]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/core.c
blk-mq: use the introduced blk_mq_unquiesce_queue()
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <scsi/sg.h>
31 #include <asm/unaligned.h>
32
33 #include "nvme.h"
34 #include "fabrics.h"
35
36 #define NVME_MINORS (1U << MINORBITS)
37
38 unsigned char admin_timeout = 60;
39 module_param(admin_timeout, byte, 0644);
40 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41 EXPORT_SYMBOL_GPL(admin_timeout);
42
43 unsigned char nvme_io_timeout = 30;
44 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
45 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46 EXPORT_SYMBOL_GPL(nvme_io_timeout);
47
48 static unsigned char shutdown_timeout = 5;
49 module_param(shutdown_timeout, byte, 0644);
50 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
51
52 static u8 nvme_max_retries = 5;
53 module_param_named(max_retries, nvme_max_retries, byte, 0644);
54 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58
59 static unsigned long default_ps_max_latency_us = 100000;
60 module_param(default_ps_max_latency_us, ulong, 0644);
61 MODULE_PARM_DESC(default_ps_max_latency_us,
62 "max power saving latency for new devices; use PM QOS to change per device");
63
64 static bool force_apst;
65 module_param(force_apst, bool, 0644);
66 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
67
68 struct workqueue_struct *nvme_wq;
69 EXPORT_SYMBOL_GPL(nvme_wq);
70
71 static LIST_HEAD(nvme_ctrl_list);
72 static DEFINE_SPINLOCK(dev_list_lock);
73
74 static struct class *nvme_class;
75
76 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
77 {
78 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
79 return -EBUSY;
80 if (!queue_work(nvme_wq, &ctrl->reset_work))
81 return -EBUSY;
82 return 0;
83 }
84 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
85
86 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
87 {
88 int ret;
89
90 ret = nvme_reset_ctrl(ctrl);
91 if (!ret)
92 flush_work(&ctrl->reset_work);
93 return ret;
94 }
95
96 static blk_status_t nvme_error_status(struct request *req)
97 {
98 switch (nvme_req(req)->status & 0x7ff) {
99 case NVME_SC_SUCCESS:
100 return BLK_STS_OK;
101 case NVME_SC_CAP_EXCEEDED:
102 return BLK_STS_NOSPC;
103 case NVME_SC_ONCS_NOT_SUPPORTED:
104 return BLK_STS_NOTSUPP;
105 case NVME_SC_WRITE_FAULT:
106 case NVME_SC_READ_ERROR:
107 case NVME_SC_UNWRITTEN_BLOCK:
108 return BLK_STS_MEDIUM;
109 default:
110 return BLK_STS_IOERR;
111 }
112 }
113
114 static inline bool nvme_req_needs_retry(struct request *req)
115 {
116 if (blk_noretry_request(req))
117 return false;
118 if (nvme_req(req)->status & NVME_SC_DNR)
119 return false;
120 if (jiffies - req->start_time >= req->timeout)
121 return false;
122 if (nvme_req(req)->retries >= nvme_max_retries)
123 return false;
124 return true;
125 }
126
127 void nvme_complete_rq(struct request *req)
128 {
129 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
130 nvme_req(req)->retries++;
131 blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
132 return;
133 }
134
135 blk_mq_end_request(req, nvme_error_status(req));
136 }
137 EXPORT_SYMBOL_GPL(nvme_complete_rq);
138
139 void nvme_cancel_request(struct request *req, void *data, bool reserved)
140 {
141 int status;
142
143 if (!blk_mq_request_started(req))
144 return;
145
146 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
147 "Cancelling I/O %d", req->tag);
148
149 status = NVME_SC_ABORT_REQ;
150 if (blk_queue_dying(req->q))
151 status |= NVME_SC_DNR;
152 nvme_req(req)->status = status;
153 blk_mq_complete_request(req);
154
155 }
156 EXPORT_SYMBOL_GPL(nvme_cancel_request);
157
158 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
159 enum nvme_ctrl_state new_state)
160 {
161 enum nvme_ctrl_state old_state;
162 bool changed = false;
163
164 spin_lock_irq(&ctrl->lock);
165
166 old_state = ctrl->state;
167 switch (new_state) {
168 case NVME_CTRL_LIVE:
169 switch (old_state) {
170 case NVME_CTRL_NEW:
171 case NVME_CTRL_RESETTING:
172 case NVME_CTRL_RECONNECTING:
173 changed = true;
174 /* FALLTHRU */
175 default:
176 break;
177 }
178 break;
179 case NVME_CTRL_RESETTING:
180 switch (old_state) {
181 case NVME_CTRL_NEW:
182 case NVME_CTRL_LIVE:
183 changed = true;
184 /* FALLTHRU */
185 default:
186 break;
187 }
188 break;
189 case NVME_CTRL_RECONNECTING:
190 switch (old_state) {
191 case NVME_CTRL_LIVE:
192 changed = true;
193 /* FALLTHRU */
194 default:
195 break;
196 }
197 break;
198 case NVME_CTRL_DELETING:
199 switch (old_state) {
200 case NVME_CTRL_LIVE:
201 case NVME_CTRL_RESETTING:
202 case NVME_CTRL_RECONNECTING:
203 changed = true;
204 /* FALLTHRU */
205 default:
206 break;
207 }
208 break;
209 case NVME_CTRL_DEAD:
210 switch (old_state) {
211 case NVME_CTRL_DELETING:
212 changed = true;
213 /* FALLTHRU */
214 default:
215 break;
216 }
217 break;
218 default:
219 break;
220 }
221
222 if (changed)
223 ctrl->state = new_state;
224
225 spin_unlock_irq(&ctrl->lock);
226
227 return changed;
228 }
229 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
230
231 static void nvme_free_ns(struct kref *kref)
232 {
233 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
234
235 if (ns->ndev)
236 nvme_nvm_unregister(ns);
237
238 if (ns->disk) {
239 spin_lock(&dev_list_lock);
240 ns->disk->private_data = NULL;
241 spin_unlock(&dev_list_lock);
242 }
243
244 put_disk(ns->disk);
245 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
246 nvme_put_ctrl(ns->ctrl);
247 kfree(ns);
248 }
249
250 static void nvme_put_ns(struct nvme_ns *ns)
251 {
252 kref_put(&ns->kref, nvme_free_ns);
253 }
254
255 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
256 {
257 struct nvme_ns *ns;
258
259 spin_lock(&dev_list_lock);
260 ns = disk->private_data;
261 if (ns) {
262 if (!kref_get_unless_zero(&ns->kref))
263 goto fail;
264 if (!try_module_get(ns->ctrl->ops->module))
265 goto fail_put_ns;
266 }
267 spin_unlock(&dev_list_lock);
268
269 return ns;
270
271 fail_put_ns:
272 kref_put(&ns->kref, nvme_free_ns);
273 fail:
274 spin_unlock(&dev_list_lock);
275 return NULL;
276 }
277
278 struct request *nvme_alloc_request(struct request_queue *q,
279 struct nvme_command *cmd, unsigned int flags, int qid)
280 {
281 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
282 struct request *req;
283
284 if (qid == NVME_QID_ANY) {
285 req = blk_mq_alloc_request(q, op, flags);
286 } else {
287 req = blk_mq_alloc_request_hctx(q, op, flags,
288 qid ? qid - 1 : 0);
289 }
290 if (IS_ERR(req))
291 return req;
292
293 req->cmd_flags |= REQ_FAILFAST_DRIVER;
294 nvme_req(req)->cmd = cmd;
295
296 return req;
297 }
298 EXPORT_SYMBOL_GPL(nvme_alloc_request);
299
300 static inline void nvme_setup_flush(struct nvme_ns *ns,
301 struct nvme_command *cmnd)
302 {
303 memset(cmnd, 0, sizeof(*cmnd));
304 cmnd->common.opcode = nvme_cmd_flush;
305 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
306 }
307
308 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
309 struct nvme_command *cmnd)
310 {
311 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
312 struct nvme_dsm_range *range;
313 struct bio *bio;
314
315 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
316 if (!range)
317 return BLK_STS_RESOURCE;
318
319 __rq_for_each_bio(bio, req) {
320 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
321 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
322
323 range[n].cattr = cpu_to_le32(0);
324 range[n].nlb = cpu_to_le32(nlb);
325 range[n].slba = cpu_to_le64(slba);
326 n++;
327 }
328
329 if (WARN_ON_ONCE(n != segments)) {
330 kfree(range);
331 return BLK_STS_IOERR;
332 }
333
334 memset(cmnd, 0, sizeof(*cmnd));
335 cmnd->dsm.opcode = nvme_cmd_dsm;
336 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
337 cmnd->dsm.nr = cpu_to_le32(segments - 1);
338 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
339
340 req->special_vec.bv_page = virt_to_page(range);
341 req->special_vec.bv_offset = offset_in_page(range);
342 req->special_vec.bv_len = sizeof(*range) * segments;
343 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
344
345 return BLK_STS_OK;
346 }
347
348 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
349 struct request *req, struct nvme_command *cmnd)
350 {
351 u16 control = 0;
352 u32 dsmgmt = 0;
353
354 /*
355 * If formated with metadata, require the block layer provide a buffer
356 * unless this namespace is formated such that the metadata can be
357 * stripped/generated by the controller with PRACT=1.
