]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/nvdimm/pmem.c
Merge branches 'pm-sleep' and 'pm-cpufreq'
[mirror_ubuntu-jammy-kernel.git] / drivers / nvdimm / pmem.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Persistent Memory Driver
4 *
5 * Copyright (c) 2014-2015, Intel Corporation.
6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8 */
9
10 #include <asm/cacheflush.h>
11 #include <linux/blkdev.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/vmalloc.h>
21 #include <linux/blk-mq.h>
22 #include <linux/pfn_t.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
26 #include <linux/nd.h>
27 #include <linux/backing-dev.h>
28 #include "pmem.h"
29 #include "pfn.h"
30 #include "nd.h"
31
32 static struct device *to_dev(struct pmem_device *pmem)
33 {
34 /*
35 * nvdimm bus services need a 'dev' parameter, and we record the device
36 * at init in bb.dev.
37 */
38 return pmem->bb.dev;
39 }
40
41 static struct nd_region *to_region(struct pmem_device *pmem)
42 {
43 return to_nd_region(to_dev(pmem)->parent);
44 }
45
46 static void hwpoison_clear(struct pmem_device *pmem,
47 phys_addr_t phys, unsigned int len)
48 {
49 unsigned long pfn_start, pfn_end, pfn;
50
51 /* only pmem in the linear map supports HWPoison */
52 if (is_vmalloc_addr(pmem->virt_addr))
53 return;
54
55 pfn_start = PHYS_PFN(phys);
56 pfn_end = pfn_start + PHYS_PFN(len);
57 for (pfn = pfn_start; pfn < pfn_end; pfn++) {
58 struct page *page = pfn_to_page(pfn);
59
60 /*
61 * Note, no need to hold a get_dev_pagemap() reference
62 * here since we're in the driver I/O path and
63 * outstanding I/O requests pin the dev_pagemap.
64 */
65 if (test_and_clear_pmem_poison(page))
66 clear_mce_nospec(pfn);
67 }
68 }
69
70 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
71 phys_addr_t offset, unsigned int len)
72 {
73 struct device *dev = to_dev(pmem);
74 sector_t sector;
75 long cleared;
76 blk_status_t rc = BLK_STS_OK;
77
78 sector = (offset - pmem->data_offset) / 512;
79
80 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
81 if (cleared < len)
82 rc = BLK_STS_IOERR;
83 if (cleared > 0 && cleared / 512) {
84 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
85 cleared /= 512;
86 dev_dbg(dev, "%#llx clear %ld sector%s\n",
87 (unsigned long long) sector, cleared,
88 cleared > 1 ? "s" : "");
89 badblocks_clear(&pmem->bb, sector, cleared);
90 if (pmem->bb_state)
91 sysfs_notify_dirent(pmem->bb_state);
92 }
93
94 arch_invalidate_pmem(pmem->virt_addr + offset, len);
95
96 return rc;
97 }
98
99 static void write_pmem(void *pmem_addr, struct page *page,
100 unsigned int off, unsigned int len)
101 {
102 unsigned int chunk;
103 void *mem;
104
105 while (len) {
106 mem = kmap_atomic(page);
107 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
108 memcpy_flushcache(pmem_addr, mem + off, chunk);
109 kunmap_atomic(mem);
110 len -= chunk;
111 off = 0;
112 page++;
113 pmem_addr += chunk;
114 }
115 }
116
117 static blk_status_t read_pmem(struct page *page, unsigned int off,
118 void *pmem_addr, unsigned int len)
119 {
120 unsigned int chunk;
121 unsigned long rem;
122 void *mem;
123
124 while (len) {
125 mem = kmap_atomic(page);
126 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
127 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
128 kunmap_atomic(mem);
129 if (rem)
130 return BLK_STS_IOERR;
131 len -= chunk;
132 off = 0;
133 page++;
134 pmem_addr += chunk;
135 }
136 return BLK_STS_OK;
137 }
138
139 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
140 unsigned int len, unsigned int off, unsigned int op,
141 sector_t sector)
142 {
143 blk_status_t rc = BLK_STS_OK;
144 bool bad_pmem = false;
145 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
146 void *pmem_addr = pmem->virt_addr + pmem_off;
147
148 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149 bad_pmem = true;
150
151 if (!op_is_write(op)) {
152 if (unlikely(bad_pmem))
153 rc = BLK_STS_IOERR;
154 else {
155 rc = read_pmem(page, off, pmem_addr, len);
156 flush_dcache_page(page);
157 }
158 } else {
159 /*
160 * Note that we write the data both before and after
161 * clearing poison. The write before clear poison
162 * handles situations where the latest written data is
163 * preserved and the clear poison operation simply marks
164 * the address range as valid without changing the data.
165 * In this case application software can assume that an
166 * interrupted write will either return the new good
167 * data or an error.
