]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvdimm/pmem.c
libnvdimm, pmem: allow nfit_test to override pmem_direct_access()
[mirror_ubuntu-bionic-kernel.git] / drivers / nvdimm / pmem.c
1 /*
2 * Persistent Memory Driver
3 *
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35
36 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
37 unsigned int len)
38 {
39 struct device *dev = pmem->bb.dev;
40 sector_t sector;
41 long cleared;
42
43 sector = (offset - pmem->data_offset) / 512;
44 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
45
46 if (cleared > 0 && cleared / 512) {
47 dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
48 __func__, (unsigned long long) sector,
49 cleared / 512, cleared / 512 > 1 ? "s" : "");
50 badblocks_clear(&pmem->bb, sector, cleared / 512);
51 }
52 invalidate_pmem(pmem->virt_addr + offset, len);
53 }
54
55 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
56 unsigned int len, unsigned int off, int rw,
57 sector_t sector)
58 {
59 int rc = 0;
60 bool bad_pmem = false;
61 void *mem = kmap_atomic(page);
62 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
63 void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
64
65 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
66 bad_pmem = true;
67
68 if (rw == READ) {
69 if (unlikely(bad_pmem))
70 rc = -EIO;
71 else {
72 rc = memcpy_from_pmem(mem + off, pmem_addr, len);
73 flush_dcache_page(page);
74 }
75 } else {
76 /*
77 * Note that we write the data both before and after
78 * clearing poison. The write before clear poison
79 * handles situations where the latest written data is
80 * preserved and the clear poison operation simply marks
81 * the address range as valid without changing the data.
82 * In this case application software can assume that an
83 * interrupted write will either return the new good
84 * data or an error.
85 *
86 * However, if pmem_clear_poison() leaves the data in an
87 * indeterminate state we need to perform the write
88 * after clear poison.
89 */
90 flush_dcache_page(page);
91 memcpy_to_pmem(pmem_addr, mem + off, len);
92 if (unlikely(bad_pmem)) {
93 pmem_clear_poison(pmem, pmem_off, len);
94 memcpy_to_pmem(pmem_addr, mem + off, len);
95 }
96 }
97
98 kunmap_atomic(mem);
99 return rc;
100 }
101
102 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
103 {
104 int rc = 0;
105 bool do_acct;
106 unsigned long start;
107 struct bio_vec bvec;
108 struct bvec_iter iter;
109 struct pmem_device *pmem = q->queuedata;
110
111 do_acct = nd_iostat_start(bio, &start);
112 bio_for_each_segment(bvec, bio, iter) {
113 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
114 bvec.bv_offset, bio_data_dir(bio),
115 iter.bi_sector);
116 if (rc) {
117 bio->bi_error = rc;
118 break;
119 }
120 }
121 if (do_acct)
122 nd_iostat_end(bio, start);
123
124 if (bio_data_dir(bio))
125 wmb_pmem();
126
127 bio_endio(bio);
128 return BLK_QC_T_NONE;
129 }
130
131 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
132 struct page *page, int rw)
133 {
134 struct pmem_device *pmem = bdev->bd_queue->queuedata;
135 int rc;
136
137 rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
138 if (rw & WRITE)
139 wmb_pmem();
140
141 /*
142 * The ->rw_page interface is subtle and tricky. The core
143 * retries on any error, so we can only invoke page_endio() in
144 * the successful completion case. Otherwise, we'll see crashes
145 * caused by double completion.
146 */
147 if (rc == 0)
148 page_endio(page, rw & WRITE, 0);
149
150 return rc;
151 }
152
153 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
154 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
155 void __pmem **kaddr, pfn_t *pfn, long size)
156 {
157 struct pmem_device *pmem = bdev->bd_queue->queuedata;
158 resource_size_t offset = sector * 512 + pmem->data_offset;
159
160 if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
161 return -EIO;
162 *kaddr = pmem->virt_addr + offset;
163 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
164
165 /*
166 * If badblocks are present, limit known good range to the
167 * requested range.