358 */
359 if (ns && ns->ms &&
360 (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
361 !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
362 return BLK_STS_NOTSUPP;
363
364 if (req->cmd_flags & REQ_FUA)
365 control |= NVME_RW_FUA;
366 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
367 control |= NVME_RW_LR;
368
369 if (req->cmd_flags & REQ_RAHEAD)
370 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
371
372 memset(cmnd, 0, sizeof(*cmnd));
373 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
374 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
375 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
376 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
377
378 if (ns->ms) {
379 switch (ns->pi_type) {
380 case NVME_NS_DPS_PI_TYPE3:
381 control |= NVME_RW_PRINFO_PRCHK_GUARD;
382 break;
383 case NVME_NS_DPS_PI_TYPE1:
384 case NVME_NS_DPS_PI_TYPE2:
385 control |= NVME_RW_PRINFO_PRCHK_GUARD |
386 NVME_RW_PRINFO_PRCHK_REF;
387 cmnd->rw.reftag = cpu_to_le32(
388 nvme_block_nr(ns, blk_rq_pos(req)));
389 break;
390 }
391 if (!blk_integrity_rq(req))
392 control |= NVME_RW_PRINFO_PRACT;
393 }
394
395 cmnd->rw.control = cpu_to_le16(control);
396 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
397 return 0;
398 }
399
400 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
401 struct nvme_command *cmd)
402 {
403 blk_status_t ret = BLK_STS_OK;
404
405 if (!(req->rq_flags & RQF_DONTPREP)) {
406 nvme_req(req)->retries = 0;
407 nvme_req(req)->flags = 0;
408 req->rq_flags |= RQF_DONTPREP;
409 }
410
411 switch (req_op(req)) {
412 case REQ_OP_DRV_IN:
413 case REQ_OP_DRV_OUT:
414 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
415 break;
416 case REQ_OP_FLUSH:
417 nvme_setup_flush(ns, cmd);
418 break;
419 case REQ_OP_WRITE_ZEROES:
420 /* currently only aliased to deallocate for a few ctrls: */
421 case REQ_OP_DISCARD:
422 ret = nvme_setup_discard(ns, req, cmd);
423 break;
424 case REQ_OP_READ:
425 case REQ_OP_WRITE:
426 ret = nvme_setup_rw(ns, req, cmd);
427 break;
428 default:
429 WARN_ON_ONCE(1);
430 return BLK_STS_IOERR;
431 }
432
433 cmd->common.command_id = req->tag;
434 return ret;
435 }
436 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
437
438 /*
439 * Returns 0 on success. If the result is negative, it's a Linux error code;
440 * if the result is positive, it's an NVM Express status code
441 */
442 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
443 union nvme_result *result, void *buffer, unsigned bufflen,
444 unsigned timeout, int qid, int at_head, int flags)
445 {
446 struct request *req;
447 int ret;
448
449 req = nvme_alloc_request(q, cmd, flags, qid);
450 if (IS_ERR(req))
451 return PTR_ERR(req);
452
453 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
454
455 if (buffer && bufflen) {
456 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
457 if (ret)
458 goto out;
459 }
460
461 blk_execute_rq(req->q, NULL, req, at_head);
462 if (result)
463 *result = nvme_req(req)->result;
464 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
465 ret = -EINTR;
466 else
467 ret = nvme_req(req)->status;
468 out:
469 blk_mq_free_request(req);
470 return ret;
471 }
472 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
473
474 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
475 void *buffer, unsigned bufflen)
476 {
477 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
478 NVME_QID_ANY, 0, 0);
479 }
480 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
481
482 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
483 void __user *ubuffer, unsigned bufflen,
484 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
485 u32 *result, unsigned timeout)
486 {
487 bool write = nvme_is_write(cmd);
488 struct nvme_ns *ns = q->queuedata;
489 struct gendisk *disk = ns ? ns->disk : NULL;
490 struct request *req;
491 struct bio *bio = NULL;
492 void *meta = NULL;
493 int ret;
494
495 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
496 if (IS_ERR(req))
497 return PTR_ERR(req);
498
499 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
500
501 if (ubuffer && bufflen) {
502 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
503 GFP_KERNEL);
504 if (ret)
505 goto out;
506 bio = req->bio;
507
508 if (!disk)
509 goto submit;
510 bio->bi_bdev = bdget_disk(disk, 0);
511 if (!bio->bi_bdev) {
512 ret = -ENODEV;
513 goto out_unmap;
514 }
515
516 if (meta_buffer && meta_len) {
517 struct bio_integrity_payload *bip;
518
519 meta = kmalloc(meta_len, GFP_KERNEL);
520 if (!meta) {
521 ret = -ENOMEM;
522 goto out_unmap;
523 }
524
525 if (write) {
526 if (copy_from_user(meta, meta_buffer,
527 meta_len)) {
528 ret = -EFAULT;
529 goto out_free_meta;
530 }
531 }
532
533 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
534 if (IS_ERR(bip)) {
535 ret = PTR_ERR(bip);
536 goto out_free_meta;
537 }
538
539 bip->bip_iter.bi_size = meta_len;
540 bip->bip_iter.bi_sector = meta_seed;
541
542 ret = bio_integrity_add_page(bio, virt_to_page(meta),
543 meta_len, offset_in_page(meta));
544 if (ret != meta_len) {
545 ret = -ENOMEM;
546 goto out_free_meta;
547 }
548 }
549 }
550 submit:
551 blk_execute_rq(req->q, disk, req, 0);
552 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
553 ret = -EINTR;
554 else
555 ret = nvme_req(req)->status;
556 if (result)
557 *result = le32_to_cpu(nvme_req(req)->result.u32);
558 if (meta && !ret && !write) {
559 if (copy_to_user(meta_buffer, meta, meta_len))
560 ret = -EFAULT;
561 }
562 out_free_meta:
563 kfree(meta);
564 out_unmap:
565 if (bio) {
566 if (disk && bio->bi_bdev)
567 bdput(bio->bi_bdev);
568 blk_rq_unmap_user(bio);
569 }
570 out:
571 blk_mq_free_request(req);
572 return ret;
573 }
574
575 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
576 void __user *ubuffer, unsigned bufflen, u32 *result,
577 unsigned timeout)
578 {
579 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
580 result, timeout);
581 }
582
583 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
584 {
585 struct nvme_ctrl *ctrl = rq->end_io_data;
586
587 blk_mq_free_request(rq);
588
589 if (status) {
590 dev_err(ctrl->device,
591 "failed nvme_keep_alive_end_io error=%d\n",
592 status);
593 return;
594 }
595
596 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
597 }
598
599 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
600 {
601 struct nvme_command c;
602 struct request *rq;
603
604 memset(&c, 0, sizeof(c));
605 c.common.opcode = nvme_admin_keep_alive;
606
607 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
608 NVME_QID_ANY);
609 if (IS_ERR(rq))
610 return PTR_ERR(rq);
611
612 rq->timeout = ctrl->kato * HZ;
613 rq->end_io_data = ctrl;
614
615 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
616
617 return 0;
618 }
619
620 static void nvme_keep_alive_work(struct work_struct *work)
621 {
622 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
623 struct nvme_ctrl, ka_work);
624
625 if (nvme_keep_alive(ctrl)) {
626 /* allocation failure, reset the controller */
627 dev_err(ctrl->device, "keep-alive failed\n");
628 nvme_reset_ctrl(ctrl);
629 return;
630 }
631 }
632
633 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
634 {
635 if (unlikely(ctrl->kato == 0))
636 return;
637
638 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
639 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
640 }
641 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
642
643 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
644 {
645 if (unlikely(ctrl->kato == 0))
646 return;
647
648 cancel_delayed_work_sync(&ctrl->ka_work);
649 }
650 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
651
652 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
653 {
654 struct nvme_command c = { };
655 int error;
656
657 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
658 c.identify.opcode = nvme_admin_identify;
659 c.identify.cns = NVME_ID_CNS_CTRL;
660
661 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
662 if (!*id)
663 return -ENOMEM;
664
665 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
666 sizeof(struct nvme_id_ctrl));
667 if (error)
668 kfree(*id);
669 return error;
670 }
671
672 static int nvme_identify_ns_descs(struct nvme_ns *ns, unsigned nsid)
673 {
674 struct nvme_command c = { };
675 int status;
676 void *data;
677 int pos;
678 int len;
679
680 c.identify.opcode = nvme_admin_identify;
681 c.identify.nsid = cpu_to_le32(nsid);
682 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
683
684 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
685 if (!data)
686 return -ENOMEM;
687
688 status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, data,
689 NVME_IDENTIFY_DATA_SIZE);
690 if (status)
691 goto free_data;
692
693 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
694 struct nvme_ns_id_desc *cur = data + pos;
695
696 if (cur->nidl == 0)
697 break;
698
699 switch (cur->nidt) {
700 case NVME_NIDT_EUI64:
701 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
702 dev_warn(ns->ctrl->device,
703 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
704 cur->nidl);
705 goto free_data;
706 }
707 len = NVME_NIDT_EUI64_LEN;
708 memcpy(ns->eui, data + pos + sizeof(*cur), len);
709 break;
710 case NVME_NIDT_NGUID:
711 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
712 dev_warn(ns->ctrl->device,
713 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
714 cur->nidl);
715 goto free_data;
716 }
717 len = NVME_NIDT_NGUID_LEN;
718 memcpy(ns->nguid, data + pos + sizeof(*cur), len);
719 break;
720 case NVME_NIDT_UUID:
721 if (cur->nidl != NVME_NIDT_UUID_LEN) {
722 dev_warn(ns->ctrl->device,
723 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
724 cur->nidl);
725 goto free_data;
726 }
727 len = NVME_NIDT_UUID_LEN;
728 uuid_copy(&ns->uuid, data + pos + sizeof(*cur));
729 break;
730 default:
731 /* Skip unnkown types */
732 len = cur->nidl;
733 break;
734 }
735
736 len += sizeof(*cur);
737 }
738 free_data:
739 kfree(data);
740 return status;
741 }
742
743 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
744 {
745 struct nvme_command c = { };
746
747 c.identify.opcode = nvme_admin_identify;
748 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
749 c.identify.nsid = cpu_to_le32(nsid);
750 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
751 }
752
753 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
754 struct nvme_id_ns **id)
755 {
756 struct nvme_command c = { };
757 int error;
758
759 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
760 c.identify.opcode = nvme_admin_identify;
761 c.identify.nsid = cpu_to_le32(nsid);
762 c.identify.cns = NVME_ID_CNS_NS;
763
764 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
765 if (!*id)
766 return -ENOMEM;
767
768 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
769 sizeof(struct nvme_id_ns));
770 if (error)
771 kfree(*id);
772 return error;
773 }
774
