Register NTB client driver
404 * @drv: NTB client driver to be registered
405 *
406 * Register an NTB client driver with the NTB transport layer
407 *
408 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
409 */
410 int ntb_transport_register_client(struct ntb_transport_client *drv)
411 {
412 drv->driver.bus = &ntb_transport_bus;
413
414 if (list_empty(&ntb_transport_list))
415 return -ENODEV;
416
417 return driver_register(&drv->driver);
418 }
419 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
420
421 /**
422 * ntb_transport_unregister_client - Unregister NTB client driver
423 * @drv: NTB client driver to be unregistered
424 *
425 * Unregister an NTB client driver with the NTB transport layer
426 *
427 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
428 */
429 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
430 {
431 driver_unregister(&drv->driver);
432 }
433 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
434
435 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
436 loff_t *offp)
437 {
438 struct ntb_transport_qp *qp;
439 char *buf;
440 ssize_t ret, out_offset, out_count;
441
442 qp = filp->private_data;
443
444 if (!qp || !qp->link_is_up)
445 return 0;
446
447 out_count = 1000;
448
449 buf = kmalloc(out_count, GFP_KERNEL);
450 if (!buf)
451 return -ENOMEM;
452
453 out_offset = 0;
454 out_offset += snprintf(buf + out_offset, out_count - out_offset,
455 "NTB QP stats\n");
456 out_offset += snprintf(buf + out_offset, out_count - out_offset,
457 "rx_bytes - \t%llu\n", qp->rx_bytes);
458 out_offset += snprintf(buf + out_offset, out_count - out_offset,
459 "rx_pkts - \t%llu\n", qp->rx_pkts);
460 out_offset += snprintf(buf + out_offset, out_count - out_offset,
461 "rx_memcpy - \t%llu\n", qp->rx_memcpy);
462 out_offset += snprintf(buf + out_offset, out_count - out_offset,
463 "rx_async - \t%llu\n", qp->rx_async);
464 out_offset += snprintf(buf + out_offset, out_count - out_offset,
465 "rx_ring_empty - %llu\n", qp->rx_ring_empty);
466 out_offset += snprintf(buf + out_offset, out_count - out_offset,
467 "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
468 out_offset += snprintf(buf + out_offset, out_count - out_offset,
469 "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
470 out_offset += snprintf(buf + out_offset, out_count - out_offset,
471 "rx_err_ver - \t%llu\n", qp->rx_err_ver);
472 out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 "rx_buff - \t%p\n", qp->rx_buff);
474 out_offset += snprintf(buf + out_offset, out_count - out_offset,
475 "rx_index - \t%u\n", qp->rx_index);
476 out_offset += snprintf(buf + out_offset, out_count - out_offset,
477 "rx_max_entry - \t%u\n", qp->rx_max_entry);
478
479 out_offset += snprintf(buf + out_offset, out_count - out_offset,
480 "tx_bytes - \t%llu\n", qp->tx_bytes);
481 out_offset += snprintf(buf + out_offset, out_count - out_offset,
482 "tx_pkts - \t%llu\n", qp->tx_pkts);
483 out_offset += snprintf(buf + out_offset, out_count - out_offset,
484 "tx_memcpy - \t%llu\n", qp->tx_memcpy);
485 out_offset += snprintf(buf + out_offset, out_count - out_offset,
486 "tx_async - \t%llu\n", qp->tx_async);
487 out_offset += snprintf(buf + out_offset, out_count - out_offset,
488 "tx_ring_full - \t%llu\n", qp->tx_ring_full);
489 out_offset += snprintf(buf + out_offset, out_count - out_offset,
490 "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
491 out_offset += snprintf(buf + out_offset, out_count - out_offset,
492 "tx_mw - \t%p\n", qp->tx_mw);
493 out_offset += snprintf(buf + out_offset, out_count - out_offset,
494 "tx_index - \t%u\n", qp->tx_index);
495 out_offset += snprintf(buf + out_offset, out_count - out_offset,
496 "tx_max_entry - \t%u\n", qp->tx_max_entry);
497
498 out_offset += snprintf(buf + out_offset, out_count - out_offset,
499 "\nQP Link %s\n",
500 qp->link_is_up ? "Up" : "Down");
501 if (out_offset > out_count)
502 out_offset = out_count;
503
504 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
505 kfree(buf);
506 return ret;
507 }
508
509 static const struct file_operations ntb_qp_debugfs_stats = {
510 .owner = THIS_MODULE,
511 .open = simple_open,
512 .read = debugfs_read,
513 };
514
515 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
516 struct list_head *list)
517 {
518 unsigned long flags;
519
520 spin_lock_irqsave(lock, flags);
521 list_add_tail(entry, list);
522 spin_unlock_irqrestore(lock, flags);
523 }
524
525 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
526 struct list_head *list)
527 {
528 struct ntb_queue_entry *entry;
529 unsigned long flags;
530
531 spin_lock_irqsave(lock, flags);
532 if (list_empty(list)) {
533 entry = NULL;
534 goto out;
535 }
536 entry = list_first_entry(list, struct ntb_queue_entry, entry);
537 list_del(&entry->entry);
538 out:
539 spin_unlock_irqrestore(lock, flags);
540
541 return entry;
542 }
543
544 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
545 struct list_head *list,
546 struct list_head *to_list)
547 {
548 struct ntb_queue_entry *entry;
549 unsigned long flags;
550
551 spin_lock_irqsave(lock, flags);
552
553 if (list_empty(list)) {
554 entry = NULL;
555 } else {
556 entry = list_first_entry(list, struct ntb_queue_entry, entry);
557 list_move_tail(&entry->entry, to_list);
558 }
559
560 spin_unlock_irqrestore(lock, flags);
561
562 return entry;
563 }
564
565 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
566 unsigned int qp_num)
567 {
568 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
