]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/ntb/ntb_transport.c
Merge tag 'fbdev-v4.13' of git://github.com/bzolnier/linux
[mirror_ubuntu-artful-kernel.git] / drivers / ntb / ntb_transport.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * BSD LICENSE
15 *
16 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above copy
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 * * Neither the name of Intel Corporation nor the names of its
30 * contributors may be used to endorse or promote products derived
31 * from this software without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 *
45 * PCIe NTB Transport Linux driver
46 *
47 * Contact Information:
48 * Jon Mason <jon.mason@intel.com>
49 */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION 4
66 #define NTB_TRANSPORT_VER "4"
67 #define NTB_TRANSPORT_NAME "ntb_transport"
68 #define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95
96 static struct dentry *nt_debugfs_dir;
97
98 struct ntb_queue_entry {
99 /* ntb_queue list reference */
100 struct list_head entry;
101 /* pointers to data to be transferred */
102 void *cb_data;
103 void *buf;
104 unsigned int len;
105 unsigned int flags;
106 int retries;
107 int errors;
108 unsigned int tx_index;
109 unsigned int rx_index;
110
111 struct ntb_transport_qp *qp;
112 union {
113 struct ntb_payload_header __iomem *tx_hdr;
114 struct ntb_payload_header *rx_hdr;
115 };
116 };
117
118 struct ntb_rx_info {
119 unsigned int entry;
120 };
121
122 struct ntb_transport_qp {
123 struct ntb_transport_ctx *transport;
124 struct ntb_dev *ndev;
125 void *cb_data;
126 struct dma_chan *tx_dma_chan;
127 struct dma_chan *rx_dma_chan;
128
129 bool client_ready;
130 bool link_is_up;
131 bool active;
132
133 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */
134 u64 qp_bit;
135
136 struct ntb_rx_info __iomem *rx_info;
137 struct ntb_rx_info *remote_rx_info;
138
139 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
140 void *data, int len);
141 struct list_head tx_free_q;
142 spinlock_t ntb_tx_free_q_lock;
143 void __iomem *tx_mw;
144 dma_addr_t tx_mw_phys;
145 unsigned int tx_index;
146 unsigned int tx_max_entry;
147 unsigned int tx_max_frame;
148
149 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
150 void *data, int len);
151 struct list_head rx_post_q;
152 struct list_head rx_pend_q;
153 struct list_head rx_free_q;
154 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
155 spinlock_t ntb_rx_q_lock;
156 void *rx_buff;
157 unsigned int rx_index;
158 unsigned int rx_max_entry;
159 unsigned int rx_max_frame;
160 unsigned int rx_alloc_entry;
161 dma_cookie_t last_cookie;
162 struct tasklet_struct rxc_db_work;
163
164 void (*event_handler)(void *data, int status);
165 struct delayed_work link_work;
166 struct work_struct link_cleanup;
167
168 struct dentry *debugfs_dir;
169 struct dentry *debugfs_stats;
170
171 /* Stats */
172 u64 rx_bytes;
173 u64 rx_pkts;
174 u64 rx_ring_empty;
175 u64 rx_err_no_buf;
176 u64 rx_err_oflow;
177 u64 rx_err_ver;
178 u64 rx_memcpy;
179 u64 rx_async;
180 u64 tx_bytes;
181 u64 tx_pkts;
182 u64 tx_ring_full;
183 u64 tx_err_no_buf;
184 u64 tx_memcpy;
185 u64 tx_async;
186 };
187
188 struct ntb_transport_mw {
189 phys_addr_t phys_addr;
190 resource_size_t phys_size;
191 resource_size_t xlat_align;
192 resource_size_t xlat_align_size;
193 void __iomem *vbase;
194 size_t xlat_size;
195 size_t buff_size;
196 void *virt_addr;
197 dma_addr_t dma_addr;
198 };
199
200 struct ntb_transport_client_dev {
201 struct list_head entry;
202 struct ntb_transport_ctx *nt;
203 struct device dev;
204 };
205
206 struct ntb_transport_ctx {
207 struct list_head entry;
208 struct list_head client_devs;
209
210 struct ntb_dev *ndev;
211
212 struct ntb_transport_mw *mw_vec;
213 struct ntb_transport_qp *qp_vec;
214 unsigned int mw_count;
215 unsigned int qp_count;
216 u64 qp_bitmap;
217 u64 qp_bitmap_free;
218
219 bool link_is_up;
220 struct delayed_work link_work;
221 struct work_struct link_cleanup;
222
223 struct dentry *debugfs_node_dir;
224 };
225
226 enum {
227 DESC_DONE_FLAG = BIT(0),
228 LINK_DOWN_FLAG = BIT(1),
229 };
230
231 struct ntb_payload_header {
232 unsigned int ver;
233 unsigned int len;
234 unsigned int flags;
235 };
236
237 enum {
238 VERSION = 0,
239 QP_LINKS,
240 NUM_QPS,
241 NUM_MWS,
242 MW0_SZ_HIGH,
243 MW0_SZ_LOW,
244 };
245
246 #define dev_client_dev(__dev) \
247 container_of((__dev), struct ntb_transport_client_dev, dev)
248
249 #define drv_client(__drv) \
250 container_of((__drv), struct ntb_transport_client, driver)
251
252 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count)
253 #define NTB_QP_DEF_NUM_ENTRIES 100
254 #define NTB_LINK_DOWN_TIMEOUT 10
255
256 static void ntb_transport_rxc_db(unsigned long data);
257 static const struct ntb_ctx_ops ntb_transport_ops;
258 static struct ntb_client ntb_transport_client;
259 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
260 struct ntb_queue_entry *entry);
261 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
262 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
263 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
264
265
266 static int ntb_transport_bus_match(struct device *dev,
267 struct device_driver *drv)
268 {
269 return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
270 }
271
272 static int ntb_transport_bus_probe(struct device *dev)
273 {
274 const struct ntb_transport_client *client;
275 int rc = -EINVAL;
276
277 get_device(dev);
278
279 client = drv_client(dev->driver);
280 rc = client->probe(dev);
281 if (rc)
282 put_device(dev);
283
284 return rc;
285 }
286
287 static int ntb_transport_bus_remove(struct device *dev)
288 {
289 const struct ntb_transport_client *client;
290
291 client = drv_client(dev->driver);
292 client->remove(dev);
293
294 put_device(dev);
295
296 return 0;
297 }
298
299 static struct bus_type ntb_transport_bus = {
300 .name = "ntb_transport",
301 .match = ntb_transport_bus_match,
302 .probe = ntb_transport_bus_probe,
303 .remove = ntb_transport_bus_remove,
304 };
305
306 static LIST_HEAD(ntb_transport_list);
307
308 static int ntb_bus_init(struct ntb_transport_ctx *nt)
309 {
310 list_add_tail(&nt->entry, &ntb_transport_list);
311 return 0;
312 }
313
314 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
315 {
316 struct ntb_transport_client_dev *client_dev, *cd;
317
318 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
319 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
320 dev_name(&client_dev->dev));
321 list_del(&client_dev->entry);
322 device_unregister(&client_dev->dev);
323 }
324
325 list_del(&nt->entry);
326 }
327
328 static void ntb_transport_client_release(struct device *dev)
329 {
330 struct ntb_transport_client_dev *client_dev;
331
332 client_dev = dev_client_dev(dev);
333 kfree(client_dev);
334 }
335
336 /**
337 * ntb_transport_unregister_client_dev - Unregister NTB client device
338 * @device_name: Name of NTB client device
339 *
340 * Unregister an NTB client device with the NTB transport layer
341 */
342 void ntb_transport_unregister_client_dev(char *device_name)
343 {
344 struct ntb_transport_client_dev *client, *cd;
345 struct ntb_transport_ctx *nt;
346
347 list_for_each_entry(nt, &ntb_transport_list, entry)
348 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
349 if (!strncmp(dev_name(&client->dev), device_name,
350 strlen(device_name))) {
351 list_del(&client->entry);
352 device_unregister(&client->dev);
353 }
354 }
355 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
356
357 /**
358 * ntb_transport_register_client_dev - Register NTB client device
359 * @device_name: Name of NTB client device
360 *
361 * Register an NTB client device with the NTB transport layer
362 */
363 int ntb_transport_register_client_dev(char *device_name)
364 {
365 struct ntb_transport_client_dev *client_dev;
366 struct ntb_transport_ctx *nt;
367 int node;
368 int rc, i = 0;
369
370 if (list_empty(&ntb_transport_list))
371 return -ENODEV;
372
373 list_for_each_entry(nt, &ntb_transport_list, entry) {
374 struct device *dev;
375
376 node = dev_to_node(&nt->ndev->dev);
