]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvdimm/region_devs.c
Merge tag 'powerpc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-bionic-kernel.git] / drivers / nvdimm / region_devs.c
1 /*
2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
20 #include <linux/io.h>
21 #include <linux/nd.h>
22 #include "nd-core.h"
23 #include "nd.h"
24
25 /*
26 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
27 * irrelevant.
28 */
29 #include <linux/io-64-nonatomic-hi-lo.h>
30
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
33
34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35 struct nd_region_data *ndrd)
36 {
37 int i, j;
38
39 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41 for (i = 0; i < (1 << ndrd->hints_shift); i++) {
42 struct resource *res = &nvdimm->flush_wpq[i];
43 unsigned long pfn = PHYS_PFN(res->start);
44 void __iomem *flush_page;
45
46 /* check if flush hints share a page */
47 for (j = 0; j < i; j++) {
48 struct resource *res_j = &nvdimm->flush_wpq[j];
49 unsigned long pfn_j = PHYS_PFN(res_j->start);
50
51 if (pfn == pfn_j)
52 break;
53 }
54
55 if (j < i)
56 flush_page = (void __iomem *) ((unsigned long)
57 ndrd_get_flush_wpq(ndrd, dimm, j)
58 & PAGE_MASK);
59 else
60 flush_page = devm_nvdimm_ioremap(dev,
61 PFN_PHYS(pfn), PAGE_SIZE);
62 if (!flush_page)
63 return -ENXIO;
64 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
65 + (res->start & ~PAGE_MASK));
66 }
67
68 return 0;
69 }
70
71 int nd_region_activate(struct nd_region *nd_region)
72 {
73 int i, num_flush = 0;
74 struct nd_region_data *ndrd;
75 struct device *dev = &nd_region->dev;
76 size_t flush_data_size = sizeof(void *);
77
78 nvdimm_bus_lock(&nd_region->dev);
79 for (i = 0; i < nd_region->ndr_mappings; i++) {
80 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
81 struct nvdimm *nvdimm = nd_mapping->nvdimm;
82
83 /* at least one null hint slot per-dimm for the "no-hint" case */
84 flush_data_size += sizeof(void *);
85 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
86 if (!nvdimm->num_flush)
87 continue;
88 flush_data_size += nvdimm->num_flush * sizeof(void *);
89 }
90 nvdimm_bus_unlock(&nd_region->dev);
91
92 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
93 if (!ndrd)
94 return -ENOMEM;
95 dev_set_drvdata(dev, ndrd);
96
97 if (!num_flush)
98 return 0;
99
100 ndrd->hints_shift = ilog2(num_flush);
101 for (i = 0; i < nd_region->ndr_mappings; i++) {
102 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
103 struct nvdimm *nvdimm = nd_mapping->nvdimm;
104 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
105
106 if (rc)
107 return rc;
108 }
109
110 return 0;
111 }
112
113 static void nd_region_release(struct device *dev)
114 {
115 struct nd_region *nd_region = to_nd_region(dev);
116 u16 i;
117
118 for (i = 0; i < nd_region->ndr_mappings; i++) {
119 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
120 struct nvdimm *nvdimm = nd_mapping->nvdimm;
121
122 put_device(&nvdimm->dev);
123 }
124 free_percpu(nd_region->lane);
125 ida_simple_remove(&region_ida, nd_region->id);
126 if (is_nd_blk(dev))
127 kfree(to_nd_blk_region(dev));
128 else
129 kfree(nd_region);
130 }
131
132 static struct device_type nd_blk_device_type = {
133 .name = "nd_blk",
134 .release = nd_region_release,
135 };
136
137 static struct device_type nd_pmem_device_type = {
138 .name = "nd_pmem",
139 .release = nd_region_release,
140 };
141
142 static struct device_type nd_volatile_device_type = {
143 .name = "nd_volatile",
144 .release = nd_region_release,
145 };
146
147 bool is_nd_pmem(struct device *dev)
148 {
149 return dev ? dev->type == &nd_pmem_device_type : false;
150 }
151
152 bool is_nd_blk(struct device *dev)
153 {
154 return dev ? dev->type == &nd_blk_device_type : false;
155 }
156
157 struct nd_region *to_nd_region(struct device *dev)
158 {
159 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
160
161 WARN_ON(dev->type->release != nd_region_release);
162 return nd_region;
163 }
164 EXPORT_SYMBOL_GPL(to_nd_region);
165
166 struct nd_blk_region *to_nd_blk_region(struct device *dev)
167 {
168 struct nd_region *nd_region = to_nd_region(dev);
169
170 WARN_ON(!is_nd_blk(dev));
171 return container_of(nd_region, struct nd_blk_region, nd_region);
172 }
173 EXPORT_SYMBOL_GPL(to_nd_blk_region);
174
175 void *nd_region_provider_data(struct nd_region *nd_region)
176 {
177 return nd_region->provider_data;
178 }
179 EXPORT_SYMBOL_GPL(nd_region_provider_data);
180
181 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
182 {
183 return ndbr->blk_provider_data;
184 }
185 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
186
187 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
188 {
189 ndbr->blk_provider_data = data;
190 }
191 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
192
193 /**
194 * nd_region_to_nstype() - region to an integer namespace type
195 * @nd_region: region-device to interrogate
196 *
197 * This is the 'nstype' attribute of a region as well, an input to the
198 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
199 * namespace devices with namespace drivers.