569 struct ntb_transport_mw *mw;
570 unsigned int rx_size, num_qps_mw;
571 unsigned int mw_num, mw_count, qp_count;
572 unsigned int i;
573
574 mw_count = nt->mw_count;
575 qp_count = nt->qp_count;
576
577 mw_num = QP_TO_MW(nt, qp_num);
578 mw = &nt->mw_vec[mw_num];
579
580 if (!mw->virt_addr)
581 return -ENOMEM;
582
583 if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
584 num_qps_mw = qp_count / mw_count + 1;
585 else
586 num_qps_mw = qp_count / mw_count;
587
588 rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
589 qp->rx_buff = mw->virt_addr + rx_size * qp_num / mw_count;
590 rx_size -= sizeof(struct ntb_rx_info);
591
592 qp->remote_rx_info = qp->rx_buff + rx_size;
593
594 /* Due to housekeeping, there must be atleast 2 buffs */
595 qp->rx_max_frame = min(transport_mtu, rx_size / 2);
596 qp->rx_max_entry = rx_size / qp->rx_max_frame;
597 qp->rx_index = 0;
598
599 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
600
601 /* setup the hdr offsets with 0's */
602 for (i = 0; i < qp->rx_max_entry; i++) {
603 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
604 sizeof(struct ntb_payload_header));
605 memset(offset, 0, sizeof(struct ntb_payload_header));
606 }
607
608 qp->rx_pkts = 0;
609 qp->tx_pkts = 0;
610 qp->tx_index = 0;
611
612 return 0;
613 }
614
615 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
616 {
617 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
618 struct pci_dev *pdev = nt->ndev->pdev;
619
620 if (!mw->virt_addr)
621 return;
622
623 ntb_mw_clear_trans(nt->ndev, num_mw);
624 dma_free_coherent(&pdev->dev, mw->buff_size,
625 mw->virt_addr, mw->dma_addr);
626 mw->xlat_size = 0;
627 mw->buff_size = 0;
628 mw->virt_addr = NULL;
629 }
630
631 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
632 resource_size_t size)
633 {
634 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
635 struct pci_dev *pdev = nt->ndev->pdev;
636 size_t xlat_size, buff_size;
637 int rc;
638
639 if (!size)
640 return -EINVAL;
641
642 xlat_size = round_up(size, mw->xlat_align_size);
643 buff_size = round_up(size, mw->xlat_align);
644
645 /* No need to re-setup */
646 if (mw->xlat_size == xlat_size)
647 return 0;
648
649 if (mw->buff_size)
650 ntb_free_mw(nt, num_mw);
651
652 /* Alloc memory for receiving data. Must be aligned */
653 mw->xlat_size = xlat_size;
654 mw->buff_size = buff_size;
655
656 mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
657 &mw->dma_addr, GFP_KERNEL);
658 if (!mw->virt_addr) {
659 mw->xlat_size = 0;
660 mw->buff_size = 0;
661 dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
662 buff_size);
663 return -ENOMEM;
664 }
665
666 /*
667 * we must ensure that the memory address allocated is BAR size
668 * aligned in order for the XLAT register to take the value. This
669 * is a requirement of the hardware. It is recommended to setup CMA
670 * for BAR sizes equal or greater than 4MB.
671 */
672 if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
673 dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
674 &mw->dma_addr);
675 ntb_free_mw(nt, num_mw);
676 return -ENOMEM;
677 }
678
679 /* Notify HW the memory location of the receive buffer */
680 rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
681 if (rc) {
682 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
683 ntb_free_mw(nt, num_mw);
684 return -EIO;
685 }
686
687 return 0;
688 }
689
690 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
691 {
692 qp->link_is_up = false;
693
694 qp->tx_index = 0;
695 qp->rx_index = 0;
696 qp->rx_bytes = 0;
697 qp->rx_pkts = 0;
698 qp->rx_ring_empty = 0;
699 qp->rx_err_no_buf = 0;
700 qp->rx_err_oflow = 0;
701 qp->rx_err_ver = 0;
702 qp->rx_memcpy = 0;
703 qp->rx_async = 0;
704 qp->tx_bytes = 0;
705 qp->tx_pkts = 0;
706 qp->tx_ring_full = 0;
707 qp->tx_err_no_buf = 0;
708 qp->tx_memcpy = 0;
709 qp->tx_async = 0;
710 }
711
712 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
713 {
714 struct ntb_transport_ctx *nt = qp->transport;
715 struct pci_dev *pdev = nt->ndev->pdev;
716
717 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
718
719 cancel_delayed_work_sync(&qp->link_work);
720 ntb_qp_link_down_reset(qp);
721
722 if (qp->event_handler)
723 qp->event_handler(qp->cb_data, qp->link_is_up);
724 }
725
726 static void ntb_qp_link_cleanup_work(struct work_struct *work)
727 {
728 struct ntb_transport_qp *qp = container_of(work,
729 struct ntb_transport_qp,
730 link_cleanup);
731 struct ntb_transport_ctx *nt = qp->transport;
732
733 ntb_qp_link_cleanup(qp);
734
735 if (nt->link_is_up)
736 schedule_delayed_work(&qp->link_work,
737 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
738 }
739
740 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
741 {
742 schedule_work(&qp->link_cleanup);
743 }
744
745 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
746 {
747 struct ntb_transport_qp *qp;
748 u64 qp_bitmap_alloc;
749 int i;
750
751 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
752
753 /* Pass along the info to any clients */
754 for (i = 0; i < nt->qp_count; i++)
755 if (qp_bitmap_alloc & BIT_ULL(i)) {
756 qp = &nt->qp_vec[i];
757 ntb_qp_link_cleanup(qp);
758 cancel_work_sync(&qp->link_cleanup);
759 cancel_delayed_work_sync(&qp->link_work);
760 }
761
762 if (!nt->link_is_up)
763 cancel_delayed_work_sync(&nt->link_work);
764
765 /* The scratchpad registers keep the values if the remote side
766 * goes down, blast them now to give them a sane value the next
767 * time they are accessed