775 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
776 void *buffer, size_t buflen, u32 *result)
777 {
778 struct nvme_command c;
779 union nvme_result res;
780 int ret;
781
782 memset(&c, 0, sizeof(c));
783 c.features.opcode = nvme_admin_get_features;
784 c.features.nsid = cpu_to_le32(nsid);
785 c.features.fid = cpu_to_le32(fid);
786
787 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
788 NVME_QID_ANY, 0, 0);
789 if (ret >= 0 && result)
790 *result = le32_to_cpu(res.u32);
791 return ret;
792 }
793
794 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
795 void *buffer, size_t buflen, u32 *result)
796 {
797 struct nvme_command c;
798 union nvme_result res;
799 int ret;
800
801 memset(&c, 0, sizeof(c));
802 c.features.opcode = nvme_admin_set_features;
803 c.features.fid = cpu_to_le32(fid);
804 c.features.dword11 = cpu_to_le32(dword11);
805
806 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
807 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
808 if (ret >= 0 && result)
809 *result = le32_to_cpu(res.u32);
810 return ret;
811 }
812
813 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
814 {
815 struct nvme_command c = { };
816 int error;
817
818 c.common.opcode = nvme_admin_get_log_page,
819 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
820 c.common.cdw10[0] = cpu_to_le32(
821 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
822 NVME_LOG_SMART),
823
824 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
825 if (!*log)
826 return -ENOMEM;
827
828 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
829 sizeof(struct nvme_smart_log));
830 if (error)
831 kfree(*log);
832 return error;
833 }
834
835 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
836 {
837 u32 q_count = (*count - 1) | ((*count - 1) << 16);
838 u32 result;
839 int status, nr_io_queues;
840
841 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
842 &result);
843 if (status < 0)
844 return status;
845
846 /*
847 * Degraded controllers might return an error when setting the queue
848 * count. We still want to be able to bring them online and offer
849 * access to the admin queue, as that might be only way to fix them up.
850 */
851 if (status > 0) {
852 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
853 *count = 0;
854 } else {
855 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
856 *count = min(*count, nr_io_queues);
857 }
858
859 return 0;
860 }
861 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
862
863 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
864 {
865 struct nvme_user_io io;
866 struct nvme_command c;
867 unsigned length, meta_len;
868 void __user *metadata;
869
870 if (copy_from_user(&io, uio, sizeof(io)))
871 return -EFAULT;
872 if (io.flags)
873 return -EINVAL;
874
875 switch (io.opcode) {
876 case nvme_cmd_write:
877 case nvme_cmd_read:
878 case nvme_cmd_compare:
879 break;
880 default:
881 return -EINVAL;
882 }
883
884 length = (io.nblocks + 1) << ns->lba_shift;
885 meta_len = (io.nblocks + 1) * ns->ms;
886 metadata = (void __user *)(uintptr_t)io.metadata;
887
888 if (ns->ext) {
889 length += meta_len;
890 meta_len = 0;
891 } else if (meta_len) {
892 if ((io.metadata & 3) || !io.metadata)
893 return -EINVAL;
894 }
895
896 memset(&c, 0, sizeof(c));
897 c.rw.opcode = io.opcode;
898 c.rw.flags = io.flags;
899 c.rw.nsid = cpu_to_le32(ns->ns_id);
900 c.rw.slba = cpu_to_le64(io.slba);
901 c.rw.length = cpu_to_le16(io.nblocks);
902 c.rw.control = cpu_to_le16(io.control);
903 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
904 c.rw.reftag = cpu_to_le32(io.reftag);
905 c.rw.apptag = cpu_to_le16(io.apptag);
906 c.rw.appmask = cpu_to_le16(io.appmask);
907
908 return __nvme_submit_user_cmd(ns->queue, &c,
909 (void __user *)(uintptr_t)io.addr, length,
910 metadata, meta_len, io.slba, NULL, 0);
911 }
912
913 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
914 struct nvme_passthru_cmd __user *ucmd)
915 {
916 struct nvme_passthru_cmd cmd;
917 struct nvme_command c;
918 unsigned timeout = 0;
919 int status;
920
921 if (!capable(CAP_SYS_ADMIN))
922 return -EACCES;
923 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
924 return -EFAULT;
925 if (cmd.flags)
926 return -EINVAL;
927
928 memset(&c, 0, sizeof(c));
929 c.common.opcode = cmd.opcode;
930 c.common.flags = cmd.flags;
931 c.common.nsid = cpu_to_le32(cmd.nsid);
932 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
933 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
934 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
935 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
936 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
937 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
938 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
939 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
940
941 if (cmd.timeout_ms)
942 timeout = msecs_to_jiffies(cmd.timeout_ms);
943
944 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
945 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
946 &cmd.result, timeout);
947 if (status >= 0) {
948 if (put_user(cmd.result, &ucmd->result))
949 return -EFAULT;
950 }
951
952 return status;
953 }
954
955 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
956 unsigned int cmd, unsigned long arg)
957 {
958 struct nvme_ns *ns = bdev->bd_disk->private_data;
959
960 switch (cmd) {
961 case NVME_IOCTL_ID:
962 force_successful_syscall_return();
963 return ns->ns_id;
964 case NVME_IOCTL_ADMIN_CMD:
965 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
966 case NVME_IOCTL_IO_CMD:
967 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
968 case NVME_IOCTL_SUBMIT_IO:
969 return nvme_submit_io(ns, (void __user *)arg);
970 #ifdef CONFIG_BLK_DEV_NVME_SCSI
971 case SG_GET_VERSION_NUM:
972 return nvme_sg_get_version_num((void __user *)arg);
973 case SG_IO:
974 return nvme_sg_io(ns, (void __user *)arg);
975 #endif
976 default:
977 #ifdef CONFIG_NVM
978 if (ns->ndev)
979 return nvme_nvm_ioctl(ns, cmd, arg);
980 #endif
981 if (is_sed_ioctl(cmd))
982 return sed_ioctl(ns->ctrl->opal_dev, cmd,
983 (void __user *) arg);
984 return -ENOTTY;
985 }
986 }
987
988 #ifdef CONFIG_COMPAT
989 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
990 unsigned int cmd, unsigned long arg)
991 {
992 switch (cmd) {
993 case SG_IO:
994 return -ENOIOCTLCMD;
995 }
996 return nvme_ioctl(bdev, mode, cmd, arg);
997 }
998 #else
999 #define nvme_compat_ioctl NULL
1000 #endif
1001
1002 static int nvme_open(struct block_device *bdev, fmode_t mode)
1003 {
1004 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
1005 }
1006
1007 static void nvme_release(struct gendisk *disk, fmode_t mode)
1008 {
1009 struct nvme_ns *ns = disk->private_data;
1010
1011 module_put(ns->ctrl->ops->module);
1012 nvme_put_ns(ns);
1013 }
1014
1015 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1016 {
1017 /* some standard values */
1018 geo->heads = 1 << 6;
1019 geo->sectors = 1 << 5;
1020 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1021 return 0;
1022 }
1023
1024 #ifdef CONFIG_BLK_DEV_INTEGRITY
1025 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1026 u16 bs)
1027 {
1028 struct nvme_ns *ns = disk->private_data;
1029 u16 old_ms = ns->ms;
1030 u8 pi_type = 0;
1031
1032 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1033 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1034
1035 /* PI implementation requires metadata equal t10 pi tuple size */
1036 if (ns->ms == sizeof(struct t10_pi_tuple))
1037 pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1038
1039 if (blk_get_integrity(disk) &&
1040 (ns->pi_type != pi_type || ns->ms != old_ms ||
1041 bs != queue_logical_block_size(disk->queue) ||
1042 (ns->ms && ns->ext)))
1043 blk_integrity_unregister(disk);
1044
1045 ns->pi_type = pi_type;
1046 }
1047
1048 static void nvme_init_integrity(struct nvme_ns *ns)
1049 {
1050 struct blk_integrity integrity;
1051
1052 memset(&integrity, 0, sizeof(integrity));
1053 switch (ns->pi_type) {
1054 case NVME_NS_DPS_PI_TYPE3:
1055 integrity.profile = &t10_pi_type3_crc;
1056 integrity.tag_size = sizeof(u16) + sizeof(u32);
1057 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1058 break;
1059 case NVME_NS_DPS_PI_TYPE1:
1060 case NVME_NS_DPS_PI_TYPE2:
1061 integrity.profile = &t10_pi_type1_crc;
1062 integrity.tag_size = sizeof(u16);
1063 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1064 break;
1065 default:
1066 integrity.profile = NULL;
1067 break;
1068 }
1069 integrity.tuple_size = ns->ms;
1070 blk_integrity_register(ns->disk, &integrity);
1071 blk_queue_max_integrity_segments(ns->queue, 1);
1072 }
1073 #else
1074 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1075 u16 bs)
1076 {
1077 }
1078 static void nvme_init_integrity(struct nvme_ns *ns)
1079 {
1080 }
1081 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1082
1083 static void nvme_set_chunk_size(struct nvme_ns *ns)
1084 {
1085 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1086 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1087 }
1088
1089 static void nvme_config_discard(struct nvme_ns *ns)
1090 {
1091 struct nvme_ctrl *ctrl = ns->ctrl;
1092 u32 logical_block_size = queue_logical_block_size(ns->queue);
1093
1094 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1095 NVME_DSM_MAX_RANGES);
1096
1097 ns->queue->limits.discard_alignment = logical_block_size;
1098 ns->queue->limits.discard_granularity = logical_block_size;
1099 blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1100 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1101 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1102
1103 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1104 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1105 }
1106
1107 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1108 {
1109 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1110 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1111 return -ENODEV;
1112 }
1113
1114 if ((*id)->ncap == 0) {
1115 kfree(*id);
1116 return -ENODEV;
1117 }
1118
1119 if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1120 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1121 if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1122 memcpy(ns->nguid, (*id)->nguid, sizeof(ns->nguid));
1123 if (ns->ctrl->vs >= NVME_VS(1, 3, 0)) {
1124 /* Don't treat error as fatal we potentially
1125 * already have a NGUID or EUI-64
1126 */
1127 if (nvme_identify_ns_descs(ns, ns->ns_id))
1128 dev_warn(ns->ctrl->device,
1129 "%s: Identify Descriptors failed\n", __func__);
1130 }
1131
1132 return 0;
1133 }
1134
1135 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1136 {
1137 struct nvme_ns *ns = disk->private_data;
1138 u16 bs;
1139
1140 /*
1141 * If identify namespace failed, use default 512 byte block size so
1142 * block layer can use before failing read/write for 0 capacity.
