]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/core.c
nvme/host: Add missing blk_integrity tag_size + flags assignments
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58
59 static struct class *nvme_class;
60
61 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
62 enum nvme_ctrl_state new_state)
63 {
64 enum nvme_ctrl_state old_state = ctrl->state;
65 bool changed = false;
66
67 spin_lock_irq(&ctrl->lock);
68 switch (new_state) {
69 case NVME_CTRL_LIVE:
70 switch (old_state) {
71 case NVME_CTRL_RESETTING:
72 changed = true;
73 /* FALLTHRU */
74 default:
75 break;
76 }
77 break;
78 case NVME_CTRL_RESETTING:
79 switch (old_state) {
80 case NVME_CTRL_NEW:
81 case NVME_CTRL_LIVE:
82 changed = true;
83 /* FALLTHRU */
84 default:
85 break;
86 }
87 break;
88 case NVME_CTRL_DELETING:
89 switch (old_state) {
90 case NVME_CTRL_LIVE:
91 case NVME_CTRL_RESETTING:
92 changed = true;
93 /* FALLTHRU */
94 default:
95 break;
96 }
97 break;
98 case NVME_CTRL_DEAD:
99 switch (old_state) {
100 case NVME_CTRL_DELETING:
101 changed = true;
102 /* FALLTHRU */
103 default:
104 break;
105 }
106 break;
107 default:
108 break;
109 }
110 spin_unlock_irq(&ctrl->lock);
111
112 if (changed)
113 ctrl->state = new_state;
114
115 return changed;
116 }
117 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
118
119 static void nvme_free_ns(struct kref *kref)
120 {
121 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
122
123 if (ns->type == NVME_NS_LIGHTNVM)
124 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
125
126 spin_lock(&dev_list_lock);
127 ns->disk->private_data = NULL;
128 spin_unlock(&dev_list_lock);
129
130 put_disk(ns->disk);
131 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
132 nvme_put_ctrl(ns->ctrl);
133 kfree(ns);
134 }
135
136 static void nvme_put_ns(struct nvme_ns *ns)
137 {
138 kref_put(&ns->kref, nvme_free_ns);
139 }
140
141 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
142 {
143 struct nvme_ns *ns;
144
145 spin_lock(&dev_list_lock);
146 ns = disk->private_data;
147 if (ns) {
148 if (!kref_get_unless_zero(&ns->kref))
149 goto fail;
150 if (!try_module_get(ns->ctrl->ops->module))
151 goto fail_put_ns;
152 }
153 spin_unlock(&dev_list_lock);
154
155 return ns;
156
157 fail_put_ns:
158 kref_put(&ns->kref, nvme_free_ns);
159 fail:
160 spin_unlock(&dev_list_lock);
161 return NULL;
162 }
163
164 void nvme_requeue_req(struct request *req)
165 {
166 unsigned long flags;
167
168 blk_mq_requeue_request(req);
169 spin_lock_irqsave(req->q->queue_lock, flags);
170 if (!blk_queue_stopped(req->q))
171 blk_mq_kick_requeue_list(req->q);
172 spin_unlock_irqrestore(req->q->queue_lock, flags);
173 }
174 EXPORT_SYMBOL_GPL(nvme_requeue_req);
175
176 struct request *nvme_alloc_request(struct request_queue *q,
177 struct nvme_command *cmd, unsigned int flags)
178 {
179 bool write = cmd->common.opcode & 1;
180 struct request *req;
181
182 req = blk_mq_alloc_request(q, write, flags);
183 if (IS_ERR(req))
184 return req;
185
186 req->cmd_type = REQ_TYPE_DRV_PRIV;
187 req->cmd_flags |= REQ_FAILFAST_DRIVER;
188 req->__data_len = 0;
189 req->__sector = (sector_t) -1;
190 req->bio = req->biotail = NULL;
191
192 req->cmd = (unsigned char *)cmd;
193 req->cmd_len = sizeof(struct nvme_command);
194
195 return req;
196 }
197 EXPORT_SYMBOL_GPL(nvme_alloc_request);
198
199 static inline void nvme_setup_flush(struct nvme_ns *ns,
200 struct nvme_command *cmnd)
201 {
202 memset(cmnd, 0, sizeof(*cmnd));
203 cmnd->common.opcode = nvme_cmd_flush;
204 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
205 }
206
207 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
208 struct nvme_command *cmnd)
209 {
210 struct nvme_dsm_range *range;
211 struct page *page;
212 int offset;
213 unsigned int nr_bytes = blk_rq_bytes(req);
214
215 range = kmalloc(sizeof(*range), GFP_ATOMIC);
216 if (!range)
217 return BLK_MQ_RQ_QUEUE_BUSY;
218
219 range->cattr = cpu_to_le32(0);
220 range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
221 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
222
223 memset(cmnd, 0, sizeof(*cmnd));
224 cmnd->dsm.opcode = nvme_cmd_dsm;
225 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
226 cmnd->dsm.nr = 0;
227 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
228
229 req->completion_data = range;
230 page = virt_to_page(range);
231 offset = offset_in_page(range);
232 blk_add_request_payload(req, page, offset, sizeof(*range));
233
234 /*
235 * we set __data_len back to the size of the area to be discarded
236 * on disk. This allows us to report completion on the full amount
237 * of blocks described by the request.