768 */
769 for (i = 0; i < MAX_SPAD; i++)
770 ntb_spad_write(nt->ndev, i, 0);
771 }
772
773 static void ntb_transport_link_cleanup_work(struct work_struct *work)
774 {
775 struct ntb_transport_ctx *nt =
776 container_of(work, struct ntb_transport_ctx, link_cleanup);
777
778 ntb_transport_link_cleanup(nt);
779 }
780
781 static void ntb_transport_event_callback(void *data)
782 {
783 struct ntb_transport_ctx *nt = data;
784
785 if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
786 schedule_delayed_work(&nt->link_work, 0);
787 else
788 schedule_work(&nt->link_cleanup);
789 }
790
791 static void ntb_transport_link_work(struct work_struct *work)
792 {
793 struct ntb_transport_ctx *nt =
794 container_of(work, struct ntb_transport_ctx, link_work.work);
795 struct ntb_dev *ndev = nt->ndev;
796 struct pci_dev *pdev = ndev->pdev;
797 resource_size_t size;
798 u32 val;
799 int rc, i, spad;
800
801 /* send the local info, in the opposite order of the way we read it */
802 for (i = 0; i < nt->mw_count; i++) {
803 size = nt->mw_vec[i].phys_size;
804
805 if (max_mw_size && size > max_mw_size)
806 size = max_mw_size;
807
808 spad = MW0_SZ_HIGH + (i * 2);
809 ntb_peer_spad_write(ndev, spad, (u32)(size >> 32));
810
811 spad = MW0_SZ_LOW + (i * 2);
812 ntb_peer_spad_write(ndev, spad, (u32)size);
813 }
814
815 ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
816
817 ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
818
819 ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
820
821 /* Query the remote side for its info */
822 val = ntb_spad_read(ndev, VERSION);
823 dev_dbg(&pdev->dev, "Remote version = %d\n", val);
824 if (val != NTB_TRANSPORT_VERSION)
825 goto out;
826
827 val = ntb_spad_read(ndev, NUM_QPS);
828 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
829 if (val != nt->qp_count)
830 goto out;
831
832 val = ntb_spad_read(ndev, NUM_MWS);
833 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
834 if (val != nt->mw_count)
835 goto out;
836
837 for (i = 0; i < nt->mw_count; i++) {
838 u64 val64;
839
840 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
841 val64 = (u64)val << 32;
842
843 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
844 val64 |= val;
845
846 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
847
848 rc = ntb_set_mw(nt, i, val64);
849 if (rc)
850 goto out1;
851 }
852
853 nt->link_is_up = true;
854
855 for (i = 0; i < nt->qp_count; i++) {
856 struct ntb_transport_qp *qp = &nt->qp_vec[i];
857
858 ntb_transport_setup_qp_mw(nt, i);
859
860 if (qp->client_ready)
861 schedule_delayed_work(&qp->link_work, 0);
862 }
863
864 return;
865
866 out1:
867 for (i = 0; i < nt->mw_count; i++)
868 ntb_free_mw(nt, i);
869 out:
870 if (ntb_link_is_up(ndev, NULL, NULL) == 1)
871 schedule_delayed_work(&nt->link_work,
872 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
873 }
874
875 static void ntb_qp_link_work(struct work_struct *work)
876 {
877 struct ntb_transport_qp *qp = container_of(work,
878 struct ntb_transport_qp,
879 link_work.work);
880 struct pci_dev *pdev = qp->ndev->pdev;
881 struct ntb_transport_ctx *nt = qp->transport;
882 int val;
883
884 WARN_ON(!nt->link_is_up);
885
886 val = ntb_spad_read(nt->ndev, QP_LINKS);
887
888 ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
889
890 /* query remote spad for qp ready bits */
891 ntb_peer_spad_read(nt->ndev, QP_LINKS);
892 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
893
894 /* See if the remote side is up */
895 if (val & BIT(qp->qp_num)) {
896 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
897 qp->link_is_up = true;
898
899 if (qp->event_handler)
900 qp->event_handler(qp->cb_data, qp->link_is_up);
901
902 tasklet_schedule(&qp->rxc_db_work);
903 } else if (nt->link_is_up)
904 schedule_delayed_work(&qp->link_work,
905 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
906 }
907
908 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
909 unsigned int qp_num)
910 {
911 struct ntb_transport_qp *qp;
912 struct ntb_transport_mw *mw;
913 phys_addr_t mw_base;
914 resource_size_t mw_size;
915 unsigned int num_qps_mw, tx_size;
916 unsigned int mw_num, mw_count, qp_count;
917 u64 qp_offset;
918
919 mw_count = nt->mw_count;
920 qp_count = nt->qp_count;
921
922 mw_num = QP_TO_MW(nt, qp_num);
923 mw = &nt->mw_vec[mw_num];
924
925 qp = &nt->qp_vec[qp_num];
926 qp->qp_num = qp_num;
927 qp->transport = nt;
928 qp->ndev = nt->ndev;
929 qp->client_ready = false;
930 qp->event_handler = NULL;
931 ntb_qp_link_down_reset(qp);
932
933 if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
934 num_qps_mw = qp_count / mw_count + 1;
935 else
936 num_qps_mw = qp_count / mw_count;
937
938 mw_base = nt->mw_vec[mw_num].phys_addr;
939 mw_size = nt->mw_vec[mw_num].phys_size;
940
941 tx_size = (unsigned int)mw_size / num_qps_mw;
942 qp_offset = tx_size * qp_num / mw_count;
943
944 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
945 if (!qp->tx_mw)
946 return -EINVAL;
947
948 qp->tx_mw_phys = mw_base + qp_offset;
949 if (!qp->tx_mw_phys)
950 return -EINVAL;
951
952 tx_size -= sizeof(struct ntb_rx_info);
953 qp->rx_info = qp->tx_mw + tx_size;
954
955 /* Due to housekeeping, there must be atleast 2 buffs */
956 qp->tx_max_frame = min(transport_mtu, tx_size / 2);
957 qp->tx_max_entry = tx_size / qp->tx_max_frame;
958
959 if (nt->debugfs_node_dir) {
960 char debugfs_name[4];
961
962 snprintf(debugfs_name, 4, "qp%d", qp_num);
963 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