377
378 client_dev = kzalloc_node(sizeof(*client_dev),
379 GFP_KERNEL, node);
380 if (!client_dev) {
381 rc = -ENOMEM;
382 goto err;
383 }
384
385 dev = &client_dev->dev;
386
387 /* setup and register client devices */
388 dev_set_name(dev, "%s%d", device_name, i);
389 dev->bus = &ntb_transport_bus;
390 dev->release = ntb_transport_client_release;
391 dev->parent = &nt->ndev->dev;
392
393 rc = device_register(dev);
394 if (rc) {
395 kfree(client_dev);
396 goto err;
397 }
398
399 list_add_tail(&client_dev->entry, &nt->client_devs);
400 i++;
401 }
402
403 return 0;
404
405 err:
406 ntb_transport_unregister_client_dev(device_name);
407
408 return rc;
409 }
410 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
411
412 /**
413 * ntb_transport_register_client - Register NTB client driver
414 * @drv: NTB client driver to be registered
415 *
416 * Register an NTB client driver with the NTB transport layer
417 *
418 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
419 */
420 int ntb_transport_register_client(struct ntb_transport_client *drv)
421 {
422 drv->driver.bus = &ntb_transport_bus;
423
424 if (list_empty(&ntb_transport_list))
425 return -ENODEV;
426
427 return driver_register(&drv->driver);
428 }
429 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
430
431 /**
432 * ntb_transport_unregister_client - Unregister NTB client driver
433 * @drv: NTB client driver to be unregistered
434 *
435 * Unregister an NTB client driver with the NTB transport layer
436 *
437 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
438 */
439 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
440 {
441 driver_unregister(&drv->driver);
442 }
443 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
444
445 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
446 loff_t *offp)
447 {
448 struct ntb_transport_qp *qp;
449 char *buf;
450 ssize_t ret, out_offset, out_count;
451
452 qp = filp->private_data;
453
454 if (!qp || !qp->link_is_up)
455 return 0;
456
457 out_count = 1000;
458
459 buf = kmalloc(out_count, GFP_KERNEL);
460 if (!buf)
461 return -ENOMEM;
462
463 out_offset = 0;
464 out_offset += snprintf(buf + out_offset, out_count - out_offset,
465 "\nNTB QP stats:\n\n");
466 out_offset += snprintf(buf + out_offset, out_count - out_offset,
467 "rx_bytes - \t%llu\n", qp->rx_bytes);
468 out_offset += snprintf(buf + out_offset, out_count - out_offset,
469 "rx_pkts - \t%llu\n", qp->rx_pkts);
470 out_offset += snprintf(buf + out_offset, out_count - out_offset,
471 "rx_memcpy - \t%llu\n", qp->rx_memcpy);
472 out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 "rx_async - \t%llu\n", qp->rx_async);
474 out_offset += snprintf(buf + out_offset, out_count - out_offset,
475 "rx_ring_empty - %llu\n", qp->rx_ring_empty);
476 out_offset += snprintf(buf + out_offset, out_count - out_offset,
477 "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
478 out_offset += snprintf(buf + out_offset, out_count - out_offset,
479 "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
480 out_offset += snprintf(buf + out_offset, out_count - out_offset,
481 "rx_err_ver - \t%llu\n", qp->rx_err_ver);
482 out_offset += snprintf(buf + out_offset, out_count - out_offset,
483 "rx_buff - \t0x%p\n", qp->rx_buff);
484 out_offset += snprintf(buf + out_offset, out_count - out_offset,
485 "rx_index - \t%u\n", qp->rx_index);
486 out_offset += snprintf(buf + out_offset, out_count - out_offset,
487 "rx_max_entry - \t%u\n", qp->rx_max_entry);
488 out_offset += snprintf(buf + out_offset, out_count - out_offset,
489 "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
490
491 out_offset += snprintf(buf + out_offset, out_count - out_offset,
492 "tx_bytes - \t%llu\n", qp->tx_bytes);
493 out_offset += snprintf(buf + out_offset, out_count - out_offset,
494 "tx_pkts - \t%llu\n", qp->tx_pkts);
495 out_offset += snprintf(buf + out_offset, out_count - out_offset,
496 "tx_memcpy - \t%llu\n", qp->tx_memcpy);
497 out_offset += snprintf(buf + out_offset, out_count - out_offset,
498 "tx_async - \t%llu\n", qp->tx_async);
499 out_offset += snprintf(buf + out_offset, out_count - out_offset,
500 "tx_ring_full - \t%llu\n", qp->tx_ring_full);
501 out_offset += snprintf(buf + out_offset, out_count - out_offset,
502 "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
503 out_offset += snprintf(buf + out_offset, out_count - out_offset,
504 "tx_mw - \t0x%p\n", qp->tx_mw);
505 out_offset += snprintf(buf + out_offset, out_count - out_offset,
506 "tx_index (H) - \t%u\n", qp->tx_index);
507 out_offset += snprintf(buf + out_offset, out_count - out_offset,
508 "RRI (T) - \t%u\n",
509 qp->remote_rx_info->entry);
510 out_offset += snprintf(buf + out_offset, out_count - out_offset,
511 "tx_max_entry - \t%u\n", qp->tx_max_entry);
512 out_offset += snprintf(buf + out_offset, out_count - out_offset,
513 "free tx - \t%u\n",
514 ntb_transport_tx_free_entry(qp));
515
516 out_offset += snprintf(buf + out_offset, out_count - out_offset,
517 "\n");
518 out_offset += snprintf(buf + out_offset, out_count - out_offset,
519 "Using TX DMA - \t%s\n",
520 qp->tx_dma_chan ? "Yes" : "No");
521 out_offset += snprintf(buf + out_offset, out_count - out_offset,
522 "Using RX DMA - \t%s\n",
523 qp->rx_dma_chan ? "Yes" : "No");
524 out_offset += snprintf(buf + out_offset, out_count - out_offset,
525 "QP Link - \t%s\n",
526 qp->link_is_up ? "Up" : "Down");
527 out_offset += snprintf(buf + out_offset, out_count - out_offset,
528 "\n");
529
530 if (out_offset > out_count)
531 out_offset = out_count;
532
533 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
534 kfree(buf);
535 return ret;
536 }
537
538 static const struct file_operations ntb_qp_debugfs_stats = {
539 .owner = THIS_MODULE,
540 .open = simple_open,
541 .read = debugfs_read,
542 };
543
544 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
545 struct list_head *list)
546 {
547 unsigned long flags;
548
549 spin_lock_irqsave(lock, flags);
550 list_add_tail(entry, list);
551 spin_unlock_irqrestore(lock, flags);
552 }
553
554 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
555 struct list_head *list)
556 {
557 struct ntb_queue_entry *entry;
558 unsigned long flags;
559
560 spin_lock_irqsave(lock, flags);
561 if (list_empty(list)) {
562 entry = NULL;
563 goto out;
564 }
565 entry = list_first_entry(list, struct ntb_queue_entry, entry);
566 list_del(&entry->entry);
567
568 out:
569 spin_unlock_irqrestore(lock, flags);
570
571 return entry;
572 }
573
574 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
575 struct list_head *list,
576 struct list_head *to_list)
577 {
578 struct ntb_queue_entry *entry;
579 unsigned long flags;
580
581 spin_lock_irqsave(lock, flags);
582
583 if (list_empty(list)) {
584 entry = NULL;
585 } else {
586 entry = list_first_entry(list, struct ntb_queue_entry, entry);
587 list_move_tail(&entry->entry, to_list);
588 }
589
590 spin_unlock_irqrestore(lock, flags);
591
592 return entry;
593 }
594
595 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
596 unsigned int qp_num)
597 {
598 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
599 struct ntb_transport_mw *mw;
600 struct ntb_dev *ndev = nt->ndev;
601 struct ntb_queue_entry *entry;
602 unsigned int rx_size, num_qps_mw;
603 unsigned int mw_num, mw_count, qp_count;
604 unsigned int i;
605 int node;
606
607 mw_count = nt->mw_count;
608 qp_count = nt->qp_count;
609
610 mw_num = QP_TO_MW(nt, qp_num);
611 mw = &nt->mw_vec[mw_num];
612
613 if (!mw->virt_addr)
614 return -ENOMEM;
615
616 if (mw_num < qp_count % mw_count)
617 num_qps_mw = qp_count / mw_count + 1;
618 else
619 num_qps_mw = qp_count / mw_count;
620
621 rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
622 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
623 rx_size -= sizeof(struct ntb_rx_info);
624
625 qp->remote_rx_info = qp->rx_buff + rx_size;
626
627 /* Due to housekeeping, there must be atleast 2 buffs */
628 qp->rx_max_frame = min(transport_mtu, rx_size / 2);
629 qp->rx_max_entry = rx_size / qp->rx_max_frame;
630 qp->rx_index = 0;
631
632 /*
633 * Checking to see if we have more entries than the default.
