]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/nvme/host/core.c
nvme: introduce max_integrity_segments ctrl attribute
[mirror_ubuntu-hirsute-kernel.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
68 *
69 * nvme_wq will host works such as scan, aen handling, fw activation,
70 * keep-alive, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
74 */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 unsigned nsid);
96
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 /*
100 * Revalidating a dead namespace sets capacity to 0. This will end
101 * buffered writers dirtying pages that can't be synced.
102 */
103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 return;
105 blk_set_queue_dying(ns->queue);
106 /* Forcibly unquiesce queues to avoid blocking dispatch */
107 blk_mq_unquiesce_queue(ns->queue);
108 /*
109 * Revalidate after unblocking dispatchers that may be holding bd_butex
110 */
111 revalidate_disk(ns->disk);
112 }
113
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116 /*
117 * Only new queue scan work when admin and IO queues are both alive
118 */
119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 /*
124 * Use this function to proceed with scheduling reset_work for a controller
125 * that had previously been set to the resetting state. This is intended for
126 * code paths that can't be interrupted by other reset attempts. A hot removal
127 * may prevent this from succeeding.
128 */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131 if (ctrl->state != NVME_CTRL_RESETTING)
132 return -EBUSY;
133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 return -EBUSY;
135 return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 return -EBUSY;
143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 return -EBUSY;
145 return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151 int ret;
152
153 ret = nvme_reset_ctrl(ctrl);
154 if (!ret) {
155 flush_work(&ctrl->reset_work);
156 if (ctrl->state != NVME_CTRL_LIVE)
157 ret = -ENETRESET;
158 }
159
160 return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166 dev_info(ctrl->device,
167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168
169 flush_work(&ctrl->reset_work);
170 nvme_stop_ctrl(ctrl);
171 nvme_remove_namespaces(ctrl);
172 ctrl->ops->delete_ctrl(ctrl);
173 nvme_uninit_ctrl(ctrl);
174 }
175
176 static void nvme_delete_ctrl_work(struct work_struct *work)
177 {
178 struct nvme_ctrl *ctrl =
179 container_of(work, struct nvme_ctrl, delete_work);
180
181 nvme_do_delete_ctrl(ctrl);
182 }
183
184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
185 {
186 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187 return -EBUSY;
188 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
189 return -EBUSY;
190 return 0;
191 }
192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
193
194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
195 {
196 /*
197 * Keep a reference until nvme_do_delete_ctrl() complete,
198 * since ->delete_ctrl can free the controller.
199 */
200 nvme_get_ctrl(ctrl);
201 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
202 nvme_do_delete_ctrl(ctrl);
203 nvme_put_ctrl(ctrl);
204 }
205
206 static blk_status_t nvme_error_status(u16 status)
207 {
208 switch (status & 0x7ff) {
209 case NVME_SC_SUCCESS:
210 return BLK_STS_OK;
211 case NVME_SC_CAP_EXCEEDED:
212 return BLK_STS_NOSPC;
213 case NVME_SC_LBA_RANGE:
214 case NVME_SC_CMD_INTERRUPTED:
215 case NVME_SC_NS_NOT_READY:
216 return BLK_STS_TARGET;
217 case NVME_SC_BAD_ATTRIBUTES:
218 case NVME_SC_ONCS_NOT_SUPPORTED:
219 case NVME_SC_INVALID_OPCODE:
220 case NVME_SC_INVALID_FIELD:
221 case NVME_SC_INVALID_NS:
222 return BLK_STS_NOTSUPP;
223 case NVME_SC_WRITE_FAULT:
224 case NVME_SC_READ_ERROR:
225 case NVME_SC_UNWRITTEN_BLOCK:
226 case NVME_SC_ACCESS_DENIED:
227 case NVME_SC_READ_ONLY:
228 case NVME_SC_COMPARE_FAILED:
229 return BLK_STS_MEDIUM;
230 case NVME_SC_GUARD_CHECK:
231 case NVME_SC_APPTAG_CHECK:
232 case NVME_SC_REFTAG_CHECK:
233 case NVME_SC_INVALID_PI:
234 return BLK_STS_PROTECTION;
235 case NVME_SC_RESERVATION_CONFLICT:
236 return BLK_STS_NEXUS;
237 case NVME_SC_HOST_PATH_ERROR:
238 return BLK_STS_TRANSPORT;
239 default:
240 return BLK_STS_IOERR;
241 }
242 }
243
244 static inline bool nvme_req_needs_retry(struct request *req)
245 {
246 if (blk_noretry_request(req))
247 return false;
248 if (nvme_req(req)->status & NVME_SC_DNR)
249 return false;
250 if (nvme_req(req)->retries >= nvme_max_retries)
251 return false;
252 return true;
253 }
254
255 static void nvme_retry_req(struct request *req)
256 {
257 struct nvme_ns *ns = req->q->queuedata;
258 unsigned long delay = 0;
259 u16 crd;
260
261 /* The mask and shift result must be <= 3 */
262 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
263 if (ns && crd)
264 delay = ns->ctrl->crdt[crd - 1] * 100;
265
266 nvme_req(req)->retries++;
267 blk_mq_requeue_request(req, false);
268 blk_mq_delay_kick_requeue_list(req->q, delay);
269 }
270
271 void nvme_complete_rq(struct request *req)
272 {
273 blk_status_t status = nvme_error_status(nvme_req(req)->status);
274
275 trace_nvme_complete_rq(req);
276
277 nvme_cleanup_cmd(req);
278
279 if (nvme_req(req)->ctrl->kas)
280 nvme_req(req)->ctrl->comp_seen = true;
281
282 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
283 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
284 return;
285
286 if (!blk_queue_dying(req->q)) {
287 nvme_retry_req(req);
288 return;
289 }
290 }
291
292 nvme_trace_bio_complete(req, status);
293 blk_mq_end_request(req, status);
294 }
295 EXPORT_SYMBOL_GPL(nvme_complete_rq);
296
297 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
298 {
299 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
300 "Cancelling I/O %d", req->tag);
301
302 /* don't abort one completed request */
303 if (blk_mq_request_completed(req))
304 return true;
305
306 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
307 blk_mq_complete_request(req);
308 return true;
309 }
310 EXPORT_SYMBOL_GPL(nvme_cancel_request);
311
312 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
313 enum nvme_ctrl_state new_state)
314 {
315 enum nvme_ctrl_state old_state;
316 unsigned long flags;
317 bool changed = false;
318
319 spin_lock_irqsave(&ctrl->lock, flags);
320
321 old_state = ctrl->state;
322 switch (new_state) {
323 case NVME_CTRL_LIVE:
324 switch (old_state) {
325 case NVME_CTRL_NEW:
326 case NVME_CTRL_RESETTING:
327 case NVME_CTRL_CONNECTING:
328 changed = true;
329 /* FALLTHRU */
330 default:
331 break;
332 }
333 break;
334 case NVME_CTRL_RESETTING:
335 switch (old_state) {
336 case NVME_CTRL_NEW:
337 case NVME_CTRL_LIVE:
338 changed = true;
339 /* FALLTHRU */
340 default:
341 break;
342 }
343 break;
344 case NVME_CTRL_CONNECTING:
345 switch (old_state) {
346 case NVME_CTRL_NEW:
347 case NVME_CTRL_RESETTING:
348 changed = true;
349 /* FALLTHRU */
350 default:
351 break;
352 }
353 break;
354 case NVME_CTRL_DELETING:
355 switch (old_state) {
356 case NVME_CTRL_LIVE:
357 case NVME_CTRL_RESETTING:
358 case NVME_CTRL_CONNECTING:
359 changed = true;
360 /* FALLTHRU */
361 default:
362 break;
363 }
364 break;
365 case NVME_CTRL_DEAD:
366 switch (old_state) {
367 case NVME_CTRL_DELETING:
368 changed = true;
369 /* FALLTHRU */
370 default:
371 break;
372 }
373 break;
374 default:
375 break;
376 }
377
378 if (changed) {
379 ctrl->state = new_state;
380 wake_up_all(&ctrl->state_wq);
381 }
382
383 spin_unlock_irqrestore(&ctrl->lock, flags);
384 if (changed && ctrl->state == NVME_CTRL_LIVE)
385 nvme_kick_requeue_lists(ctrl);
386 return changed;
387 }
388 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
389
390 /*
391 * Returns true for sink states that can't ever transition back to live.