964 nt->debugfs_node_dir);
965
966 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
967 qp->debugfs_dir, qp,
968 &ntb_qp_debugfs_stats);
969 } else {
970 qp->debugfs_dir = NULL;
971 qp->debugfs_stats = NULL;
972 }
973
974 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
975 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
976
977 spin_lock_init(&qp->ntb_rx_q_lock);
978 spin_lock_init(&qp->ntb_tx_free_q_lock);
979
980 INIT_LIST_HEAD(&qp->rx_post_q);
981 INIT_LIST_HEAD(&qp->rx_pend_q);
982 INIT_LIST_HEAD(&qp->rx_free_q);
983 INIT_LIST_HEAD(&qp->tx_free_q);
984
985 tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
986 (unsigned long)qp);
987
988 return 0;
989 }
990
991 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
992 {
993 struct ntb_transport_ctx *nt;
994 struct ntb_transport_mw *mw;
995 unsigned int mw_count, qp_count;
996 u64 qp_bitmap;
997 int node;
998 int rc, i;
999
1000 if (ntb_db_is_unsafe(ndev))
1001 dev_dbg(&ndev->dev,
1002 "doorbell is unsafe, proceed anyway...\n");
1003 if (ntb_spad_is_unsafe(ndev))
1004 dev_dbg(&ndev->dev,
1005 "scratchpad is unsafe, proceed anyway...\n");
1006
1007 node = dev_to_node(&ndev->dev);
1008
1009 nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1010 if (!nt)
1011 return -ENOMEM;
1012
1013 nt->ndev = ndev;
1014
1015 mw_count = ntb_mw_count(ndev);
1016
1017 nt->mw_count = mw_count;
1018
1019 nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1020 GFP_KERNEL, node);
1021 if (!nt->mw_vec) {
1022 rc = -ENOMEM;
1023 goto err;
1024 }
1025
1026 for (i = 0; i < mw_count; i++) {
1027 mw = &nt->mw_vec[i];
1028
1029 rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
1030 &mw->xlat_align, &mw->xlat_align_size);
1031 if (rc)
1032 goto err1;
1033
1034 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1035 if (!mw->vbase) {
1036 rc = -ENOMEM;
1037 goto err1;
1038 }
1039
1040 mw->buff_size = 0;
1041 mw->xlat_size = 0;
1042 mw->virt_addr = NULL;
1043 mw->dma_addr = 0;
1044 }
1045
1046 qp_bitmap = ntb_db_valid_mask(ndev);
1047
1048 qp_count = ilog2(qp_bitmap);
1049 if (max_num_clients && max_num_clients < qp_count)
1050 qp_count = max_num_clients;
1051 else if (mw_count < qp_count)
1052 qp_count = mw_count;
1053
1054 qp_bitmap &= BIT_ULL(qp_count) - 1;
1055
1056 nt->qp_count = qp_count;
1057 nt->qp_bitmap = qp_bitmap;
1058 nt->qp_bitmap_free = qp_bitmap;
1059
1060 nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1061 GFP_KERNEL, node);
1062 if (!nt->qp_vec) {
1063 rc = -ENOMEM;
1064 goto err2;
1065 }
1066
1067 if (nt_debugfs_dir) {
1068 nt->debugfs_node_dir =
1069 debugfs_create_dir(pci_name(ndev->pdev),
1070 nt_debugfs_dir);
1071 }
1072
1073 for (i = 0; i < qp_count; i++) {
1074 rc = ntb_transport_init_queue(nt, i);
1075 if (rc)
1076 goto err3;
1077 }
1078
1079 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1080 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1081
1082 rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1083 if (rc)
1084 goto err3;
1085
1086 INIT_LIST_HEAD(&nt->client_devs);
1087 rc = ntb_bus_init(nt);
1088 if (rc)
1089 goto err4;
1090
1091 nt->link_is_up = false;
1092 ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1093 ntb_link_event(ndev);
1094
1095 return 0;
1096
1097 err4:
1098 ntb_clear_ctx(ndev);
1099 err3:
1100 kfree(nt->qp_vec);
1101 err2:
1102 kfree(nt->mw_vec);
1103 err1:
1104 while (i--) {
1105 mw = &nt->mw_vec[i];
1106 iounmap(mw->vbase);
1107 }
1108 err:
1109 kfree(nt);
1110 return rc;
1111 }
1112
1113 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1114 {
1115 struct ntb_transport_ctx *nt = ndev->ctx;
1116 struct ntb_transport_qp *qp;
1117 u64 qp_bitmap_alloc;
1118 int i;
1119
1120 ntb_transport_link_cleanup(nt);
1121 cancel_work_sync(&nt->link_cleanup);
1122 cancel_delayed_work_sync(&nt->link_work);
1123
1124 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1125
1126 /* verify that all the qp's are freed */
1127 for (i = 0; i < nt->qp_count; i++) {
1128 qp = &nt->qp_vec[i];
1129 if (qp_bitmap_alloc & BIT_ULL(i))
1130 ntb_transport_free_queue(qp);
1131 debugfs_remove_recursive(qp->debugfs_dir);
1132 }
1133
1134 ntb_link_disable(ndev);
1135 ntb_clear_ctx(ndev);
1136
1137 ntb_bus_remove(nt);
1138
1139 for (i = nt->mw_count; i--; ) {
1140 ntb_free_mw(nt, i);
1141 iounmap(nt->mw_vec[i].vbase);
1142 }
1143
1144 kfree(nt->qp_vec);
1145 kfree(nt->mw_vec);
1146 kfree(nt);
1147 }
1148
1149 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1150 {
1151 struct ntb_queue_entry *entry;
1152 void *cb_data;
1153 unsigned int len;
1154 unsigned long irqflags;
1155
1156 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1157
1158 while (!list_empty(&qp->rx_post_q)) {
1159 entry = list_first_entry(&qp->rx_post_q,
1160 struct ntb_queue_entry, entry);
1161 if (!(entry->flags & DESC_DONE_FLAG))
1162 break;
1163
1164 entry->rx_hdr->flags = 0;
1165 iowrite32(entry->index, &qp->rx_info->entry);
1166
1167 cb_data = entry->cb_data;
1168 len = entry->len;
1169
1170 list_move_tail(&entry->entry, &qp->rx_free_q);
1171
1172 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1173
1174 if (qp->rx_handler && qp->client_ready)
1175 qp->rx_handler(qp, qp->cb_data, cb_data, len);
1176
1177 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1178 }
1179
1180 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1181 }
1182
1183 static void ntb_rx_copy_callback(void *data)
1184 {
1185 struct ntb_queue_entry *entry = data;
1186
