]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvdimm/pmem.c
netfilter: conntrack: refine gc worker heuristics, redux
[mirror_ubuntu-artful-kernel.git] / drivers / nvdimm / pmem.c
1 /*
2 * Persistent Memory Driver
3 *
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35
36 static struct device *to_dev(struct pmem_device *pmem)
37 {
38 /*
39 * nvdimm bus services need a 'dev' parameter, and we record the device
40 * at init in bb.dev.
41 */
42 return pmem->bb.dev;
43 }
44
45 static struct nd_region *to_region(struct pmem_device *pmem)
46 {
47 return to_nd_region(to_dev(pmem)->parent);
48 }
49
50 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51 unsigned int len)
52 {
53 struct device *dev = to_dev(pmem);
54 sector_t sector;
55 long cleared;
56 int rc = 0;
57
58 sector = (offset - pmem->data_offset) / 512;
59
60 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
61 if (cleared < len)
62 rc = -EIO;
63 if (cleared > 0 && cleared / 512) {
64 cleared /= 512;
65 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
66 (unsigned long long) sector, cleared,
67 cleared > 1 ? "s" : "");
68 badblocks_clear(&pmem->bb, sector, cleared);
69 }
70
71 invalidate_pmem(pmem->virt_addr + offset, len);
72
73 return rc;
74 }
75
76 static void write_pmem(void *pmem_addr, struct page *page,
77 unsigned int off, unsigned int len)
78 {
79 void *mem = kmap_atomic(page);
80
81 memcpy_to_pmem(pmem_addr, mem + off, len);
82 kunmap_atomic(mem);
83 }
84
85 static int read_pmem(struct page *page, unsigned int off,
86 void *pmem_addr, unsigned int len)
87 {
88 int rc;
89 void *mem = kmap_atomic(page);
90
91 rc = memcpy_from_pmem(mem + off, pmem_addr, len);
92 kunmap_atomic(mem);
93 return rc;
94 }
95
96 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
97 unsigned int len, unsigned int off, bool is_write,
98 sector_t sector)
99 {
100 int rc = 0;
101 bool bad_pmem = false;
102 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
103 void *pmem_addr = pmem->virt_addr + pmem_off;
104
105 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
106 bad_pmem = true;
107
108 if (!is_write) {
109 if (unlikely(bad_pmem))
110 rc = -EIO;
111 else {
112 rc = read_pmem(page, off, pmem_addr, len);
113 flush_dcache_page(page);
114 }
115 } else {
116 /*
117 * Note that we write the data both before and after
118 * clearing poison. The write before clear poison
119 * handles situations where the latest written data is
120 * preserved and the clear poison operation simply marks
121 * the address range as valid without changing the data.
122 * In this case application software can assume that an
123 * interrupted write will either return the new good
124 * data or an error.
125 *
126 * However, if pmem_clear_poison() leaves the data in an
127 * indeterminate state we need to perform the write
128 * after clear poison.
129 */
130 flush_dcache_page(page);
131 write_pmem(pmem_addr, page, off, len);
132 if (unlikely(bad_pmem)) {
133 rc = pmem_clear_poison(pmem, pmem_off, len);
134 write_pmem(pmem_addr, page, off, len);
135 }
136 }
137
138 return rc;
139 }
140
141 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
142 #ifndef REQ_FLUSH
143 #define REQ_FLUSH REQ_PREFLUSH
144 #endif
145
146 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
147 {
148 int rc = 0;
149 bool do_acct;
150 unsigned long start;
151 struct bio_vec bvec;
152 struct bvec_iter iter;
153 struct pmem_device *pmem = q->queuedata;
154 struct nd_region *nd_region = to_region(pmem);
155
156 if (bio->bi_opf & REQ_FLUSH)
157 nvdimm_flush(nd_region);
158
159 do_acct = nd_iostat_start(bio, &start);
160 bio_for_each_segment(bvec, bio, iter) {
161 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
162 bvec.bv_offset, op_is_write(bio_op(bio)),
163 iter.bi_sector);
164 if (rc) {
165 bio->bi_error = rc;
166 break;
167 }
168 }
169 if (do_acct)
170 nd_iostat_end(bio, start);
171
172 if (bio->bi_opf & REQ_FUA)
173 nvdimm_flush(nd_region);
174
175 bio_endio(bio);
176 return BLK_QC_T_NONE;
177 }
178
179 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
180 struct page *page, bool is_write)
181 {
182 struct pmem_device *pmem = bdev->bd_queue->queuedata;
183 int rc;
184
185 rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
186
187 /*
188 * The ->rw_page interface is subtle and tricky. The core
189 * retries on any error, so we can only invoke page_endio() in
190 * the successful completion case. Otherwise, we'll see crashes
191 * caused by double completion.