200 */
201 int nd_region_to_nstype(struct nd_region *nd_region)
202 {
203 if (is_nd_pmem(&nd_region->dev)) {
204 u16 i, alias;
205
206 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
207 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
208 struct nvdimm *nvdimm = nd_mapping->nvdimm;
209
210 if (nvdimm->flags & NDD_ALIASING)
211 alias++;
212 }
213 if (alias)
214 return ND_DEVICE_NAMESPACE_PMEM;
215 else
216 return ND_DEVICE_NAMESPACE_IO;
217 } else if (is_nd_blk(&nd_region->dev)) {
218 return ND_DEVICE_NAMESPACE_BLK;
219 }
220
221 return 0;
222 }
223 EXPORT_SYMBOL(nd_region_to_nstype);
224
225 static ssize_t size_show(struct device *dev,
226 struct device_attribute *attr, char *buf)
227 {
228 struct nd_region *nd_region = to_nd_region(dev);
229 unsigned long long size = 0;
230
231 if (is_nd_pmem(dev)) {
232 size = nd_region->ndr_size;
233 } else if (nd_region->ndr_mappings == 1) {
234 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
235
236 size = nd_mapping->size;
237 }
238
239 return sprintf(buf, "%llu\n", size);
240 }
241 static DEVICE_ATTR_RO(size);
242
243 static ssize_t mappings_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
245 {
246 struct nd_region *nd_region = to_nd_region(dev);
247
248 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
249 }
250 static DEVICE_ATTR_RO(mappings);
251
252 static ssize_t nstype_show(struct device *dev,
253 struct device_attribute *attr, char *buf)
254 {
255 struct nd_region *nd_region = to_nd_region(dev);
256
257 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
258 }
259 static DEVICE_ATTR_RO(nstype);
260
261 static ssize_t set_cookie_show(struct device *dev,
262 struct device_attribute *attr, char *buf)
263 {
264 struct nd_region *nd_region = to_nd_region(dev);
265 struct nd_interleave_set *nd_set = nd_region->nd_set;
266
267 if (is_nd_pmem(dev) && nd_set)
268 /* pass, should be precluded by region_visible */;
269 else
270 return -ENXIO;
271
272 return sprintf(buf, "%#llx\n", nd_set->cookie);
273 }
274 static DEVICE_ATTR_RO(set_cookie);
275
276 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
277 {
278 resource_size_t blk_max_overlap = 0, available, overlap;
279 int i;
280
281 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
282
283 retry:
284 available = 0;
285 overlap = blk_max_overlap;
286 for (i = 0; i < nd_region->ndr_mappings; i++) {
287 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
288 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
289
290 /* if a dimm is disabled the available capacity is zero */
291 if (!ndd)
292 return 0;
293
294 if (is_nd_pmem(&nd_region->dev)) {
295 available += nd_pmem_available_dpa(nd_region,
296 nd_mapping, &overlap);
297 if (overlap > blk_max_overlap) {
298 blk_max_overlap = overlap;
299 goto retry;
300 }
301 } else if (is_nd_blk(&nd_region->dev)) {
302 available += nd_blk_available_dpa(nd_mapping);
303 }
304 }
305
306 return available;
307 }
308
309 static ssize_t available_size_show(struct device *dev,
310 struct device_attribute *attr, char *buf)
311 {
312 struct nd_region *nd_region = to_nd_region(dev);
313 unsigned long long available = 0;
314
315 /*
316 * Flush in-flight updates and grab a snapshot of the available
317 * size. Of course, this value is potentially invalidated the
318 * memory nvdimm_bus_lock() is dropped, but that's userspace's
319 * problem to not race itself.
