]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvdimm/pmem.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / drivers / nvdimm / pmem.c
1 /*
2 * Persistent Memory Driver
3 *
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/uio.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include "pmem.h"
35 #include "pfn.h"
36 #include "nd.h"
37
38 static struct device *to_dev(struct pmem_device *pmem)
39 {
40 /*
41 * nvdimm bus services need a 'dev' parameter, and we record the device
42 * at init in bb.dev.
43 */
44 return pmem->bb.dev;
45 }
46
47 static struct nd_region *to_region(struct pmem_device *pmem)
48 {
49 return to_nd_region(to_dev(pmem)->parent);
50 }
51
52 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
53 phys_addr_t offset, unsigned int len)
54 {
55 struct device *dev = to_dev(pmem);
56 sector_t sector;
57 long cleared;
58 blk_status_t rc = BLK_STS_OK;
59
60 sector = (offset - pmem->data_offset) / 512;
61
62 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
63 if (cleared < len)
64 rc = BLK_STS_IOERR;
65 if (cleared > 0 && cleared / 512) {
66 cleared /= 512;
67 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
68 (unsigned long long) sector, cleared,
69 cleared > 1 ? "s" : "");
70 badblocks_clear(&pmem->bb, sector, cleared);
71 if (pmem->bb_state)
72 sysfs_notify_dirent(pmem->bb_state);
73 }
74
75 arch_invalidate_pmem(pmem->virt_addr + offset, len);
76
77 return rc;
78 }
79
80 static void write_pmem(void *pmem_addr, struct page *page,
81 unsigned int off, unsigned int len)
82 {
83 void *mem = kmap_atomic(page);
84
85 memcpy_flushcache(pmem_addr, mem + off, len);
86 kunmap_atomic(mem);
87 }
88
89 static blk_status_t read_pmem(struct page *page, unsigned int off,
90 void *pmem_addr, unsigned int len)
91 {
92 int rc;
93 void *mem = kmap_atomic(page);
94
95 rc = memcpy_mcsafe(mem + off, pmem_addr, len);
96 kunmap_atomic(mem);
97 if (rc)
98 return BLK_STS_IOERR;
99 return BLK_STS_OK;
100 }
101
102 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
103 unsigned int len, unsigned int off, bool is_write,
104 sector_t sector)
105 {
106 blk_status_t rc = BLK_STS_OK;
107 bool bad_pmem = false;
108 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
109 void *pmem_addr = pmem->virt_addr + pmem_off;
110
111 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
112 bad_pmem = true;
113
114 if (!is_write) {
115 if (unlikely(bad_pmem))
116 rc = BLK_STS_IOERR;
117 else {
118 rc = read_pmem(page, off, pmem_addr, len);
119 flush_dcache_page(page);
120 }
121 } else {
122 /*
123 * Note that we write the data both before and after
124 * clearing poison. The write before clear poison
125 * handles situations where the latest written data is
126 * preserved and the clear poison operation simply marks
127 * the address range as valid without changing the data.
128 * In this case application software can assume that an
129 * interrupted write will either return the new good
130 * data or an error.
131 *
132 * However, if pmem_clear_poison() leaves the data in an
133 * indeterminate state we need to perform the write
134 * after clear poison.