392 */
393 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
394 {
395 switch (ctrl->state) {
396 case NVME_CTRL_NEW:
397 case NVME_CTRL_LIVE:
398 case NVME_CTRL_RESETTING:
399 case NVME_CTRL_CONNECTING:
400 return false;
401 case NVME_CTRL_DELETING:
402 case NVME_CTRL_DEAD:
403 return true;
404 default:
405 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
406 return true;
407 }
408 }
409
410 /*
411 * Waits for the controller state to be resetting, or returns false if it is
412 * not possible to ever transition to that state.
413 */
414 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
415 {
416 wait_event(ctrl->state_wq,
417 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
418 nvme_state_terminal(ctrl));
419 return ctrl->state == NVME_CTRL_RESETTING;
420 }
421 EXPORT_SYMBOL_GPL(nvme_wait_reset);
422
423 static void nvme_free_ns_head(struct kref *ref)
424 {
425 struct nvme_ns_head *head =
426 container_of(ref, struct nvme_ns_head, ref);
427
428 nvme_mpath_remove_disk(head);
429 ida_simple_remove(&head->subsys->ns_ida, head->instance);
430 cleanup_srcu_struct(&head->srcu);
431 nvme_put_subsystem(head->subsys);
432 kfree(head);
433 }
434
435 static void nvme_put_ns_head(struct nvme_ns_head *head)
436 {
437 kref_put(&head->ref, nvme_free_ns_head);
438 }
439
440 static void nvme_free_ns(struct kref *kref)
441 {
442 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
443
444 if (ns->ndev)
445 nvme_nvm_unregister(ns);
446
447 put_disk(ns->disk);
448 nvme_put_ns_head(ns->head);
449 nvme_put_ctrl(ns->ctrl);
450 kfree(ns);
451 }
452
453 static void nvme_put_ns(struct nvme_ns *ns)
454 {
455 kref_put(&ns->kref, nvme_free_ns);
456 }
457
458 static inline void nvme_clear_nvme_request(struct request *req)
459 {
460 if (!(req->rq_flags & RQF_DONTPREP)) {
461 nvme_req(req)->retries = 0;
462 nvme_req(req)->flags = 0;
463 req->rq_flags |= RQF_DONTPREP;
464 }
465 }
466
467 struct request *nvme_alloc_request(struct request_queue *q,
468 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
469 {
470 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
471 struct request *req;
472
473 if (qid == NVME_QID_ANY) {
474 req = blk_mq_alloc_request(q, op, flags);
475 } else {
476 req = blk_mq_alloc_request_hctx(q, op, flags,
477 qid ? qid - 1 : 0);
478 }
479 if (IS_ERR(req))
480 return req;
481
482 req->cmd_flags |= REQ_FAILFAST_DRIVER;
483 nvme_clear_nvme_request(req);
484 nvme_req(req)->cmd = cmd;
485
486 return req;
487 }
488 EXPORT_SYMBOL_GPL(nvme_alloc_request);
489
490 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
491 {
492 struct nvme_command c;
493
494 memset(&c, 0, sizeof(c));
495
496 c.directive.opcode = nvme_admin_directive_send;
497 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
498 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
499 c.directive.dtype = NVME_DIR_IDENTIFY;
500 c.directive.tdtype = NVME_DIR_STREAMS;
501 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
502
503 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
504 }
505
506 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
507 {
508 return nvme_toggle_streams(ctrl, false);
509 }
510
511 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
512 {
513 return nvme_toggle_streams(ctrl, true);
514 }
515
516 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
517 struct streams_directive_params *s, u32 nsid)
518 {
519 struct nvme_command c;
520
521 memset(&c, 0, sizeof(c));
522 memset(s, 0, sizeof(*s));
523
524 c.directive.opcode = nvme_admin_directive_recv;
525 c.directive.nsid = cpu_to_le32(nsid);
526 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
527 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
528 c.directive.dtype = NVME_DIR_STREAMS;
529
530 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
531 }
532
533 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
534 {
535 struct streams_directive_params s;
536 int ret;
537
538 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
539 return 0;
540 if (!streams)
541 return 0;
542
543 ret = nvme_enable_streams(ctrl);
544 if (ret)
545 return ret;
546
547 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
548 if (ret)
549 goto out_disable_stream;
550
551 ctrl->nssa = le16_to_cpu(s.nssa);
552 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
553 dev_info(ctrl->device, "too few streams (%u) available\n",
554 ctrl->nssa);
555 goto out_disable_stream;
556 }
557
558 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
559 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
560 return 0;
561
