]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvdimm/core.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / nvdimm / core.c
1 /*
2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/libnvdimm.h>
14 #include <linux/badblocks.h>
15 #include <linux/export.h>
16 #include <linux/module.h>
17 #include <linux/blkdev.h>
18 #include <linux/device.h>
19 #include <linux/ctype.h>
20 #include <linux/ndctl.h>
21 #include <linux/mutex.h>
22 #include <linux/slab.h>
23 #include <linux/io.h>
24 #include "nd-core.h"
25 #include "nd.h"
26
27 LIST_HEAD(nvdimm_bus_list);
28 DEFINE_MUTEX(nvdimm_bus_list_mutex);
29
30 void nvdimm_bus_lock(struct device *dev)
31 {
32 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
33
34 if (!nvdimm_bus)
35 return;
36 mutex_lock(&nvdimm_bus->reconfig_mutex);
37 }
38 EXPORT_SYMBOL(nvdimm_bus_lock);
39
40 void nvdimm_bus_unlock(struct device *dev)
41 {
42 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
43
44 if (!nvdimm_bus)
45 return;
46 mutex_unlock(&nvdimm_bus->reconfig_mutex);
47 }
48 EXPORT_SYMBOL(nvdimm_bus_unlock);
49
50 bool is_nvdimm_bus_locked(struct device *dev)
51 {
52 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
53
54 if (!nvdimm_bus)
55 return false;
56 return mutex_is_locked(&nvdimm_bus->reconfig_mutex);
57 }
58 EXPORT_SYMBOL(is_nvdimm_bus_locked);
59
60 struct nvdimm_map {
61 struct nvdimm_bus *nvdimm_bus;
62 struct list_head list;
63 resource_size_t offset;
64 unsigned long flags;
65 size_t size;
66 union {
67 void *mem;
68 void __iomem *iomem;
69 };
70 struct kref kref;
71 };
72
73 static struct nvdimm_map *find_nvdimm_map(struct device *dev,
74 resource_size_t offset)
75 {
76 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
77 struct nvdimm_map *nvdimm_map;
78
79 list_for_each_entry(nvdimm_map, &nvdimm_bus->mapping_list, list)
80 if (nvdimm_map->offset == offset)
81 return nvdimm_map;
82 return NULL;
83 }
84
85 static struct nvdimm_map *alloc_nvdimm_map(struct device *dev,
86 resource_size_t offset, size_t size, unsigned long flags)
87 {
88 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
89 struct nvdimm_map *nvdimm_map;
90
91 nvdimm_map = kzalloc(sizeof(*nvdimm_map), GFP_KERNEL);
92 if (!nvdimm_map)
93 return NULL;
94
95 INIT_LIST_HEAD(&nvdimm_map->list);
96 nvdimm_map->nvdimm_bus = nvdimm_bus;
97 nvdimm_map->offset = offset;
98 nvdimm_map->flags = flags;
99 nvdimm_map->size = size;
100 kref_init(&nvdimm_map->kref);
101
102 if (!request_mem_region(offset, size, dev_name(&nvdimm_bus->dev))) {
103 dev_err(&nvdimm_bus->dev, "failed to request %pa + %zd for %s\n",
104 &offset, size, dev_name(dev));
105 goto err_request_region;
106 }
107
108 if (flags)
109 nvdimm_map->mem = memremap(offset, size, flags);
110 else
111 nvdimm_map->iomem = ioremap(offset, size);
112
113 if (!nvdimm_map->mem)
114 goto err_map;
115
116 dev_WARN_ONCE(dev, !is_nvdimm_bus_locked(dev), "%s: bus unlocked!",
117 __func__);
118 list_add(&nvdimm_map->list, &nvdimm_bus->mapping_list);
119
120 return nvdimm_map;
121
122 err_map:
123 release_mem_region(offset, size);
124 err_request_region:
125 kfree(nvdimm_map);
126 return NULL;
127 }
128
129 static void nvdimm_map_release(struct kref *kref)
130 {
131 struct nvdimm_bus *nvdimm_bus;
132 struct nvdimm_map *nvdimm_map;
133
134 nvdimm_map = container_of(kref, struct nvdimm_map, kref);