238 */
239 req->__data_len = nr_bytes;
240
241 return 0;
242 }
243
244 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
245 struct nvme_command *cmnd)
246 {
247 u16 control = 0;
248 u32 dsmgmt = 0;
249
250 if (req->cmd_flags & REQ_FUA)
251 control |= NVME_RW_FUA;
252 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
253 control |= NVME_RW_LR;
254
255 if (req->cmd_flags & REQ_RAHEAD)
256 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
257
258 memset(cmnd, 0, sizeof(*cmnd));
259 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
260 cmnd->rw.command_id = req->tag;
261 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
262 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
263 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
264
265 if (ns->ms) {
266 switch (ns->pi_type) {
267 case NVME_NS_DPS_PI_TYPE3:
268 control |= NVME_RW_PRINFO_PRCHK_GUARD;
269 break;
270 case NVME_NS_DPS_PI_TYPE1:
271 case NVME_NS_DPS_PI_TYPE2:
272 control |= NVME_RW_PRINFO_PRCHK_GUARD |
273 NVME_RW_PRINFO_PRCHK_REF;
274 cmnd->rw.reftag = cpu_to_le32(
275 nvme_block_nr(ns, blk_rq_pos(req)));
276 break;
277 }
278 if (!blk_integrity_rq(req))
279 control |= NVME_RW_PRINFO_PRACT;
280 }
281
282 cmnd->rw.control = cpu_to_le16(control);
283 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
284 }
285
286 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
287 struct nvme_command *cmd)
288 {
289 int ret = 0;
290
291 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
292 memcpy(cmd, req->cmd, sizeof(*cmd));
293 else if (req->cmd_flags & REQ_FLUSH)
294 nvme_setup_flush(ns, cmd);
295 else if (req->cmd_flags & REQ_DISCARD)
296 ret = nvme_setup_discard(ns, req, cmd);
297 else
298 nvme_setup_rw(ns, req, cmd);
299
300 return ret;
301 }
302 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
303
304 /*
305 * Returns 0 on success. If the result is negative, it's a Linux error code;
306 * if the result is positive, it's an NVM Express status code
307 */
308 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
309 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
310 unsigned timeout)
311 {
312 struct request *req;
313 int ret;
314
315 req = nvme_alloc_request(q, cmd, 0);
316 if (IS_ERR(req))
317 return PTR_ERR(req);
318
319 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
320 req->special = cqe;
321
322 if (buffer && bufflen) {
323 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
324 if (ret)
325 goto out;
326 }
327
328 blk_execute_rq(req->q, NULL, req, 0);
329 ret = req->errors;
330 out:
331 blk_mq_free_request(req);
332 return ret;
333 }
334
335 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
336 void *buffer, unsigned bufflen)
337 {
338 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
339 }
340 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
341
342 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
343 void __user *ubuffer, unsigned bufflen,
344 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
345 u32 *result, unsigned timeout)
346 {
347 bool write = cmd->common.opcode & 1;
348 struct nvme_completion cqe;
349 struct nvme_ns *ns = q->queuedata;
350 struct gendisk *disk = ns ? ns->disk : NULL;
351 struct request *req;
352 struct bio *bio = NULL;
353 void *meta = NULL;
354 int ret;
355
356 req = nvme_alloc_request(q, cmd, 0);
357 if (IS_ERR(req))
358 return PTR_ERR(req);
359
360 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
361 req->special = &cqe;
362
363 if (ubuffer && bufflen) {
364 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
365 GFP_KERNEL);
366 if (ret)
367 goto out;
368 bio = req->bio;
369
370 if (!disk)
371 goto submit;
372 bio->bi_bdev = bdget_disk(disk, 0);
373 if (!bio->bi_bdev) {
374 ret = -ENODEV;
375 goto out_unmap;
376 }
377
378 if (meta_buffer && meta_len) {
379 struct bio_integrity_payload *bip;
380
381 meta = kmalloc(meta_len, GFP_KERNEL);
382 if (!meta) {
383 ret = -ENOMEM;
384 goto out_unmap;
385 }
386
387 if (write) {
388 if (copy_from_user(meta, meta_buffer,
389 meta_len)) {
390 ret = -EFAULT;
391 goto out_free_meta;
392 }
393 }
394
395 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
396 if (IS_ERR(bip)) {
397 ret = PTR_ERR(bip);
398 goto out_free_meta;
399 }
400
401 bip->bip_iter.bi_size = meta_len;
402 bip->bip_iter.bi_sector = meta_seed;
403
404 ret = bio_integrity_add_page(bio, virt_to_page(meta),
405 meta_len, offset_in_page(meta));
406 if (ret != meta_len) {
407 ret = -ENOMEM;
408 goto out_free_meta;
409 }
410 }
411 }
412 submit:
413 blk_execute_rq(req->q, disk, req, 0);
414 ret = req->errors;
415 if (result)
416 *result = le32_to_cpu(cqe.result);
417 if (meta && !ret && !write) {
418 if (copy_to_user(meta_buffer, meta, meta_len))
419 ret = -EFAULT;
420 }
421 out_free_meta:
422 kfree(meta);
423 out_unmap:
424 if (bio) {
425 if (disk && bio->bi_bdev)
426 bdput(bio->bi_bdev);
427 blk_rq_unmap_user(bio);
428 }
429 out:
430 blk_mq_free_request(req);
431 return ret;
432 }
433
434 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
435 void __user *ubuffer, unsigned bufflen, u32 *result,
436 unsigned timeout)
437 {
438 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
439 result, timeout);
440 }
441
442 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
443 {
444 struct nvme_command c = { };
445 int error;
446
447 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
448 c.identify.opcode = nvme_admin_identify;
449 c.identify.cns = cpu_to_le32(1);
450
451 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
452 if (!*id)
453 return -ENOMEM;
454
455 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
456 sizeof(struct nvme_id_ctrl));
457 if (error)
458 kfree(*id);
459 return error;
460 }
461
462 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
463 {
464 struct nvme_command c = { };
465
466 c.identify.opcode = nvme_admin_identify;
467 c.identify.cns = cpu_to_le32(2);
468 c.identify.nsid = cpu_to_le32(nsid);
469 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
470 }
471
472 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
473 struct nvme_id_ns **id)
474 {
475 struct nvme_command c = { };
476 int error;
477
478 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
479 c.identify.opcode = nvme_admin_identify,
480 c.identify.nsid = cpu_to_le32(nsid),
481
482 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
483 if (!*id)
484 return -ENOMEM;
485
486 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
487 sizeof(struct nvme_id_ns));
488 if (error)
489 kfree(*id);
490 return error;
491 }
492
493 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
494 dma_addr_t dma_addr, u32 *result)
495 {
496 struct nvme_command c;
497 struct nvme_completion cqe;
498 int ret;
499
500 memset(&c, 0, sizeof(c));
501 c.features.opcode = nvme_admin_get_features;
502 c.features.nsid = cpu_to_le32(nsid);
503 c.features.prp1 = cpu_to_le64(dma_addr);
