]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/nvdimm/pmem.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-focal-kernel.git] / drivers / nvdimm / pmem.c
1 /*
2 * Persistent Memory Driver
3 *
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/uio.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include "pmem.h"
35 #include "pfn.h"
36 #include "nd.h"
37
38 static struct device *to_dev(struct pmem_device *pmem)
39 {
40 /*
41 * nvdimm bus services need a 'dev' parameter, and we record the device
42 * at init in bb.dev.
43 */
44 return pmem->bb.dev;
45 }
46
47 static struct nd_region *to_region(struct pmem_device *pmem)
48 {
49 return to_nd_region(to_dev(pmem)->parent);
50 }
51
52 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
53 phys_addr_t offset, unsigned int len)
54 {
55 struct device *dev = to_dev(pmem);
56 sector_t sector;
57 long cleared;
58 blk_status_t rc = BLK_STS_OK;
59
60 sector = (offset - pmem->data_offset) / 512;
61
62 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
63 if (cleared < len)
64 rc = BLK_STS_IOERR;
65 if (cleared > 0 && cleared / 512) {
66 cleared /= 512;
67 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
68 (unsigned long long) sector, cleared,
69 cleared > 1 ? "s" : "");
70 badblocks_clear(&pmem->bb, sector, cleared);
71 if (pmem->bb_state)
72 sysfs_notify_dirent(pmem->bb_state);
73 }
74
75 arch_invalidate_pmem(pmem->virt_addr + offset, len);
76
77 return rc;
78 }
79
80 static void write_pmem(void *pmem_addr, struct page *page,
81 unsigned int off, unsigned int len)
82 {
83 unsigned int chunk;
84 void *mem;
85
86 while (len) {
87 mem = kmap_atomic(page);
88 chunk = min_t(unsigned int, len, PAGE_SIZE);
89 memcpy_flushcache(pmem_addr, mem + off, chunk);
90 kunmap_atomic(mem);
91 len -= chunk;
92 off = 0;
93 page++;
94 pmem_addr += PAGE_SIZE;
95 }
96 }
97
98 static blk_status_t read_pmem(struct page *page, unsigned int off,
99 void *pmem_addr, unsigned int len)
100 {
101 unsigned int chunk;
102 int rc;
103 void *mem;
104
105 while (len) {
106 mem = kmap_atomic(page);
107 chunk = min_t(unsigned int, len, PAGE_SIZE);
108 rc = memcpy_mcsafe(mem + off, pmem_addr, chunk);
109 kunmap_atomic(mem);
110 if (rc)
111 return BLK_STS_IOERR;
112 len -= chunk;
113 off = 0;
114 page++;
115 pmem_addr += PAGE_SIZE;
116 }
117 return BLK_STS_OK;
118 }
119
120 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
121 unsigned int len, unsigned int off, bool is_write,
122 sector_t sector)
123 {
124 blk_status_t rc = BLK_STS_OK;
125 bool bad_pmem = false;
126 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
127 void *pmem_addr = pmem->virt_addr + pmem_off;
128
129 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
130 bad_pmem = true;
131
132 if (!is_write) {
133 if (unlikely(bad_pmem))
134 rc = BLK_STS_IOERR;
135 else {
136 rc = read_pmem(page, off, pmem_addr, len);
137 flush_dcache_page(page);
138 }
139 } else {
140 /*
141 * Note that we write the data both before and after
142 * clearing poison. The write before clear poison
143 * handles situations where the latest written data is
144 * preserved and the clear poison operation simply marks
145 * the address range as valid without changing the data.
146 * In this case application software can assume that an
147 * interrupted write will either return the new good
148 * data or an error.
149 *
150 * However, if pmem_clear_poison() leaves the data in an
151 * indeterminate state we need to perform the write
152 * after clear poison.