634 * We should add additional entries if that is the case so we
635 * can be in sync with the transport frames.
636 */
637 node = dev_to_node(&ndev->dev);
638 for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
639 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
640 if (!entry)
641 return -ENOMEM;
642
643 entry->qp = qp;
644 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
645 &qp->rx_free_q);
646 qp->rx_alloc_entry++;
647 }
648
649 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
650
651 /* setup the hdr offsets with 0's */
652 for (i = 0; i < qp->rx_max_entry; i++) {
653 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
654 sizeof(struct ntb_payload_header));
655 memset(offset, 0, sizeof(struct ntb_payload_header));
656 }
657
658 qp->rx_pkts = 0;
659 qp->tx_pkts = 0;
660 qp->tx_index = 0;
661
662 return 0;
663 }
664
665 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
666 {
667 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
668 struct pci_dev *pdev = nt->ndev->pdev;
669
670 if (!mw->virt_addr)
671 return;
672
673 ntb_mw_clear_trans(nt->ndev, num_mw);
674 dma_free_coherent(&pdev->dev, mw->buff_size,
675 mw->virt_addr, mw->dma_addr);
676 mw->xlat_size = 0;
677 mw->buff_size = 0;
678 mw->virt_addr = NULL;
679 }
680
681 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
682 resource_size_t size)
683 {
684 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
685 struct pci_dev *pdev = nt->ndev->pdev;
686 size_t xlat_size, buff_size;
687 int rc;
688
689 if (!size)
690 return -EINVAL;
691
692 xlat_size = round_up(size, mw->xlat_align_size);
693 buff_size = round_up(size, mw->xlat_align);
694
695 /* No need to re-setup */
696 if (mw->xlat_size == xlat_size)
697 return 0;
698
699 if (mw->buff_size)
700 ntb_free_mw(nt, num_mw);
701
702 /* Alloc memory for receiving data. Must be aligned */
703 mw->xlat_size = xlat_size;
704 mw->buff_size = buff_size;
705
706 mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
707 &mw->dma_addr, GFP_KERNEL);
708 if (!mw->virt_addr) {
709 mw->xlat_size = 0;
710 mw->buff_size = 0;
711 dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
712 buff_size);
713 return -ENOMEM;
714 }
715
716 /*
717 * we must ensure that the memory address allocated is BAR size
718 * aligned in order for the XLAT register to take the value. This
719 * is a requirement of the hardware. It is recommended to setup CMA
720 * for BAR sizes equal or greater than 4MB.
721 */
722 if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
723 dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
724 &mw->dma_addr);
725 ntb_free_mw(nt, num_mw);
726 return -ENOMEM;
727 }
728
729 /* Notify HW the memory location of the receive buffer */
730 rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
731 if (rc) {
732 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
733 ntb_free_mw(nt, num_mw);
734 return -EIO;
735 }
736
737 return 0;
738 }
739
740 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
741 {
742 qp->link_is_up = false;
743 qp->active = false;
744
745 qp->tx_index = 0;
746 qp->rx_index = 0;
747 qp->rx_bytes = 0;
748 qp->rx_pkts = 0;
749 qp->rx_ring_empty = 0;
750 qp->rx_err_no_buf = 0;
751 qp->rx_err_oflow = 0;
752 qp->rx_err_ver = 0;
753 qp->rx_memcpy = 0;
754 qp->rx_async = 0;
755 qp->tx_bytes = 0;
756 qp->tx_pkts = 0;
757 qp->tx_ring_full = 0;
758 qp->tx_err_no_buf = 0;
759 qp->tx_memcpy = 0;
760 qp->tx_async = 0;
761 }
762
763 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
764 {
765 struct ntb_transport_ctx *nt = qp->transport;
766 struct pci_dev *pdev = nt->ndev->pdev;
767
768 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
769
770 cancel_delayed_work_sync(&qp->link_work);
771 ntb_qp_link_down_reset(qp);
772
773 if (qp->event_handler)
774 qp->event_handler(qp->cb_data, qp->link_is_up);
775 }
776
777 static void ntb_qp_link_cleanup_work(struct work_struct *work)
778 {
779 struct ntb_transport_qp *qp = container_of(work,
780 struct ntb_transport_qp,
781 link_cleanup);
782 struct ntb_transport_ctx *nt = qp->transport;
783
784 ntb_qp_link_cleanup(qp);
785
786 if (nt->link_is_up)
787 schedule_delayed_work(&qp->link_work,
788 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
789 }
790
791 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
792 {
793 schedule_work(&qp->link_cleanup);
794 }
795
796 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
797 {
798 struct ntb_transport_qp *qp;
799 u64 qp_bitmap_alloc;
800 unsigned int i, count;
801
802 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
803
804 /* Pass along the info to any clients */
805 for (i = 0; i < nt->qp_count; i++)
806 if (qp_bitmap_alloc & BIT_ULL(i)) {
807 qp = &nt->qp_vec[i];
808 ntb_qp_link_cleanup(qp);
809 cancel_work_sync(&qp->link_cleanup);
810 cancel_delayed_work_sync(&qp->link_work);
811 }
812
813 if (!nt->link_is_up)
814 cancel_delayed_work_sync(&nt->link_work);
815
816 /* The scratchpad registers keep the values if the remote side
817 * goes down, blast them now to give them a sane value the next
818 * time they are accessed
819 */
820 count = ntb_spad_count(nt->ndev);
821 for (i = 0; i < count; i++)
822 ntb_spad_write(nt->ndev, i, 0);
823 }
824
825 static void ntb_transport_link_cleanup_work(struct work_struct *work)
826 {
827 struct ntb_transport_ctx *nt =
828 container_of(work, struct ntb_transport_ctx, link_cleanup);
829
830 ntb_transport_link_cleanup(nt);
831 }
832
833 static void ntb_transport_event_callback(void *data)
834 {
835 struct ntb_transport_ctx *nt = data;
836
837 if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
838 schedule_delayed_work(&nt->link_work, 0);
839 else
840 schedule_work(&nt->link_cleanup);
841 }
842
843 static void ntb_transport_link_work(struct work_struct *work)
844 {
845 struct ntb_transport_ctx *nt =
846 container_of(work, struct ntb_transport_ctx, link_work.work);
847 struct ntb_dev *ndev = nt->ndev;
848 struct pci_dev *pdev = ndev->pdev;
849 resource_size_t size;
850 u32 val;
851 int rc = 0, i, spad;
852
853 /* send the local info, in the opposite order of the way we read it */
854 for (i = 0; i < nt->mw_count; i++) {
855 size = nt->mw_vec[i].phys_size;
856
857 if (max_mw_size && size > max_mw_size)
858 size = max_mw_size;
859
860 spad = MW0_SZ_HIGH + (i * 2);
861 ntb_peer_spad_write(ndev, spad, upper_32_bits(size));
862
863 spad = MW0_SZ_LOW + (i * 2);
864 ntb_peer_spad_write(ndev, spad, lower_32_bits(size));
865 }
866
867 ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
868
869 ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
870
871 ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
872
873 /* Query the remote side for its info */
874 val = ntb_spad_read(ndev, VERSION);
875 dev_dbg(&pdev->dev, "Remote version = %d\n", val);
876 if (val != NTB_TRANSPORT_VERSION)
877 goto out;
878
879 val = ntb_spad_read(ndev, NUM_QPS);
880 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
881 if (val != nt->qp_count)
882 goto out;
883
884 val = ntb_spad_read(ndev, NUM_MWS);
885 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
886 if (val != nt->mw_count)
887 goto out;
888
889 for (i = 0; i < nt->mw_count; i++) {
890 u64 val64;
891
892 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
893 val64 = (u64)val << 32;
894
895 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
896 val64 |= val;
897