504 c.features.fid = cpu_to_le32(fid);
505
506 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
507 if (ret >= 0)
508 *result = le32_to_cpu(cqe.result);
509 return ret;
510 }
511
512 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
513 dma_addr_t dma_addr, u32 *result)
514 {
515 struct nvme_command c;
516 struct nvme_completion cqe;
517 int ret;
518
519 memset(&c, 0, sizeof(c));
520 c.features.opcode = nvme_admin_set_features;
521 c.features.prp1 = cpu_to_le64(dma_addr);
522 c.features.fid = cpu_to_le32(fid);
523 c.features.dword11 = cpu_to_le32(dword11);
524
525 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
526 if (ret >= 0)
527 *result = le32_to_cpu(cqe.result);
528 return ret;
529 }
530
531 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
532 {
533 struct nvme_command c = { };
534 int error;
535
536 c.common.opcode = nvme_admin_get_log_page,
537 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
538 c.common.cdw10[0] = cpu_to_le32(
539 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
540 NVME_LOG_SMART),
541
542 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
543 if (!*log)
544 return -ENOMEM;
545
546 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
547 sizeof(struct nvme_smart_log));
548 if (error)
549 kfree(*log);
550 return error;
551 }
552
553 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
554 {
555 u32 q_count = (*count - 1) | ((*count - 1) << 16);
556 u32 result;
557 int status, nr_io_queues;
558
559 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
560 &result);
561 if (status)
562 return status;
563
564 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
565 *count = min(*count, nr_io_queues);
566 return 0;
567 }
568 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
569
570 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
571 {
572 struct nvme_user_io io;
573 struct nvme_command c;
574 unsigned length, meta_len;
575 void __user *metadata;
576
577 if (copy_from_user(&io, uio, sizeof(io)))
578 return -EFAULT;
579 if (io.flags)
580 return -EINVAL;
581
582 switch (io.opcode) {
583 case nvme_cmd_write:
584 case nvme_cmd_read:
585 case nvme_cmd_compare:
586 break;
587 default:
588 return -EINVAL;
589 }
590
591 length = (io.nblocks + 1) << ns->lba_shift;
592 meta_len = (io.nblocks + 1) * ns->ms;
593 metadata = (void __user *)(uintptr_t)io.metadata;
594
595 if (ns->ext) {
596 length += meta_len;
597 meta_len = 0;
598 } else if (meta_len) {
599 if ((io.metadata & 3) || !io.metadata)
600 return -EINVAL;
601 }
602
603 memset(&c, 0, sizeof(c));
604 c.rw.opcode = io.opcode;
605 c.rw.flags = io.flags;
606 c.rw.nsid = cpu_to_le32(ns->ns_id);
607 c.rw.slba = cpu_to_le64(io.slba);
608 c.rw.length = cpu_to_le16(io.nblocks);
609 c.rw.control = cpu_to_le16(io.control);
610 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
611 c.rw.reftag = cpu_to_le32(io.reftag);
612 c.rw.apptag = cpu_to_le16(io.apptag);
613 c.rw.appmask = cpu_to_le16(io.appmask);
614
615 return __nvme_submit_user_cmd(ns->queue, &c,
616 (void __user *)(uintptr_t)io.addr, length,
617 metadata, meta_len, io.slba, NULL, 0);
618 }
619
620 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
621 struct nvme_passthru_cmd __user *ucmd)
622 {
623 struct nvme_passthru_cmd cmd;
624 struct nvme_command c;
625 unsigned timeout = 0;
626 int status;
627
628 if (!capable(CAP_SYS_ADMIN))
629 return -EACCES;
630 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
631 return -EFAULT;
632 if (cmd.flags)
633 return -EINVAL;
634
635 memset(&c, 0, sizeof(c));
636 c.common.opcode = cmd.opcode;
637 c.common.flags = cmd.flags;
638 c.common.nsid = cpu_to_le32(cmd.nsid);
639 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
640 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
641 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
642 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
643 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
644 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
645 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
646 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
647
648 if (cmd.timeout_ms)
649 timeout = msecs_to_jiffies(cmd.timeout_ms);
650
651 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
652 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
653 &cmd.result, timeout);
654 if (status >= 0) {
655 if (put_user(cmd.result, &ucmd->result))
656 return -EFAULT;
657 }
658
659 return status;
660 }
661
662 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
663 unsigned int cmd, unsigned long arg)
664 {
665 struct nvme_ns *ns = bdev->bd_disk->private_data;
666
667 switch (cmd) {
668 case NVME_IOCTL_ID:
669 force_successful_syscall_return();
670 return ns->ns_id;
671 case NVME_IOCTL_ADMIN_CMD:
672 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
673 case NVME_IOCTL_IO_CMD:
674 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
675 case NVME_IOCTL_SUBMIT_IO:
676 return nvme_submit_io(ns, (void __user *)arg);
677 #ifdef CONFIG_BLK_DEV_NVME_SCSI
678 case SG_GET_VERSION_NUM:
679 return nvme_sg_get_version_num((void __user *)arg);
680 case SG_IO:
681 return nvme_sg_io(ns, (void __user *)arg);
682 #endif
683 default:
684 return -ENOTTY;
685 }
686 }
687
688 #ifdef CONFIG_COMPAT
689 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
690 unsigned int cmd, unsigned long arg)
691 {
692 switch (cmd) {
693 case SG_IO:
694 return -ENOIOCTLCMD;
695 }
696 return nvme_ioctl(bdev, mode, cmd, arg);
697 }
698 #else
699 #define nvme_compat_ioctl NULL
700 #endif
701
702 static int nvme_open(struct block_device *bdev, fmode_t mode)
703 {
704 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
705 }
706
707 static void nvme_release(struct gendisk *disk, fmode_t mode)
708 {
709 struct nvme_ns *ns = disk->private_data;
710
711 module_put(ns->ctrl->ops->module);
712 nvme_put_ns(ns);
713 }
714
715 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
716 {
717 /* some standard values */
718 geo->heads = 1 << 6;
719 geo->sectors = 1 << 5;
720 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
721 return 0;
722 }
723
724 #ifdef CONFIG_BLK_DEV_INTEGRITY
725 static void nvme_init_integrity(struct nvme_ns *ns)
726 {
727 struct blk_integrity integrity;
728
729 switch (ns->pi_type) {
730 case NVME_NS_DPS_PI_TYPE3:
731 integrity.profile = &t10_pi_type3_crc;
732 integrity.tag_size = sizeof(u16) + sizeof(u32);
733 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
734 break;
735 case NVME_NS_DPS_PI_TYPE1:
736 case NVME_NS_DPS_PI_TYPE2:
737 integrity.profile = &t10_pi_type1_crc;
738 integrity.tag_size = sizeof(u16);
739 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
740 break;
741 default:
742 integrity.profile = NULL;
743 break;
744 }
745 integrity.tuple_size = ns->ms;
746 blk_integrity_register(ns->disk, &integrity);
747 blk_queue_max_integrity_segments(ns->queue, 1);
748 }
749 #else