135 nvdimm_bus = nvdimm_map->nvdimm_bus;
136
137 dev_dbg(&nvdimm_bus->dev, "%s: %pa\n", __func__, &nvdimm_map->offset);
138 list_del(&nvdimm_map->list);
139 if (nvdimm_map->flags)
140 memunmap(nvdimm_map->mem);
141 else
142 iounmap(nvdimm_map->iomem);
143 release_mem_region(nvdimm_map->offset, nvdimm_map->size);
144 kfree(nvdimm_map);
145 }
146
147 static void nvdimm_map_put(void *data)
148 {
149 struct nvdimm_map *nvdimm_map = data;
150 struct nvdimm_bus *nvdimm_bus = nvdimm_map->nvdimm_bus;
151
152 nvdimm_bus_lock(&nvdimm_bus->dev);
153 kref_put(&nvdimm_map->kref, nvdimm_map_release);
154 nvdimm_bus_unlock(&nvdimm_bus->dev);
155 }
156
157 /**
158 * devm_nvdimm_memremap - map a resource that is shared across regions
159 * @dev: device that will own a reference to the shared mapping
160 * @offset: physical base address of the mapping
161 * @size: mapping size
162 * @flags: memremap flags, or, if zero, perform an ioremap instead
163 */
164 void *devm_nvdimm_memremap(struct device *dev, resource_size_t offset,
165 size_t size, unsigned long flags)
166 {
167 struct nvdimm_map *nvdimm_map;
168
169 nvdimm_bus_lock(dev);
170 nvdimm_map = find_nvdimm_map(dev, offset);
171 if (!nvdimm_map)
172 nvdimm_map = alloc_nvdimm_map(dev, offset, size, flags);
173 else
174 kref_get(&nvdimm_map->kref);
175 nvdimm_bus_unlock(dev);
176
177 if (!nvdimm_map)
178 return NULL;
179
180 if (devm_add_action_or_reset(dev, nvdimm_map_put, nvdimm_map))
181 return NULL;
182
183 return nvdimm_map->mem;
184 }
185 EXPORT_SYMBOL_GPL(devm_nvdimm_memremap);
186
187 u64 nd_fletcher64(void *addr, size_t len, bool le)
188 {
189 u32 *buf = addr;
190 u32 lo32 = 0;
191 u64 hi32 = 0;
192 int i;
193
194 for (i = 0; i < len / sizeof(u32); i++) {
195 lo32 += le ? le32_to_cpu((__le32) buf[i]) : buf[i];
196 hi32 += lo32;
197 }
198
199 return hi32 << 32 | lo32;
200 }
201 EXPORT_SYMBOL_GPL(nd_fletcher64);
202
203 struct nvdimm_bus_descriptor *to_nd_desc(struct nvdimm_bus *nvdimm_bus)
204 {
205 /* struct nvdimm_bus definition is private to libnvdimm */
206 return nvdimm_bus->nd_desc;
207 }
208 EXPORT_SYMBOL_GPL(to_nd_desc);
209
210 struct device *to_nvdimm_bus_dev(struct nvdimm_bus *nvdimm_bus)
211 {
212 /* struct nvdimm_bus definition is private to libnvdimm */
213 return &nvdimm_bus->dev;
214 }
215 EXPORT_SYMBOL_GPL(to_nvdimm_bus_dev);
216
217 static bool is_uuid_sep(char sep)
218 {
219 if (sep == '\n' || sep == '-' || sep == ':' || sep == '\0')
220 return true;
221 return false;
222 }
223
224 static int nd_uuid_parse(struct device *dev, u8 *uuid_out, const char *buf,
225 size_t len)
226 {
227 const char *str = buf;
228 u8 uuid[16];
229 int i;
230
231 for (i = 0; i < 16; i++) {
232 if (!isxdigit(str[0]) || !isxdigit(str[1])) {
233 dev_dbg(dev, "%s: pos: %d buf[%zd]: %c buf[%zd]: %c\n",
234 __func__, i, str - buf, str[0],
235 str + 1 - buf, str[1]);
236 return -EINVAL;
237 }
238
239 uuid[i] = (hex_to_bin(str[0]) << 4) | hex_to_bin(str[1]);
240 str += 2;
241 if (is_uuid_sep(*str))
242 str++;
243 }
244
245 memcpy(uuid_out, uuid, sizeof(uuid));
246 return 0;
247 }
248
249 /**
250 * nd_uuid_store: common implementation for writing 'uuid' sysfs attributes
251 * @dev: container device for the uuid property
252 * @uuid_out: uuid buffer to replace
253 * @buf: raw sysfs buffer to parse
254 *