898 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
899
900 rc = ntb_set_mw(nt, i, val64);
901 if (rc)
902 goto out1;
903 }
904
905 nt->link_is_up = true;
906
907 for (i = 0; i < nt->qp_count; i++) {
908 struct ntb_transport_qp *qp = &nt->qp_vec[i];
909
910 ntb_transport_setup_qp_mw(nt, i);
911
912 if (qp->client_ready)
913 schedule_delayed_work(&qp->link_work, 0);
914 }
915
916 return;
917
918 out1:
919 for (i = 0; i < nt->mw_count; i++)
920 ntb_free_mw(nt, i);
921
922 /* if there's an actual failure, we should just bail */
923 if (rc < 0) {
924 ntb_link_disable(ndev);
925 return;
926 }
927
928 out:
929 if (ntb_link_is_up(ndev, NULL, NULL) == 1)
930 schedule_delayed_work(&nt->link_work,
931 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
932 }
933
934 static void ntb_qp_link_work(struct work_struct *work)
935 {
936 struct ntb_transport_qp *qp = container_of(work,
937 struct ntb_transport_qp,
938 link_work.work);
939 struct pci_dev *pdev = qp->ndev->pdev;
940 struct ntb_transport_ctx *nt = qp->transport;
941 int val;
942
943 WARN_ON(!nt->link_is_up);
944
945 val = ntb_spad_read(nt->ndev, QP_LINKS);
946
947 ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
948
949 /* query remote spad for qp ready bits */
950 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
951
952 /* See if the remote side is up */
953 if (val & BIT(qp->qp_num)) {
954 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
955 qp->link_is_up = true;
956 qp->active = true;
957
958 if (qp->event_handler)
959 qp->event_handler(qp->cb_data, qp->link_is_up);
960
961 if (qp->active)
962 tasklet_schedule(&qp->rxc_db_work);
963 } else if (nt->link_is_up)
964 schedule_delayed_work(&qp->link_work,
965 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
966 }
967
968 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
969 unsigned int qp_num)
970 {
971 struct ntb_transport_qp *qp;
972 phys_addr_t mw_base;
973 resource_size_t mw_size;
974 unsigned int num_qps_mw, tx_size;
975 unsigned int mw_num, mw_count, qp_count;
976 u64 qp_offset;
977
978 mw_count = nt->mw_count;
979 qp_count = nt->qp_count;
980
981 mw_num = QP_TO_MW(nt, qp_num);
982
983 qp = &nt->qp_vec[qp_num];
984 qp->qp_num = qp_num;
985 qp->transport = nt;
986 qp->ndev = nt->ndev;
987 qp->client_ready = false;
988 qp->event_handler = NULL;
989 ntb_qp_link_down_reset(qp);
990
991 if (mw_num < qp_count % mw_count)
992 num_qps_mw = qp_count / mw_count + 1;
993 else
994 num_qps_mw = qp_count / mw_count;
995
996 mw_base = nt->mw_vec[mw_num].phys_addr;
997 mw_size = nt->mw_vec[mw_num].phys_size;
998
999 tx_size = (unsigned int)mw_size / num_qps_mw;
1000 qp_offset = tx_size * (qp_num / mw_count);
1001
1002 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1003 if (!qp->tx_mw)
1004 return -EINVAL;
1005
1006 qp->tx_mw_phys = mw_base + qp_offset;
1007 if (!qp->tx_mw_phys)
1008 return -EINVAL;
1009
1010 tx_size -= sizeof(struct ntb_rx_info);
1011 qp->rx_info = qp->tx_mw + tx_size;
1012
1013 /* Due to housekeeping, there must be atleast 2 buffs */
1014 qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1015 qp->tx_max_entry = tx_size / qp->tx_max_frame;
1016
1017 if (nt->debugfs_node_dir) {
1018 char debugfs_name[4];
1019
1020 snprintf(debugfs_name, 4, "qp%d", qp_num);
1021 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1022 nt->debugfs_node_dir);
1023
1024 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1025 qp->debugfs_dir, qp,
1026 &ntb_qp_debugfs_stats);
1027 } else {
1028 qp->debugfs_dir = NULL;
1029 qp->debugfs_stats = NULL;
1030 }
1031
1032 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1033 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1034
1035 spin_lock_init(&qp->ntb_rx_q_lock);
1036 spin_lock_init(&qp->ntb_tx_free_q_lock);
1037
1038 INIT_LIST_HEAD(&qp->rx_post_q);
1039 INIT_LIST_HEAD(&qp->rx_pend_q);
1040 INIT_LIST_HEAD(&qp->rx_free_q);
1041 INIT_LIST_HEAD(&qp->tx_free_q);
1042
1043 tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1044 (unsigned long)qp);
1045
1046 return 0;
1047 }
1048
1049 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1050 {
1051 struct ntb_transport_ctx *nt;
1052 struct ntb_transport_mw *mw;
1053 unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1054 u64 qp_bitmap;
1055 int node;
1056 int rc, i;
1057
1058 mw_count = ntb_mw_count(ndev);
1059
1060 if (ntb_db_is_unsafe(ndev))
1061 dev_dbg(&ndev->dev,
1062 "doorbell is unsafe, proceed anyway...\n");
1063 if (ntb_spad_is_unsafe(ndev))
1064 dev_dbg(&ndev->dev,
1065 "scratchpad is unsafe, proceed anyway...\n");
1066
1067 node = dev_to_node(&ndev->dev);
1068
1069 nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1070 if (!nt)
1071 return -ENOMEM;
1072
1073 nt->ndev = ndev;
1074 spad_count = ntb_spad_count(ndev);
1075
1076 /* Limit the MW's based on the availability of scratchpads */
1077
1078 if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1079 nt->mw_count = 0;
1080 rc = -EINVAL;
1081 goto err;
1082 }
1083
1084 max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1085 nt->mw_count = min(mw_count, max_mw_count_for_spads);
1086
1087 nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1088 GFP_KERNEL, node);
1089 if (!nt->mw_vec) {
1090 rc = -ENOMEM;
1091 goto err;
1092 }
1093
1094 for (i = 0; i < mw_count; i++) {
1095 mw = &nt->mw_vec[i];
1096
1097 rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
1098 &mw->xlat_align, &mw->xlat_align_size);
1099 if (rc)
1100 goto err1;
1101
1102 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1103 if (!mw->vbase) {
1104 rc = -ENOMEM;
1105 goto err1;
1106 }
1107
1108 mw->buff_size = 0;
1109 mw->xlat_size = 0;
1110 mw->virt_addr = NULL;
1111 mw->dma_addr = 0;
1112 }
1113
1114 qp_bitmap = ntb_db_valid_mask(ndev);
1115
1116 qp_count = ilog2(qp_bitmap);
1117 if (max_num_clients && max_num_clients < qp_count)
1118 qp_count = max_num_clients;
1119 else if (nt->mw_count < qp_count)
1120 qp_count = nt->mw_count;
1121
1122 qp_bitmap &= BIT_ULL(qp_count) - 1;
1123
1124 nt->qp_count = qp_count;
1125 nt->qp_bitmap = qp_bitmap;
1126 nt->qp_bitmap_free = qp_bitmap;
1127
1128 nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1129 GFP_KERNEL, node);
1130 if (!nt->qp_vec) {
1131 rc = -ENOMEM;
1132 goto err1;
1133 }
1134
1135 if (nt_debugfs_dir) {
1136 nt->debugfs_node_dir =
1137 debugfs_create_dir(pci_name(ndev->pdev),
1138 nt_debugfs_dir);
1139 }
1140
1141 for (i = 0; i < qp_count; i++) {
1142 rc = ntb_transport_init_queue(nt, i);
1143 if (rc)
1144 goto err2;
1145 }
1146
1147 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1148 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1149
1150 rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1151 if (rc)
1152 goto err2;
1153
1154 INIT_LIST_HEAD(&nt->client_devs);
1155 rc = ntb_bus_init(nt);
1156 if (rc)
1157 goto err3;
1158
1159 nt->link_is_up = false;
1160 ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1161 ntb_link_event(ndev);
1162
1163 return 0;
1164
1165 err3:
1166 ntb_clear_ctx(ndev);
1167 err2:
1168 kfree(nt->qp_vec);
1169 err1:
1170 while (i--) {
1171 mw = &nt->mw_vec[i];
1172 iounmap(mw->vbase);
1173 }
1174 kfree(nt->mw_vec);
1175 err:
1176 kfree(nt);
1177 return rc;
1178 }
1179
1180 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1181 {
1182 struct ntb_transport_ctx *nt = ndev->ctx;
1183 struct ntb_transport_qp *qp;