750 static void nvme_init_integrity(struct nvme_ns *ns)
751 {
752 }
753 #endif /* CONFIG_BLK_DEV_INTEGRITY */
754
755 static void nvme_config_discard(struct nvme_ns *ns)
756 {
757 struct nvme_ctrl *ctrl = ns->ctrl;
758 u32 logical_block_size = queue_logical_block_size(ns->queue);
759
760 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
761 ns->queue->limits.discard_zeroes_data = 1;
762 else
763 ns->queue->limits.discard_zeroes_data = 0;
764
765 ns->queue->limits.discard_alignment = logical_block_size;
766 ns->queue->limits.discard_granularity = logical_block_size;
767 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
768 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
769 }
770
771 static int nvme_revalidate_disk(struct gendisk *disk)
772 {
773 struct nvme_ns *ns = disk->private_data;
774 struct nvme_id_ns *id;
775 u8 lbaf, pi_type;
776 u16 old_ms;
777 unsigned short bs;
778
779 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
780 set_capacity(disk, 0);
781 return -ENODEV;
782 }
783 if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
784 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
785 __func__);
786 return -ENODEV;
787 }
788 if (id->ncap == 0) {
789 kfree(id);
790 return -ENODEV;
791 }
792
793 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
794 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
795 dev_warn(disk_to_dev(ns->disk),
796 "%s: LightNVM init failure\n", __func__);
797 kfree(id);
798 return -ENODEV;
799 }
800 ns->type = NVME_NS_LIGHTNVM;
801 }
802
803 if (ns->ctrl->vs >= NVME_VS(1, 1))
804 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
805 if (ns->ctrl->vs >= NVME_VS(1, 2))
806 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
807
808 old_ms = ns->ms;
809 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
810 ns->lba_shift = id->lbaf[lbaf].ds;
811 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
812 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
813
814 /*
815 * If identify namespace failed, use default 512 byte block size so
816 * block layer can use before failing read/write for 0 capacity.
817 */
818 if (ns->lba_shift == 0)
819 ns->lba_shift = 9;
820 bs = 1 << ns->lba_shift;
821 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
822 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
823 id->dps & NVME_NS_DPS_PI_MASK : 0;
824
825 blk_mq_freeze_queue(disk->queue);
826 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
827 ns->ms != old_ms ||
828 bs != queue_logical_block_size(disk->queue) ||
829 (ns->ms && ns->ext)))
830 blk_integrity_unregister(disk);
831
832 ns->pi_type = pi_type;
833 blk_queue_logical_block_size(ns->queue, bs);
834
835 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
836 nvme_init_integrity(ns);
837 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
838 set_capacity(disk, 0);
839 else
840 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
841
842 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
843 nvme_config_discard(ns);
844 blk_mq_unfreeze_queue(disk->queue);
845
846 kfree(id);
847 return 0;
848 }
849
850 static char nvme_pr_type(enum pr_type type)
851 {
852 switch (type) {
853 case PR_WRITE_EXCLUSIVE:
854 return 1;
855 case PR_EXCLUSIVE_ACCESS:
856 return 2;
857 case PR_WRITE_EXCLUSIVE_REG_ONLY:
858 return 3;
859 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
860 return 4;
861 case PR_WRITE_EXCLUSIVE_ALL_REGS:
862 return 5;
863 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
864 return 6;
865 default:
866 return 0;
867 }
868 };
869
870 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
871 u64 key, u64 sa_key, u8 op)
872 {
873 struct nvme_ns *ns = bdev->bd_disk->private_data;
874 struct nvme_command c;
875 u8 data[16] = { 0, };
876
877 put_unaligned_le64(key, &data[0]);
878 put_unaligned_le64(sa_key, &data[8]);
879
880 memset(&c, 0, sizeof(c));
881 c.common.opcode = op;
882 c.common.nsid = cpu_to_le32(ns->ns_id);
883 c.common.cdw10[0] = cpu_to_le32(cdw10);
884
885 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
886 }
887
888 static int nvme_pr_register(struct block_device *bdev, u64 old,
889 u64 new, unsigned flags)
890 {
891 u32 cdw10;
892
893 if (flags & ~PR_FL_IGNORE_KEY)
894 return -EOPNOTSUPP;
895
896 cdw10 = old ? 2 : 0;
897 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
898 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
899 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
900 }
901
902 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
903 enum pr_type type, unsigned flags)
904 {
905 u32 cdw10;
906
907 if (flags & ~PR_FL_IGNORE_KEY)
908 return -EOPNOTSUPP;
909
910 cdw10 = nvme_pr_type(type) << 8;
911 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
912 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
913 }
914
915 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
916 enum pr_type type, bool abort)
917 {
918 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
919 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
920 }
921
922 static int nvme_pr_clear(struct block_device *bdev, u64 key)
923 {
924 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
925 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
926 }
927
928 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
929 {
930 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
931 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
932 }
933
934 static const struct pr_ops nvme_pr_ops = {
935 .pr_register = nvme_pr_register,
936 .pr_reserve = nvme_pr_reserve,
937 .pr_release = nvme_pr_release,
938 .pr_preempt = nvme_pr_preempt,
939 .pr_clear = nvme_pr_clear,
940 };
941
942 static const struct block_device_operations nvme_fops = {
943 .owner = THIS_MODULE,
944 .ioctl = nvme_ioctl,
945 .compat_ioctl = nvme_compat_ioctl,
946 .open = nvme_open,
947 .release = nvme_release,
948 .getgeo = nvme_getgeo,
949 .revalidate_disk= nvme_revalidate_disk,
950 .pr_ops = &nvme_pr_ops,
951 };
952
953 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
954 {
955 unsigned long timeout =
956 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
957 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
958 int ret;
959
960 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
961 if ((csts & NVME_CSTS_RDY) == bit)
962 break;
963
964 msleep(100);
965 if (fatal_signal_pending(current))
966 return -EINTR;
967 if (time_after(jiffies, timeout)) {
968 dev_err(ctrl->device,
969 "Device not ready; aborting %s\n", enabled ?
970 "initialisation" : "reset");
971 return -ENODEV;
972 }
973 }
974
975 return ret;
976 }
977
978 /*
979 * If the device has been passed off to us in an enabled state, just clear
980 * the enabled bit. The spec says we should set the 'shutdown notification
981 * bits', but doing so may cause the device to complete commands to the
982 * admin queue ... and we don't know what memory that might be pointing at!