255 * Enforce that uuids can only be changed while the device is disabled
256 * (driver detached)
257 * LOCKING: expects device_lock() is held on entry
258 */
259 int nd_uuid_store(struct device *dev, u8 **uuid_out, const char *buf,
260 size_t len)
261 {
262 u8 uuid[16];
263 int rc;
264
265 if (dev->driver)
266 return -EBUSY;
267
268 rc = nd_uuid_parse(dev, uuid, buf, len);
269 if (rc)
270 return rc;
271
272 kfree(*uuid_out);
273 *uuid_out = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
274 if (!(*uuid_out))
275 return -ENOMEM;
276
277 return 0;
278 }
279
280 ssize_t nd_sector_size_show(unsigned long current_lbasize,
281 const unsigned long *supported, char *buf)
282 {
283 ssize_t len = 0;
284 int i;
285
286 for (i = 0; supported[i]; i++)
287 if (current_lbasize == supported[i])
288 len += sprintf(buf + len, "[%ld] ", supported[i]);
289 else
290 len += sprintf(buf + len, "%ld ", supported[i]);
291 len += sprintf(buf + len, "\n");
292 return len;
293 }
294
295 ssize_t nd_sector_size_store(struct device *dev, const char *buf,
296 unsigned long *current_lbasize, const unsigned long *supported)
297 {
298 unsigned long lbasize;
299 int rc, i;
300
301 if (dev->driver)
302 return -EBUSY;
303
304 rc = kstrtoul(buf, 0, &lbasize);
305 if (rc)
306 return rc;
307
308 for (i = 0; supported[i]; i++)
309 if (lbasize == supported[i])
310 break;
311
312 if (supported[i]) {
313 *current_lbasize = lbasize;
314 return 0;
315 } else {
316 return -EINVAL;
317 }
318 }
319
320 static ssize_t commands_show(struct device *dev,
321 struct device_attribute *attr, char *buf)
322 {
323 int cmd, len = 0;
324 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
325 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
326
327 for_each_set_bit(cmd, &nd_desc->cmd_mask, BITS_PER_LONG)
328 len += sprintf(buf + len, "%s ", nvdimm_bus_cmd_name(cmd));
329 len += sprintf(buf + len, "\n");
330 return len;
331 }
332 static DEVICE_ATTR_RO(commands);
333
334 static const char *nvdimm_bus_provider(struct nvdimm_bus *nvdimm_bus)
335 {
336 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
337 struct device *parent = nvdimm_bus->dev.parent;
338
339 if (nd_desc->provider_name)
340 return nd_desc->provider_name;
341 else if (parent)
342 return dev_name(parent);
343 else
344 return "unknown";
345 }
346
347 static ssize_t provider_show(struct device *dev,
348 struct device_attribute *attr, char *buf)
349 {
350 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
351
352 return sprintf(buf, "%s\n", nvdimm_bus_provider(nvdimm_bus));
353 }
354 static DEVICE_ATTR_RO(provider);
355
356 static int flush_namespaces(struct device *dev, void *data)
357 {
358 device_lock(dev);
359 device_unlock(dev);
360 return 0;
361 }
362
363 static int flush_regions_dimms(struct device *dev, void *data)
364 {
365 device_lock(dev);
366 device_unlock(dev);
367 device_for_each_child(dev, NULL, flush_namespaces);
368 return 0;
369 }
370
371 static ssize_t wait_probe_show(struct device *dev,
372 struct device_attribute *attr, char *buf)
373 {
374 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
375 struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
376 int rc;
377
378 if (nd_desc->flush_probe) {
379 rc = nd_desc->flush_probe(nd_desc);
380 if (rc)
381 return rc;
382 }
383 nd_synchronize();
384 device_for_each_child(dev, NULL, flush_regions_dimms);