168 */
169 if (unlikely(pmem->bb.count))
170 return size;
171 return pmem->size - pmem->pfn_pad - offset;
172 }
173
174 static const struct block_device_operations pmem_fops = {
175 .owner = THIS_MODULE,
176 .rw_page = pmem_rw_page,
177 .direct_access = pmem_direct_access,
178 .revalidate_disk = nvdimm_revalidate_disk,
179 };
180
181 static void pmem_release_queue(void *q)
182 {
183 blk_cleanup_queue(q);
184 }
185
186 static void pmem_release_disk(void *disk)
187 {
188 del_gendisk(disk);
189 put_disk(disk);
190 }
191
192 static int pmem_attach_disk(struct device *dev,
193 struct nd_namespace_common *ndns)
194 {
195 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
196 struct vmem_altmap __altmap, *altmap = NULL;
197 struct resource *res = &nsio->res;
198 struct nd_pfn *nd_pfn = NULL;
199 int nid = dev_to_node(dev);
200 struct nd_pfn_sb *pfn_sb;
201 struct pmem_device *pmem;
202 struct resource pfn_res;
203 struct request_queue *q;
204 struct gendisk *disk;
205 void *addr;
206
207 /* while nsio_rw_bytes is active, parse a pfn info block if present */
208 if (is_nd_pfn(dev)) {
209 nd_pfn = to_nd_pfn(dev);
210 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
211 if (IS_ERR(altmap))
212 return PTR_ERR(altmap);
213 }
214
215 /* we're attaching a block device, disable raw namespace access */
216 devm_nsio_disable(dev, nsio);
217
218 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
219 if (!pmem)
220 return -ENOMEM;
221
222 dev_set_drvdata(dev, pmem);
223 pmem->phys_addr = res->start;
224 pmem->size = resource_size(res);
225 if (!arch_has_wmb_pmem())
226 dev_warn(dev, "unable to guarantee persistence of writes\n");
227
228 if (!devm_request_mem_region(dev, res->start, resource_size(res),
229 dev_name(dev))) {
230 dev_warn(dev, "could not reserve region %pR\n", res);
231 return -EBUSY;
232 }
233
234 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
235 if (!q)
236 return -ENOMEM;
237
238 pmem->pfn_flags = PFN_DEV;
239 if (is_nd_pfn(dev)) {
240 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
241 altmap);
242 pfn_sb = nd_pfn->pfn_sb;
243 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
244 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
245 pmem->pfn_flags |= PFN_MAP;
246 res = &pfn_res; /* for badblocks populate */
247 res->start += pmem->data_offset;
248 } else if (pmem_should_map_pages(dev)) {
249 addr = devm_memremap_pages(dev, &nsio->res,
250 &q->q_usage_counter, NULL);
251 pmem->pfn_flags |= PFN_MAP;
252 } else
253 addr = devm_memremap(dev, pmem->phys_addr,
254 pmem->size, ARCH_MEMREMAP_PMEM);
255
256 /*
257 * At release time the queue must be dead before
258 * devm_memremap_pages is unwound
259 */
260 if (devm_add_action_or_reset(dev, pmem_release_queue, q))
261 return -ENOMEM;
262
263 if (IS_ERR(addr))
264 return PTR_ERR(addr);
265 pmem->virt_addr = (void __pmem *) addr;
266
267 blk_queue_make_request(q, pmem_make_request);
268 blk_queue_physical_block_size(q, PAGE_SIZE);
269 blk_queue_max_hw_sectors(q, UINT_MAX);
270 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
271 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
272 q->queuedata = pmem;
273
274 disk = alloc_disk_node(0, nid);
275 if (!disk)
276 return -ENOMEM;
277
278 disk->fops = &pmem_fops;
279 disk->queue = q;
280 disk->flags = GENHD_FL_EXT_DEVT;
281 nvdimm_namespace_disk_name(ndns, disk->disk_name);
282 disk->driverfs_dev = dev;
283 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
284 / 512);
285 if (devm_init_badblocks(dev, &pmem->bb))
286 return -ENOMEM;
287 nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb, res);
288 disk->bb = &pmem->bb;
289 add_disk(disk);
290
291 if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
292 return -ENOMEM;
293
294 revalidate_disk(disk);
295
296 return 0;
297 }
298
299 static int nd_pmem_probe(struct device *dev)
300 {
301 struct nd_namespace_common *ndns;
302
303 ndns = nvdimm_namespace_common_probe(dev);
304 if (IS_ERR(ndns))
305 return PTR_ERR(ndns);
306
307 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
308 return -ENXIO;
309
310 if (is_nd_btt(dev))
311 return nvdimm_namespace_attach_btt(ndns);
312
313 if (is_nd_pfn(dev))
314 return pmem_attach_disk(dev, ndns);
315
316 /* if we find a valid info-block we'll come back as that personality */
317 if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
318 || nd_dax_probe(dev, ndns) == 0)
319 return -ENXIO;
320
321 /* ...otherwise we're just a raw pmem device */
322 return pmem_attach_disk(dev, ndns);
323 }
324
325 static int nd_pmem_remove(struct device *dev)
326 {
327 if (is_nd_btt(dev))
328 nvdimm_namespace_detach_btt(to_nd_btt(dev));
329 return 0;
330 }
331
332 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
333 {
334 struct nd_region *nd_region = to_nd_region(dev->parent);
335 struct pmem_device *pmem = dev_get_drvdata(dev);
336 resource_size_t offset = 0, end_trunc = 0;
337 struct nd_namespace_common *ndns;
338 struct nd_namespace_io *nsio;
339 struct resource res;
340
341 if (event != NVDIMM_REVALIDATE_POISON)
342 return;
343
344 if (is_nd_btt(dev)) {
345 struct nd_btt *nd_btt = to_nd_btt(dev);
346
347 ndns = nd_btt->ndns;
348 } else if (is_nd_pfn(dev)) {
349 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
350 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
351
352 ndns = nd_pfn->ndns;
353 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
354 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
355 } else
356 ndns = to_ndns(dev);
357
358 nsio = to_nd_namespace_io(&ndns->dev);
359 res.start = nsio->res.start + offset;
360 res.end = nsio->res.end - end_trunc;
361 nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
362 }
363
364 MODULE_ALIAS("pmem");
365 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
366 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
367 static struct nd_device_driver nd_pmem_driver = {
368 .probe = nd_pmem_probe,
369 .remove = nd_pmem_remove,
370 .notify = nd_pmem_notify,
371 .drv = {
372 .name = "nd_pmem",
373 },
374 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
375 };
376
377 static int __init pmem_init(void)
378 {
379 return nd_driver_register(&nd_pmem_driver);
380 }
381 module_init(pmem_init);
382
383 static void pmem_exit(void)
384 {
385 driver_unregister(&nd_pmem_driver.drv);
386 }
387 module_exit(pmem_exit);
388
389 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
390 MODULE_LICENSE("GPL v2");