320 */
321 nvdimm_bus_lock(dev);
322 wait_nvdimm_bus_probe_idle(dev);
323 available = nd_region_available_dpa(nd_region);
324 nvdimm_bus_unlock(dev);
325
326 return sprintf(buf, "%llu\n", available);
327 }
328 static DEVICE_ATTR_RO(available_size);
329
330 static ssize_t init_namespaces_show(struct device *dev,
331 struct device_attribute *attr, char *buf)
332 {
333 struct nd_region_data *ndrd = dev_get_drvdata(dev);
334 ssize_t rc;
335
336 nvdimm_bus_lock(dev);
337 if (ndrd)
338 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
339 else
340 rc = -ENXIO;
341 nvdimm_bus_unlock(dev);
342
343 return rc;
344 }
345 static DEVICE_ATTR_RO(init_namespaces);
346
347 static ssize_t namespace_seed_show(struct device *dev,
348 struct device_attribute *attr, char *buf)
349 {
350 struct nd_region *nd_region = to_nd_region(dev);
351 ssize_t rc;
352
353 nvdimm_bus_lock(dev);
354 if (nd_region->ns_seed)
355 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
356 else
357 rc = sprintf(buf, "\n");
358 nvdimm_bus_unlock(dev);
359 return rc;
360 }
361 static DEVICE_ATTR_RO(namespace_seed);
362
363 static ssize_t btt_seed_show(struct device *dev,
364 struct device_attribute *attr, char *buf)
365 {
366 struct nd_region *nd_region = to_nd_region(dev);
367 ssize_t rc;
368
369 nvdimm_bus_lock(dev);
370 if (nd_region->btt_seed)
371 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
372 else
373 rc = sprintf(buf, "\n");
374 nvdimm_bus_unlock(dev);
375
376 return rc;
377 }
378 static DEVICE_ATTR_RO(btt_seed);
379
380 static ssize_t pfn_seed_show(struct device *dev,
381 struct device_attribute *attr, char *buf)
382 {
383 struct nd_region *nd_region = to_nd_region(dev);
384 ssize_t rc;
385
386 nvdimm_bus_lock(dev);
387 if (nd_region->pfn_seed)
388 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
389 else
390 rc = sprintf(buf, "\n");
391 nvdimm_bus_unlock(dev);
392
393 return rc;
394 }
395 static DEVICE_ATTR_RO(pfn_seed);
396
397 static ssize_t dax_seed_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct nd_region *nd_region = to_nd_region(dev);
401 ssize_t rc;
402
403 nvdimm_bus_lock(dev);
404 if (nd_region->dax_seed)
405 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
406 else
407 rc = sprintf(buf, "\n");
408 nvdimm_bus_unlock(dev);
409
410 return rc;
411 }
412 static DEVICE_ATTR_RO(dax_seed);
413
414 static ssize_t read_only_show(struct device *dev,
415 struct device_attribute *attr, char *buf)
416 {
417 struct nd_region *nd_region = to_nd_region(dev);
418
419 return sprintf(buf, "%d\n", nd_region->ro);
420 }
421
422 static ssize_t read_only_store(struct device *dev,
423 struct device_attribute *attr, const char *buf, size_t len)
424 {
425 bool ro;
426 int rc = strtobool(buf, &ro);
427 struct nd_region *nd_region = to_nd_region(dev);
428
429 if (rc)
430 return rc;
431
432 nd_region->ro = ro;
433 return len;
434 }
435 static DEVICE_ATTR_RW(read_only);
436
437 static struct attribute *nd_region_attributes[] = {
438 &dev_attr_size.attr,
439 &dev_attr_nstype.attr,
440 &dev_attr_mappings.attr,
441 &dev_attr_btt_seed.attr,
442 &dev_attr_pfn_seed.attr,
443 &dev_attr_dax_seed.attr,
444 &dev_attr_read_only.attr,
445 &dev_attr_set_cookie.attr,
446 &dev_attr_available_size.attr,
447 &dev_attr_namespace_seed.attr,
448 &dev_attr_init_namespaces.attr,
449 NULL,
450 };
451
452 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
453 {
454 struct device *dev = container_of(kobj, typeof(*dev), kobj);
455 struct nd_region *nd_region = to_nd_region(dev);
456 struct nd_interleave_set *nd_set = nd_region->nd_set;
457 int type = nd_region_to_nstype(nd_region);
458
459 if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
460 return 0;
461
462 if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
463 return 0;
464
465 if (a != &dev_attr_set_cookie.attr