562 out_disable_stream:
563 nvme_disable_streams(ctrl);
564 return ret;
565 }
566
567 /*
568 * Check if 'req' has a write hint associated with it. If it does, assign
569 * a valid namespace stream to the write.
570 */
571 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
572 struct request *req, u16 *control,
573 u32 *dsmgmt)
574 {
575 enum rw_hint streamid = req->write_hint;
576
577 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
578 streamid = 0;
579 else {
580 streamid--;
581 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
582 return;
583
584 *control |= NVME_RW_DTYPE_STREAMS;
585 *dsmgmt |= streamid << 16;
586 }
587
588 if (streamid < ARRAY_SIZE(req->q->write_hints))
589 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
590 }
591
592 static inline void nvme_setup_flush(struct nvme_ns *ns,
593 struct nvme_command *cmnd)
594 {
595 cmnd->common.opcode = nvme_cmd_flush;
596 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
597 }
598
599 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
600 struct nvme_command *cmnd)
601 {
602 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
603 struct nvme_dsm_range *range;
604 struct bio *bio;
605
606 /*
607 * Some devices do not consider the DSM 'Number of Ranges' field when
608 * determining how much data to DMA. Always allocate memory for maximum
609 * number of segments to prevent device reading beyond end of buffer.
610 */
611 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
612
613 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
614 if (!range) {
615 /*
616 * If we fail allocation our range, fallback to the controller
617 * discard page. If that's also busy, it's safe to return
618 * busy, as we know we can make progress once that's freed.
619 */
620 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
621 return BLK_STS_RESOURCE;
622
623 range = page_address(ns->ctrl->discard_page);
624 }
625
626 __rq_for_each_bio(bio, req) {
627 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
628 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
629
630 if (n < segments) {
631 range[n].cattr = cpu_to_le32(0);
632 range[n].nlb = cpu_to_le32(nlb);
633 range[n].slba = cpu_to_le64(slba);
634 }
635 n++;
636 }
637
638 if (WARN_ON_ONCE(n != segments)) {
639 if (virt_to_page(range) == ns->ctrl->discard_page)
640 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
641 else
642 kfree(range);
643 return BLK_STS_IOERR;
644 }
645
646 cmnd->dsm.opcode = nvme_cmd_dsm;
647 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
648 cmnd->dsm.nr = cpu_to_le32(segments - 1);
649 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
650
651 req->special_vec.bv_page = virt_to_page(range);
652 req->special_vec.bv_offset = offset_in_page(range);
653 req->special_vec.bv_len = alloc_size;
654 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
655
656 return BLK_STS_OK;
657 }
658
659 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
660 struct request *req, struct nvme_command *cmnd)
661 {
662 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
663 return nvme_setup_discard(ns, req, cmnd);
664
665 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
666 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
667 cmnd->write_zeroes.slba =
668 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
669 cmnd->write_zeroes.length =
670 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
671 cmnd->write_zeroes.control = 0;
672 return BLK_STS_OK;
673 }
674
675 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
676 struct request *req, struct nvme_command *cmnd)
677 {
678 struct nvme_ctrl *ctrl = ns->ctrl;
679 u16 control = 0;
680 u32 dsmgmt = 0;
681
682 if (req->cmd_flags & REQ_FUA)
683 control |= NVME_RW_FUA;
684 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
685 control |= NVME_RW_LR;
686
687 if (req->cmd_flags & REQ_RAHEAD)
688 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
689
690 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
691 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
692 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
693 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
694
695 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
696 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
697
698 if (ns->ms) {
699 /*
700 * If formated with metadata, the block layer always provides a
701 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
702 * we enable the PRACT bit for protection information or set the
703 * namespace capacity to zero to prevent any I/O.