1143 */
1144 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1145 if (ns->lba_shift == 0)
1146 ns->lba_shift = 9;
1147 bs = 1 << ns->lba_shift;
1148 ns->noiob = le16_to_cpu(id->noiob);
1149
1150 blk_mq_freeze_queue(disk->queue);
1151
1152 if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1153 nvme_prep_integrity(disk, id, bs);
1154 blk_queue_logical_block_size(ns->queue, bs);
1155 if (ns->noiob)
1156 nvme_set_chunk_size(ns);
1157 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1158 nvme_init_integrity(ns);
1159 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1160 set_capacity(disk, 0);
1161 else
1162 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1163
1164 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1165 nvme_config_discard(ns);
1166 blk_mq_unfreeze_queue(disk->queue);
1167 }
1168
1169 static int nvme_revalidate_disk(struct gendisk *disk)
1170 {
1171 struct nvme_ns *ns = disk->private_data;
1172 struct nvme_id_ns *id = NULL;
1173 int ret;
1174
1175 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1176 set_capacity(disk, 0);
1177 return -ENODEV;
1178 }
1179
1180 ret = nvme_revalidate_ns(ns, &id);
1181 if (ret)
1182 return ret;
1183
1184 __nvme_revalidate_disk(disk, id);
1185 kfree(id);
1186
1187 return 0;
1188 }
1189
1190 static char nvme_pr_type(enum pr_type type)
1191 {
1192 switch (type) {
1193 case PR_WRITE_EXCLUSIVE:
1194 return 1;
1195 case PR_EXCLUSIVE_ACCESS:
1196 return 2;
1197 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1198 return 3;
1199 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1200 return 4;
1201 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1202 return 5;
1203 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1204 return 6;
1205 default:
1206 return 0;
1207 }
1208 };
1209
1210 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1211 u64 key, u64 sa_key, u8 op)
1212 {
1213 struct nvme_ns *ns = bdev->bd_disk->private_data;
1214 struct nvme_command c;
1215 u8 data[16] = { 0, };
1216
1217 put_unaligned_le64(key, &data[0]);
1218 put_unaligned_le64(sa_key, &data[8]);
1219
1220 memset(&c, 0, sizeof(c));
1221 c.common.opcode = op;
1222 c.common.nsid = cpu_to_le32(ns->ns_id);
1223 c.common.cdw10[0] = cpu_to_le32(cdw10);
1224
1225 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1226 }
1227
1228 static int nvme_pr_register(struct block_device *bdev, u64 old,
1229 u64 new, unsigned flags)
1230 {
1231 u32 cdw10;
1232
1233 if (flags & ~PR_FL_IGNORE_KEY)
1234 return -EOPNOTSUPP;
1235
1236 cdw10 = old ? 2 : 0;
1237 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1238 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1239 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1240 }
1241
1242 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1243 enum pr_type type, unsigned flags)
1244 {
1245 u32 cdw10;
1246
1247 if (flags & ~PR_FL_IGNORE_KEY)
1248 return -EOPNOTSUPP;
1249
1250 cdw10 = nvme_pr_type(type) << 8;
1251 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1252 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1253 }
1254
1255 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1256 enum pr_type type, bool abort)
1257 {
1258 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1259 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1260 }
1261
1262 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1263 {
1264 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1265 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1266 }
1267
1268 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1269 {
1270 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1271 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1272 }
1273
1274 static const struct pr_ops nvme_pr_ops = {
1275 .pr_register = nvme_pr_register,
1276 .pr_reserve = nvme_pr_reserve,
1277 .pr_release = nvme_pr_release,
1278 .pr_preempt = nvme_pr_preempt,
1279 .pr_clear = nvme_pr_clear,
1280 };
1281
1282 #ifdef CONFIG_BLK_SED_OPAL
1283 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1284 bool send)
1285 {
1286 struct nvme_ctrl *ctrl = data;
1287 struct nvme_command cmd;
1288
1289 memset(&cmd, 0, sizeof(cmd));
1290 if (send)
1291 cmd.common.opcode = nvme_admin_security_send;
1292 else
1293 cmd.common.opcode = nvme_admin_security_recv;
1294 cmd.common.nsid = 0;
1295 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1296 cmd.common.cdw10[1] = cpu_to_le32(len);
1297
1298 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1299 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1300 }
1301 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1302 #endif /* CONFIG_BLK_SED_OPAL */
1303
1304 static const struct block_device_operations nvme_fops = {
1305 .owner = THIS_MODULE,
1306 .ioctl = nvme_ioctl,
1307 .compat_ioctl = nvme_compat_ioctl,
1308 .open = nvme_open,
1309 .release = nvme_release,
1310 .getgeo = nvme_getgeo,
1311 .revalidate_disk= nvme_revalidate_disk,
1312 .pr_ops = &nvme_pr_ops,
1313 };
1314
1315 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1316 {
1317 unsigned long timeout =
1318 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1319 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1320 int ret;
1321
1322 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1323 if (csts == ~0)
1324 return -ENODEV;
1325 if ((csts & NVME_CSTS_RDY) == bit)
1326 break;
1327
1328 msleep(100);
1329 if (fatal_signal_pending(current))
1330 return -EINTR;
1331 if (time_after(jiffies, timeout)) {
1332 dev_err(ctrl->device,
1333 "Device not ready; aborting %s\n", enabled ?
1334 "initialisation" : "reset");
1335 return -ENODEV;
1336 }
1337 }
1338
1339 return ret;
1340 }
1341
1342 /*
1343 * If the device has been passed off to us in an enabled state, just clear
1344 * the enabled bit. The spec says we should set the 'shutdown notification
1345 * bits', but doing so may cause the device to complete commands to the
1346 * admin queue ... and we don't know what memory that might be pointing at!
1347 */
1348 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1349 {
1350 int ret;
1351
1352 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1353 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1354
1355 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1356 if (ret)
1357 return ret;
1358
1359 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1360 msleep(NVME_QUIRK_DELAY_AMOUNT);
1361
1362 return nvme_wait_ready(ctrl, cap, false);
1363 }
1364 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1365
1366 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1367 {
1368 /*
1369 * Default to a 4K page size, with the intention to update this
1370 * path in the future to accomodate architectures with differing
1371 * kernel and IO page sizes.
1372 */
1373 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1374 int ret;
1375
1376 if (page_shift < dev_page_min) {
1377 dev_err(ctrl->device,
1378 "Minimum device page size %u too large for host (%u)\n",
1379 1 << dev_page_min, 1 << page_shift);
1380 return -ENODEV;
1381 }
1382
1383 ctrl->page_size = 1 << page_shift;
1384
1385 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1386 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1387 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1388 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1389 ctrl->ctrl_config |= NVME_CC_ENABLE;
1390
1391 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1392 if (ret)
1393 return ret;
1394 return nvme_wait_ready(ctrl, cap, true);
1395 }
1396 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1397
1398 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1399 {
1400 unsigned long timeout = jiffies + (shutdown_timeout * HZ);
1401 u32 csts;
1402 int ret;
1403
1404 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1405 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1406
1407 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1408 if (ret)
1409 return ret;
1410
1411 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1412 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1413 break;
1414
1415 msleep(100);
1416 if (fatal_signal_pending(current))
1417 return -EINTR;
1418 if (time_after(jiffies, timeout)) {
1419 dev_err(ctrl->device,
1420 "Device shutdown incomplete; abort shutdown\n");
1421 return -ENODEV;
1422 }
1423 }
1424
1425 return ret;
1426 }
1427 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1428
1429 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1430 struct request_queue *q)
1431 {
1432 bool vwc = false;
1433
1434 if (ctrl->max_hw_sectors) {
1435 u32 max_segments =
1436 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1437
1438 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1439 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1440 }
1441 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1442 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1443 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1444 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1445 vwc = true;
1446 blk_queue_write_cache(q, vwc, vwc);
1447 }
1448
1449 static void nvme_configure_apst(struct nvme_ctrl *ctrl)
1450 {
1451 /*
1452 * APST (Autonomous Power State Transition) lets us program a
1453 * table of power state transitions that the controller will
1454 * perform automatically. We configure it with a simple
1455 * heuristic: we are willing to spend at most 2% of the time
1456 * transitioning between power states. Therefore, when running
1457 * in any given state, we will enter the next lower-power
1458 * non-operational state after waiting 50 * (enlat + exlat)
1459 * microseconds, as long as that state's exit latency is under
1460 * the requested maximum latency.