983 */
984 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
985 {
986 int ret;
987
988 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
989 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
990
991 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
992 if (ret)
993 return ret;
994 return nvme_wait_ready(ctrl, cap, false);
995 }
996 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
997
998 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
999 {
1000 /*
1001 * Default to a 4K page size, with the intention to update this
1002 * path in the future to accomodate architectures with differing
1003 * kernel and IO page sizes.
1004 */
1005 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1006 int ret;
1007
1008 if (page_shift < dev_page_min) {
1009 dev_err(ctrl->device,
1010 "Minimum device page size %u too large for host (%u)\n",
1011 1 << dev_page_min, 1 << page_shift);
1012 return -ENODEV;
1013 }
1014
1015 ctrl->page_size = 1 << page_shift;
1016
1017 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1018 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1019 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1020 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1021 ctrl->ctrl_config |= NVME_CC_ENABLE;
1022
1023 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1024 if (ret)
1025 return ret;
1026 return nvme_wait_ready(ctrl, cap, true);
1027 }
1028 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1029
1030 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1031 {
1032 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1033 u32 csts;
1034 int ret;
1035
1036 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1037 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1038
1039 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1040 if (ret)
1041 return ret;
1042
1043 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1044 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1045 break;
1046
1047 msleep(100);
1048 if (fatal_signal_pending(current))
1049 return -EINTR;
1050 if (time_after(jiffies, timeout)) {
1051 dev_err(ctrl->device,
1052 "Device shutdown incomplete; abort shutdown\n");
1053 return -ENODEV;
1054 }
1055 }
1056
1057 return ret;
1058 }
1059 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1060
1061 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1062 struct request_queue *q)
1063 {
1064 bool vwc = false;
1065
1066 if (ctrl->max_hw_sectors) {
1067 u32 max_segments =
1068 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1069
1070 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1071 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1072 }
1073 if (ctrl->stripe_size)
1074 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1075 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1076 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1077 vwc = true;
1078 blk_queue_write_cache(q, vwc, vwc);
1079 }
1080
1081 /*
1082 * Initialize the cached copies of the Identify data and various controller
1083 * register in our nvme_ctrl structure. This should be called as soon as
1084 * the admin queue is fully up and running.
1085 */
1086 int nvme_init_identify(struct nvme_ctrl *ctrl)
1087 {
1088 struct nvme_id_ctrl *id;
1089 u64 cap;
1090 int ret, page_shift;
1091
1092 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1093 if (ret) {
1094 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1095 return ret;
1096 }
1097
1098 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1099 if (ret) {
1100 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1101 return ret;
1102 }
1103 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1104
1105 if (ctrl->vs >= NVME_VS(1, 1))
1106 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1107
1108 ret = nvme_identify_ctrl(ctrl, &id);
1109 if (ret) {
1110 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1111 return -EIO;
1112 }
1113
1114 ctrl->vid = le16_to_cpu(id->vid);
1115 ctrl->oncs = le16_to_cpup(&id->oncs);
1116 atomic_set(&ctrl->abort_limit, id->acl + 1);
1117 ctrl->vwc = id->vwc;
1118 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1119 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1120 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1121 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1122 if (id->mdts)
1123 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1124 else
1125 ctrl->max_hw_sectors = UINT_MAX;
1126
1127 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1128 unsigned int max_hw_sectors;
1129
1130 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1131 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1132 if (ctrl->max_hw_sectors) {
1133 ctrl->max_hw_sectors = min(max_hw_sectors,
1134 ctrl->max_hw_sectors);
1135 } else {
1136 ctrl->max_hw_sectors = max_hw_sectors;
1137 }
1138 }
1139
1140 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1141
1142 kfree(id);
1143 return 0;
1144 }
1145 EXPORT_SYMBOL_GPL(nvme_init_identify);
1146
1147 static int nvme_dev_open(struct inode *inode, struct file *file)
1148 {
1149 struct nvme_ctrl *ctrl;
1150 int instance = iminor(inode);
1151 int ret = -ENODEV;
1152
1153 spin_lock(&dev_list_lock);
1154 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1155 if (ctrl->instance != instance)
1156 continue;
1157
1158 if (!ctrl->admin_q) {
1159 ret = -EWOULDBLOCK;
1160 break;
1161 }
1162 if (!kref_get_unless_zero(&ctrl->kref))
1163 break;
1164 file->private_data = ctrl;
1165 ret = 0;
1166 break;
1167 }
1168 spin_unlock(&dev_list_lock);
1169
1170 return ret;
1171 }
1172
1173 static int nvme_dev_release(struct inode *inode, struct file *file)
1174 {
1175 nvme_put_ctrl(file->private_data);
1176 return 0;
1177 }
1178
1179 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1180 {
1181 struct nvme_ns *ns;
1182 int ret;
1183
1184 mutex_lock(&ctrl->namespaces_mutex);
1185 if (list_empty(&ctrl->namespaces)) {
1186 ret = -ENOTTY;
1187 goto out_unlock;
1188 }
1189