704 */
705 if (!blk_integrity_rq(req)) {
706 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
707 return BLK_STS_NOTSUPP;
708 control |= NVME_RW_PRINFO_PRACT;
709 }
710
711 switch (ns->pi_type) {
712 case NVME_NS_DPS_PI_TYPE3:
713 control |= NVME_RW_PRINFO_PRCHK_GUARD;
714 break;
715 case NVME_NS_DPS_PI_TYPE1:
716 case NVME_NS_DPS_PI_TYPE2:
717 control |= NVME_RW_PRINFO_PRCHK_GUARD |
718 NVME_RW_PRINFO_PRCHK_REF;
719 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
720 break;
721 }
722 }
723
724 cmnd->rw.control = cpu_to_le16(control);
725 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
726 return 0;
727 }
728
729 void nvme_cleanup_cmd(struct request *req)
730 {
731 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
732 struct nvme_ns *ns = req->rq_disk->private_data;
733 struct page *page = req->special_vec.bv_page;
734
735 if (page == ns->ctrl->discard_page)
736 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
737 else
738 kfree(page_address(page) + req->special_vec.bv_offset);
739 }
740 }
741 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
742
743 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
744 struct nvme_command *cmd)
745 {
746 blk_status_t ret = BLK_STS_OK;
747
748 nvme_clear_nvme_request(req);
749
750 memset(cmd, 0, sizeof(*cmd));
751 switch (req_op(req)) {
752 case REQ_OP_DRV_IN:
753 case REQ_OP_DRV_OUT:
754 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
755 break;
756 case REQ_OP_FLUSH:
757 nvme_setup_flush(ns, cmd);
758 break;
759 case REQ_OP_WRITE_ZEROES:
760 ret = nvme_setup_write_zeroes(ns, req, cmd);
761 break;
762 case REQ_OP_DISCARD:
763 ret = nvme_setup_discard(ns, req, cmd);
764 break;
765 case REQ_OP_READ:
766 case REQ_OP_WRITE:
767 ret = nvme_setup_rw(ns, req, cmd);
768 break;
769 default:
770 WARN_ON_ONCE(1);
771 return BLK_STS_IOERR;
772 }
773
774 cmd->common.command_id = req->tag;
775 trace_nvme_setup_cmd(req, cmd);
776 return ret;
777 }
778 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
779
780 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
781 {
782 struct completion *waiting = rq->end_io_data;
783
784 rq->end_io_data = NULL;
785 complete(waiting);
786 }
787
788 static void nvme_execute_rq_polled(struct request_queue *q,
789 struct gendisk *bd_disk, struct request *rq, int at_head)
790 {
791 DECLARE_COMPLETION_ONSTACK(wait);
792
793 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
794
795 rq->cmd_flags |= REQ_HIPRI;
796 rq->end_io_data = &wait;
797 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
798
799 while (!completion_done(&wait)) {
800 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
801 cond_resched();
802 }
803 }
804
805 /*
806 * Returns 0 on success. If the result is negative, it's a Linux error code;
807 * if the result is positive, it's an NVM Express status code
808 */
809 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
810 union nvme_result *result, void *buffer, unsigned bufflen,
811 unsigned timeout, int qid, int at_head,
812 blk_mq_req_flags_t flags, bool poll)
813 {
814 struct request *req;
815 int ret;
816
817 req = nvme_alloc_request(q, cmd, flags, qid);
818 if (IS_ERR(req))
819 return PTR_ERR(req);
820
821 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
822
823 if (buffer && bufflen) {
824 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
825 if (ret)
826 goto out;
827 }
828
829 if (poll)
830 nvme_execute_rq_polled(req->q, NULL, req, at_head);
831 else
832 blk_execute_rq(req->q, NULL, req, at_head);
833 if (result)
834 *result = nvme_req(req)->result;
835 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
836 ret = -EINTR;
837 else
838 ret = nvme_req(req)->status;
839 out:
840 blk_mq_free_request(req);
841 return ret;
842 }