1184 u64 qp_bitmap_alloc;
1185 int i;
1186
1187 ntb_transport_link_cleanup(nt);
1188 cancel_work_sync(&nt->link_cleanup);
1189 cancel_delayed_work_sync(&nt->link_work);
1190
1191 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1192
1193 /* verify that all the qp's are freed */
1194 for (i = 0; i < nt->qp_count; i++) {
1195 qp = &nt->qp_vec[i];
1196 if (qp_bitmap_alloc & BIT_ULL(i))
1197 ntb_transport_free_queue(qp);
1198 debugfs_remove_recursive(qp->debugfs_dir);
1199 }
1200
1201 ntb_link_disable(ndev);
1202 ntb_clear_ctx(ndev);
1203
1204 ntb_bus_remove(nt);
1205
1206 for (i = nt->mw_count; i--; ) {
1207 ntb_free_mw(nt, i);
1208 iounmap(nt->mw_vec[i].vbase);
1209 }
1210
1211 kfree(nt->qp_vec);
1212 kfree(nt->mw_vec);
1213 kfree(nt);
1214 }
1215
1216 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1217 {
1218 struct ntb_queue_entry *entry;
1219 void *cb_data;
1220 unsigned int len;
1221 unsigned long irqflags;
1222
1223 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1224
1225 while (!list_empty(&qp->rx_post_q)) {
1226 entry = list_first_entry(&qp->rx_post_q,
1227 struct ntb_queue_entry, entry);
1228 if (!(entry->flags & DESC_DONE_FLAG))
1229 break;
1230
1231 entry->rx_hdr->flags = 0;
1232 iowrite32(entry->rx_index, &qp->rx_info->entry);
1233
1234 cb_data = entry->cb_data;
1235 len = entry->len;
1236
1237 list_move_tail(&entry->entry, &qp->rx_free_q);
1238
1239 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1240
1241 if (qp->rx_handler && qp->client_ready)
1242 qp->rx_handler(qp, qp->cb_data, cb_data, len);
1243
1244 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1245 }
1246
1247 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1248 }
1249
1250 static void ntb_rx_copy_callback(void *data,
1251 const struct dmaengine_result *res)
1252 {
1253 struct ntb_queue_entry *entry = data;
1254
1255 /* we need to check DMA results if we are using DMA */
1256 if (res) {
1257 enum dmaengine_tx_result dma_err = res->result;
1258
1259 switch (dma_err) {
1260 case DMA_TRANS_READ_FAILED:
1261 case DMA_TRANS_WRITE_FAILED:
1262 entry->errors++;
1263 case DMA_TRANS_ABORTED:
1264 {
1265 struct ntb_transport_qp *qp = entry->qp;
1266 void *offset = qp->rx_buff + qp->rx_max_frame *
1267 qp->rx_index;
1268
1269 ntb_memcpy_rx(entry, offset);
1270 qp->rx_memcpy++;
1271 return;
1272 }
1273
1274 case DMA_TRANS_NOERROR:
1275 default:
1276 break;
1277 }
1278 }
1279
1280 entry->flags |= DESC_DONE_FLAG;
1281
1282 ntb_complete_rxc(entry->qp);
1283 }
1284
1285 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1286 {
1287 void *buf = entry->buf;
1288 size_t len = entry->len;
1289
1290 memcpy(buf, offset, len);
1291
1292 /* Ensure that the data is fully copied out before clearing the flag */
1293 wmb();
1294
1295 ntb_rx_copy_callback(entry, NULL);
1296 }
1297
1298 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1299 {
1300 struct dma_async_tx_descriptor *txd;
1301 struct ntb_transport_qp *qp = entry->qp;
1302 struct dma_chan *chan = qp->rx_dma_chan;
1303 struct dma_device *device;
1304 size_t pay_off, buff_off, len;
1305 struct dmaengine_unmap_data *unmap;
1306 dma_cookie_t cookie;
1307 void *buf = entry->buf;
1308
1309 len = entry->len;
1310 device = chan->device;
1311 pay_off = (size_t)offset & ~PAGE_MASK;
1312 buff_off = (size_t)buf & ~PAGE_MASK;
1313
1314 if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1315 goto err;
1316
1317 unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1318 if (!unmap)
1319 goto err;
1320
1321 unmap->len = len;
1322 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1323 pay_off, len, DMA_TO_DEVICE);
1324 if (dma_mapping_error(device->dev, unmap->addr[0]))
1325 goto err_get_unmap;
1326
1327 unmap->to_cnt = 1;
1328
1329 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1330 buff_off, len, DMA_FROM_DEVICE);
1331 if (dma_mapping_error(device->dev, unmap->addr[1]))
1332 goto err_get_unmap;
1333
1334 unmap->from_cnt = 1;
1335
1336 txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1337 unmap->addr[0], len,
1338 DMA_PREP_INTERRUPT);
1339 if (!txd)
1340 goto err_get_unmap;
1341
1342 txd->callback_result = ntb_rx_copy_callback;
1343 txd->callback_param = entry;
1344 dma_set_unmap(txd, unmap);
1345
1346 cookie = dmaengine_submit(txd);
1347 if (dma_submit_error(cookie))
1348 goto err_set_unmap;
1349
1350 dmaengine_unmap_put(unmap);
1351
1352 qp->last_cookie = cookie;
1353
1354 qp->rx_async++;
1355
1356 return 0;
1357
1358 err_set_unmap:
1359 dmaengine_unmap_put(unmap);
1360 err_get_unmap:
1361 dmaengine_unmap_put(unmap);
1362 err:
1363 return -ENXIO;
1364 }
1365
1366 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1367 {
1368 struct ntb_transport_qp *qp = entry->qp;
1369 struct dma_chan *chan = qp->rx_dma_chan;
1370 int res;
1371
1372 if (!chan)
1373 goto err;
1374
1375 if (entry->len < copy_bytes)
1376 goto err;
1377
1378 res = ntb_async_rx_submit(entry, offset);
1379 if (res < 0)
1380 goto err;
1381
1382 if (!entry->retries)
1383 qp->rx_async++;
1384
1385 return;
1386
1387 err:
1388 ntb_memcpy_rx(entry, offset);
1389 qp->rx_memcpy++;
1390 }
1391
1392 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1393 {
1394 struct ntb_payload_header *hdr;
1395 struct ntb_queue_entry *entry;
1396 void *offset;
1397
1398 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1399 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1400
1401 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1402 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1403
1404 if (!(hdr->flags & DESC_DONE_FLAG)) {
1405 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1406 qp->rx_ring_empty++;
1407 return -EAGAIN;
1408 }
1409
1410 if (hdr->flags & LINK_DOWN_FLAG) {
1411 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1412 ntb_qp_link_down(qp);
1413 hdr->flags = 0;
1414 return -EAGAIN;
1415 }
1416
1417 if (hdr->ver != (u32)qp->rx_pkts) {
1418 dev_dbg(&qp->ndev->pdev->dev,
1419 "version mismatch, expected %llu - got %u\n",
1420 qp->rx_pkts, hdr->ver);
1421 qp->rx_err_ver++;
1422 return -EIO;
1423 }
1424
1425 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1426 if (!entry) {
1427 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1428 qp->rx_err_no_buf++;
1429 return -EAGAIN;
1430 }
1431
1432 entry->rx_hdr = hdr;
1433 entry->rx_index = qp->rx_index;
1434
1435 if (hdr->len > entry->len) {
1436 dev_dbg(&qp->ndev->pdev->dev,
1437 "receive buffer overflow! Wanted %d got %d\n",
1438 hdr->len, entry->len);
1439 qp->rx_err_oflow++;
1440
1441 entry->len = -EIO;
1442 entry->flags |= DESC_DONE_FLAG;
1443
1444 ntb_complete_rxc(qp);
1445 } else {
1446 dev_dbg(&qp->ndev->pdev->dev,
1447 "RX OK index %u ver %u size %d into buf size %d\n",
1448 qp->rx_index, hdr->ver, hdr->len, entry->len);
1449
1450 qp->rx_bytes += hdr->len;
1451 qp->rx_pkts++;
1452
1453 entry->len = hdr->len;
1454
1455 ntb_async_rx(entry, offset);
1456 }
1457
1458 qp->rx_index++;
1459 qp->rx_index %= qp->rx_max_entry;
1460
1461 return 0;
1462 }
1463
1464 static void ntb_transport_rxc_db(unsigned long data)
1465 {
1466 struct ntb_transport_qp *qp = (void *)data;
1467 int rc, i;
1468
1469 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1470 __func__, qp->qp_num);
1471
1472 /* Limit the number of packets processed in a single interrupt to
1473 * provide fairness to others
1474 */
1475 for (i = 0; i < qp->rx_max_entry; i++) {