135 */
136 flush_dcache_page(page);
137 write_pmem(pmem_addr, page, off, len);
138 if (unlikely(bad_pmem)) {
139 rc = pmem_clear_poison(pmem, pmem_off, len);
140 write_pmem(pmem_addr, page, off, len);
141 }
142 }
143
144 return rc;
145 }
146
147 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
148 #ifndef REQ_FLUSH
149 #define REQ_FLUSH REQ_PREFLUSH
150 #endif
151
152 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
153 {
154 blk_status_t rc = 0;
155 bool do_acct;
156 unsigned long start;
157 struct bio_vec bvec;
158 struct bvec_iter iter;
159 struct pmem_device *pmem = q->queuedata;
160 struct nd_region *nd_region = to_region(pmem);
161
162 if (bio->bi_opf & REQ_FLUSH)
163 nvdimm_flush(nd_region);
164
165 do_acct = nd_iostat_start(bio, &start);
166 bio_for_each_segment(bvec, bio, iter) {
167 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
168 bvec.bv_offset, op_is_write(bio_op(bio)),
169 iter.bi_sector);
170 if (rc) {
171 bio->bi_status = rc;
172 break;
173 }
174 }
175 if (do_acct)
176 nd_iostat_end(bio, start);
177
178 if (bio->bi_opf & REQ_FUA)
179 nvdimm_flush(nd_region);
180
181 bio_endio(bio);
182 return BLK_QC_T_NONE;
183 }
184
185 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
186 struct page *page, bool is_write)
187 {
188 struct pmem_device *pmem = bdev->bd_queue->queuedata;
189 blk_status_t rc;
190
191 rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
192
193 /*
194 * The ->rw_page interface is subtle and tricky. The core
195 * retries on any error, so we can only invoke page_endio() in
196 * the successful completion case. Otherwise, we'll see crashes
197 * caused by double completion.
198 */
199 if (rc == 0)
200 page_endio(page, is_write, 0);
201
202 return blk_status_to_errno(rc);
203 }
204
205 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
206 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
207 long nr_pages, void **kaddr, pfn_t *pfn)
208 {
209 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
210
211 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
212 PFN_PHYS(nr_pages))))
213 return -EIO;
214 *kaddr = pmem->virt_addr + offset;
215 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
216
217 /*
218 * If badblocks are present, limit known good range to the
219 * requested range.
220 */
221 if (unlikely(pmem->bb.count))
222 return nr_pages;
223 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
224 }
225
226 static const struct block_device_operations pmem_fops = {
227 .owner = THIS_MODULE,
228 .rw_page = pmem_rw_page,
229 .revalidate_disk = nvdimm_revalidate_disk,
230 };
231
232 static long pmem_dax_direct_access(struct dax_device *dax_dev,
233 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
234 {
235 struct pmem_device *pmem = dax_get_private(dax_dev);
236
237 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
238 }
239
240 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
241 void *addr, size_t bytes, struct iov_iter *i)
242 {
243 return copy_from_iter_flushcache(addr, bytes, i);
244 }
245
246 static const struct dax_operations pmem_dax_ops = {
247 .direct_access = pmem_dax_direct_access,
248 .copy_from_iter = pmem_copy_from_iter,
249 };
250
251 static const struct attribute_group *pmem_attribute_groups[] = {
252 &dax_attribute_group,
253 NULL,
254 };
255
256 static void pmem_release_queue(void *q)
257 {
258 blk_cleanup_queue(q);
259 }
260
261 static void pmem_freeze_queue(void *q)
262 {
263 blk_freeze_queue_start(q);
264 }
265
266 static void pmem_release_disk(void *__pmem)
267 {
268 struct pmem_device *pmem = __pmem;
269
270 kill_dax(pmem->dax_dev);
271 put_dax(pmem->dax_dev);
272 del_gendisk(pmem->disk);
273 put_disk(pmem->disk);
274 }
275
276 static int pmem_attach_disk(struct device *dev,