385 return sprintf(buf, "1\n");
386 }
387 static DEVICE_ATTR_RO(wait_probe);
388
389 static struct attribute *nvdimm_bus_attributes[] = {
390 &dev_attr_commands.attr,
391 &dev_attr_wait_probe.attr,
392 &dev_attr_provider.attr,
393 NULL,
394 };
395
396 struct attribute_group nvdimm_bus_attribute_group = {
397 .attrs = nvdimm_bus_attributes,
398 };
399 EXPORT_SYMBOL_GPL(nvdimm_bus_attribute_group);
400
401 static void set_badblock(struct badblocks *bb, sector_t s, int num)
402 {
403 dev_dbg(bb->dev, "Found a poison range (0x%llx, 0x%llx)\n",
404 (u64) s * 512, (u64) num * 512);
405 /* this isn't an error as the hardware will still throw an exception */
406 if (badblocks_set(bb, s, num, 1))
407 dev_info_once(bb->dev, "%s: failed for sector %llx\n",
408 __func__, (u64) s);
409 }
410
411 /**
412 * __add_badblock_range() - Convert a physical address range to bad sectors
413 * @bb: badblocks instance to populate
414 * @ns_offset: namespace offset where the error range begins (in bytes)
415 * @len: number of bytes of poison to be added
416 *
417 * This assumes that the range provided with (ns_offset, len) is within
418 * the bounds of physical addresses for this namespace, i.e. lies in the
419 * interval [ns_start, ns_start + ns_size)
420 */
421 static void __add_badblock_range(struct badblocks *bb, u64 ns_offset, u64 len)
422 {
423 const unsigned int sector_size = 512;
424 sector_t start_sector;
425 u64 num_sectors;
426 u32 rem;
427
428 start_sector = div_u64(ns_offset, sector_size);
429 num_sectors = div_u64_rem(len, sector_size, &rem);
430 if (rem)
431 num_sectors++;
432
433 if (unlikely(num_sectors > (u64)INT_MAX)) {
434 u64 remaining = num_sectors;
435 sector_t s = start_sector;
436
437 while (remaining) {
438 int done = min_t(u64, remaining, INT_MAX);
439
440 set_badblock(bb, s, done);
441 remaining -= done;
442 s += done;
443 }
444 } else
445 set_badblock(bb, start_sector, num_sectors);
446 }
447
448 static void badblocks_populate(struct list_head *poison_list,
449 struct badblocks *bb, const struct resource *res)
450 {
451 struct nd_poison *pl;
452
453 if (list_empty(poison_list))
454 return;
455
456 list_for_each_entry(pl, poison_list, list) {
457 u64 pl_end = pl->start + pl->length - 1;
458
459 /* Discard intervals with no intersection */
460 if (pl_end < res->start)
461 continue;
462 if (pl->start > res->end)
463 continue;
464 /* Deal with any overlap after start of the namespace */
465 if (pl->start >= res->start) {
466 u64 start = pl->start;
467 u64 len;
468
469 if (pl_end <= res->end)
470 len = pl->length;
471 else
472 len = res->start + resource_size(res)
473 - pl->start;
474 __add_badblock_range(bb, start - res->start, len);
475 continue;
476 }
477 /* Deal with overlap for poison starting before the namespace */
478 if (pl->start < res->start) {
479 u64 len;
480
481 if (pl_end < res->end)
482 len = pl->start + pl->length - res->start;
483 else
484 len = resource_size(res);
485 __add_badblock_range(bb, 0, len);
486 }
487 }
488 }
489
490 /**
491 * nvdimm_badblocks_populate() - Convert a list of poison ranges to badblocks
492 * @region: parent region of the range to interrogate
493 * @bb: badblocks instance to populate
494 * @res: resource range to consider
495 *
496 * The poison list generated during bus initialization may contain