1190 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1191 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1192 dev_warn(ctrl->device,
1193 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1194 ret = -EINVAL;
1195 goto out_unlock;
1196 }
1197
1198 dev_warn(ctrl->device,
1199 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1200 kref_get(&ns->kref);
1201 mutex_unlock(&ctrl->namespaces_mutex);
1202
1203 ret = nvme_user_cmd(ctrl, ns, argp);
1204 nvme_put_ns(ns);
1205 return ret;
1206
1207 out_unlock:
1208 mutex_unlock(&ctrl->namespaces_mutex);
1209 return ret;
1210 }
1211
1212 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1213 unsigned long arg)
1214 {
1215 struct nvme_ctrl *ctrl = file->private_data;
1216 void __user *argp = (void __user *)arg;
1217
1218 switch (cmd) {
1219 case NVME_IOCTL_ADMIN_CMD:
1220 return nvme_user_cmd(ctrl, NULL, argp);
1221 case NVME_IOCTL_IO_CMD:
1222 return nvme_dev_user_cmd(ctrl, argp);
1223 case NVME_IOCTL_RESET:
1224 dev_warn(ctrl->device, "resetting controller\n");
1225 return ctrl->ops->reset_ctrl(ctrl);
1226 case NVME_IOCTL_SUBSYS_RESET:
1227 return nvme_reset_subsystem(ctrl);
1228 case NVME_IOCTL_RESCAN:
1229 nvme_queue_scan(ctrl);
1230 return 0;
1231 default:
1232 return -ENOTTY;
1233 }
1234 }
1235
1236 static const struct file_operations nvme_dev_fops = {
1237 .owner = THIS_MODULE,
1238 .open = nvme_dev_open,
1239 .release = nvme_dev_release,
1240 .unlocked_ioctl = nvme_dev_ioctl,
1241 .compat_ioctl = nvme_dev_ioctl,
1242 };
1243
1244 static ssize_t nvme_sysfs_reset(struct device *dev,
1245 struct device_attribute *attr, const char *buf,
1246 size_t count)
1247 {
1248 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1249 int ret;
1250
1251 ret = ctrl->ops->reset_ctrl(ctrl);
1252 if (ret < 0)
1253 return ret;
1254 return count;
1255 }
1256 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1257
1258 static ssize_t nvme_sysfs_rescan(struct device *dev,
1259 struct device_attribute *attr, const char *buf,
1260 size_t count)
1261 {
1262 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1263
1264 nvme_queue_scan(ctrl);
1265 return count;
1266 }
1267 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1268
1269 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1270 char *buf)
1271 {
1272 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1273 struct nvme_ctrl *ctrl = ns->ctrl;
1274 int serial_len = sizeof(ctrl->serial);
1275 int model_len = sizeof(ctrl->model);
1276
1277 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1278 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1279
1280 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1281 return sprintf(buf, "eui.%8phN\n", ns->eui);
1282
1283 while (ctrl->serial[serial_len - 1] == ' ')
1284 serial_len--;
1285 while (ctrl->model[model_len - 1] == ' ')
1286 model_len--;
1287
1288 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1289 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1290 }
1291 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1292
1293 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1294 char *buf)
1295 {
1296 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1297 return sprintf(buf, "%pU\n", ns->uuid);
1298 }
1299 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1300
1301 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1302 char *buf)
1303 {
1304 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1305 return sprintf(buf, "%8phd\n", ns->eui);
1306 }
1307 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1308
1309 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1310 char *buf)
1311 {
1312 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1313 return sprintf(buf, "%d\n", ns->ns_id);
1314 }
1315 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1316
1317 static struct attribute *nvme_ns_attrs[] = {
1318 &dev_attr_wwid.attr,
1319 &dev_attr_uuid.attr,
1320 &dev_attr_eui.attr,
1321 &dev_attr_nsid.attr,
1322 NULL,
1323 };
1324
1325 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1326 struct attribute *a, int n)
1327 {
1328 struct device *dev = container_of(kobj, struct device, kobj);
1329 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1330
1331 if (a == &dev_attr_uuid.attr) {
1332 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1333 return 0;
1334 }
1335 if (a == &dev_attr_eui.attr) {
1336 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1337 return 0;
1338 }
1339 return a->mode;
1340 }
1341
1342 static const struct attribute_group nvme_ns_attr_group = {
1343 .attrs = nvme_ns_attrs,
1344 .is_visible = nvme_attrs_are_visible,
1345 };
1346
1347 #define nvme_show_str_function(field) \
1348 static ssize_t field##_show(struct device *dev, \
1349 struct device_attribute *attr, char *buf) \
1350 { \
1351 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1352 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1353 } \
1354 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1355
1356 #define nvme_show_int_function(field) \
1357 static ssize_t field##_show(struct device *dev, \
1358 struct device_attribute *attr, char *buf) \
1359 { \
1360 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1361 return sprintf(buf, "%d\n", ctrl->field); \
1362 } \
1363 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1364
1365 nvme_show_str_function(model);
1366 nvme_show_str_function(serial);
1367 nvme_show_str_function(firmware_rev);
1368 nvme_show_int_function(cntlid);
1369
1370 static struct attribute *nvme_dev_attrs[] = {
1371 &dev_attr_reset_controller.attr,
1372 &dev_attr_rescan_controller.attr,
1373 &dev_attr_model.attr,
1374 &dev_attr_serial.attr,
1375 &dev_attr_firmware_rev.attr,
1376 &dev_attr_cntlid.attr,
1377 NULL
1378 };
1379
1380 static struct attribute_group nvme_dev_attrs_group = {
1381 .attrs = nvme_dev_attrs,
1382 };
1383
1384 static const struct attribute_group *nvme_dev_attr_groups[] = {
1385 &nvme_dev_attrs_group,
1386 NULL,
1387 };
1388