153 */
154 flush_dcache_page(page);
155 write_pmem(pmem_addr, page, off, len);
156 if (unlikely(bad_pmem)) {
157 rc = pmem_clear_poison(pmem, pmem_off, len);
158 write_pmem(pmem_addr, page, off, len);
159 }
160 }
161
162 return rc;
163 }
164
165 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
166 #ifndef REQ_FLUSH
167 #define REQ_FLUSH REQ_PREFLUSH
168 #endif
169
170 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
171 {
172 blk_status_t rc = 0;
173 bool do_acct;
174 unsigned long start;
175 struct bio_vec bvec;
176 struct bvec_iter iter;
177 struct pmem_device *pmem = q->queuedata;
178 struct nd_region *nd_region = to_region(pmem);
179
180 if (bio->bi_opf & REQ_FLUSH)
181 nvdimm_flush(nd_region);
182
183 do_acct = nd_iostat_start(bio, &start);
184 bio_for_each_segment(bvec, bio, iter) {
185 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
186 bvec.bv_offset, op_is_write(bio_op(bio)),
187 iter.bi_sector);
188 if (rc) {
189 bio->bi_status = rc;
190 break;
191 }
192 }
193 if (do_acct)
194 nd_iostat_end(bio, start);
195
196 if (bio->bi_opf & REQ_FUA)
197 nvdimm_flush(nd_region);
198
199 bio_endio(bio);
200 return BLK_QC_T_NONE;
201 }
202
203 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
204 struct page *page, bool is_write)
205 {
206 struct pmem_device *pmem = bdev->bd_queue->queuedata;
207 blk_status_t rc;
208
209 rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
210 0, is_write, sector);
211
212 /*
213 * The ->rw_page interface is subtle and tricky. The core
214 * retries on any error, so we can only invoke page_endio() in
215 * the successful completion case. Otherwise, we'll see crashes
216 * caused by double completion.
217 */
218 if (rc == 0)
219 page_endio(page, is_write, 0);
220
221 return blk_status_to_errno(rc);
222 }
223
224 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
225 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
226 long nr_pages, void **kaddr, pfn_t *pfn)
227 {
228 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
229
230 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
231 PFN_PHYS(nr_pages))))
232 return -EIO;
233 *kaddr = pmem->virt_addr + offset;
234 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
235
236 /*
237 * If badblocks are present, limit known good range to the
238 * requested range.
239 */
240 if (unlikely(pmem->bb.count))
241 return nr_pages;
242 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
243 }
244
245 static const struct block_device_operations pmem_fops = {
246 .owner = THIS_MODULE,
247 .rw_page = pmem_rw_page,
248 .revalidate_disk = nvdimm_revalidate_disk,
249 };
250
251 static long pmem_dax_direct_access(struct dax_device *dax_dev,
252 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
253 {
254 struct pmem_device *pmem = dax_get_private(dax_dev);
255
256 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
257 }
258
259 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
260 void *addr, size_t bytes, struct iov_iter *i)
261 {
262 return copy_from_iter_flushcache(addr, bytes, i);
263 }
264
265 static const struct dax_operations pmem_dax_ops = {
266 .direct_access = pmem_dax_direct_access,
267 .copy_from_iter = pmem_copy_from_iter,
268 };
269
270 static const struct attribute_group *pmem_attribute_groups[] = {
271 &dax_attribute_group,
272 NULL,
273 };
274
275 static void pmem_release_queue(void *q)
276 {
277 blk_cleanup_queue(q);
278 }
279
280 static void pmem_freeze_queue(void *q)
281 {
282 blk_freeze_queue_start(q);
283 }
284
285 static void pmem_release_disk(void *__pmem)
286 {
287 struct pmem_device *pmem = __pmem;
288
289 kill_dax(pmem->dax_dev);
290 put_dax(pmem->dax_dev);
291 del_gendisk(pmem->disk);
292 put_disk(pmem->disk);
293 }
294