192 */
193 if (rc == 0)
194 page_endio(page, is_write, 0);
195
196 return rc;
197 }
198
199 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
200 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
201 void **kaddr, pfn_t *pfn, long size)
202 {
203 struct pmem_device *pmem = bdev->bd_queue->queuedata;
204 resource_size_t offset = sector * 512 + pmem->data_offset;
205
206 if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
207 return -EIO;
208 *kaddr = pmem->virt_addr + offset;
209 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
210
211 /*
212 * If badblocks are present, limit known good range to the
213 * requested range.
214 */
215 if (unlikely(pmem->bb.count))
216 return size;
217 return pmem->size - pmem->pfn_pad - offset;
218 }
219
220 static const struct block_device_operations pmem_fops = {
221 .owner = THIS_MODULE,
222 .rw_page = pmem_rw_page,
223 .direct_access = pmem_direct_access,
224 .revalidate_disk = nvdimm_revalidate_disk,
225 };
226
227 static void pmem_release_queue(void *q)
228 {
229 blk_cleanup_queue(q);
230 }
231
232 static void pmem_release_disk(void *disk)
233 {
234 del_gendisk(disk);
235 put_disk(disk);
236 }
237
238 static int pmem_attach_disk(struct device *dev,
239 struct nd_namespace_common *ndns)
240 {
241 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
242 struct nd_region *nd_region = to_nd_region(dev->parent);
243 struct vmem_altmap __altmap, *altmap = NULL;
244 struct resource *res = &nsio->res;
245 struct nd_pfn *nd_pfn = NULL;
246 int nid = dev_to_node(dev);
247 struct nd_pfn_sb *pfn_sb;
248 struct pmem_device *pmem;
249 struct resource pfn_res;
250 struct request_queue *q;
251 struct gendisk *disk;
252 void *addr;
253
254 /* while nsio_rw_bytes is active, parse a pfn info block if present */
255 if (is_nd_pfn(dev)) {
256 nd_pfn = to_nd_pfn(dev);
257 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
258 if (IS_ERR(altmap))
259 return PTR_ERR(altmap);
260 }
261
262 /* we're attaching a block device, disable raw namespace access */
263 devm_nsio_disable(dev, nsio);
264
265 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
266 if (!pmem)
267 return -ENOMEM;
268
269 dev_set_drvdata(dev, pmem);
270 pmem->phys_addr = res->start;
271 pmem->size = resource_size(res);
272 if (nvdimm_has_flush(nd_region) < 0)
273 dev_warn(dev, "unable to guarantee persistence of writes\n");
274
275 if (!devm_request_mem_region(dev, res->start, resource_size(res),
276 dev_name(&ndns->dev))) {
277 dev_warn(dev, "could not reserve region %pR\n", res);
278 return -EBUSY;
279 }
280
281 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
282 if (!q)
283 return -ENOMEM;
284
285 pmem->pfn_flags = PFN_DEV;
286 if (is_nd_pfn(dev)) {
287 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
288 altmap);
289 pfn_sb = nd_pfn->pfn_sb;
290 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
291 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
292 pmem->pfn_flags |= PFN_MAP;
293 res = &pfn_res; /* for badblocks populate */
294 res->start += pmem->data_offset;
295 } else if (pmem_should_map_pages(dev)) {
296 addr = devm_memremap_pages(dev, &nsio->res,
297 &q->q_usage_counter, NULL);
298 pmem->pfn_flags |= PFN_MAP;
299 } else
300 addr = devm_memremap(dev, pmem->phys_addr,
301 pmem->size, ARCH_MEMREMAP_PMEM);
302
303 /*
304 * At release time the queue must be dead before
305 * devm_memremap_pages is unwound
306 */
307 if (devm_add_action_or_reset(dev, pmem_release_queue, q))
308 return -ENOMEM;
309
310 if (IS_ERR(addr))
311 return PTR_ERR(addr);
312 pmem->virt_addr = addr;
313
314 blk_queue_write_cache(q, true, true);
315 blk_queue_make_request(q, pmem_make_request);
316 blk_queue_physical_block_size(q, PAGE_SIZE);