466 && a != &dev_attr_available_size.attr)
467 return a->mode;
468
469 if ((type == ND_DEVICE_NAMESPACE_PMEM
470 || type == ND_DEVICE_NAMESPACE_BLK)
471 && a == &dev_attr_available_size.attr)
472 return a->mode;
473 else if (is_nd_pmem(dev) && nd_set)
474 return a->mode;
475
476 return 0;
477 }
478
479 struct attribute_group nd_region_attribute_group = {
480 .attrs = nd_region_attributes,
481 .is_visible = region_visible,
482 };
483 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
484
485 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
486 {
487 struct nd_interleave_set *nd_set = nd_region->nd_set;
488
489 if (nd_set)
490 return nd_set->cookie;
491 return 0;
492 }
493
494 /*
495 * Upon successful probe/remove, take/release a reference on the
496 * associated interleave set (if present), and plant new btt + namespace
497 * seeds. Also, on the removal of a BLK region, notify the provider to
498 * disable the region.
499 */
500 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
501 struct device *dev, bool probe)
502 {
503 struct nd_region *nd_region;
504
505 if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
506 int i;
507
508 nd_region = to_nd_region(dev);
509 for (i = 0; i < nd_region->ndr_mappings; i++) {
510 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
511 struct nvdimm_drvdata *ndd = nd_mapping->ndd;
512 struct nvdimm *nvdimm = nd_mapping->nvdimm;
513
514 kfree(nd_mapping->labels);
515 nd_mapping->labels = NULL;
516 put_ndd(ndd);
517 nd_mapping->ndd = NULL;
518 if (ndd)
519 atomic_dec(&nvdimm->busy);
520 }
521
522 if (is_nd_pmem(dev))
523 return;
524 }
525 if (dev->parent && is_nd_blk(dev->parent) && probe) {
526 nd_region = to_nd_region(dev->parent);
527 nvdimm_bus_lock(dev);
528 if (nd_region->ns_seed == dev)
529 nd_region_create_blk_seed(nd_region);
530 nvdimm_bus_unlock(dev);
531 }
532 if (is_nd_btt(dev) && probe) {
533 struct nd_btt *nd_btt = to_nd_btt(dev);
534
535 nd_region = to_nd_region(dev->parent);
536 nvdimm_bus_lock(dev);
537 if (nd_region->btt_seed == dev)
538 nd_region_create_btt_seed(nd_region);
539 if (nd_region->ns_seed == &nd_btt->ndns->dev &&
540 is_nd_blk(dev->parent))
541 nd_region_create_blk_seed(nd_region);
542 nvdimm_bus_unlock(dev);
543 }
544 if (is_nd_pfn(dev) && probe) {
545 nd_region = to_nd_region(dev->parent);
546 nvdimm_bus_lock(dev);
547 if (nd_region->pfn_seed == dev)
548 nd_region_create_pfn_seed(nd_region);
549 nvdimm_bus_unlock(dev);
550 }
551 if (is_nd_dax(dev) && probe) {
552 nd_region = to_nd_region(dev->parent);
553 nvdimm_bus_lock(dev);
554 if (nd_region->dax_seed == dev)
555 nd_region_create_dax_seed(nd_region);
556 nvdimm_bus_unlock(dev);
557 }
558 }
559
560 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
561 {
562 nd_region_notify_driver_action(nvdimm_bus, dev, true);
563 }
564
565 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
566 {
567 nd_region_notify_driver_action(nvdimm_bus, dev, false);
568 }
569
570 static ssize_t mappingN(struct device *dev, char *buf, int n)
571 {
572 struct nd_region *nd_region = to_nd_region(dev);
573 struct nd_mapping *nd_mapping;
574 struct nvdimm *nvdimm;
575
576 if (n >= nd_region->ndr_mappings)
577 return -ENXIO;
578 nd_mapping = &nd_region->mapping[n];
579 nvdimm = nd_mapping->nvdimm;
580
581 return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
582 nd_mapping->start, nd_mapping->size);
583 }
584
585 #define REGION_MAPPING(idx) \
586 static ssize_t mapping##idx##_show(struct device *dev, \
587 struct device_attribute *attr, char *buf) \
588 { \
589 return mappingN(dev, buf, idx); \
590 } \
591 static DEVICE_ATTR_RO(mapping##idx)
592
593 /*
594 * 32 should be enough for a while, even in the presence of socket
595 * interleave a 32-way interleave set is a degenerate case.