843 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
844
845 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
846 void *buffer, unsigned bufflen)
847 {
848 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
849 NVME_QID_ANY, 0, 0, false);
850 }
851 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
852
853 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
854 unsigned len, u32 seed, bool write)
855 {
856 struct bio_integrity_payload *bip;
857 int ret = -ENOMEM;
858 void *buf;
859
860 buf = kmalloc(len, GFP_KERNEL);
861 if (!buf)
862 goto out;
863
864 ret = -EFAULT;
865 if (write && copy_from_user(buf, ubuf, len))
866 goto out_free_meta;
867
868 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
869 if (IS_ERR(bip)) {
870 ret = PTR_ERR(bip);
871 goto out_free_meta;
872 }
873
874 bip->bip_iter.bi_size = len;
875 bip->bip_iter.bi_sector = seed;
876 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
877 offset_in_page(buf));
878 if (ret == len)
879 return buf;
880 ret = -ENOMEM;
881 out_free_meta:
882 kfree(buf);
883 out:
884 return ERR_PTR(ret);
885 }
886
887 static int nvme_submit_user_cmd(struct request_queue *q,
888 struct nvme_command *cmd, void __user *ubuffer,
889 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
890 u32 meta_seed, u64 *result, unsigned timeout)
891 {
892 bool write = nvme_is_write(cmd);
893 struct nvme_ns *ns = q->queuedata;
894 struct gendisk *disk = ns ? ns->disk : NULL;
895 struct request *req;
896 struct bio *bio = NULL;
897 void *meta = NULL;
898 int ret;
899
900 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
901 if (IS_ERR(req))
902 return PTR_ERR(req);
903
904 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
905 nvme_req(req)->flags |= NVME_REQ_USERCMD;
906
907 if (ubuffer && bufflen) {
908 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
909 GFP_KERNEL);
910 if (ret)
911 goto out;
912 bio = req->bio;
913 bio->bi_disk = disk;
914 if (disk && meta_buffer && meta_len) {
915 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
916 meta_seed, write);
917 if (IS_ERR(meta)) {
918 ret = PTR_ERR(meta);
919 goto out_unmap;
920 }
921 req->cmd_flags |= REQ_INTEGRITY;
922 }
923 }
924
925 blk_execute_rq(req->q, disk, req, 0);
926 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
927 ret = -EINTR;
928 else
929 ret = nvme_req(req)->status;
930 if (result)
931 *result = le64_to_cpu(nvme_req(req)->result.u64);
932 if (meta && !ret && !write) {
933 if (copy_to_user(meta_buffer, meta, meta_len))
934 ret = -EFAULT;
935 }
936 kfree(meta);
937 out_unmap:
938 if (bio)
939 blk_rq_unmap_user(bio);
940 out:
941 blk_mq_free_request(req);
942 return ret;
943 }
944
945 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
946 {
947 struct nvme_ctrl *ctrl = rq->end_io_data;
948 unsigned long flags;
949 bool startka = false;
950
951 blk_mq_free_request(rq);
952
953 if (status) {
954 dev_err(ctrl->device,
955 "failed nvme_keep_alive_end_io error=%d\n",
956 status);
957 return;
958 }
959
960 ctrl->comp_seen = false;
961 spin_lock_irqsave(&ctrl->lock, flags);
962 if (ctrl->state == NVME_CTRL_LIVE ||
963 ctrl->state == NVME_CTRL_CONNECTING)
964 startka = true;
965 spin_unlock_irqrestore(&ctrl->lock, flags);
966 if (startka)
967 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
968 }
969
970 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
971 {
972 struct request *rq;
973
974 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
975 NVME_QID_ANY);
976 if (IS_ERR(rq))
977 return PTR_ERR(rq);
978
979 rq->timeout = ctrl->kato * HZ;
980 rq->end_io_data = ctrl;
981
982 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
983
984 return 0;
985 }
986
987 static void nvme_keep_alive_work(struct work_struct *work)
988 {