1389 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1390 {
1391 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1392 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1393
1394 return nsa->ns_id - nsb->ns_id;
1395 }
1396
1397 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1398 {
1399 struct nvme_ns *ns;
1400
1401 lockdep_assert_held(&ctrl->namespaces_mutex);
1402
1403 list_for_each_entry(ns, &ctrl->namespaces, list) {
1404 if (ns->ns_id == nsid)
1405 return ns;
1406 if (ns->ns_id > nsid)
1407 break;
1408 }
1409 return NULL;
1410 }
1411
1412 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1413 {
1414 struct nvme_ns *ns;
1415 struct gendisk *disk;
1416 int node = dev_to_node(ctrl->dev);
1417
1418 lockdep_assert_held(&ctrl->namespaces_mutex);
1419
1420 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1421 if (!ns)
1422 return;
1423
1424 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1425 if (ns->instance < 0)
1426 goto out_free_ns;
1427
1428 ns->queue = blk_mq_init_queue(ctrl->tagset);
1429 if (IS_ERR(ns->queue))
1430 goto out_release_instance;
1431 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1432 ns->queue->queuedata = ns;
1433 ns->ctrl = ctrl;
1434
1435 disk = alloc_disk_node(0, node);
1436 if (!disk)
1437 goto out_free_queue;
1438
1439 kref_init(&ns->kref);
1440 ns->ns_id = nsid;
1441 ns->disk = disk;
1442 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1443
1444
1445 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1446 nvme_set_queue_limits(ctrl, ns->queue);
1447
1448 disk->major = nvme_major;
1449 disk->first_minor = 0;
1450 disk->fops = &nvme_fops;
1451 disk->private_data = ns;
1452 disk->queue = ns->queue;
1453 disk->driverfs_dev = ctrl->device;
1454 disk->flags = GENHD_FL_EXT_DEVT;
1455 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1456
1457 if (nvme_revalidate_disk(ns->disk))
1458 goto out_free_disk;
1459
1460 list_add_tail_rcu(&ns->list, &ctrl->namespaces);
1461 kref_get(&ctrl->kref);
1462 if (ns->type == NVME_NS_LIGHTNVM)
1463 return;
1464
1465 add_disk(ns->disk);
1466 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1467 &nvme_ns_attr_group))
1468 pr_warn("%s: failed to create sysfs group for identification\n",
1469 ns->disk->disk_name);
1470 return;
1471 out_free_disk:
1472 kfree(disk);
1473 out_free_queue:
1474 blk_cleanup_queue(ns->queue);
1475 out_release_instance:
1476 ida_simple_remove(&ctrl->ns_ida, ns->instance);
1477 out_free_ns:
1478 kfree(ns);
1479 }
1480
1481 static void nvme_ns_remove(struct nvme_ns *ns)
1482 {
1483 lockdep_assert_held(&ns->ctrl->namespaces_mutex);
1484
1485 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1486 return;
1487
1488 if (ns->disk->flags & GENHD_FL_UP) {
1489 if (blk_get_integrity(ns->disk))
1490 blk_integrity_unregister(ns->disk);
1491 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1492 &nvme_ns_attr_group);
1493 del_gendisk(ns->disk);
1494 blk_mq_abort_requeue_list(ns->queue);
1495 blk_cleanup_queue(ns->queue);
1496 }
1497 list_del_init(&ns->list);
1498 synchronize_rcu();
1499 nvme_put_ns(ns);
1500 }
1501
1502 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1503 {
1504 struct nvme_ns *ns;
1505
1506 ns = nvme_find_ns(ctrl, nsid);
1507 if (ns) {
1508 if (revalidate_disk(ns->disk))
1509 nvme_ns_remove(ns);
1510 } else
1511 nvme_alloc_ns(ctrl, nsid);
1512 }
1513
1514 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1515 {
1516 struct nvme_ns *ns;
1517 __le32 *ns_list;
1518 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1519 int ret = 0;
1520
1521 ns_list = kzalloc(0x1000, GFP_KERNEL);
1522 if (!ns_list)
1523 return -ENOMEM;
1524
1525 for (i = 0; i < num_lists; i++) {
1526 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1527 if (ret)
1528 goto out;
1529
1530 for (j = 0; j < min(nn, 1024U); j++) {
1531 nsid = le32_to_cpu(ns_list[j]);
1532 if (!nsid)
1533 goto out;
1534
1535 nvme_validate_ns(ctrl, nsid);
1536
1537 while (++prev < nsid) {
1538 ns = nvme_find_ns(ctrl, prev);
1539 if (ns)
1540 nvme_ns_remove(ns);
1541 }
1542 }
1543 nn -= j;
1544 }
1545 out:
1546 kfree(ns_list);
1547 return ret;
1548 }
1549
1550 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1551 {
1552 struct nvme_ns *ns, *next;
1553 unsigned i;
1554
1555 lockdep_assert_held(&ctrl->namespaces_mutex);
1556
1557 for (i = 1; i <= nn; i++)
1558 nvme_validate_ns(ctrl, i);
1559
1560 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1561 if (ns->ns_id > nn)
1562 nvme_ns_remove(ns);
1563 }
1564 }
1565
1566 static void nvme_scan_work(struct work_struct *work)
1567 {
1568 struct nvme_ctrl *ctrl =
1569 container_of(work, struct nvme_ctrl, scan_work);
1570 struct nvme_id_ctrl *id;
1571 unsigned nn;
1572
1573 if (ctrl->state != NVME_CTRL_LIVE)
1574 return;
1575
1576 if (nvme_identify_ctrl(ctrl, &id))
1577 return;
1578
1579 mutex_lock(&ctrl->namespaces_mutex);
1580 nn = le32_to_cpu(id->nn);
1581 if (ctrl->vs >= NVME_VS(1, 1) &&
1582 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1583 if (!nvme_scan_ns_list(ctrl, nn))
1584 goto done;
1585 }
1586 nvme_scan_ns_sequential(ctrl, nn);
1587 done:
1588 list_sort(NULL, &ctrl->namespaces, ns_cmp);
1589 mutex_unlock(&ctrl->namespaces_mutex);
1590 kfree(id);
1591
1592 if (ctrl->ops->post_scan)
1593 ctrl->ops->post_scan(ctrl);
1594 }
1595
1596 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1597 {
1598 /*
1599 * Do not queue new scan work when a controller is reset during
1600 * removal.
1601 */
1602 if (ctrl->state == NVME_CTRL_LIVE)
1603 schedule_work(&ctrl->scan_work);
1604 }
1605 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1606
1607 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1608 {
1609 struct nvme_ns *ns, *next;
1610
1611 /*
1612 * The dead states indicates the controller was not gracefully
1613 * disconnected. In that case, we won't be able to flush any data while
1614 * removing the namespaces' disks; fail all the queues now to avoid
1615 * potentially having to clean up the failed sync later.