1461 *
1462 * We will not autonomously enter any non-operational state for
1463 * which the total latency exceeds ps_max_latency_us. Users
1464 * can set ps_max_latency_us to zero to turn off APST.
1465 */
1466
1467 unsigned apste;
1468 struct nvme_feat_auto_pst *table;
1469 u64 max_lat_us = 0;
1470 int max_ps = -1;
1471 int ret;
1472
1473 /*
1474 * If APST isn't supported or if we haven't been initialized yet,
1475 * then don't do anything.
1476 */
1477 if (!ctrl->apsta)
1478 return;
1479
1480 if (ctrl->npss > 31) {
1481 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1482 return;
1483 }
1484
1485 table = kzalloc(sizeof(*table), GFP_KERNEL);
1486 if (!table)
1487 return;
1488
1489 if (ctrl->ps_max_latency_us == 0) {
1490 /* Turn off APST. */
1491 apste = 0;
1492 dev_dbg(ctrl->device, "APST disabled\n");
1493 } else {
1494 __le64 target = cpu_to_le64(0);
1495 int state;
1496
1497 /*
1498 * Walk through all states from lowest- to highest-power.
1499 * According to the spec, lower-numbered states use more
1500 * power. NPSS, despite the name, is the index of the
1501 * lowest-power state, not the number of states.
1502 */
1503 for (state = (int)ctrl->npss; state >= 0; state--) {
1504 u64 total_latency_us, exit_latency_us, transition_ms;
1505
1506 if (target)
1507 table->entries[state] = target;
1508
1509 /*
1510 * Don't allow transitions to the deepest state
1511 * if it's quirked off.
1512 */
1513 if (state == ctrl->npss &&
1514 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1515 continue;
1516
1517 /*
1518 * Is this state a useful non-operational state for
1519 * higher-power states to autonomously transition to?
1520 */
1521 if (!(ctrl->psd[state].flags &
1522 NVME_PS_FLAGS_NON_OP_STATE))
1523 continue;
1524
1525 exit_latency_us =
1526 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1527 if (exit_latency_us > ctrl->ps_max_latency_us)
1528 continue;
1529
1530 total_latency_us =
1531 exit_latency_us +
1532 le32_to_cpu(ctrl->psd[state].entry_lat);
1533
1534 /*
1535 * This state is good. Use it as the APST idle
1536 * target for higher power states.
1537 */
1538 transition_ms = total_latency_us + 19;
1539 do_div(transition_ms, 20);
1540 if (transition_ms > (1 << 24) - 1)
1541 transition_ms = (1 << 24) - 1;
1542
1543 target = cpu_to_le64((state << 3) |
1544 (transition_ms << 8));
1545
1546 if (max_ps == -1)
1547 max_ps = state;
1548
1549 if (total_latency_us > max_lat_us)
1550 max_lat_us = total_latency_us;
1551 }
1552
1553 apste = 1;
1554
1555 if (max_ps == -1) {
1556 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1557 } else {
1558 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1559 max_ps, max_lat_us, (int)sizeof(*table), table);
1560 }
1561 }
1562
1563 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1564 table, sizeof(*table), NULL);
1565 if (ret)
1566 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1567
1568 kfree(table);
1569 }
1570
1571 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1572 {
1573 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1574 u64 latency;
1575
1576 switch (val) {
1577 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1578 case PM_QOS_LATENCY_ANY:
1579 latency = U64_MAX;
1580 break;
1581
1582 default:
1583 latency = val;
1584 }
1585
1586 if (ctrl->ps_max_latency_us != latency) {
1587 ctrl->ps_max_latency_us = latency;
1588 nvme_configure_apst(ctrl);
1589 }
1590 }
1591
1592 struct nvme_core_quirk_entry {
1593 /*
1594 * NVMe model and firmware strings are padded with spaces. For
1595 * simplicity, strings in the quirk table are padded with NULLs
1596 * instead.
1597 */
1598 u16 vid;
1599 const char *mn;
1600 const char *fr;
1601 unsigned long quirks;
1602 };
1603
1604 static const struct nvme_core_quirk_entry core_quirks[] = {
1605 {
1606 /*
1607 * This Toshiba device seems to die using any APST states. See:
1608 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1609 */
1610 .vid = 0x1179,
1611 .mn = "THNSF5256GPUK TOSHIBA",
1612 .quirks = NVME_QUIRK_NO_APST,
1613 }
1614 };
1615
1616 /* match is null-terminated but idstr is space-padded. */
1617 static bool string_matches(const char *idstr, const char *match, size_t len)
1618 {
1619 size_t matchlen;
1620
1621 if (!match)
1622 return true;
1623
1624 matchlen = strlen(match);
1625 WARN_ON_ONCE(matchlen > len);
1626
1627 if (memcmp(idstr, match, matchlen))
1628 return false;
1629
1630 for (; matchlen < len; matchlen++)
1631 if (idstr[matchlen] != ' ')
1632 return false;
1633
1634 return true;
1635 }
1636
1637 static bool quirk_matches(const struct nvme_id_ctrl *id,
1638 const struct nvme_core_quirk_entry *q)
1639 {
1640 return q->vid == le16_to_cpu(id->vid) &&
1641 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1642 string_matches(id->fr, q->fr, sizeof(id->fr));
1643 }
1644
1645 /*
1646 * Initialize the cached copies of the Identify data and various controller
1647 * register in our nvme_ctrl structure. This should be called as soon as
1648 * the admin queue is fully up and running.
1649 */
1650 int nvme_init_identify(struct nvme_ctrl *ctrl)
1651 {
1652 struct nvme_id_ctrl *id;
1653 u64 cap;
1654 int ret, page_shift;
1655 u32 max_hw_sectors;
1656 u8 prev_apsta;
1657
1658 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1659 if (ret) {
1660 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1661 return ret;
1662 }
1663
1664 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1665 if (ret) {
1666 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1667 return ret;
1668 }
1669 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1670
1671 if (ctrl->vs >= NVME_VS(1, 1, 0))
1672 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1673
1674 ret = nvme_identify_ctrl(ctrl, &id);
1675 if (ret) {
1676 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1677 return -EIO;
1678 }
1679
1680 if (!ctrl->identified) {
1681 /*
1682 * Check for quirks. Quirk can depend on firmware version,
1683 * so, in principle, the set of quirks present can change
1684 * across a reset. As a possible future enhancement, we
1685 * could re-scan for quirks every time we reinitialize
1686 * the device, but we'd have to make sure that the driver
1687 * behaves intelligently if the quirks change.