596 */
597 REGION_MAPPING(0);
598 REGION_MAPPING(1);
599 REGION_MAPPING(2);
600 REGION_MAPPING(3);
601 REGION_MAPPING(4);
602 REGION_MAPPING(5);
603 REGION_MAPPING(6);
604 REGION_MAPPING(7);
605 REGION_MAPPING(8);
606 REGION_MAPPING(9);
607 REGION_MAPPING(10);
608 REGION_MAPPING(11);
609 REGION_MAPPING(12);
610 REGION_MAPPING(13);
611 REGION_MAPPING(14);
612 REGION_MAPPING(15);
613 REGION_MAPPING(16);
614 REGION_MAPPING(17);
615 REGION_MAPPING(18);
616 REGION_MAPPING(19);
617 REGION_MAPPING(20);
618 REGION_MAPPING(21);
619 REGION_MAPPING(22);
620 REGION_MAPPING(23);
621 REGION_MAPPING(24);
622 REGION_MAPPING(25);
623 REGION_MAPPING(26);
624 REGION_MAPPING(27);
625 REGION_MAPPING(28);
626 REGION_MAPPING(29);
627 REGION_MAPPING(30);
628 REGION_MAPPING(31);
629
630 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
631 {
632 struct device *dev = container_of(kobj, struct device, kobj);
633 struct nd_region *nd_region = to_nd_region(dev);
634
635 if (n < nd_region->ndr_mappings)
636 return a->mode;
637 return 0;
638 }
639
640 static struct attribute *mapping_attributes[] = {
641 &dev_attr_mapping0.attr,
642 &dev_attr_mapping1.attr,
643 &dev_attr_mapping2.attr,
644 &dev_attr_mapping3.attr,
645 &dev_attr_mapping4.attr,
646 &dev_attr_mapping5.attr,
647 &dev_attr_mapping6.attr,
648 &dev_attr_mapping7.attr,
649 &dev_attr_mapping8.attr,
650 &dev_attr_mapping9.attr,
651 &dev_attr_mapping10.attr,
652 &dev_attr_mapping11.attr,
653 &dev_attr_mapping12.attr,
654 &dev_attr_mapping13.attr,
655 &dev_attr_mapping14.attr,
656 &dev_attr_mapping15.attr,
657 &dev_attr_mapping16.attr,
658 &dev_attr_mapping17.attr,
659 &dev_attr_mapping18.attr,
660 &dev_attr_mapping19.attr,
661 &dev_attr_mapping20.attr,
662 &dev_attr_mapping21.attr,
663 &dev_attr_mapping22.attr,
664 &dev_attr_mapping23.attr,
665 &dev_attr_mapping24.attr,
666 &dev_attr_mapping25.attr,
667 &dev_attr_mapping26.attr,
668 &dev_attr_mapping27.attr,
669 &dev_attr_mapping28.attr,
670 &dev_attr_mapping29.attr,
671 &dev_attr_mapping30.attr,
672 &dev_attr_mapping31.attr,
673 NULL,
674 };
675
676 struct attribute_group nd_mapping_attribute_group = {
677 .is_visible = mapping_visible,
678 .attrs = mapping_attributes,
679 };
680 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
681
682 int nd_blk_region_init(struct nd_region *nd_region)
683 {
684 struct device *dev = &nd_region->dev;
685 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
686
687 if (!is_nd_blk(dev))
688 return 0;
689
690 if (nd_region->ndr_mappings < 1) {
691 dev_err(dev, "invalid BLK region\n");
692 return -ENXIO;
693 }
694
695 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
696 }
697
698 /**
699 * nd_region_acquire_lane - allocate and lock a lane
700 * @nd_region: region id and number of lanes possible
701 *
702 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
703 * We optimize for the common case where there are 256 lanes, one
704 * per-cpu. For larger systems we need to lock to share lanes. For now
705 * this implementation assumes the cost of maintaining an allocator for
706 * free lanes is on the order of the lock hold time, so it implements a
707 * static lane = cpu % num_lanes mapping.