1476 rc = ntb_process_rxc(qp);
1477 if (rc)
1478 break;
1479 }
1480
1481 if (i && qp->rx_dma_chan)
1482 dma_async_issue_pending(qp->rx_dma_chan);
1483
1484 if (i == qp->rx_max_entry) {
1485 /* there is more work to do */
1486 if (qp->active)
1487 tasklet_schedule(&qp->rxc_db_work);
1488 } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1489 /* the doorbell bit is set: clear it */
1490 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1491 /* ntb_db_read ensures ntb_db_clear write is committed */
1492 ntb_db_read(qp->ndev);
1493
1494 /* an interrupt may have arrived between finishing
1495 * ntb_process_rxc and clearing the doorbell bit:
1496 * there might be some more work to do.
1497 */
1498 if (qp->active)
1499 tasklet_schedule(&qp->rxc_db_work);
1500 }
1501 }
1502
1503 static void ntb_tx_copy_callback(void *data,
1504 const struct dmaengine_result *res)
1505 {
1506 struct ntb_queue_entry *entry = data;
1507 struct ntb_transport_qp *qp = entry->qp;
1508 struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1509
1510 /* we need to check DMA results if we are using DMA */
1511 if (res) {
1512 enum dmaengine_tx_result dma_err = res->result;
1513
1514 switch (dma_err) {
1515 case DMA_TRANS_READ_FAILED:
1516 case DMA_TRANS_WRITE_FAILED:
1517 entry->errors++;
1518 case DMA_TRANS_ABORTED:
1519 {
1520 void __iomem *offset =
1521 qp->tx_mw + qp->tx_max_frame *
1522 entry->tx_index;
1523
1524 /* resubmit via CPU */
1525 ntb_memcpy_tx(entry, offset);
1526 qp->tx_memcpy++;
1527 return;
1528 }
1529
1530 case DMA_TRANS_NOERROR:
1531 default:
1532 break;
1533 }
1534 }
1535
1536 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1537
1538 ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1539
1540 /* The entry length can only be zero if the packet is intended to be a
1541 * "link down" or similar. Since no payload is being sent in these
1542 * cases, there is nothing to add to the completion queue.
1543 */
1544 if (entry->len > 0) {
1545 qp->tx_bytes += entry->len;
1546
1547 if (qp->tx_handler)
1548 qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1549 entry->len);
1550 }
1551
1552 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1553 }
1554
1555 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1556 {
1557 #ifdef ARCH_HAS_NOCACHE_UACCESS
1558 /*
1559 * Using non-temporal mov to improve performance on non-cached
1560 * writes, even though we aren't actually copying from user space.
1561 */
1562 __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1563 #else
1564 memcpy_toio(offset, entry->buf, entry->len);
1565 #endif
1566
1567 /* Ensure that the data is fully copied out before setting the flags */
1568 wmb();
1569
1570 ntb_tx_copy_callback(entry, NULL);
1571 }
1572
1573 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1574 struct ntb_queue_entry *entry)
1575 {
1576 struct dma_async_tx_descriptor *txd;
1577 struct dma_chan *chan = qp->tx_dma_chan;
1578 struct dma_device *device;
1579 size_t len = entry->len;
1580 void *buf = entry->buf;
1581 size_t dest_off, buff_off;
1582 struct dmaengine_unmap_data *unmap;
1583 dma_addr_t dest;
1584 dma_cookie_t cookie;
1585
1586 device = chan->device;
1587 dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1588 buff_off = (size_t)buf & ~PAGE_MASK;
1589 dest_off = (size_t)dest & ~PAGE_MASK;
1590
1591 if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1592 goto err;
1593
1594 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1595 if (!unmap)
1596 goto err;
1597
1598 unmap->len = len;
1599 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1600 buff_off, len, DMA_TO_DEVICE);
1601 if (dma_mapping_error(device->dev, unmap->addr[0]))
1602 goto err_get_unmap;
1603
1604 unmap->to_cnt = 1;
1605
1606 txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1607 DMA_PREP_INTERRUPT);
1608 if (!txd)
1609 goto err_get_unmap;
1610
1611 txd->callback_result = ntb_tx_copy_callback;
1612 txd->callback_param = entry;
1613 dma_set_unmap(txd, unmap);
1614
1615 cookie = dmaengine_submit(txd);
1616 if (dma_submit_error(cookie))
1617 goto err_set_unmap;
1618
1619 dmaengine_unmap_put(unmap);
1620
1621 dma_async_issue_pending(chan);
1622
1623 return 0;
1624 err_set_unmap:
1625 dmaengine_unmap_put(unmap);
1626 err_get_unmap:
1627 dmaengine_unmap_put(unmap);
1628 err:
1629 return -ENXIO;
1630 }
1631
1632 static void ntb_async_tx(struct ntb_transport_qp *qp,
1633 struct ntb_queue_entry *entry)
1634 {
1635 struct ntb_payload_header __iomem *hdr;
1636 struct dma_chan *chan = qp->tx_dma_chan;
1637 void __iomem *offset;
1638 int res;
1639
1640 entry->tx_index = qp->tx_index;
1641 offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1642 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1643 entry->tx_hdr = hdr;
1644
1645 iowrite32(entry->len, &hdr->len);
1646 iowrite32((u32)qp->tx_pkts, &hdr->ver);
1647
1648 if (!chan)
1649 goto err;
1650
1651 if (entry->len < copy_bytes)
1652 goto err;
1653
1654 res = ntb_async_tx_submit(qp, entry);
1655 if (res < 0)
1656 goto err;
1657
1658 if (!entry->retries)
1659 qp->tx_async++;
1660
1661 return;
1662
1663 err:
1664 ntb_memcpy_tx(entry, offset);
1665 qp->tx_memcpy++;
1666 }
1667
1668 static int ntb_process_tx(struct ntb_transport_qp *qp,
1669 struct ntb_queue_entry *entry)
1670 {
1671 if (qp->tx_index == qp->remote_rx_info->entry) {
1672 qp->tx_ring_full++;
1673 return -EAGAIN;
1674 }
1675
1676 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1677 if (qp->tx_handler)
1678 qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1679
1680 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1681 &qp->tx_free_q);
1682 return 0;
1683 }
1684
1685 ntb_async_tx(qp, entry);
1686
1687 qp->tx_index++;
1688 qp->tx_index %= qp->tx_max_entry;
1689
1690 qp->tx_pkts++;
1691
1692 return 0;
1693 }
1694
1695 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1696 {
1697 struct pci_dev *pdev = qp->ndev->pdev;
1698 struct ntb_queue_entry *entry;
1699 int i, rc;
1700
1701 if (!qp->link_is_up)
1702 return;
1703
1704 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1705
1706 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1707 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1708 if (entry)
1709 break;
1710 msleep(100);
1711 }
1712
1713 if (!entry)
1714 return;
1715
1716 entry->cb_data = NULL;
1717 entry->buf = NULL;
1718 entry->len = 0;
1719 entry->flags = LINK_DOWN_FLAG;
1720
1721 rc = ntb_process_tx(qp, entry);
1722 if (rc)
1723 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1724 qp->qp_num);
1725
1726 ntb_qp_link_down_reset(qp);
1727 }
1728
1729 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1730 {
1731 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1732 }
1733
1734 /**
1735 * ntb_transport_create_queue - Create a new NTB transport layer queue
1736 * @rx_handler: receive callback function
1737 * @tx_handler: transmit callback function
1738 * @event_handler: event callback function
1739 *
1740 * Create a new NTB transport layer queue and provide the queue with a callback
1741 * routine for both transmit and receive. The receive callback routine will be
1742 * used to pass up data when the transport has received it on the queue. The
1743 * transmit callback routine will be called when the transport has completed the
1744 * transmission of the data on the queue and the data is ready to be freed.