1688 */
1689
1690 int i;
1691
1692 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1693 if (quirk_matches(id, &core_quirks[i]))
1694 ctrl->quirks |= core_quirks[i].quirks;
1695 }
1696 }
1697
1698 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1699 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1700 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1701 }
1702
1703 ctrl->oacs = le16_to_cpu(id->oacs);
1704 ctrl->vid = le16_to_cpu(id->vid);
1705 ctrl->oncs = le16_to_cpup(&id->oncs);
1706 atomic_set(&ctrl->abort_limit, id->acl + 1);
1707 ctrl->vwc = id->vwc;
1708 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1709 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1710 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1711 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1712 if (id->mdts)
1713 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1714 else
1715 max_hw_sectors = UINT_MAX;
1716 ctrl->max_hw_sectors =
1717 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1718
1719 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1720 ctrl->sgls = le32_to_cpu(id->sgls);
1721 ctrl->kas = le16_to_cpu(id->kas);
1722
1723 ctrl->npss = id->npss;
1724 prev_apsta = ctrl->apsta;
1725 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1726 if (force_apst && id->apsta) {
1727 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1728 ctrl->apsta = 1;
1729 } else {
1730 ctrl->apsta = 0;
1731 }
1732 } else {
1733 ctrl->apsta = id->apsta;
1734 }
1735 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1736
1737 if (ctrl->ops->flags & NVME_F_FABRICS) {
1738 ctrl->icdoff = le16_to_cpu(id->icdoff);
1739 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1740 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1741 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1742
1743 /*
1744 * In fabrics we need to verify the cntlid matches the
1745 * admin connect
1746 */
1747 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1748 ret = -EINVAL;
1749
1750 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1751 dev_err(ctrl->device,
1752 "keep-alive support is mandatory for fabrics\n");
1753 ret = -EINVAL;
1754 }
1755 } else {
1756 ctrl->cntlid = le16_to_cpu(id->cntlid);
1757 ctrl->hmpre = le32_to_cpu(id->hmpre);
1758 ctrl->hmmin = le32_to_cpu(id->hmmin);
1759 }
1760
1761 kfree(id);
1762
1763 if (ctrl->apsta && !prev_apsta)
1764 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1765 else if (!ctrl->apsta && prev_apsta)
1766 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1767
1768 nvme_configure_apst(ctrl);
1769
1770 ctrl->identified = true;
1771
1772 return ret;
1773 }
1774 EXPORT_SYMBOL_GPL(nvme_init_identify);
1775
1776 static int nvme_dev_open(struct inode *inode, struct file *file)
1777 {
1778 struct nvme_ctrl *ctrl;
1779 int instance = iminor(inode);
1780 int ret = -ENODEV;
1781
1782 spin_lock(&dev_list_lock);
1783 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1784 if (ctrl->instance != instance)
1785 continue;
1786
1787 if (!ctrl->admin_q) {
1788 ret = -EWOULDBLOCK;
1789 break;
1790 }
1791 if (!kref_get_unless_zero(&ctrl->kref))
1792 break;
1793 file->private_data = ctrl;
1794 ret = 0;
1795 break;
1796 }
1797 spin_unlock(&dev_list_lock);
1798
1799 return ret;
1800 }
1801
1802 static int nvme_dev_release(struct inode *inode, struct file *file)
1803 {
1804 nvme_put_ctrl(file->private_data);
1805 return 0;
1806 }
1807
1808 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1809 {
1810 struct nvme_ns *ns;
1811 int ret;
1812
1813 mutex_lock(&ctrl->namespaces_mutex);
1814 if (list_empty(&ctrl->namespaces)) {
1815 ret = -ENOTTY;
1816 goto out_unlock;
1817 }
1818
1819 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1820 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1821 dev_warn(ctrl->device,
1822 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1823 ret = -EINVAL;
1824 goto out_unlock;
1825 }
1826
1827 dev_warn(ctrl->device,
1828 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1829 kref_get(&ns->kref);
1830 mutex_unlock(&ctrl->namespaces_mutex);
1831
1832 ret = nvme_user_cmd(ctrl, ns, argp);
1833 nvme_put_ns(ns);
1834 return ret;
1835
1836 out_unlock:
1837 mutex_unlock(&ctrl->namespaces_mutex);
1838 return ret;
1839 }
1840
1841 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1842 unsigned long arg)
1843 {
1844 struct nvme_ctrl *ctrl = file->private_data;
1845 void __user *argp = (void __user *)arg;
1846
1847 switch (cmd) {
1848 case NVME_IOCTL_ADMIN_CMD:
1849 return nvme_user_cmd(ctrl, NULL, argp);
1850 case NVME_IOCTL_IO_CMD:
1851 return nvme_dev_user_cmd(ctrl, argp);
1852 case NVME_IOCTL_RESET:
1853 dev_warn(ctrl->device, "resetting controller\n");
1854 return nvme_reset_ctrl_sync(ctrl);
1855 case NVME_IOCTL_SUBSYS_RESET:
1856 return nvme_reset_subsystem(ctrl);
1857 case NVME_IOCTL_RESCAN:
1858 nvme_queue_scan(ctrl);
1859 return 0;
1860 default:
1861 return -ENOTTY;
1862 }
1863 }
1864
1865 static const struct file_operations nvme_dev_fops = {
1866 .owner = THIS_MODULE,
1867 .open = nvme_dev_open,
1868 .release = nvme_dev_release,
1869 .unlocked_ioctl = nvme_dev_ioctl,
1870 .compat_ioctl = nvme_dev_ioctl,
1871 };
1872
1873 static ssize_t nvme_sysfs_reset(struct device *dev,
1874 struct device_attribute *attr, const char *buf,
1875 size_t count)
1876 {
1877 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1878 int ret;
1879
1880 ret = nvme_reset_ctrl_sync(ctrl);
1881 if (ret < 0)
1882 return ret;
1883 return count;
1884 }
1885 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1886
1887 static ssize_t nvme_sysfs_rescan(struct device *dev,
1888 struct device_attribute *attr, const char *buf,
1889 size_t count)
1890 {
1891 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1892
1893 nvme_queue_scan(ctrl);
1894 return count;
1895 }
1896 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1897
1898 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1899 char *buf)
1900 {
1901 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1902 struct nvme_ctrl *ctrl = ns->ctrl;
1903 int serial_len = sizeof(ctrl->serial);
1904 int model_len = sizeof(ctrl->model);
1905
1906 if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
1907 return sprintf(buf, "eui.%16phN\n", ns->nguid);
1908
1909 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1910 return sprintf(buf, "eui.%8phN\n", ns->eui);
1911
1912 while (ctrl->serial[serial_len - 1] == ' ')
1913 serial_len--;
1914 while (ctrl->model[model_len - 1] == ' ')
1915 model_len--;
1916
1917 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1918 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1919 }
1920 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1921
1922 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
1923 char *buf)
1924 {
1925 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1926 return sprintf(buf, "%pU\n", ns->nguid);
1927 }
1928 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
1929
1930 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1931 char *buf)
1932 {
1933 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1934
1935 /* For backward compatibility expose the NGUID to userspace if
1936 * we have no UUID set
1937 */
1938 if (uuid_is_null(&ns->uuid)) {
1939 printk_ratelimited(KERN_WARNING
1940 "No UUID available providing old NGUID\n");
1941 return sprintf(buf, "%pU\n", ns->nguid);
1942 }
1943 return sprintf(buf, "%pU\n", &ns->uuid);
1944 }
1945 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1946
1947 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1948 char *buf)
1949 {
1950 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1951 return sprintf(buf, "%8phd\n", ns->eui);
1952 }
1953 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1954
1955 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1956 char *buf)
1957 {
1958 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1959 return sprintf(buf, "%d\n", ns->ns_id);
1960 }
1961 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1962
1963 static struct attribute *nvme_ns_attrs[] = {
1964 &dev_attr_wwid.attr,
1965 &dev_attr_uuid.attr,
1966 &dev_attr_nguid.attr,
1967 &dev_attr_eui.attr,
1968 &dev_attr_nsid.attr,
1969 NULL,
1970 };
1971
1972 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1973 struct attribute *a, int n)
1974 {
1975 struct device *dev = container_of(kobj, struct device, kobj);
1976 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1977
1978 if (a == &dev_attr_uuid.attr) {
1979 if (uuid_is_null(&ns->uuid) ||
1980 !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
1981 return 0;
1982 }
1983 if (a == &dev_attr_nguid.attr) {
1984 if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
1985 return 0;
1986 }
1987 if (a == &dev_attr_eui.attr) {
1988 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1989 return 0;
1990 }
1991 return a->mode;
1992 }
1993
1994 static const struct attribute_group nvme_ns_attr_group = {
1995 .attrs = nvme_ns_attrs,
1996 .is_visible = nvme_ns_attrs_are_visible,
1997 };
1998
1999 #define nvme_show_str_function(field) \
2000 static ssize_t field##_show(struct device *dev, \
2001 struct device_attribute *attr, char *buf) \
2002 { \
2003 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2004 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
2005 } \
2006 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2007
2008 #define nvme_show_int_function(field) \
2009 static ssize_t field##_show(struct device *dev, \
2010 struct device_attribute *attr, char *buf) \
2011 { \
2012 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2013 return sprintf(buf, "%d\n", ctrl->field); \
2014 } \
2015 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2016
2017 nvme_show_str_function(model);
2018 nvme_show_str_function(serial);
2019 nvme_show_str_function(firmware_rev);
2020 nvme_show_int_function(cntlid);
2021
2022 static ssize_t nvme_sysfs_delete(struct device *dev,
2023 struct device_attribute *attr, const char *buf,
2024 size_t count)
2025 {
2026 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2027