277 struct nd_namespace_common *ndns)
278 {
279 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
280 struct nd_region *nd_region = to_nd_region(dev->parent);
281 struct vmem_altmap __altmap, *altmap = NULL;
282 int nid = dev_to_node(dev), fua, wbc;
283 struct resource *res = &nsio->res;
284 struct nd_pfn *nd_pfn = NULL;
285 struct dax_device *dax_dev;
286 struct nd_pfn_sb *pfn_sb;
287 struct pmem_device *pmem;
288 struct resource pfn_res;
289 struct request_queue *q;
290 struct device *gendev;
291 struct gendisk *disk;
292 void *addr;
293
294 /* while nsio_rw_bytes is active, parse a pfn info block if present */
295 if (is_nd_pfn(dev)) {
296 nd_pfn = to_nd_pfn(dev);
297 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
298 if (IS_ERR(altmap))
299 return PTR_ERR(altmap);
300 }
301
302 /* we're attaching a block device, disable raw namespace access */
303 devm_nsio_disable(dev, nsio);
304
305 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
306 if (!pmem)
307 return -ENOMEM;
308
309 dev_set_drvdata(dev, pmem);
310 pmem->phys_addr = res->start;
311 pmem->size = resource_size(res);
312 fua = nvdimm_has_flush(nd_region);
313 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
314 dev_warn(dev, "unable to guarantee persistence of writes\n");
315 fua = 0;
316 }
317 wbc = nvdimm_has_cache(nd_region);
318
319 if (!devm_request_mem_region(dev, res->start, resource_size(res),
320 dev_name(&ndns->dev))) {
321 dev_warn(dev, "could not reserve region %pR\n", res);
322 return -EBUSY;
323 }
324
325 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
326 if (!q)
327 return -ENOMEM;
328
329 if (devm_add_action_or_reset(dev, pmem_release_queue, q))
330 return -ENOMEM;
331
332 pmem->pfn_flags = PFN_DEV;
333 if (is_nd_pfn(dev)) {
334 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
335 altmap);
336 pfn_sb = nd_pfn->pfn_sb;
337 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
338 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
339 pmem->pfn_flags |= PFN_MAP;
340 res = &pfn_res; /* for badblocks populate */
341 res->start += pmem->data_offset;
342 } else if (pmem_should_map_pages(dev)) {
343 addr = devm_memremap_pages(dev, &nsio->res,
344 &q->q_usage_counter, NULL);
345 pmem->pfn_flags |= PFN_MAP;
346 } else
347 addr = devm_memremap(dev, pmem->phys_addr,
348 pmem->size, ARCH_MEMREMAP_PMEM);
349
350 /*
351 * At release time the queue must be frozen before
352 * devm_memremap_pages is unwound
353 */
354 if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
355 return -ENOMEM;
356
357 if (IS_ERR(addr))
358 return PTR_ERR(addr);
359 pmem->virt_addr = addr;
360
361 blk_queue_write_cache(q, wbc, fua);
362 blk_queue_make_request(q, pmem_make_request);
363 blk_queue_physical_block_size(q, PAGE_SIZE);
364 blk_queue_logical_block_size(q, pmem_sector_size(ndns));
365 blk_queue_max_hw_sectors(q, UINT_MAX);
366 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
367 queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
368 q->queuedata = pmem;
369
370 disk = alloc_disk_node(0, nid);
371 if (!disk)
372 return -ENOMEM;
373 pmem->disk = disk;
374
375 disk->fops = &pmem_fops;
376 disk->queue = q;
377 disk->flags = GENHD_FL_EXT_DEVT;
378 nvdimm_namespace_disk_name(ndns, disk->disk_name);
379 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
380 / 512);
381 if (devm_init_badblocks(dev, &pmem->bb))
382 return -ENOMEM;
383 nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
384 disk->bb = &pmem->bb;
385
386 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
387 if (!dax_dev) {
388 put_disk(disk);
389 return -ENOMEM;
390 }
391 dax_write_cache(dax_dev, wbc);
392 pmem->dax_dev = dax_dev;
393
394 gendev = disk_to_dev(disk);
395 gendev->groups = pmem_attribute_groups;