1745 *
1746 * RETURNS: pointer to newly created ntb_queue, NULL on error.
1747 */
1748 struct ntb_transport_qp *
1749 ntb_transport_create_queue(void *data, struct device *client_dev,
1750 const struct ntb_queue_handlers *handlers)
1751 {
1752 struct ntb_dev *ndev;
1753 struct pci_dev *pdev;
1754 struct ntb_transport_ctx *nt;
1755 struct ntb_queue_entry *entry;
1756 struct ntb_transport_qp *qp;
1757 u64 qp_bit;
1758 unsigned int free_queue;
1759 dma_cap_mask_t dma_mask;
1760 int node;
1761 int i;
1762
1763 ndev = dev_ntb(client_dev->parent);
1764 pdev = ndev->pdev;
1765 nt = ndev->ctx;
1766
1767 node = dev_to_node(&ndev->dev);
1768
1769 free_queue = ffs(nt->qp_bitmap_free);
1770 if (!free_queue)
1771 goto err;
1772
1773 /* decrement free_queue to make it zero based */
1774 free_queue--;
1775
1776 qp = &nt->qp_vec[free_queue];
1777 qp_bit = BIT_ULL(qp->qp_num);
1778
1779 nt->qp_bitmap_free &= ~qp_bit;
1780
1781 qp->cb_data = data;
1782 qp->rx_handler = handlers->rx_handler;
1783 qp->tx_handler = handlers->tx_handler;
1784 qp->event_handler = handlers->event_handler;
1785
1786 dma_cap_zero(dma_mask);
1787 dma_cap_set(DMA_MEMCPY, dma_mask);
1788
1789 if (use_dma) {
1790 qp->tx_dma_chan =
1791 dma_request_channel(dma_mask, ntb_dma_filter_fn,
1792 (void *)(unsigned long)node);
1793 if (!qp->tx_dma_chan)
1794 dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1795
1796 qp->rx_dma_chan =
1797 dma_request_channel(dma_mask, ntb_dma_filter_fn,
1798 (void *)(unsigned long)node);
1799 if (!qp->rx_dma_chan)
1800 dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1801 } else {
1802 qp->tx_dma_chan = NULL;
1803 qp->rx_dma_chan = NULL;
1804 }
1805
1806 dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1807 qp->tx_dma_chan ? "DMA" : "CPU");
1808
1809 dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1810 qp->rx_dma_chan ? "DMA" : "CPU");
1811
1812 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1813 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1814 if (!entry)
1815 goto err1;
1816
1817 entry->qp = qp;
1818 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1819 &qp->rx_free_q);
1820 }
1821 qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1822
1823 for (i = 0; i < qp->tx_max_entry; i++) {
1824 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1825 if (!entry)
1826 goto err2;
1827
1828 entry->qp = qp;
1829 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1830 &qp->tx_free_q);
1831 }
1832
1833 ntb_db_clear(qp->ndev, qp_bit);
1834 ntb_db_clear_mask(qp->ndev, qp_bit);
1835
1836 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1837
1838 return qp;
1839
1840 err2:
1841 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1842 kfree(entry);
1843 err1:
1844 qp->rx_alloc_entry = 0;
1845 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1846 kfree(entry);
1847 if (qp->tx_dma_chan)
1848 dma_release_channel(qp->tx_dma_chan);
1849 if (qp->rx_dma_chan)
1850 dma_release_channel(qp->rx_dma_chan);
1851 nt->qp_bitmap_free |= qp_bit;
1852 err:
1853 return NULL;
1854 }
1855 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1856
1857 /**
1858 * ntb_transport_free_queue - Frees NTB transport queue
1859 * @qp: NTB queue to be freed
1860 *
1861 * Frees NTB transport queue
1862 */
1863 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1864 {
1865 struct pci_dev *pdev;
1866 struct ntb_queue_entry *entry;
1867 u64 qp_bit;
1868
1869 if (!qp)
1870 return;
1871
1872 pdev = qp->ndev->pdev;
1873
1874 qp->active = false;
1875
1876 if (qp->tx_dma_chan) {
1877 struct dma_chan *chan = qp->tx_dma_chan;
1878 /* Putting the dma_chan to NULL will force any new traffic to be
1879 * processed by the CPU instead of the DAM engine
1880 */
1881 qp->tx_dma_chan = NULL;
1882
1883 /* Try to be nice and wait for any queued DMA engine
1884 * transactions to process before smashing it with a rock
1885 */
1886 dma_sync_wait(chan, qp->last_cookie);
1887 dmaengine_terminate_all(chan);
1888 dma_release_channel(chan);
1889 }
1890
1891 if (qp->rx_dma_chan) {
1892 struct dma_chan *chan = qp->rx_dma_chan;
1893 /* Putting the dma_chan to NULL will force any new traffic to be
1894 * processed by the CPU instead of the DAM engine
1895 */
1896 qp->rx_dma_chan = NULL;
1897
1898 /* Try to be nice and wait for any queued DMA engine
1899 * transactions to process before smashing it with a rock
1900 */
1901 dma_sync_wait(chan, qp->last_cookie);
1902 dmaengine_terminate_all(chan);
1903 dma_release_channel(chan);
1904 }
1905
1906 qp_bit = BIT_ULL(qp->qp_num);
1907
1908 ntb_db_set_mask(qp->ndev, qp_bit);
1909 tasklet_kill(&qp->rxc_db_work);
1910
1911 cancel_delayed_work_sync(&qp->link_work);
1912
1913 qp->cb_data = NULL;
1914 qp->rx_handler = NULL;
1915 qp->tx_handler = NULL;
1916 qp->event_handler = NULL;
1917
1918 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1919 kfree(entry);
1920
1921 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1922 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1923 kfree(entry);
1924 }
1925
1926 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1927 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1928 kfree(entry);
1929 }
1930
1931 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1932 kfree(entry);
1933
1934 qp->transport->qp_bitmap_free |= qp_bit;
1935
1936 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1937 }
1938 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1939
1940 /**
1941 * ntb_transport_rx_remove - Dequeues enqueued rx packet
1942 * @qp: NTB queue to be freed
1943 * @len: pointer to variable to write enqueued buffers length
1944 *
1945 * Dequeues unused buffers from receive queue. Should only be used during
1946 * shutdown of qp.