2028 if (device_remove_file_self(dev, attr))
2029 ctrl->ops->delete_ctrl(ctrl);
2030 return count;
2031 }
2032 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2033
2034 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2035 struct device_attribute *attr,
2036 char *buf)
2037 {
2038 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2039
2040 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2041 }
2042 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2043
2044 static ssize_t nvme_sysfs_show_state(struct device *dev,
2045 struct device_attribute *attr,
2046 char *buf)
2047 {
2048 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2049 static const char *const state_name[] = {
2050 [NVME_CTRL_NEW] = "new",
2051 [NVME_CTRL_LIVE] = "live",
2052 [NVME_CTRL_RESETTING] = "resetting",
2053 [NVME_CTRL_RECONNECTING]= "reconnecting",
2054 [NVME_CTRL_DELETING] = "deleting",
2055 [NVME_CTRL_DEAD] = "dead",
2056 };
2057
2058 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2059 state_name[ctrl->state])
2060 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2061
2062 return sprintf(buf, "unknown state\n");
2063 }
2064
2065 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2066
2067 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2068 struct device_attribute *attr,
2069 char *buf)
2070 {
2071 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2072
2073 return snprintf(buf, PAGE_SIZE, "%s\n",
2074 ctrl->ops->get_subsysnqn(ctrl));
2075 }
2076 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2077
2078 static ssize_t nvme_sysfs_show_address(struct device *dev,
2079 struct device_attribute *attr,
2080 char *buf)
2081 {
2082 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2083
2084 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2085 }
2086 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2087
2088 static struct attribute *nvme_dev_attrs[] = {
2089 &dev_attr_reset_controller.attr,
2090 &dev_attr_rescan_controller.attr,
2091 &dev_attr_model.attr,
2092 &dev_attr_serial.attr,
2093 &dev_attr_firmware_rev.attr,
2094 &dev_attr_cntlid.attr,
2095 &dev_attr_delete_controller.attr,
2096 &dev_attr_transport.attr,
2097 &dev_attr_subsysnqn.attr,
2098 &dev_attr_address.attr,
2099 &dev_attr_state.attr,
2100 NULL
2101 };
2102
2103 #define CHECK_ATTR(ctrl, a, name) \
2104 if ((a) == &dev_attr_##name.attr && \
2105 !(ctrl)->ops->get_##name) \
2106 return 0
2107
2108 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2109 struct attribute *a, int n)
2110 {
2111 struct device *dev = container_of(kobj, struct device, kobj);
2112 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2113
2114 if (a == &dev_attr_delete_controller.attr) {
2115 if (!ctrl->ops->delete_ctrl)
2116 return 0;
2117 }
2118
2119 CHECK_ATTR(ctrl, a, subsysnqn);
2120 CHECK_ATTR(ctrl, a, address);
2121
2122 return a->mode;
2123 }
2124
2125 static struct attribute_group nvme_dev_attrs_group = {
2126 .attrs = nvme_dev_attrs,
2127 .is_visible = nvme_dev_attrs_are_visible,
2128 };
2129
2130 static const struct attribute_group *nvme_dev_attr_groups[] = {
2131 &nvme_dev_attrs_group,
2132 NULL,
2133 };
2134
2135 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2136 {
2137 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2138 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2139
2140 return nsa->ns_id - nsb->ns_id;
2141 }
2142
2143 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2144 {
2145 struct nvme_ns *ns, *ret = NULL;
2146
2147 mutex_lock(&ctrl->namespaces_mutex);
2148 list_for_each_entry(ns, &ctrl->namespaces, list) {
2149 if (ns->ns_id == nsid) {
2150 kref_get(&ns->kref);
2151 ret = ns;
2152 break;
2153 }
2154 if (ns->ns_id > nsid)
2155 break;
2156 }
2157 mutex_unlock(&ctrl->namespaces_mutex);
2158 return ret;
2159 }
2160
2161 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2162 {
2163 struct nvme_ns *ns;
2164 struct gendisk *disk;
2165 struct nvme_id_ns *id;
2166 char disk_name[DISK_NAME_LEN];
2167 int node = dev_to_node(ctrl->dev);
2168
2169 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2170 if (!ns)
2171 return;
2172
2173 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2174 if (ns->instance < 0)
2175 goto out_free_ns;
2176
2177 ns->queue = blk_mq_init_queue(ctrl->tagset);
2178 if (IS_ERR(ns->queue))
2179 goto out_release_instance;
2180 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2181 ns->queue->queuedata = ns;
2182 ns->ctrl = ctrl;
2183
2184 kref_init(&ns->kref);
2185 ns->ns_id = nsid;
2186 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2187
2188 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2189 nvme_set_queue_limits(ctrl, ns->queue);
2190
2191 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2192
2193 if (nvme_revalidate_ns(ns, &id))
2194 goto out_free_queue;
2195
2196 if (nvme_nvm_ns_supported(ns, id) &&
2197 nvme_nvm_register(ns, disk_name, node)) {
2198 dev_warn(ctrl->device, "%s: LightNVM init failure\n", __func__);
2199 goto out_free_id;
2200 }
2201
2202 disk = alloc_disk_node(0, node);
2203 if (!disk)
2204 goto out_free_id;
2205
2206 disk->fops = &nvme_fops;
2207 disk->private_data = ns;
2208 disk->queue = ns->queue;
2209 disk->flags = GENHD_FL_EXT_DEVT;
2210 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2211 ns->disk = disk;
2212
2213 __nvme_revalidate_disk(disk, id);
2214
2215 mutex_lock(&ctrl->namespaces_mutex);
2216 list_add_tail(&ns->list, &ctrl->namespaces);
2217 mutex_unlock(&ctrl->namespaces_mutex);
2218
2219 kref_get(&ctrl->kref);
2220
2221 kfree(id);
2222
2223 device_add_disk(ctrl->device, ns->disk);
2224 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2225 &nvme_ns_attr_group))
2226 pr_warn("%s: failed to create sysfs group for identification\n",
2227 ns->disk->disk_name);
2228 if (ns->ndev && nvme_nvm_register_sysfs(ns))
2229 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2230 ns->disk->disk_name);
2231 return;
2232 out_free_id:
2233 kfree(id);
2234 out_free_queue:
2235 blk_cleanup_queue(ns->queue);
2236 out_release_instance:
2237 ida_simple_remove(&ctrl->ns_ida, ns->instance);
2238 out_free_ns:
2239 kfree(ns);
2240 }
2241
2242 static void nvme_ns_remove(struct nvme_ns *ns)
2243 {
2244 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2245 return;
2246
2247 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2248 if (blk_get_integrity(ns->disk))
2249 blk_integrity_unregister(ns->disk);
2250 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2251 &nvme_ns_attr_group);
2252 if (ns->ndev)
2253 nvme_nvm_unregister_sysfs(ns);
2254 del_gendisk(ns->disk);
2255 blk_cleanup_queue(ns->queue);
2256 }
2257
2258 mutex_lock(&ns->ctrl->namespaces_mutex);
2259 list_del_init(&ns->list);
2260 mutex_unlock(&ns->ctrl->namespaces_mutex);
2261
2262 nvme_put_ns(ns);
2263 }
2264
2265 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2266 {
2267 struct nvme_ns *ns;
2268
2269 ns = nvme_find_get_ns(ctrl, nsid);
2270 if (ns) {
2271 if (ns->disk && revalidate_disk(ns->disk))
2272 nvme_ns_remove(ns);
2273 nvme_put_ns(ns);
2274 } else
2275 nvme_alloc_ns(ctrl, nsid);
2276 }
2277
2278 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2279 unsigned nsid)
2280 {
2281 struct nvme_ns *ns, *next;
2282
2283 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2284 if (ns->ns_id > nsid)
2285 nvme_ns_remove(ns);
2286 }
2287 }
2288
2289 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2290 {
2291 struct nvme_ns *ns;
2292 __le32 *ns_list;
2293 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2294 int ret = 0;
2295
2296 ns_list = kzalloc(0x1000, GFP_KERNEL);
2297 if (!ns_list)
2298 return -ENOMEM;
2299
2300 for (i = 0; i < num_lists; i++) {
2301 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2302 if (ret)
2303 goto free;
2304
2305 for (j = 0; j < min(nn, 1024U); j++) {
2306 nsid = le32_to_cpu(ns_list[j]);
2307 if (!nsid)
2308 goto out;
2309
2310 nvme_validate_ns(ctrl, nsid);
2311
2312 while (++prev < nsid) {
2313 ns = nvme_find_get_ns(ctrl, prev);
2314 if (ns) {
2315 nvme_ns_remove(ns);
2316 nvme_put_ns(ns);
2317 }
2318 }
2319 }
2320 nn -= j;
2321 }
2322 out:
2323 nvme_remove_invalid_namespaces(ctrl, prev);
2324 free:
2325 kfree(ns_list);
2326 return ret;
2327 }
2328
2329 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2330 {
2331 unsigned i;
2332
2333 for (i = 1; i <= nn; i++)
2334 nvme_validate_ns(ctrl, i);
2335
2336 nvme_remove_invalid_namespaces(ctrl, nn);
2337 }
2338
2339 static void nvme_scan_work(struct work_struct *work)
2340 {
2341 struct nvme_ctrl *ctrl =
2342 container_of(work, struct nvme_ctrl, scan_work);
2343 struct nvme_id_ctrl *id;
2344 unsigned nn;
2345
2346 if (ctrl->state != NVME_CTRL_LIVE)
2347 return;
2348
2349 if (nvme_identify_ctrl(ctrl, &id))
2350 return;
2351
2352 nn = le32_to_cpu(id->nn);
2353 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2354 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2355 if (!nvme_scan_ns_list(ctrl, nn))
2356 goto done;
2357 }
2358 nvme_scan_ns_sequential(ctrl, nn);
2359 done:
2360 mutex_lock(&ctrl->namespaces_mutex);
2361 list_sort(NULL, &ctrl->namespaces, ns_cmp);
2362 mutex_unlock(&ctrl->namespaces_mutex);
2363 kfree(id);
2364 }
2365
2366 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2367 {
2368 /*
2369 * Do not queue new scan work when a controller is reset during
2370 * removal.
2371 */
2372 if (ctrl->state == NVME_CTRL_LIVE)
2373 queue_work(nvme_wq, &ctrl->scan_work);
2374 }
2375 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2376
2377 /*
2378 * This function iterates the namespace list unlocked to allow recovery from
2379 * controller failure. It is up to the caller to ensure the namespace list is
2380 * not modified by scan work while this function is executing.
2381 */
2382 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2383 {
2384 struct nvme_ns *ns, *next;
2385
2386 /*
2387 * The dead states indicates the controller was not gracefully
2388 * disconnected. In that case, we won't be able to flush any data while
2389 * removing the namespaces' disks; fail all the queues now to avoid
2390 * potentially having to clean up the failed sync later.