497 * multiple, possibly overlapping physical address ranges. Compare each
498 * of these ranges to the resource range currently being initialized,
499 * and add badblocks entries for all matching sub-ranges
500 */
501 void nvdimm_badblocks_populate(struct nd_region *nd_region,
502 struct badblocks *bb, const struct resource *res)
503 {
504 struct nvdimm_bus *nvdimm_bus;
505 struct list_head *poison_list;
506
507 if (!is_memory(&nd_region->dev)) {
508 dev_WARN_ONCE(&nd_region->dev, 1,
509 "%s only valid for pmem regions\n", __func__);
510 return;
511 }
512 nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
513 poison_list = &nvdimm_bus->poison_list;
514
515 nvdimm_bus_lock(&nvdimm_bus->dev);
516 badblocks_populate(poison_list, bb, res);
517 nvdimm_bus_unlock(&nvdimm_bus->dev);
518 }
519 EXPORT_SYMBOL_GPL(nvdimm_badblocks_populate);
520
521 static void append_poison_entry(struct nvdimm_bus *nvdimm_bus,
522 struct nd_poison *pl, u64 addr, u64 length)
523 {
524 lockdep_assert_held(&nvdimm_bus->poison_lock);
525 pl->start = addr;
526 pl->length = length;
527 list_add_tail(&pl->list, &nvdimm_bus->poison_list);
528 }
529
530 static int add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length,
531 gfp_t flags)
532 {
533 struct nd_poison *pl;
534
535 pl = kzalloc(sizeof(*pl), flags);
536 if (!pl)
537 return -ENOMEM;
538
539 append_poison_entry(nvdimm_bus, pl, addr, length);
540 return 0;
541 }
542
543 static int bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length)
544 {
545 struct nd_poison *pl, *pl_new;
546
547 spin_unlock(&nvdimm_bus->poison_lock);
548 pl_new = kzalloc(sizeof(*pl_new), GFP_KERNEL);
549 spin_lock(&nvdimm_bus->poison_lock);
550
551 if (list_empty(&nvdimm_bus->poison_list)) {
552 if (!pl_new)
553 return -ENOMEM;
554 append_poison_entry(nvdimm_bus, pl_new, addr, length);
555 return 0;
556 }
557
558 /*
559 * There is a chance this is a duplicate, check for those first.
560 * This will be the common case as ARS_STATUS returns all known
561 * errors in the SPA space, and we can't query it per region
562 */
563 list_for_each_entry(pl, &nvdimm_bus->poison_list, list)
564 if (pl->start == addr) {
565 /* If length has changed, update this list entry */
566 if (pl->length != length)
567 pl->length = length;
568 kfree(pl_new);
569 return 0;
570 }
571
572 /*
573 * If not a duplicate or a simple length update, add the entry as is,
574 * as any overlapping ranges will get resolved when the list is consumed
575 * and converted to badblocks
576 */
577 if (!pl_new)
578 return -ENOMEM;
579 append_poison_entry(nvdimm_bus, pl_new, addr, length);
580
581 return 0;
582 }
583
584 int nvdimm_bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length)
585 {
586 int rc;
587
588 spin_lock(&nvdimm_bus->poison_lock);
589 rc = bus_add_poison(nvdimm_bus, addr, length);
590 spin_unlock(&nvdimm_bus->poison_lock);
591
592 return rc;
593 }
594 EXPORT_SYMBOL_GPL(nvdimm_bus_add_poison);
595
596 void nvdimm_forget_poison(struct nvdimm_bus *nvdimm_bus, phys_addr_t start,
597 unsigned int len)
598 {
599 struct list_head *poison_list = &nvdimm_bus->poison_list;
600 u64 clr_end = start + len - 1;
601 struct nd_poison *pl, *next;
602
603 spin_lock(&nvdimm_bus->poison_lock);
604 WARN_ON_ONCE(list_empty(poison_list));
605
606 /*
607 * [start, clr_end] is the poison interval being cleared.