1947 *
1948 * RETURNS: NULL error value on error, or void* for success.
1949 */
1950 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1951 {
1952 struct ntb_queue_entry *entry;
1953 void *buf;
1954
1955 if (!qp || qp->client_ready)
1956 return NULL;
1957
1958 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1959 if (!entry)
1960 return NULL;
1961
1962 buf = entry->cb_data;
1963 *len = entry->len;
1964
1965 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1966
1967 return buf;
1968 }
1969 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1970
1971 /**
1972 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1973 * @qp: NTB transport layer queue the entry is to be enqueued on
1974 * @cb: per buffer pointer for callback function to use
1975 * @data: pointer to data buffer that incoming packets will be copied into
1976 * @len: length of the data buffer
1977 *
1978 * Enqueue a new receive buffer onto the transport queue into which a NTB
1979 * payload can be received into.
1980 *
1981 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1982 */
1983 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1984 unsigned int len)
1985 {
1986 struct ntb_queue_entry *entry;
1987
1988 if (!qp)
1989 return -EINVAL;
1990
1991 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
1992 if (!entry)
1993 return -ENOMEM;
1994
1995 entry->cb_data = cb;
1996 entry->buf = data;
1997 entry->len = len;
1998 entry->flags = 0;
1999 entry->retries = 0;
2000 entry->errors = 0;
2001 entry->rx_index = 0;
2002
2003 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2004
2005 if (qp->active)
2006 tasklet_schedule(&qp->rxc_db_work);
2007
2008 return 0;
2009 }
2010 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2011
2012 /**
2013 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2014 * @qp: NTB transport layer queue the entry is to be enqueued on
2015 * @cb: per buffer pointer for callback function to use
2016 * @data: pointer to data buffer that will be sent
2017 * @len: length of the data buffer
2018 *
2019 * Enqueue a new transmit buffer onto the transport queue from which a NTB
2020 * payload will be transmitted. This assumes that a lock is being held to
2021 * serialize access to the qp.
2022 *
2023 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2024 */
2025 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2026 unsigned int len)
2027 {
2028 struct ntb_queue_entry *entry;
2029 int rc;
2030
2031 if (!qp || !qp->link_is_up || !len)
2032 return -EINVAL;
2033
2034 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2035 if (!entry) {
2036 qp->tx_err_no_buf++;
2037 return -EBUSY;
2038 }
2039
2040 entry->cb_data = cb;
2041 entry->buf = data;
2042 entry->len = len;
2043 entry->flags = 0;
2044 entry->errors = 0;
2045 entry->retries = 0;
2046 entry->tx_index = 0;
2047
2048 rc = ntb_process_tx(qp, entry);
2049 if (rc)
2050 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2051 &qp->tx_free_q);
2052
2053 return rc;
2054 }
2055 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2056
2057 /**
2058 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2059 * @qp: NTB transport layer queue to be enabled
2060 *
2061 * Notify NTB transport layer of client readiness to use queue
2062 */
2063 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2064 {
2065 if (!qp)
2066 return;
2067
2068 qp->client_ready = true;
2069
2070 if (qp->transport->link_is_up)
2071 schedule_delayed_work(&qp->link_work, 0);
2072 }
2073 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2074
2075 /**
2076 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2077 * @qp: NTB transport layer queue to be disabled
2078 *
2079 * Notify NTB transport layer of client's desire to no longer receive data on
2080 * transport queue specified. It is the client's responsibility to ensure all
2081 * entries on queue are purged or otherwise handled appropriately.
2082 */
2083 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2084 {
2085 int val;
2086
2087 if (!qp)
2088 return;
2089
2090 qp->client_ready = false;
2091
2092 val = ntb_spad_read(qp->ndev, QP_LINKS);
2093
2094 ntb_peer_spad_write(qp->ndev, QP_LINKS,
2095 val & ~BIT(qp->qp_num));
2096
2097 if (qp->link_is_up)
2098 ntb_send_link_down(qp);
2099 else
2100 cancel_delayed_work_sync(&qp->link_work);
2101 }
2102 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2103
2104 /**
2105 * ntb_transport_link_query - Query transport link state
2106 * @qp: NTB transport layer queue to be queried
2107 *
2108 * Query connectivity to the remote system of the NTB transport queue
2109 *
2110 * RETURNS: true for link up or false for link down
2111 */
2112 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2113 {
2114 if (!qp)
2115 return false;
2116
2117 return qp->link_is_up;
2118 }
2119 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2120
2121 /**
2122 * ntb_transport_qp_num - Query the qp number
2123 * @qp: NTB transport layer queue to be queried
2124 *
2125 * Query qp number of the NTB transport queue
2126 *
2127 * RETURNS: a zero based number specifying the qp number
2128 */
2129 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2130 {
2131 if (!qp)
2132 return 0;
2133
2134 return qp->qp_num;
2135 }
2136 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2137
2138 /**
2139 * ntb_transport_max_size - Query the max payload size of a qp
2140 * @qp: NTB transport layer queue to be queried
2141 *
2142 * Query the maximum payload size permissible on the given qp
2143 *
2144 * RETURNS: the max payload size of a qp
2145 */
2146 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2147 {
2148 unsigned int max_size;
2149 unsigned int copy_align;
2150 struct dma_chan *rx_chan, *tx_chan;
2151
2152 if (!qp)
2153 return 0;
2154
2155 rx_chan = qp->rx_dma_chan;
2156 tx_chan = qp->tx_dma_chan;
2157
2158 copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2159 tx_chan ? tx_chan->device->copy_align : 0);
2160
2161 /* If DMA engine usage is possible, try to find the max size for that */
2162 max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2163 max_size = round_down(max_size, 1 << copy_align);
2164
2165 return max_size;
2166 }
2167 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2168
2169 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2170 {
2171 unsigned int head = qp->tx_index;
2172 unsigned int tail = qp->remote_rx_info->entry;
2173
2174 return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2175 }
2176 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2177
2178 static void ntb_transport_doorbell_callback(void *data, int vector)
2179 {
2180 struct ntb_transport_ctx *nt = data;
2181 struct ntb_transport_qp *qp;
2182 u64 db_bits;
2183 unsigned int qp_num;
2184
2185 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2186 ntb_db_vector_mask(nt->ndev, vector));
2187
2188 while (db_bits) {
2189 qp_num = __ffs(db_bits);
2190 qp = &nt->qp_vec[qp_num];
2191
2192 if (qp->active)
2193 tasklet_schedule(&qp->rxc_db_work);
2194
2195 db_bits &= ~BIT_ULL(qp_num);
2196 }
2197 }
2198
2199 static const struct ntb_ctx_ops ntb_transport_ops = {
2200 .link_event = ntb_transport_event_callback,
2201 .db_event = ntb_transport_doorbell_callback,
2202 };
2203
2204 static struct ntb_client ntb_transport_client = {
2205 .ops = {
2206 .probe = ntb_transport_probe,
2207 .remove = ntb_transport_free,
2208 },
2209 };
2210
2211 static int __init ntb_transport_init(void)
2212 {
2213 int rc;
2214
2215 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2216
2217 if (debugfs_initialized())
2218 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2219
2220 rc = bus_register(&ntb_transport_bus);
2221 if (rc)
2222 goto err_bus;
2223
2224 rc = ntb_register_client(&ntb_transport_client);
2225 if (rc)
2226 goto err_client;
2227
2228 return 0;
2229
2230 err_client:
2231 bus_unregister(&ntb_transport_bus);
2232 err_bus:
2233 debugfs_remove_recursive(nt_debugfs_dir);
2234 return rc;
2235 }
2236 module_init(ntb_transport_init);
2237
2238 static void __exit ntb_transport_exit(void)
2239 {
2240 ntb_unregister_client(&ntb_transport_client);
2241 bus_unregister(&ntb_transport_bus);
2242 debugfs_remove_recursive(nt_debugfs_dir);
2243 }
2244 module_exit(ntb_transport_exit);