295 static int pmem_attach_disk(struct device *dev,
296 struct nd_namespace_common *ndns)
297 {
298 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
299 struct nd_region *nd_region = to_nd_region(dev->parent);
300 struct vmem_altmap __altmap, *altmap = NULL;
301 int nid = dev_to_node(dev), fua, wbc;
302 struct resource *res = &nsio->res;
303 struct nd_pfn *nd_pfn = NULL;
304 struct dax_device *dax_dev;
305 struct nd_pfn_sb *pfn_sb;
306 struct pmem_device *pmem;
307 struct resource pfn_res;
308 struct request_queue *q;
309 struct device *gendev;
310 struct gendisk *disk;
311 void *addr;
312
313 /* while nsio_rw_bytes is active, parse a pfn info block if present */
314 if (is_nd_pfn(dev)) {
315 nd_pfn = to_nd_pfn(dev);
316 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
317 if (IS_ERR(altmap))
318 return PTR_ERR(altmap);
319 }
320
321 /* we're attaching a block device, disable raw namespace access */
322 devm_nsio_disable(dev, nsio);
323
324 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
325 if (!pmem)
326 return -ENOMEM;
327
328 dev_set_drvdata(dev, pmem);
329 pmem->phys_addr = res->start;
330 pmem->size = resource_size(res);
331 fua = nvdimm_has_flush(nd_region);
332 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
333 dev_warn(dev, "unable to guarantee persistence of writes\n");
334 fua = 0;
335 }
336 wbc = nvdimm_has_cache(nd_region);
337
338 if (!devm_request_mem_region(dev, res->start, resource_size(res),
339 dev_name(&ndns->dev))) {
340 dev_warn(dev, "could not reserve region %pR\n", res);
341 return -EBUSY;
342 }
343
344 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
345 if (!q)
346 return -ENOMEM;
347
348 if (devm_add_action_or_reset(dev, pmem_release_queue, q))
349 return -ENOMEM;
350
351 pmem->pfn_flags = PFN_DEV;
352 if (is_nd_pfn(dev)) {
353 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
354 altmap);
355 pfn_sb = nd_pfn->pfn_sb;
356 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
357 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
358 pmem->pfn_flags |= PFN_MAP;
359 res = &pfn_res; /* for badblocks populate */
360 res->start += pmem->data_offset;
361 } else if (pmem_should_map_pages(dev)) {
362 addr = devm_memremap_pages(dev, &nsio->res,
363 &q->q_usage_counter, NULL);
364 pmem->pfn_flags |= PFN_MAP;
365 } else
366 addr = devm_memremap(dev, pmem->phys_addr,
367 pmem->size, ARCH_MEMREMAP_PMEM);
368
369 /*
370 * At release time the queue must be frozen before
371 * devm_memremap_pages is unwound
372 */
373 if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
374 return -ENOMEM;
375
376 if (IS_ERR(addr))
377 return PTR_ERR(addr);
378 pmem->virt_addr = addr;
379
380 blk_queue_write_cache(q, wbc, fua);
381 blk_queue_make_request(q, pmem_make_request);
382 blk_queue_physical_block_size(q, PAGE_SIZE);
383 blk_queue_logical_block_size(q, pmem_sector_size(ndns));
384 blk_queue_max_hw_sectors(q, UINT_MAX);
385 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
386 queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
387 q->queuedata = pmem;
388
389 disk = alloc_disk_node(0, nid);
390 if (!disk)
391 return -ENOMEM;
392 pmem->disk = disk;
393
394 disk->fops = &pmem_fops;
395 disk->queue = q;
396 disk->flags = GENHD_FL_EXT_DEVT;
397 nvdimm_namespace_disk_name(ndns, disk->disk_name);
398 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
399 / 512);
400 if (devm_init_badblocks(dev, &pmem->bb))
401 return -ENOMEM;
402 nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
403 disk->bb = &pmem->bb;
404
405 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
406 if (!dax_dev) {
407 put_disk(disk);
408 return -ENOMEM;
409 }
410 dax_write_cache(dax_dev, wbc);
411 pmem->dax_dev = dax_dev;
412
413 gendev = disk_to_dev(disk);