2391 */
2392 if (ctrl->state == NVME_CTRL_DEAD)
2393 nvme_kill_queues(ctrl);
2394
2395 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2396 nvme_ns_remove(ns);
2397 }
2398 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2399
2400 static void nvme_async_event_work(struct work_struct *work)
2401 {
2402 struct nvme_ctrl *ctrl =
2403 container_of(work, struct nvme_ctrl, async_event_work);
2404
2405 spin_lock_irq(&ctrl->lock);
2406 while (ctrl->event_limit > 0) {
2407 int aer_idx = --ctrl->event_limit;
2408
2409 spin_unlock_irq(&ctrl->lock);
2410 ctrl->ops->submit_async_event(ctrl, aer_idx);
2411 spin_lock_irq(&ctrl->lock);
2412 }
2413 spin_unlock_irq(&ctrl->lock);
2414 }
2415
2416 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2417 union nvme_result *res)
2418 {
2419 u32 result = le32_to_cpu(res->u32);
2420 bool done = true;
2421
2422 switch (le16_to_cpu(status) >> 1) {
2423 case NVME_SC_SUCCESS:
2424 done = false;
2425 /*FALLTHRU*/
2426 case NVME_SC_ABORT_REQ:
2427 ++ctrl->event_limit;
2428 queue_work(nvme_wq, &ctrl->async_event_work);
2429 break;
2430 default:
2431 break;
2432 }
2433
2434 if (done)
2435 return;
2436
2437 switch (result & 0xff07) {
2438 case NVME_AER_NOTICE_NS_CHANGED:
2439 dev_info(ctrl->device, "rescanning\n");
2440 nvme_queue_scan(ctrl);
2441 break;
2442 default:
2443 dev_warn(ctrl->device, "async event result %08x\n", result);
2444 }
2445 }
2446 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2447
2448 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2449 {
2450 ctrl->event_limit = NVME_NR_AERS;
2451 queue_work(nvme_wq, &ctrl->async_event_work);
2452 }
2453 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2454
2455 static DEFINE_IDA(nvme_instance_ida);
2456
2457 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2458 {
2459 int instance, error;
2460
2461 do {
2462 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2463 return -ENODEV;
2464
2465 spin_lock(&dev_list_lock);
2466 error = ida_get_new(&nvme_instance_ida, &instance);
2467 spin_unlock(&dev_list_lock);
2468 } while (error == -EAGAIN);
2469
2470 if (error)
2471 return -ENODEV;
2472
2473 ctrl->instance = instance;
2474 return 0;
2475 }
2476
2477 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2478 {
2479 spin_lock(&dev_list_lock);
2480 ida_remove(&nvme_instance_ida, ctrl->instance);
2481 spin_unlock(&dev_list_lock);
2482 }
2483
2484 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2485 {
2486 flush_work(&ctrl->async_event_work);
2487 flush_work(&ctrl->scan_work);
2488 nvme_remove_namespaces(ctrl);
2489
2490 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2491
2492 spin_lock(&dev_list_lock);
2493 list_del(&ctrl->node);
2494 spin_unlock(&dev_list_lock);
2495 }
2496 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2497
2498 static void nvme_free_ctrl(struct kref *kref)
2499 {
2500 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2501
2502 put_device(ctrl->device);
2503 nvme_release_instance(ctrl);
2504 ida_destroy(&ctrl->ns_ida);
2505
2506 ctrl->ops->free_ctrl(ctrl);
2507 }
2508
2509 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2510 {
2511 kref_put(&ctrl->kref, nvme_free_ctrl);
2512 }
2513 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2514
2515 /*
2516 * Initialize a NVMe controller structures. This needs to be called during
2517 * earliest initialization so that we have the initialized structured around
2518 * during probing.
2519 */
2520 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2521 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2522 {
2523 int ret;
2524
2525 ctrl->state = NVME_CTRL_NEW;
2526 spin_lock_init(&ctrl->lock);
2527 INIT_LIST_HEAD(&ctrl->namespaces);
2528 mutex_init(&ctrl->namespaces_mutex);
2529 kref_init(&ctrl->kref);
2530 ctrl->dev = dev;
2531 ctrl->ops = ops;
2532 ctrl->quirks = quirks;
2533 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2534 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2535
2536 ret = nvme_set_instance(ctrl);
2537 if (ret)
2538 goto out;
2539
2540 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2541 MKDEV(nvme_char_major, ctrl->instance),
2542 ctrl, nvme_dev_attr_groups,
2543 "nvme%d", ctrl->instance);
2544 if (IS_ERR(ctrl->device)) {
2545 ret = PTR_ERR(ctrl->device);
2546 goto out_release_instance;
2547 }
2548 get_device(ctrl->device);
2549 ida_init(&ctrl->ns_ida);
2550
2551 spin_lock(&dev_list_lock);
2552 list_add_tail(&ctrl->node, &nvme_ctrl_list);
2553 spin_unlock(&dev_list_lock);
2554
2555 /*
2556 * Initialize latency tolerance controls. The sysfs files won't
2557 * be visible to userspace unless the device actually supports APST.
2558 */
2559 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2560 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2561 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2562
2563 return 0;
2564 out_release_instance:
2565 nvme_release_instance(ctrl);
2566 out:
2567 return ret;
2568 }
2569 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2570
2571 /**
2572 * nvme_kill_queues(): Ends all namespace queues
2573 * @ctrl: the dead controller that needs to end
2574 *
2575 * Call this function when the driver determines it is unable to get the
2576 * controller in a state capable of servicing IO.
2577 */
2578 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2579 {
2580 struct nvme_ns *ns;
2581
2582 mutex_lock(&ctrl->namespaces_mutex);
2583
2584 /* Forcibly start all queues to avoid having stuck requests */
2585 blk_mq_start_hw_queues(ctrl->admin_q);
2586
2587 list_for_each_entry(ns, &ctrl->namespaces, list) {
2588 /*
2589 * Revalidating a dead namespace sets capacity to 0. This will
2590 * end buffered writers dirtying pages that can't be synced.
2591 */
2592 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2593 continue;
2594 revalidate_disk(ns->disk);
2595 blk_set_queue_dying(ns->queue);
2596
2597 /*
2598 * Forcibly start all queues to avoid having stuck requests.
2599 * Note that we must ensure the queues are not stopped
2600 * when the final removal happens.
2601 */
2602 blk_mq_start_hw_queues(ns->queue);
2603
2604 /* draining requests in requeue list */
2605 blk_mq_kick_requeue_list(ns->queue);
2606 }
2607 mutex_unlock(&ctrl->namespaces_mutex);
2608 }
2609 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2610
2611 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2612 {
2613 struct nvme_ns *ns;
2614
2615 mutex_lock(&ctrl->namespaces_mutex);
2616 list_for_each_entry(ns, &ctrl->namespaces, list)
2617 blk_mq_unfreeze_queue(ns->queue);
2618 mutex_unlock(&ctrl->namespaces_mutex);
2619 }
2620 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2621
2622 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2623 {
2624 struct nvme_ns *ns;
2625
2626 mutex_lock(&ctrl->namespaces_mutex);
2627 list_for_each_entry(ns, &ctrl->namespaces, list) {
2628 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2629 if (timeout <= 0)
2630 break;
2631 }
2632 mutex_unlock(&ctrl->namespaces_mutex);
2633 }
2634 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2635
2636 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2637 {
2638 struct nvme_ns *ns;
2639
2640 mutex_lock(&ctrl->namespaces_mutex);
2641 list_for_each_entry(ns, &ctrl->namespaces, list)
2642 blk_mq_freeze_queue_wait(ns->queue);
2643 mutex_unlock(&ctrl->namespaces_mutex);
2644 }
2645 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2646
2647 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2648 {
2649 struct nvme_ns *ns;
2650
2651 mutex_lock(&ctrl->namespaces_mutex);
2652 list_for_each_entry(ns, &ctrl->namespaces, list)
2653 blk_freeze_queue_start(ns->queue);
2654 mutex_unlock(&ctrl->namespaces_mutex);
2655 }
2656 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2657
2658 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2659 {
2660 struct nvme_ns *ns;
2661
2662 mutex_lock(&ctrl->namespaces_mutex);
2663 list_for_each_entry(ns, &ctrl->namespaces, list)
2664 blk_mq_quiesce_queue(ns->queue);
2665 mutex_unlock(&ctrl->namespaces_mutex);
2666 }
2667 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2668
2669 void nvme_start_queues(struct nvme_ctrl *ctrl)
2670 {
2671 struct nvme_ns *ns;
2672
2673 mutex_lock(&ctrl->namespaces_mutex);
2674 list_for_each_entry(ns, &ctrl->namespaces, list) {
2675 blk_mq_unquiesce_queue(ns->queue);
2676 blk_mq_kick_requeue_list(ns->queue);
2677 }
2678 mutex_unlock(&ctrl->namespaces_mutex);
2679 }
2680 EXPORT_SYMBOL_GPL(nvme_start_queues);
2681
2682 int __init nvme_core_init(void)
2683 {
2684 int result;
2685
2686 nvme_wq = alloc_workqueue("nvme-wq",
2687 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2688 if (!nvme_wq)
2689 return -ENOMEM;
2690
2691 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2692 &nvme_dev_fops);
2693 if (result < 0)
2694 goto destroy_wq;
2695 else if (result > 0)
2696 nvme_char_major = result;
2697
2698 nvme_class = class_create(THIS_MODULE, "nvme");
2699 if (IS_ERR(nvme_class)) {
2700 result = PTR_ERR(nvme_class);
2701 goto unregister_chrdev;
2702 }
2703
2704 return 0;
2705
2706 unregister_chrdev:
2707 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2708 destroy_wq:
2709 destroy_workqueue(nvme_wq);
2710 return result;
2711 }
2712
2713 void nvme_core_exit(void)
2714 {
2715 class_destroy(nvme_class);
2716 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2717 destroy_workqueue(nvme_wq);
2718 }
2719
2720 MODULE_LICENSE("GPL");
2721 MODULE_VERSION("1.0");
2722 module_init(nvme_core_init);
2723 module_exit(nvme_core_exit);