1187 entry->flags |= DESC_DONE_FLAG;
1188
1189 ntb_complete_rxc(entry->qp);
1190 }
1191
1192 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1193 {
1194 void *buf = entry->buf;
1195 size_t len = entry->len;
1196
1197 memcpy(buf, offset, len);
1198
1199 /* Ensure that the data is fully copied out before clearing the flag */
1200 wmb();
1201
1202 ntb_rx_copy_callback(entry);
1203 }
1204
1205 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1206 {
1207 struct dma_async_tx_descriptor *txd;
1208 struct ntb_transport_qp *qp = entry->qp;
1209 struct dma_chan *chan = qp->dma_chan;
1210 struct dma_device *device;
1211 size_t pay_off, buff_off, len;
1212 struct dmaengine_unmap_data *unmap;
1213 dma_cookie_t cookie;
1214 void *buf = entry->buf;
1215
1216 len = entry->len;
1217
1218 if (!chan)
1219 goto err;
1220
1221 if (len < copy_bytes)
1222 goto err_wait;
1223
1224 device = chan->device;
1225 pay_off = (size_t)offset & ~PAGE_MASK;
1226 buff_off = (size_t)buf & ~PAGE_MASK;
1227
1228 if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1229 goto err_wait;
1230
1231 unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1232 if (!unmap)
1233 goto err_wait;
1234
1235 unmap->len = len;
1236 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1237 pay_off, len, DMA_TO_DEVICE);
1238 if (dma_mapping_error(device->dev, unmap->addr[0]))
1239 goto err_get_unmap;
1240
1241 unmap->to_cnt = 1;
1242
1243 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1244 buff_off, len, DMA_FROM_DEVICE);
1245 if (dma_mapping_error(device->dev, unmap->addr[1]))
1246 goto err_get_unmap;
1247
1248 unmap->from_cnt = 1;
1249
1250 txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1251 unmap->addr[0], len,
1252 DMA_PREP_INTERRUPT);
1253 if (!txd)
1254 goto err_get_unmap;
1255
1256 txd->callback = ntb_rx_copy_callback;
1257 txd->callback_param = entry;
1258 dma_set_unmap(txd, unmap);
1259
1260 cookie = dmaengine_submit(txd);
1261 if (dma_submit_error(cookie))
1262 goto err_set_unmap;
1263
1264 dmaengine_unmap_put(unmap);
1265
1266 qp->last_cookie = cookie;
1267
1268 qp->rx_async++;
1269
1270 return;
1271
1272 err_set_unmap:
1273 dmaengine_unmap_put(unmap);
1274 err_get_unmap:
1275 dmaengine_unmap_put(unmap);
1276 err_wait:
1277 /* If the callbacks come out of order, the writing of the index to the
1278 * last completed will be out of order. This may result in the
1279 * receive stalling forever.
1280 */
1281 dma_sync_wait(chan, qp->last_cookie);
1282 err:
1283 ntb_memcpy_rx(entry, offset);
1284 qp->rx_memcpy++;
1285 }
1286
1287 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1288 {
1289 struct ntb_payload_header *hdr;
1290 struct ntb_queue_entry *entry;
1291 void *offset;
1292
1293 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1294 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1295
1296 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1297 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1298
1299 if (!(hdr->flags & DESC_DONE_FLAG)) {
1300 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1301 qp->rx_ring_empty++;
1302 return -EAGAIN;
1303 }
1304
1305 if (hdr->flags & LINK_DOWN_FLAG) {
1306 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1307 ntb_qp_link_down(qp);
1308 hdr->flags = 0;
1309 return -EAGAIN;
1310 }
1311
1312 if (hdr->ver != (u32)qp->rx_pkts) {
1313 dev_dbg(&qp->ndev->pdev->dev,
1314 "version mismatch, expected %llu - got %u\n",
1315 qp->rx_pkts, hdr->ver);
1316 qp->rx_err_ver++;
1317 return -EIO;
1318 }
1319
1320 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1321 if (!entry) {
1322 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1323 qp->rx_err_no_buf++;
1324 return -EAGAIN;
1325 }
1326
1327 entry->rx_hdr = hdr;
1328 entry->index = qp->rx_index;
1329
1330 if (hdr->len > entry->len) {
1331 dev_dbg(&qp->ndev->pdev->dev,
1332 "receive buffer overflow! Wanted %d got %d\n",
1333 hdr->len, entry->len);
1334 qp->rx_err_oflow++;
1335
1336 entry->len = -EIO;
1337 entry->flags |= DESC_DONE_FLAG;
1338
1339 ntb_complete_rxc(qp);
1340 } else {
1341 dev_dbg(&qp->ndev->pdev->dev,
1342 "RX OK index %u ver %u size %d into buf size %d\n",
1343 qp->rx_index, hdr->ver, hdr->len, entry->len);
1344
1345 qp->rx_bytes += hdr->len;
1346 qp->rx_pkts++;
1347
1348 entry->len = hdr->len;
1349
1350 ntb_async_rx(entry, offset);
1351 }
1352
1353 qp->rx_index++;
1354 qp->rx_index %= qp->rx_max_entry;
1355
1356 return 0;
1357 }
1358
1359 static void ntb_transport_rxc_db(unsigned long data)
1360 {
1361 struct ntb_transport_qp *qp = (void *)data;
1362 int rc, i;
1363
1364 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1365 __func__, qp->qp_num);
1366
1367 /* Limit the number of packets processed in a single interrupt to
1368 * provide fairness to others
1369 */
1370 for (i = 0; i < qp->rx_max_entry; i++) {
1371 rc = ntb_process_rxc(qp);
1372 if (rc)
1373 break;
1374 }
1375
1376 if (i && qp->dma_chan)
1377 dma_async_issue_pending(qp->dma_chan);
1378
1379 if (i == qp->rx_max_entry) {
1380 /* there is more work to do */
1381 tasklet_schedule(&qp->rxc_db_work);
1382 } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1383 /* the doorbell bit is set: clear it */
1384 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1385 /* ntb_db_read ensures ntb_db_clear write is committed */
1386 ntb_db_read(qp->ndev);
1387
1388 /* an interrupt may have arrived between finishing
1389 * ntb_process_rxc and clearing the doorbell bit:
1390 * there might be some more work to do.