414 gendev->groups = pmem_attribute_groups;
415
416 device_add_disk(dev, disk);
417 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
418 return -ENOMEM;
419
420 revalidate_disk(disk);
421
422 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
423 "badblocks");
424 if (!pmem->bb_state)
425 dev_warn(dev, "'badblocks' notification disabled\n");
426
427 return 0;
428 }
429
430 static int nd_pmem_probe(struct device *dev)
431 {
432 struct nd_namespace_common *ndns;
433
434 ndns = nvdimm_namespace_common_probe(dev);
435 if (IS_ERR(ndns))
436 return PTR_ERR(ndns);
437
438 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
439 return -ENXIO;
440
441 if (is_nd_btt(dev))
442 return nvdimm_namespace_attach_btt(ndns);
443
444 if (is_nd_pfn(dev))
445 return pmem_attach_disk(dev, ndns);
446
447 /* if we find a valid info-block we'll come back as that personality */
448 if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
449 || nd_dax_probe(dev, ndns) == 0)
450 return -ENXIO;
451
452 /* ...otherwise we're just a raw pmem device */
453 return pmem_attach_disk(dev, ndns);
454 }
455
456 static int nd_pmem_remove(struct device *dev)
457 {
458 struct pmem_device *pmem = dev_get_drvdata(dev);
459
460 if (is_nd_btt(dev))
461 nvdimm_namespace_detach_btt(to_nd_btt(dev));
462 else {
463 /*
464 * Note, this assumes device_lock() context to not race
465 * nd_pmem_notify()
466 */
467 sysfs_put(pmem->bb_state);
468 pmem->bb_state = NULL;
469 }
470 nvdimm_flush(to_nd_region(dev->parent));
471
472 return 0;
473 }
474
475 static void nd_pmem_shutdown(struct device *dev)
476 {
477 nvdimm_flush(to_nd_region(dev->parent));
478 }
479
480 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
481 {
482 struct nd_region *nd_region;
483 resource_size_t offset = 0, end_trunc = 0;
484 struct nd_namespace_common *ndns;
485 struct nd_namespace_io *nsio;
486 struct resource res;
487 struct badblocks *bb;
488 struct kernfs_node *bb_state;
489
490 if (event != NVDIMM_REVALIDATE_POISON)
491 return;
492
493 if (is_nd_btt(dev)) {
494 struct nd_btt *nd_btt = to_nd_btt(dev);
495
496 ndns = nd_btt->ndns;
497 nd_region = to_nd_region(ndns->dev.parent);
498 nsio = to_nd_namespace_io(&ndns->dev);
499 bb = &nsio->bb;
500 bb_state = NULL;
501 } else {
502 struct pmem_device *pmem = dev_get_drvdata(dev);
503
504 nd_region = to_region(pmem);
505 bb = &pmem->bb;
506 bb_state = pmem->bb_state;
507
508 if (is_nd_pfn(dev)) {
509 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
510 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
511
512 ndns = nd_pfn->ndns;
513 offset = pmem->data_offset +
514 __le32_to_cpu(pfn_sb->start_pad);
515 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
516 } else {
517 ndns = to_ndns(dev);
518 }
519
520 nsio = to_nd_namespace_io(&ndns->dev);
521 }
522
523 res.start = nsio->res.start + offset;
524 res.end = nsio->res.end - end_trunc;
525 nvdimm_badblocks_populate(nd_region, bb, &res);
526 if (bb_state)
527 sysfs_notify_dirent(bb_state);
528 }
529
530 MODULE_ALIAS("pmem");
531 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
532 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
533 static struct nd_device_driver nd_pmem_driver = {
534 .probe = nd_pmem_probe,
535 .remove = nd_pmem_remove,
536 .notify = nd_pmem_notify,
537 .shutdown = nd_pmem_shutdown,
538 .drv = {
539 .name = "nd_pmem",
540 },
541 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
542 };
543
544 static int __init pmem_init(void)
545 {
546 return nd_driver_register(&nd_pmem_driver);
547 }
548 module_init(pmem_init);
549
550 static void pmem_exit(void)
551 {
552 driver_unregister(&nd_pmem_driver.drv);
553 }
554 module_exit(pmem_exit);
555
556 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
557 MODULE_LICENSE("GPL v2");