168 *
169 * However, if pmem_clear_poison() leaves the data in an
170 * indeterminate state we need to perform the write
171 * after clear poison.
172 */
173 flush_dcache_page(page);
174 write_pmem(pmem_addr, page, off, len);
175 if (unlikely(bad_pmem)) {
176 rc = pmem_clear_poison(pmem, pmem_off, len);
177 write_pmem(pmem_addr, page, off, len);
178 }
179 }
180
181 return rc;
182 }
183
184 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
185 {
186 int ret = 0;
187 blk_status_t rc = 0;
188 bool do_acct;
189 unsigned long start;
190 struct bio_vec bvec;
191 struct bvec_iter iter;
192 struct pmem_device *pmem = q->queuedata;
193 struct nd_region *nd_region = to_region(pmem);
194
195 if (bio->bi_opf & REQ_PREFLUSH)
196 ret = nvdimm_flush(nd_region, bio);
197
198 do_acct = nd_iostat_start(bio, &start);
199 bio_for_each_segment(bvec, bio, iter) {
200 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
201 bvec.bv_offset, bio_op(bio), iter.bi_sector);
202 if (rc) {
203 bio->bi_status = rc;
204 break;
205 }
206 }
207 if (do_acct)
208 nd_iostat_end(bio, start);
209
210 if (bio->bi_opf & REQ_FUA)
211 ret = nvdimm_flush(nd_region, bio);
212
213 if (ret)
214 bio->bi_status = errno_to_blk_status(ret);
215
216 bio_endio(bio);
217 return BLK_QC_T_NONE;
218 }
219
220 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
221 struct page *page, unsigned int op)
222 {
223 struct pmem_device *pmem = bdev->bd_queue->queuedata;
224 blk_status_t rc;
225
226 rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
227 0, op, sector);
228
229 /*
230 * The ->rw_page interface is subtle and tricky. The core
231 * retries on any error, so we can only invoke page_endio() in
232 * the successful completion case. Otherwise, we'll see crashes
233 * caused by double completion.
234 */
235 if (rc == 0)
236 page_endio(page, op_is_write(op), 0);
237
238 return blk_status_to_errno(rc);
239 }
240
241 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
242 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
243 long nr_pages, void **kaddr, pfn_t *pfn)
244 {
245 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
246
247 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
248 PFN_PHYS(nr_pages))))
249 return -EIO;
250
251 if (kaddr)
252 *kaddr = pmem->virt_addr + offset;
253 if (pfn)
254 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
255
256 /*
257 * If badblocks are present, limit known good range to the
258 * requested range.
259 */
260 if (unlikely(pmem->bb.count))
261 return nr_pages;
262 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
263 }
264
265 static const struct block_device_operations pmem_fops = {
266 .owner = THIS_MODULE,
267 .rw_page = pmem_rw_page,
268 .revalidate_disk = nvdimm_revalidate_disk,
269 };
270
271 static long pmem_dax_direct_access(struct dax_device *dax_dev,
272 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
273 {
274 struct pmem_device *pmem = dax_get_private(dax_dev);
275
276 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
277 }
278
279 /*
280 * Use the 'no check' versions of copy_from_iter_flushcache() and
281 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
282 * checking, both file offset and device offset, is handled by
283 * dax_iomap_actor()
284 */
285 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
286 void *addr, size_t bytes, struct iov_iter *i)
287 {
288 return _copy_from_iter_flushcache(addr, bytes, i);
289 }
290
291 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
292 void *addr, size_t bytes, struct iov_iter *i)
293 {
294 return _copy_to_iter_mcsafe(addr, bytes, i);
295 }
296
297 static const struct dax_operations pmem_dax_ops = {
298 .direct_access = pmem_dax_direct_access,
299 .dax_supported = generic_fsdax_supported,
300 .copy_from_iter = pmem_copy_from_iter,
301 .copy_to_iter = pmem_copy_to_iter,
302 };
303
304 static const struct attribute_group *pmem_attribute_groups[] = {
305 &dax_attribute_group,
306 NULL,
307 };
308
309 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
310 {
311 struct request_queue *q =
312 container_of(pgmap->ref, struct request_queue, q_usage_counter);
313
314 blk_cleanup_queue(q);
315 }
316
317 static void pmem_release_queue(void *pgmap)
318 {
319 pmem_pagemap_cleanup(pgmap);
320 }
321
322 static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
323 {
324 struct request_queue *q =
325 container_of(pgmap->ref, struct request_queue, q_usage_counter);
326
327 blk_freeze_queue_start(q);
328 }
329
330 static void pmem_release_disk(void *__pmem)
331 {
332 struct pmem_device *pmem = __pmem;
333
334 kill_dax(pmem->dax_dev);
335 put_dax(pmem->dax_dev);
336 del_gendisk(pmem->disk);
337 put_disk(pmem->disk);
338 }
339
340 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
341 .kill = pmem_pagemap_kill,
342 .cleanup = pmem_pagemap_cleanup,
343 };
344
345 static int pmem_attach_disk(struct device *dev,
346 struct nd_namespace_common *ndns)
347 {
348 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
349 struct nd_region *nd_region = to_nd_region(dev->parent);