317 blk_queue_max_hw_sectors(q, UINT_MAX);
318 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
319 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
320 queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
321 q->queuedata = pmem;
322
323 disk = alloc_disk_node(0, nid);
324 if (!disk)
325 return -ENOMEM;
326
327 disk->fops = &pmem_fops;
328 disk->queue = q;
329 disk->flags = GENHD_FL_EXT_DEVT;
330 nvdimm_namespace_disk_name(ndns, disk->disk_name);
331 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
332 / 512);
333 if (devm_init_badblocks(dev, &pmem->bb))
334 return -ENOMEM;
335 nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
336 disk->bb = &pmem->bb;
337 device_add_disk(dev, disk);
338
339 if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
340 return -ENOMEM;
341
342 revalidate_disk(disk);
343
344 return 0;
345 }
346
347 static int nd_pmem_probe(struct device *dev)
348 {
349 struct nd_namespace_common *ndns;
350
351 ndns = nvdimm_namespace_common_probe(dev);
352 if (IS_ERR(ndns))
353 return PTR_ERR(ndns);
354
355 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
356 return -ENXIO;
357
358 if (is_nd_btt(dev))
359 return nvdimm_namespace_attach_btt(ndns);
360
361 if (is_nd_pfn(dev))
362 return pmem_attach_disk(dev, ndns);
363
364 /* if we find a valid info-block we'll come back as that personality */
365 if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
366 || nd_dax_probe(dev, ndns) == 0)
367 return -ENXIO;
368
369 /* ...otherwise we're just a raw pmem device */
370 return pmem_attach_disk(dev, ndns);
371 }
372
373 static int nd_pmem_remove(struct device *dev)
374 {
375 if (is_nd_btt(dev))
376 nvdimm_namespace_detach_btt(to_nd_btt(dev));
377 nvdimm_flush(to_nd_region(dev->parent));
378
379 return 0;
380 }
381
382 static void nd_pmem_shutdown(struct device *dev)
383 {
384 nvdimm_flush(to_nd_region(dev->parent));
385 }
386
387 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
388 {
389 struct pmem_device *pmem = dev_get_drvdata(dev);
390 struct nd_region *nd_region = to_region(pmem);
391 resource_size_t offset = 0, end_trunc = 0;
392 struct nd_namespace_common *ndns;
393 struct nd_namespace_io *nsio;
394 struct resource res;
395
396 if (event != NVDIMM_REVALIDATE_POISON)
397 return;
398
399 if (is_nd_btt(dev)) {
400 struct nd_btt *nd_btt = to_nd_btt(dev);
401
402 ndns = nd_btt->ndns;
403 } else if (is_nd_pfn(dev)) {
404 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
405 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
406
407 ndns = nd_pfn->ndns;
408 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
409 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
410 } else
411 ndns = to_ndns(dev);
412
413 nsio = to_nd_namespace_io(&ndns->dev);
414 res.start = nsio->res.start + offset;
415 res.end = nsio->res.end - end_trunc;
416 nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
417 }
418
419 MODULE_ALIAS("pmem");
420 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
421 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
422 static struct nd_device_driver nd_pmem_driver = {
423 .probe = nd_pmem_probe,
424 .remove = nd_pmem_remove,
425 .notify = nd_pmem_notify,
426 .shutdown = nd_pmem_shutdown,
427 .drv = {
428 .name = "nd_pmem",
429 },
430 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
431 };
432
433 static int __init pmem_init(void)
434 {
435 return nd_driver_register(&nd_pmem_driver);
436 }
437 module_init(pmem_init);
438
439 static void pmem_exit(void)
440 {
441 driver_unregister(&nd_pmem_driver.drv);
442 }
443 module_exit(pmem_exit);
444
445 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
446 MODULE_LICENSE("GPL v2");