708 *
709 * In the case of a BTT instance on top of a BLK namespace a lane may be
710 * acquired recursively. We lock on the first instance.
711 *
712 * In the case of a BTT instance on top of PMEM, we only acquire a lane
713 * for the BTT metadata updates.
714 */
715 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
716 {
717 unsigned int cpu, lane;
718
719 cpu = get_cpu();
720 if (nd_region->num_lanes < nr_cpu_ids) {
721 struct nd_percpu_lane *ndl_lock, *ndl_count;
722
723 lane = cpu % nd_region->num_lanes;
724 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
725 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
726 if (ndl_count->count++ == 0)
727 spin_lock(&ndl_lock->lock);
728 } else
729 lane = cpu;
730
731 return lane;
732 }
733 EXPORT_SYMBOL(nd_region_acquire_lane);
734
735 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
736 {
737 if (nd_region->num_lanes < nr_cpu_ids) {
738 unsigned int cpu = get_cpu();
739 struct nd_percpu_lane *ndl_lock, *ndl_count;
740
741 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
742 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
743 if (--ndl_count->count == 0)
744 spin_unlock(&ndl_lock->lock);
745 put_cpu();
746 }
747 put_cpu();
748 }
749 EXPORT_SYMBOL(nd_region_release_lane);
750
751 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
752 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
753 const char *caller)
754 {
755 struct nd_region *nd_region;
756 struct device *dev;
757 void *region_buf;
758 unsigned int i;
759 int ro = 0;
760
761 for (i = 0; i < ndr_desc->num_mappings; i++) {
762 struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
763 struct nvdimm *nvdimm = nd_mapping->nvdimm;
764
765 if ((nd_mapping->start | nd_mapping->size) % SZ_4K) {
766 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
767 caller, dev_name(&nvdimm->dev), i);
768
769 return NULL;
770 }
771
772 if (nvdimm->flags & NDD_UNARMED)
773 ro = 1;
774 }
775
776 if (dev_type == &nd_blk_device_type) {
777 struct nd_blk_region_desc *ndbr_desc;
778 struct nd_blk_region *ndbr;
779
780 ndbr_desc = to_blk_region_desc(ndr_desc);
781 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
782 * ndr_desc->num_mappings,
783 GFP_KERNEL);
784 if (ndbr) {
785 nd_region = &ndbr->nd_region;
786 ndbr->enable = ndbr_desc->enable;
787 ndbr->do_io = ndbr_desc->do_io;
788 }
789 region_buf = ndbr;
790 } else {
791 nd_region = kzalloc(sizeof(struct nd_region)
792 + sizeof(struct nd_mapping)
793 * ndr_desc->num_mappings,
794 GFP_KERNEL);
795 region_buf = nd_region;
796 }
797
798 if (!region_buf)
799 return NULL;
800 nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
801 if (nd_region->id < 0)
802 goto err_id;
803
804 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
805 if (!nd_region->lane)
806 goto err_percpu;
807
808 for (i = 0; i < nr_cpu_ids; i++) {
809 struct nd_percpu_lane *ndl;
810
811 ndl = per_cpu_ptr(nd_region->lane, i);
812 spin_lock_init(&ndl->lock);
813 ndl->count = 0;
814 }
815
816 memcpy(nd_region->mapping, ndr_desc->nd_mapping,
817 sizeof(struct nd_mapping) * ndr_desc->num_mappings);
818 for (i = 0; i < ndr_desc->num_mappings; i++) {
819 struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
820 struct nvdimm *nvdimm = nd_mapping->nvdimm;
821
822 get_device(&nvdimm->dev);
823 }
824 nd_region->ndr_mappings = ndr_desc->num_mappings;
825 nd_region->provider_data = ndr_desc->provider_data;
826 nd_region->nd_set = ndr_desc->nd_set;
827 nd_region->num_lanes = ndr_desc->num_lanes;
828 nd_region->flags = ndr_desc->flags;
829 nd_region->ro = ro;