350 int nid = dev_to_node(dev), fua;
351 struct resource *res = &nsio->res;
352 struct resource bb_res;
353 struct nd_pfn *nd_pfn = NULL;
354 struct dax_device *dax_dev;
355 struct nd_pfn_sb *pfn_sb;
356 struct pmem_device *pmem;
357 struct request_queue *q;
358 struct device *gendev;
359 struct gendisk *disk;
360 void *addr;
361 int rc;
362 unsigned long flags = 0UL;
363
364 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
365 if (!pmem)
366 return -ENOMEM;
367
368 rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
369 if (rc)
370 return rc;
371
372 /* while nsio_rw_bytes is active, parse a pfn info block if present */
373 if (is_nd_pfn(dev)) {
374 nd_pfn = to_nd_pfn(dev);
375 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
376 if (rc)
377 return rc;
378 }
379
380 /* we're attaching a block device, disable raw namespace access */
381 devm_namespace_disable(dev, ndns);
382
383 dev_set_drvdata(dev, pmem);
384 pmem->phys_addr = res->start;
385 pmem->size = resource_size(res);
386 fua = nvdimm_has_flush(nd_region);
387 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
388 dev_warn(dev, "unable to guarantee persistence of writes\n");
389 fua = 0;
390 }
391
392 if (!devm_request_mem_region(dev, res->start, resource_size(res),
393 dev_name(&ndns->dev))) {
394 dev_warn(dev, "could not reserve region %pR\n", res);
395 return -EBUSY;
396 }
397
398 q = blk_alloc_queue(pmem_make_request, dev_to_node(dev));
399 if (!q)
400 return -ENOMEM;
401
402 pmem->pfn_flags = PFN_DEV;
403 pmem->pgmap.ref = &q->q_usage_counter;
404 if (is_nd_pfn(dev)) {
405 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
406 pmem->pgmap.ops = &fsdax_pagemap_ops;
407 addr = devm_memremap_pages(dev, &pmem->pgmap);
408 pfn_sb = nd_pfn->pfn_sb;
409 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
410 pmem->pfn_pad = resource_size(res) -
411 resource_size(&pmem->pgmap.res);
412 pmem->pfn_flags |= PFN_MAP;
413 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
414 bb_res.start += pmem->data_offset;
415 } else if (pmem_should_map_pages(dev)) {
416 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
417 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
418 pmem->pgmap.ops = &fsdax_pagemap_ops;
419 addr = devm_memremap_pages(dev, &pmem->pgmap);
420 pmem->pfn_flags |= PFN_MAP;
421 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
422 } else {
423 if (devm_add_action_or_reset(dev, pmem_release_queue,
424 &pmem->pgmap))
425 return -ENOMEM;
426 addr = devm_memremap(dev, pmem->phys_addr,
427 pmem->size, ARCH_MEMREMAP_PMEM);
428 memcpy(&bb_res, &nsio->res, sizeof(bb_res));
429 }
430
431 if (IS_ERR(addr))
432 return PTR_ERR(addr);
433 pmem->virt_addr = addr;
434
435 blk_queue_write_cache(q, true, fua);
436 blk_queue_physical_block_size(q, PAGE_SIZE);
437 blk_queue_logical_block_size(q, pmem_sector_size(ndns));
438 blk_queue_max_hw_sectors(q, UINT_MAX);
439 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
440 if (pmem->pfn_flags & PFN_MAP)
441 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
442 q->queuedata = pmem;
443
444 disk = alloc_disk_node(0, nid);
445 if (!disk)
446 return -ENOMEM;
447 pmem->disk = disk;
448
449 disk->fops = &pmem_fops;
450 disk->queue = q;
451 disk->flags = GENHD_FL_EXT_DEVT;
452 disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
453 nvdimm_namespace_disk_name(ndns, disk->disk_name);
454 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
455 / 512);
456 if (devm_init_badblocks(dev, &pmem->bb))
457 return -ENOMEM;
458 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
459 disk->bb = &pmem->bb;
460
461 if (is_nvdimm_sync(nd_region))
462 flags = DAXDEV_F_SYNC;
463 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
464 if (!dax_dev) {
465 put_disk(disk);
466 return -ENOMEM;
467 }
468 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
469 pmem->dax_dev = dax_dev;
470 gendev = disk_to_dev(disk);
471 gendev->groups = pmem_attribute_groups;
472
473 device_add_disk(dev, disk, NULL);
474 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
475 return -ENOMEM;
476
477 revalidate_disk(disk);
478
479 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
480 "badblocks");
481 if (!pmem->bb_state)
482 dev_warn(dev, "'badblocks' notification disabled\n");
483
484 return 0;
485 }
486
487 static int nd_pmem_probe(struct device *dev)
488 {
489 int ret;
490 struct nd_namespace_common *ndns;
491
492 ndns = nvdimm_namespace_common_probe(dev);
493 if (IS_ERR(ndns))
494 return PTR_ERR(ndns);
495
496 if (is_nd_btt(dev))
497 return nvdimm_namespace_attach_btt(ndns);
498
499 if (is_nd_pfn(dev))
500 return pmem_attach_disk(dev, ndns);
501
502 ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
503 if (ret)
504 return ret;
505
506 ret = nd_btt_probe(dev, ndns);
507 if (ret == 0)
508 return -ENXIO;
509
510 /*
511 * We have two failure conditions here, there is no
512 * info reserver block or we found a valid info reserve block
513 * but failed to initialize the pfn superblock.