396
397 device_add_disk(dev, disk);
398 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
399 return -ENOMEM;
400
401 revalidate_disk(disk);
402
403 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
404 "badblocks");
405 if (!pmem->bb_state)
406 dev_warn(dev, "'badblocks' notification disabled\n");
407
408 return 0;
409 }
410
411 static int nd_pmem_probe(struct device *dev)
412 {
413 struct nd_namespace_common *ndns;
414
415 ndns = nvdimm_namespace_common_probe(dev);
416 if (IS_ERR(ndns))
417 return PTR_ERR(ndns);
418
419 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
420 return -ENXIO;
421
422 if (is_nd_btt(dev))
423 return nvdimm_namespace_attach_btt(ndns);
424
425 if (is_nd_pfn(dev))
426 return pmem_attach_disk(dev, ndns);
427
428 /* if we find a valid info-block we'll come back as that personality */
429 if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
430 || nd_dax_probe(dev, ndns) == 0)
431 return -ENXIO;
432
433 /* ...otherwise we're just a raw pmem device */
434 return pmem_attach_disk(dev, ndns);
435 }
436
437 static int nd_pmem_remove(struct device *dev)
438 {
439 struct pmem_device *pmem = dev_get_drvdata(dev);
440
441 if (is_nd_btt(dev))
442 nvdimm_namespace_detach_btt(to_nd_btt(dev));
443 else {
444 /*
445 * Note, this assumes device_lock() context to not race
446 * nd_pmem_notify()
447 */
448 sysfs_put(pmem->bb_state);
449 pmem->bb_state = NULL;
450 }
451 nvdimm_flush(to_nd_region(dev->parent));
452
453 return 0;
454 }
455
456 static void nd_pmem_shutdown(struct device *dev)
457 {
458 nvdimm_flush(to_nd_region(dev->parent));
459 }
460
461 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
462 {
463 struct nd_region *nd_region;
464 resource_size_t offset = 0, end_trunc = 0;
465 struct nd_namespace_common *ndns;
466 struct nd_namespace_io *nsio;
467 struct resource res;
468 struct badblocks *bb;
469 struct kernfs_node *bb_state;
470
471 if (event != NVDIMM_REVALIDATE_POISON)
472 return;
473
474 if (is_nd_btt(dev)) {
475 struct nd_btt *nd_btt = to_nd_btt(dev);
476
477 ndns = nd_btt->ndns;
478 nd_region = to_nd_region(ndns->dev.parent);
479 nsio = to_nd_namespace_io(&ndns->dev);
480 bb = &nsio->bb;
481 bb_state = NULL;
482 } else {
483 struct pmem_device *pmem = dev_get_drvdata(dev);
484
485 nd_region = to_region(pmem);
486 bb = &pmem->bb;
487 bb_state = pmem->bb_state;
488
489 if (is_nd_pfn(dev)) {
490 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
491 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
492
493 ndns = nd_pfn->ndns;
494 offset = pmem->data_offset +
495 __le32_to_cpu(pfn_sb->start_pad);
496 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
497 } else {
498 ndns = to_ndns(dev);
499 }
500
501 nsio = to_nd_namespace_io(&ndns->dev);
502 }
503
504 res.start = nsio->res.start + offset;
505 res.end = nsio->res.end - end_trunc;
506 nvdimm_badblocks_populate(nd_region, bb, &res);
507 if (bb_state)
508 sysfs_notify_dirent(bb_state);
509 }
510
511 MODULE_ALIAS("pmem");
512 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
513 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
514 static struct nd_device_driver nd_pmem_driver = {
515 .probe = nd_pmem_probe,
516 .remove = nd_pmem_remove,
517 .notify = nd_pmem_notify,
518 .shutdown = nd_pmem_shutdown,
519 .drv = {
520 .name = "nd_pmem",
521 },
522 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
523 };
524
525 static int __init pmem_init(void)
526 {
527 return nd_driver_register(&nd_pmem_driver);
528 }
529 module_init(pmem_init);
530
531 static void pmem_exit(void)
532 {
533 driver_unregister(&nd_pmem_driver.drv);
534 }
535 module_exit(pmem_exit);
536
537 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
538 MODULE_LICENSE("GPL v2");