1391 */
1392 tasklet_schedule(&qp->rxc_db_work);
1393 }
1394 }
1395
1396 static void ntb_tx_copy_callback(void *data)
1397 {
1398 struct ntb_queue_entry *entry = data;
1399 struct ntb_transport_qp *qp = entry->qp;
1400 struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1401
1402 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1403
1404 ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1405
1406 /* The entry length can only be zero if the packet is intended to be a
1407 * "link down" or similar. Since no payload is being sent in these
1408 * cases, there is nothing to add to the completion queue.
1409 */
1410 if (entry->len > 0) {
1411 qp->tx_bytes += entry->len;
1412
1413 if (qp->tx_handler)
1414 qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1415 entry->len);
1416 }
1417
1418 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1419 }
1420
1421 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1422 {
1423 #ifdef ARCH_HAS_NOCACHE_UACCESS
1424 /*
1425 * Using non-temporal mov to improve performance on non-cached
1426 * writes, even though we aren't actually copying from user space.
1427 */
1428 __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1429 #else
1430 memcpy_toio(offset, entry->buf, entry->len);
1431 #endif
1432
1433 /* Ensure that the data is fully copied out before setting the flags */
1434 wmb();
1435
1436 ntb_tx_copy_callback(entry);
1437 }
1438
1439 static void ntb_async_tx(struct ntb_transport_qp *qp,
1440 struct ntb_queue_entry *entry)
1441 {
1442 struct ntb_payload_header __iomem *hdr;
1443 struct dma_async_tx_descriptor *txd;
1444 struct dma_chan *chan = qp->dma_chan;
1445 struct dma_device *device;
1446 size_t dest_off, buff_off;
1447 struct dmaengine_unmap_data *unmap;
1448 dma_addr_t dest;
1449 dma_cookie_t cookie;
1450 void __iomem *offset;
1451 size_t len = entry->len;
1452 void *buf = entry->buf;
1453
1454 offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index;
1455 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1456 entry->tx_hdr = hdr;
1457
1458 iowrite32(entry->len, &hdr->len);
1459 iowrite32((u32)qp->tx_pkts, &hdr->ver);
1460
1461 if (!chan)
1462 goto err;
1463
1464 if (len < copy_bytes)
1465 goto err;
1466
1467 device = chan->device;
1468 dest = qp->tx_mw_phys + qp->tx_max_frame * qp->tx_index;
1469 buff_off = (size_t)buf & ~PAGE_MASK;
1470 dest_off = (size_t)dest & ~PAGE_MASK;
1471
1472 if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1473 goto err;
1474
1475 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1476 if (!unmap)
1477 goto err;
1478
1479 unmap->len = len;
1480 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1481 buff_off, len, DMA_TO_DEVICE);
1482 if (dma_mapping_error(device->dev, unmap->addr[0]))
1483 goto err_get_unmap;
1484
1485 unmap->to_cnt = 1;
1486
1487 txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1488 DMA_PREP_INTERRUPT);
1489 if (!txd)
1490 goto err_get_unmap;
1491
1492 txd->callback = ntb_tx_copy_callback;
1493 txd->callback_param = entry;
1494 dma_set_unmap(txd, unmap);
1495
1496 cookie = dmaengine_submit(txd);
1497 if (dma_submit_error(cookie))
1498 goto err_set_unmap;
1499
1500 dmaengine_unmap_put(unmap);
1501
1502 dma_async_issue_pending(chan);
1503 qp->tx_async++;
1504
1505 return;
1506 err_set_unmap:
1507 dmaengine_unmap_put(unmap);
1508 err_get_unmap:
1509 dmaengine_unmap_put(unmap);
1510 err:
1511 ntb_memcpy_tx(entry, offset);
1512 qp->tx_memcpy++;
1513 }
1514
1515 static int ntb_process_tx(struct ntb_transport_qp *qp,
1516 struct ntb_queue_entry *entry)
1517 {
1518 if (qp->tx_index == qp->remote_rx_info->entry) {
1519 qp->tx_ring_full++;
1520 return -EAGAIN;
1521 }
1522
1523 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1524 if (qp->tx_handler)
1525 qp->tx_handler(qp->cb_data, qp, NULL, -EIO);
1526
1527 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1528 &qp->tx_free_q);
1529 return 0;
1530 }
1531
1532 ntb_async_tx(qp, entry);
1533
1534 qp->tx_index++;
1535 qp->tx_index %= qp->tx_max_entry;
1536
1537 qp->tx_pkts++;
1538
1539 return 0;
1540 }
1541
1542 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1543 {
1544 struct pci_dev *pdev = qp->ndev->pdev;
1545 struct ntb_queue_entry *entry;
1546 int i, rc;
1547
1548 if (!qp->link_is_up)
1549 return;
1550
1551 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1552
1553 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1554 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1555 if (entry)
1556 break;
1557 msleep(100);
1558 }
1559
1560 if (!entry)
1561 return;
1562
1563 entry->cb_data = NULL;
1564 entry->buf = NULL;
1565 entry->len = 0;
1566 entry->flags = LINK_DOWN_FLAG;
1567
1568 rc = ntb_process_tx(qp, entry);
1569 if (rc)
1570 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1571 qp->qp_num);
1572
1573 ntb_qp_link_down_reset(qp);
1574 }
1575
1576 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1577 {
1578 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1579 }
1580
1581 /**
1582 * ntb_transport_create_queue - Create a new NTB transport layer queue
1583 * @rx_handler: receive callback function
1584 * @tx_handler: transmit callback function
1585 * @event_handler: event callback function
1586 *
1587 * Create a new NTB transport layer queue and provide the queue with a callback
1588 * routine for both transmit and receive. The receive callback routine will be
1589 * used to pass up data when the transport has received it on the queue. The
1590 * transmit callback routine will be called when the transport has completed the
1591 * transmission of the data on the queue and the data is ready to be freed.
1592 *
1593 * RETURNS: pointer to newly created ntb_queue, NULL on error.