830 nd_region->numa_node = ndr_desc->numa_node;
831 ida_init(&nd_region->ns_ida);
832 ida_init(&nd_region->btt_ida);
833 ida_init(&nd_region->pfn_ida);
834 ida_init(&nd_region->dax_ida);
835 dev = &nd_region->dev;
836 dev_set_name(dev, "region%d", nd_region->id);
837 dev->parent = &nvdimm_bus->dev;
838 dev->type = dev_type;
839 dev->groups = ndr_desc->attr_groups;
840 nd_region->ndr_size = resource_size(ndr_desc->res);
841 nd_region->ndr_start = ndr_desc->res->start;
842 nd_device_register(dev);
843
844 return nd_region;
845
846 err_percpu:
847 ida_simple_remove(&region_ida, nd_region->id);
848 err_id:
849 kfree(region_buf);
850 return NULL;
851 }
852
853 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
854 struct nd_region_desc *ndr_desc)
855 {
856 ndr_desc->num_lanes = ND_MAX_LANES;
857 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
858 __func__);
859 }
860 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
861
862 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
863 struct nd_region_desc *ndr_desc)
864 {
865 if (ndr_desc->num_mappings > 1)
866 return NULL;
867 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
868 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
869 __func__);
870 }
871 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
872
873 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
874 struct nd_region_desc *ndr_desc)
875 {
876 ndr_desc->num_lanes = ND_MAX_LANES;
877 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
878 __func__);
879 }
880 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
881
882 /**
883 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
884 * @nd_region: blk or interleaved pmem region
885 */
886 void nvdimm_flush(struct nd_region *nd_region)
887 {
888 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
889 int i, idx;
890
891 /*
892 * Try to encourage some diversity in flush hint addresses
893 * across cpus assuming a limited number of flush hints.
894 */
895 idx = this_cpu_read(flush_idx);
896 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
897
898 /*
899 * The first wmb() is needed to 'sfence' all previous writes
900 * such that they are architecturally visible for the platform
901 * buffer flush. Note that we've already arranged for pmem
902 * writes to avoid the cache via arch_memcpy_to_pmem(). The
903 * final wmb() ensures ordering for the NVDIMM flush write.
904 */
905 wmb();
906 for (i = 0; i < nd_region->ndr_mappings; i++)
907 if (ndrd_get_flush_wpq(ndrd, i, 0))
908 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
909 wmb();
910 }
911 EXPORT_SYMBOL_GPL(nvdimm_flush);
912
913 /**
914 * nvdimm_has_flush - determine write flushing requirements
915 * @nd_region: blk or interleaved pmem region
916 *
917 * Returns 1 if writes require flushing
918 * Returns 0 if writes do not require flushing
919 * Returns -ENXIO if flushing capability can not be determined
920 */
921 int nvdimm_has_flush(struct nd_region *nd_region)
922 {
923 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
924 int i;
925
926 /* no nvdimm == flushing capability unknown */
927 if (nd_region->ndr_mappings == 0)
928 return -ENXIO;
929
930 for (i = 0; i < nd_region->ndr_mappings; i++)
931 /* flush hints present, flushing required */
932 if (ndrd_get_flush_wpq(ndrd, i, 0))
933 return 1;
934
935 /*
936 * The platform defines dimm devices without hints, assume
937 * platform persistence mechanism like ADR
938 */
939 return 0;
940 }
941 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
942
943 void __exit nd_region_devs_exit(void)
944 {
945 ida_destroy(&region_ida);
946 }