608 * [pl->start, pl_end] is the poison_list entry we're comparing
609 * the above interval against. The poison list entry may need
610 * to be modified (update either start or length), deleted, or
611 * split into two based on the overlap characteristics
612 */
613
614 list_for_each_entry_safe(pl, next, poison_list, list) {
615 u64 pl_end = pl->start + pl->length - 1;
616
617 /* Skip intervals with no intersection */
618 if (pl_end < start)
619 continue;
620 if (pl->start > clr_end)
621 continue;
622 /* Delete completely overlapped poison entries */
623 if ((pl->start >= start) && (pl_end <= clr_end)) {
624 list_del(&pl->list);
625 kfree(pl);
626 continue;
627 }
628 /* Adjust start point of partially cleared entries */
629 if ((start <= pl->start) && (clr_end > pl->start)) {
630 pl->length -= clr_end - pl->start + 1;
631 pl->start = clr_end + 1;
632 continue;
633 }
634 /* Adjust pl->length for partial clearing at the tail end */
635 if ((pl->start < start) && (pl_end <= clr_end)) {
636 /* pl->start remains the same */
637 pl->length = start - pl->start;
638 continue;
639 }
640 /*
641 * If clearing in the middle of an entry, we split it into
642 * two by modifying the current entry to represent one half of
643 * the split, and adding a new entry for the second half.
644 */
645 if ((pl->start < start) && (pl_end > clr_end)) {
646 u64 new_start = clr_end + 1;
647 u64 new_len = pl_end - new_start + 1;
648
649 /* Add new entry covering the right half */
650 add_poison(nvdimm_bus, new_start, new_len, GFP_NOWAIT);
651 /* Adjust this entry to cover the left half */
652 pl->length = start - pl->start;
653 continue;
654 }
655 }
656 spin_unlock(&nvdimm_bus->poison_lock);
657 }
658 EXPORT_SYMBOL_GPL(nvdimm_forget_poison);
659
660 #ifdef CONFIG_BLK_DEV_INTEGRITY
661 int nd_integrity_init(struct gendisk *disk, unsigned long meta_size)
662 {
663 struct blk_integrity bi;
664
665 if (meta_size == 0)
666 return 0;
667
668 memset(&bi, 0, sizeof(bi));
669
670 bi.tuple_size = meta_size;
671 bi.tag_size = meta_size;
672
673 blk_integrity_register(disk, &bi);
674 blk_queue_max_integrity_segments(disk->queue, 1);
675
676 return 0;
677 }
678 EXPORT_SYMBOL(nd_integrity_init);
679
680 #else /* CONFIG_BLK_DEV_INTEGRITY */
681 int nd_integrity_init(struct gendisk *disk, unsigned long meta_size)
682 {
683 return 0;
684 }
685 EXPORT_SYMBOL(nd_integrity_init);
686
687 #endif
688
689 static __init int libnvdimm_init(void)
690 {
691 int rc;
692
693 rc = nvdimm_bus_init();
694 if (rc)
695 return rc;
696 rc = nvdimm_init();
697 if (rc)
698 goto err_dimm;
699 rc = nd_region_init();
700 if (rc)
701 goto err_region;
702
703 nd_label_init();
704
705 return 0;
706 err_region:
707 nvdimm_exit();
708 err_dimm:
709 nvdimm_bus_exit();
710 return rc;
711 }
712
713 static __exit void libnvdimm_exit(void)
714 {
715 WARN_ON(!list_empty(&nvdimm_bus_list));
716 nd_region_exit();
717 nvdimm_exit();
718 nvdimm_bus_exit();
719 nd_region_devs_exit();
720 nvdimm_devs_exit();
721 }
722
723 MODULE_LICENSE("GPL v2");
724 MODULE_AUTHOR("Intel Corporation");
725 subsys_initcall(libnvdimm_init);
726 module_exit(libnvdimm_exit);