1594 */
1595 struct ntb_transport_qp *
1596 ntb_transport_create_queue(void *data, struct device *client_dev,
1597 const struct ntb_queue_handlers *handlers)
1598 {
1599 struct ntb_dev *ndev;
1600 struct pci_dev *pdev;
1601 struct ntb_transport_ctx *nt;
1602 struct ntb_queue_entry *entry;
1603 struct ntb_transport_qp *qp;
1604 u64 qp_bit;
1605 unsigned int free_queue;
1606 dma_cap_mask_t dma_mask;
1607 int node;
1608 int i;
1609
1610 ndev = dev_ntb(client_dev->parent);
1611 pdev = ndev->pdev;
1612 nt = ndev->ctx;
1613
1614 node = dev_to_node(&ndev->dev);
1615
1616 free_queue = ffs(nt->qp_bitmap);
1617 if (!free_queue)
1618 goto err;
1619
1620 /* decrement free_queue to make it zero based */
1621 free_queue--;
1622
1623 qp = &nt->qp_vec[free_queue];
1624 qp_bit = BIT_ULL(qp->qp_num);
1625
1626 nt->qp_bitmap_free &= ~qp_bit;
1627
1628 qp->cb_data = data;
1629 qp->rx_handler = handlers->rx_handler;
1630 qp->tx_handler = handlers->tx_handler;
1631 qp->event_handler = handlers->event_handler;
1632
1633 dma_cap_zero(dma_mask);
1634 dma_cap_set(DMA_MEMCPY, dma_mask);
1635
1636 if (use_dma) {
1637 qp->dma_chan = dma_request_channel(dma_mask, ntb_dma_filter_fn,
1638 (void *)(unsigned long)node);
1639 if (!qp->dma_chan)
1640 dev_info(&pdev->dev, "Unable to allocate DMA channel\n");
1641 } else {
1642 qp->dma_chan = NULL;
1643 }
1644 dev_dbg(&pdev->dev, "Using %s memcpy\n", qp->dma_chan ? "DMA" : "CPU");
1645
1646 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1647 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1648 if (!entry)
1649 goto err1;
1650
1651 entry->qp = qp;
1652 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1653 &qp->rx_free_q);
1654 }
1655
1656 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1657 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1658 if (!entry)
1659 goto err2;
1660
1661 entry->qp = qp;
1662 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1663 &qp->tx_free_q);
1664 }
1665
1666 ntb_db_clear(qp->ndev, qp_bit);
1667 ntb_db_clear_mask(qp->ndev, qp_bit);
1668
1669 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1670
1671 return qp;
1672
1673 err2:
1674 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1675 kfree(entry);
1676 err1:
1677 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1678 kfree(entry);
1679 if (qp->dma_chan)
1680 dma_release_channel(qp->dma_chan);
1681 nt->qp_bitmap_free |= qp_bit;
1682 err:
1683 return NULL;
1684 }
1685 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1686
1687 /**
1688 * ntb_transport_free_queue - Frees NTB transport queue
1689 * @qp: NTB queue to be freed
1690 *
1691 * Frees NTB transport queue
1692 */
1693 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1694 {
1695 struct pci_dev *pdev;
1696 struct ntb_queue_entry *entry;
1697 u64 qp_bit;
1698
1699 if (!qp)
1700 return;
1701
1702 pdev = qp->ndev->pdev;
1703
1704 if (qp->dma_chan) {
1705 struct dma_chan *chan = qp->dma_chan;
1706 /* Putting the dma_chan to NULL will force any new traffic to be
1707 * processed by the CPU instead of the DAM engine
1708 */
1709 qp->dma_chan = NULL;
1710
1711 /* Try to be nice and wait for any queued DMA engine
1712 * transactions to process before smashing it with a rock
1713 */
1714 dma_sync_wait(chan, qp->last_cookie);
1715 dmaengine_terminate_all(chan);
1716 dma_release_channel(chan);
1717 }
1718
1719 qp_bit = BIT_ULL(qp->qp_num);
1720
1721 ntb_db_set_mask(qp->ndev, qp_bit);
1722 tasklet_disable(&qp->rxc_db_work);
1723
1724 cancel_delayed_work_sync(&qp->link_work);
1725
1726 qp->cb_data = NULL;
1727 qp->rx_handler = NULL;
1728 qp->tx_handler = NULL;
1729 qp->event_handler = NULL;
1730
1731 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1732 kfree(entry);
1733
1734 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1735 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1736 kfree(entry);
1737 }
1738
1739 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1740 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1741 kfree(entry);
1742 }
1743
1744 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1745 kfree(entry);
1746
1747 qp->transport->qp_bitmap_free |= qp_bit;
1748
1749 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1750 }
1751 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1752
1753 /**
1754 * ntb_transport_rx_remove - Dequeues enqueued rx packet
1755 * @qp: NTB queue to be freed
1756 * @len: pointer to variable to write enqueued buffers length
1757 *
1758 * Dequeues unused buffers from receive queue. Should only be used during
1759 * shutdown of qp.
1760 *
1761 * RETURNS: NULL error value on error, or void* for success.
1762 */
1763 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1764 {
1765 struct ntb_queue_entry *entry;
1766 void *buf;
1767
1768 if (!qp || qp->client_ready)
1769 return NULL;
1770
1771 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1772 if (!entry)
1773 return NULL;
1774
1775 buf = entry->cb_data;
1776 *len = entry->len;
1777
1778 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1779
1780 return buf;
1781 }
1782 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1783
1784 /**
1785 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1786 * @qp: NTB transport layer queue the entry is to be enqueued on
1787 * @cb: per buffer pointer for callback function to use
1788 * @data: pointer to data buffer that incoming packets will be copied into
1789 * @len: length of the data buffer
1790 *
1791 * Enqueue a new receive buffer onto the transport queue into which a NTB
1792 * payload can be received into.
1793 *
1794 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1795 */
1796 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1797 unsigned int len)
1798 {
1799 struct ntb_queue_entry *entry;
1800
1801 if (!qp)
1802 return -EINVAL;
1803
1804 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
1805 if (!entry)
1806 return -ENOMEM;
1807
1808 entry->cb_data = cb;
1809 entry->buf = data;
1810 entry->len = len;
1811 entry->flags = 0;
1812
1813 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
1814
1815 tasklet_schedule(&qp->rxc_db_work);
1816
1817 return 0;
1818 }
1819 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
1820
1821 /**
1822 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
1823 * @qp: NTB transport layer queue the entry is to be enqueued on
1824 * @cb: per buffer pointer for callback function to use
1825 * @data: pointer to data buffer that will be sent
1826 * @len: length of the data buffer
1827 *
1828 * Enqueue a new transmit buffer onto the transport queue from which a NTB
1829 * payload will be transmitted. This assumes that a lock is being held to
1830 * serialize access to the qp.