1616 */
1617 if (ctrl->state == NVME_CTRL_DEAD)
1618 nvme_kill_queues(ctrl);
1619
1620 mutex_lock(&ctrl->namespaces_mutex);
1621 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1622 nvme_ns_remove(ns);
1623 mutex_unlock(&ctrl->namespaces_mutex);
1624 }
1625 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1626
1627 static void nvme_async_event_work(struct work_struct *work)
1628 {
1629 struct nvme_ctrl *ctrl =
1630 container_of(work, struct nvme_ctrl, async_event_work);
1631
1632 spin_lock_irq(&ctrl->lock);
1633 while (ctrl->event_limit > 0) {
1634 int aer_idx = --ctrl->event_limit;
1635
1636 spin_unlock_irq(&ctrl->lock);
1637 ctrl->ops->submit_async_event(ctrl, aer_idx);
1638 spin_lock_irq(&ctrl->lock);
1639 }
1640 spin_unlock_irq(&ctrl->lock);
1641 }
1642
1643 void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1644 struct nvme_completion *cqe)
1645 {
1646 u16 status = le16_to_cpu(cqe->status) >> 1;
1647 u32 result = le32_to_cpu(cqe->result);
1648
1649 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1650 ++ctrl->event_limit;
1651 schedule_work(&ctrl->async_event_work);
1652 }
1653
1654 if (status != NVME_SC_SUCCESS)
1655 return;
1656
1657 switch (result & 0xff07) {
1658 case NVME_AER_NOTICE_NS_CHANGED:
1659 dev_info(ctrl->device, "rescanning\n");
1660 nvme_queue_scan(ctrl);
1661 break;
1662 default:
1663 dev_warn(ctrl->device, "async event result %08x\n", result);
1664 }
1665 }
1666 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1667
1668 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1669 {
1670 ctrl->event_limit = NVME_NR_AERS;
1671 schedule_work(&ctrl->async_event_work);
1672 }
1673 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1674
1675 static DEFINE_IDA(nvme_instance_ida);
1676
1677 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1678 {
1679 int instance, error;
1680
1681 do {
1682 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1683 return -ENODEV;
1684
1685 spin_lock(&dev_list_lock);
1686 error = ida_get_new(&nvme_instance_ida, &instance);
1687 spin_unlock(&dev_list_lock);
1688 } while (error == -EAGAIN);
1689
1690 if (error)
1691 return -ENODEV;
1692
1693 ctrl->instance = instance;
1694 return 0;
1695 }
1696
1697 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1698 {
1699 spin_lock(&dev_list_lock);
1700 ida_remove(&nvme_instance_ida, ctrl->instance);
1701 spin_unlock(&dev_list_lock);
1702 }
1703
1704 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1705 {
1706 flush_work(&ctrl->async_event_work);
1707 flush_work(&ctrl->scan_work);
1708 nvme_remove_namespaces(ctrl);
1709
1710 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1711
1712 spin_lock(&dev_list_lock);
1713 list_del(&ctrl->node);
1714 spin_unlock(&dev_list_lock);
1715 }
1716 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1717
1718 static void nvme_free_ctrl(struct kref *kref)
1719 {
1720 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1721
1722 put_device(ctrl->device);
1723 nvme_release_instance(ctrl);
1724 ida_destroy(&ctrl->ns_ida);
1725
1726 ctrl->ops->free_ctrl(ctrl);
1727 }
1728
1729 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1730 {
1731 kref_put(&ctrl->kref, nvme_free_ctrl);
1732 }
1733 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1734
1735 /*
1736 * Initialize a NVMe controller structures. This needs to be called during
1737 * earliest initialization so that we have the initialized structured around
1738 * during probing.
1739 */
1740 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1741 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1742 {
1743 int ret;
1744
1745 ctrl->state = NVME_CTRL_NEW;
1746 spin_lock_init(&ctrl->lock);
1747 INIT_LIST_HEAD(&ctrl->namespaces);
1748 mutex_init(&ctrl->namespaces_mutex);
1749 kref_init(&ctrl->kref);
1750 ctrl->dev = dev;
1751 ctrl->ops = ops;
1752 ctrl->quirks = quirks;
1753 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1754 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1755
1756 ret = nvme_set_instance(ctrl);
1757 if (ret)
1758 goto out;
1759
1760 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1761 MKDEV(nvme_char_major, ctrl->instance),
1762 ctrl, nvme_dev_attr_groups,
1763 "nvme%d", ctrl->instance);
1764 if (IS_ERR(ctrl->device)) {
1765 ret = PTR_ERR(ctrl->device);
1766 goto out_release_instance;
1767 }
1768 get_device(ctrl->device);
1769 ida_init(&ctrl->ns_ida);
1770
1771 spin_lock(&dev_list_lock);
1772 list_add_tail(&ctrl->node, &nvme_ctrl_list);
1773 spin_unlock(&dev_list_lock);
1774
1775 return 0;
1776 out_release_instance:
1777 nvme_release_instance(ctrl);
1778 out:
1779 return ret;
1780 }
1781 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1782
1783 /**
1784 * nvme_kill_queues(): Ends all namespace queues
1785 * @ctrl: the dead controller that needs to end
1786 *
1787 * Call this function when the driver determines it is unable to get the
1788 * controller in a state capable of servicing IO.
1789 */
1790 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1791 {
1792 struct nvme_ns *ns;
1793
1794 rcu_read_lock();
1795 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1796 if (!kref_get_unless_zero(&ns->kref))
1797 continue;
1798
1799 /*
1800 * Revalidating a dead namespace sets capacity to 0. This will
1801 * end buffered writers dirtying pages that can't be synced.
1802 */
1803 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1804 revalidate_disk(ns->disk);
1805
1806 blk_set_queue_dying(ns->queue);
1807 blk_mq_abort_requeue_list(ns->queue);
1808 blk_mq_start_stopped_hw_queues(ns->queue, true);
1809
1810 nvme_put_ns(ns);
1811 }
1812 rcu_read_unlock();
1813 }
1814 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1815
1816 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1817 {
1818 struct nvme_ns *ns;
1819
1820 rcu_read_lock();
1821 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1822 spin_lock_irq(ns->queue->queue_lock);
1823 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1824 spin_unlock_irq(ns->queue->queue_lock);
1825
1826 blk_mq_cancel_requeue_work(ns->queue);
1827 blk_mq_stop_hw_queues(ns->queue);
1828 }
1829 rcu_read_unlock();
1830 }
1831 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1832
1833 void nvme_start_queues(struct nvme_ctrl *ctrl)
1834 {
1835 struct nvme_ns *ns;
1836
1837 rcu_read_lock();
1838 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1839 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1840 blk_mq_start_stopped_hw_queues(ns->queue, true);
1841 blk_mq_kick_requeue_list(ns->queue);
1842 }
1843 rcu_read_unlock();
1844 }
1845 EXPORT_SYMBOL_GPL(nvme_start_queues);
1846
1847 int __init nvme_core_init(void)
1848 {
1849 int result;
1850
1851 result = register_blkdev(nvme_major, "nvme");
1852 if (result < 0)
1853 return result;
1854 else if (result > 0)
1855 nvme_major = result;
1856
1857 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1858 &nvme_dev_fops);
1859 if (result < 0)
1860 goto unregister_blkdev;
1861 else if (result > 0)
1862 nvme_char_major = result;
1863
1864 nvme_class = class_create(THIS_MODULE, "nvme");
1865 if (IS_ERR(nvme_class)) {
1866 result = PTR_ERR(nvme_class);
1867 goto unregister_chrdev;
1868 }
1869
1870 return 0;
1871
1872 unregister_chrdev:
1873 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1874 unregister_blkdev:
1875 unregister_blkdev(nvme_major, "nvme");
1876 return result;
1877 }
1878
1879 void nvme_core_exit(void)
1880 {
1881 class_destroy(nvme_class);
1882 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1883 unregister_blkdev(nvme_major, "nvme");
1884 }
1885
1886 MODULE_LICENSE("GPL");
1887 MODULE_VERSION("1.0");
1888 module_init(nvme_core_init);
1889 module_exit(nvme_core_exit);