514 *
515 * For the first case consider namespace as a raw pmem namespace
516 * and attach a disk.
517 *
518 * For the latter, consider this a success and advance the namespace
519 * seed.
520 */
521 ret = nd_pfn_probe(dev, ndns);
522 if (ret == 0)
523 return -ENXIO;
524 else if (ret == -EOPNOTSUPP)
525 return ret;
526
527 ret = nd_dax_probe(dev, ndns);
528 if (ret == 0)
529 return -ENXIO;
530 else if (ret == -EOPNOTSUPP)
531 return ret;
532
533 /* probe complete, attach handles namespace enabling */
534 devm_namespace_disable(dev, ndns);
535
536 return pmem_attach_disk(dev, ndns);
537 }
538
539 static int nd_pmem_remove(struct device *dev)
540 {
541 struct pmem_device *pmem = dev_get_drvdata(dev);
542
543 if (is_nd_btt(dev))
544 nvdimm_namespace_detach_btt(to_nd_btt(dev));
545 else {
546 /*
547 * Note, this assumes nd_device_lock() context to not
548 * race nd_pmem_notify()
549 */
550 sysfs_put(pmem->bb_state);
551 pmem->bb_state = NULL;
552 }
553 nvdimm_flush(to_nd_region(dev->parent), NULL);
554
555 return 0;
556 }
557
558 static void nd_pmem_shutdown(struct device *dev)
559 {
560 nvdimm_flush(to_nd_region(dev->parent), NULL);
561 }
562
563 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
564 {
565 struct nd_region *nd_region;
566 resource_size_t offset = 0, end_trunc = 0;
567 struct nd_namespace_common *ndns;
568 struct nd_namespace_io *nsio;
569 struct resource res;
570 struct badblocks *bb;
571 struct kernfs_node *bb_state;
572
573 if (event != NVDIMM_REVALIDATE_POISON)
574 return;
575
576 if (is_nd_btt(dev)) {
577 struct nd_btt *nd_btt = to_nd_btt(dev);
578
579 ndns = nd_btt->ndns;
580 nd_region = to_nd_region(ndns->dev.parent);
581 nsio = to_nd_namespace_io(&ndns->dev);
582 bb = &nsio->bb;
583 bb_state = NULL;
584 } else {
585 struct pmem_device *pmem = dev_get_drvdata(dev);
586
587 nd_region = to_region(pmem);
588 bb = &pmem->bb;
589 bb_state = pmem->bb_state;
590
591 if (is_nd_pfn(dev)) {
592 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
593 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
594
595 ndns = nd_pfn->ndns;
596 offset = pmem->data_offset +
597 __le32_to_cpu(pfn_sb->start_pad);
598 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
599 } else {
600 ndns = to_ndns(dev);
601 }
602
603 nsio = to_nd_namespace_io(&ndns->dev);
604 }
605
606 res.start = nsio->res.start + offset;
607 res.end = nsio->res.end - end_trunc;
608 nvdimm_badblocks_populate(nd_region, bb, &res);
609 if (bb_state)
610 sysfs_notify_dirent(bb_state);
611 }
612
613 MODULE_ALIAS("pmem");
614 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
615 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
616 static struct nd_device_driver nd_pmem_driver = {
617 .probe = nd_pmem_probe,
618 .remove = nd_pmem_remove,
619 .notify = nd_pmem_notify,
620 .shutdown = nd_pmem_shutdown,
621 .drv = {
622 .name = "nd_pmem",
623 },
624 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
625 };
626
627 module_nd_driver(nd_pmem_driver);
628
629 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
630 MODULE_LICENSE("GPL v2");