1831 *
1832 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1833 */
1834 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1835 unsigned int len)
1836 {
1837 struct ntb_queue_entry *entry;
1838 int rc;
1839
1840 if (!qp || !qp->link_is_up || !len)
1841 return -EINVAL;
1842
1843 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1844 if (!entry) {
1845 qp->tx_err_no_buf++;
1846 return -ENOMEM;
1847 }
1848
1849 entry->cb_data = cb;
1850 entry->buf = data;
1851 entry->len = len;
1852 entry->flags = 0;
1853
1854 rc = ntb_process_tx(qp, entry);
1855 if (rc)
1856 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1857 &qp->tx_free_q);
1858
1859 return rc;
1860 }
1861 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
1862
1863 /**
1864 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
1865 * @qp: NTB transport layer queue to be enabled
1866 *
1867 * Notify NTB transport layer of client readiness to use queue
1868 */
1869 void ntb_transport_link_up(struct ntb_transport_qp *qp)
1870 {
1871 if (!qp)
1872 return;
1873
1874 qp->client_ready = true;
1875
1876 if (qp->transport->link_is_up)
1877 schedule_delayed_work(&qp->link_work, 0);
1878 }
1879 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
1880
1881 /**
1882 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
1883 * @qp: NTB transport layer queue to be disabled
1884 *
1885 * Notify NTB transport layer of client's desire to no longer receive data on
1886 * transport queue specified. It is the client's responsibility to ensure all
1887 * entries on queue are purged or otherwise handled appropriately.
1888 */
1889 void ntb_transport_link_down(struct ntb_transport_qp *qp)
1890 {
1891 struct pci_dev *pdev;
1892 int val;
1893
1894 if (!qp)
1895 return;
1896
1897 pdev = qp->ndev->pdev;
1898 qp->client_ready = false;
1899
1900 val = ntb_spad_read(qp->ndev, QP_LINKS);
1901
1902 ntb_peer_spad_write(qp->ndev, QP_LINKS,
1903 val & ~BIT(qp->qp_num));
1904
1905 if (qp->link_is_up)
1906 ntb_send_link_down(qp);
1907 else
1908 cancel_delayed_work_sync(&qp->link_work);
1909 }
1910 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
1911
1912 /**
1913 * ntb_transport_link_query - Query transport link state
1914 * @qp: NTB transport layer queue to be queried
1915 *
1916 * Query connectivity to the remote system of the NTB transport queue
1917 *
1918 * RETURNS: true for link up or false for link down
1919 */
1920 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
1921 {
1922 if (!qp)
1923 return false;
1924
1925 return qp->link_is_up;
1926 }
1927 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
1928
1929 /**
1930 * ntb_transport_qp_num - Query the qp number
1931 * @qp: NTB transport layer queue to be queried
1932 *
1933 * Query qp number of the NTB transport queue
1934 *
1935 * RETURNS: a zero based number specifying the qp number
1936 */
1937 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
1938 {
1939 if (!qp)
1940 return 0;
1941
1942 return qp->qp_num;
1943 }
1944 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
1945
1946 /**
1947 * ntb_transport_max_size - Query the max payload size of a qp
1948 * @qp: NTB transport layer queue to be queried
1949 *
1950 * Query the maximum payload size permissible on the given qp
1951 *
1952 * RETURNS: the max payload size of a qp
1953 */
1954 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
1955 {
1956 unsigned int max;
1957
1958 if (!qp)
1959 return 0;
1960
1961 if (!qp->dma_chan)
1962 return qp->tx_max_frame - sizeof(struct ntb_payload_header);
1963
1964 /* If DMA engine usage is possible, try to find the max size for that */
1965 max = qp->tx_max_frame - sizeof(struct ntb_payload_header);
1966 max -= max % (1 << qp->dma_chan->device->copy_align);
1967
1968 return max;
1969 }
1970 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
1971
1972 static void ntb_transport_doorbell_callback(void *data, int vector)
1973 {
1974 struct ntb_transport_ctx *nt = data;
1975 struct ntb_transport_qp *qp;
1976 u64 db_bits;
1977 unsigned int qp_num;
1978
1979 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
1980 ntb_db_vector_mask(nt->ndev, vector));
1981
1982 while (db_bits) {
1983 qp_num = __ffs(db_bits);
1984 qp = &nt->qp_vec[qp_num];
1985
1986 tasklet_schedule(&qp->rxc_db_work);
1987
1988 db_bits &= ~BIT_ULL(qp_num);
1989 }
1990 }
1991
1992 static const struct ntb_ctx_ops ntb_transport_ops = {
1993 .link_event = ntb_transport_event_callback,
1994 .db_event = ntb_transport_doorbell_callback,
1995 };
1996
1997 static struct ntb_client ntb_transport_client = {
1998 .ops = {
1999 .probe = ntb_transport_probe,
2000 .remove = ntb_transport_free,
2001 },
2002 };
2003
2004 static int __init ntb_transport_init(void)
2005 {
2006 int rc;
2007
2008 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2009
2010 if (debugfs_initialized())
2011 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2012
2013 rc = bus_register(&ntb_transport_bus);
2014 if (rc)
2015 goto err_bus;
2016
2017 rc = ntb_register_client(&ntb_transport_client);
2018 if (rc)
2019 goto err_client;
2020
2021 return 0;
2022
2023 err_client:
2024 bus_unregister(&ntb_transport_bus);
2025 err_bus:
2026 debugfs_remove_recursive(nt_debugfs_dir);
2027 return rc;
2028 }
2029 module_init(ntb_transport_init);
2030
2031 static void __exit ntb_transport_exit(void)
2032 {
2033 debugfs_remove_recursive(nt_debugfs_dir);
2034
2035 ntb_unregister_client(&ntb_transport_client);
2036 bus_unregister(&ntb_transport_bus);
2037 }
2038 module_exit(ntb_transport_exit);