989 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
990 struct nvme_ctrl, ka_work);
991 bool comp_seen = ctrl->comp_seen;
992
993 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
994 dev_dbg(ctrl->device,
995 "reschedule traffic based keep-alive timer\n");
996 ctrl->comp_seen = false;
997 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
998 return;
999 }
1000
1001 if (nvme_keep_alive(ctrl)) {
1002 /* allocation failure, reset the controller */
1003 dev_err(ctrl->device, "keep-alive failed\n");
1004 nvme_reset_ctrl(ctrl);
1005 return;
1006 }
1007 }
1008
1009 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1010 {
1011 if (unlikely(ctrl->kato == 0))
1012 return;
1013
1014 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1015 }
1016
1017 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1018 {
1019 if (unlikely(ctrl->kato == 0))
1020 return;
1021
1022 cancel_delayed_work_sync(&ctrl->ka_work);
1023 }
1024 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1025
1026 /*
1027 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1028 * flag, thus sending any new CNS opcodes has a big chance of not working.
1029 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1030 * (but not for any later version).
1031 */
1032 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1033 {
1034 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1035 return ctrl->vs < NVME_VS(1, 2, 0);
1036 return ctrl->vs < NVME_VS(1, 1, 0);
1037 }
1038
1039 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1040 {
1041 struct nvme_command c = { };
1042 int error;
1043
1044 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1045 c.identify.opcode = nvme_admin_identify;
1046 c.identify.cns = NVME_ID_CNS_CTRL;
1047
1048 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1049 if (!*id)
1050 return -ENOMEM;
1051
1052 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1053 sizeof(struct nvme_id_ctrl));
1054 if (error)
1055 kfree(*id);
1056 return error;
1057 }
1058
1059 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1060 struct nvme_ns_id_desc *cur)
1061 {
1062 const char *warn_str = "ctrl returned bogus length:";
1063 void *data = cur;
1064
1065 switch (cur->nidt) {
1066 case NVME_NIDT_EUI64:
1067 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1068 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1069 warn_str, cur->nidl);
1070 return -1;
1071 }
1072 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1073 return NVME_NIDT_EUI64_LEN;
1074 case NVME_NIDT_NGUID:
1075 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1076 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1077 warn_str, cur->nidl);
1078 return -1;
1079 }
1080 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1081 return NVME_NIDT_NGUID_LEN;
1082 case NVME_NIDT_UUID:
1083 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1084 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1085 warn_str, cur->nidl);
1086 return -1;
1087 }
1088 uuid_copy(&ids->uuid, data + sizeof(*cur));
1089 return NVME_NIDT_UUID_LEN;
1090 default:
1091 /* Skip unknown types */
1092 return cur->nidl;
1093 }
1094 }
1095
1096 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1097 struct nvme_ns_ids *ids)
1098 {
1099 struct nvme_command c = { };
1100 int status;
1101 void *data;
1102 int pos;
1103 int len;
1104
1105 c.identify.opcode = nvme_admin_identify;
1106 c.identify.nsid = cpu_to_le32(nsid);
1107 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1108
1109 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1110 if (!data)
1111 return -ENOMEM;
1112
1113 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1114 NVME_IDENTIFY_DATA_SIZE);
1115 if (status) {
1116 dev_warn(ctrl->device,
1117 "Identify Descriptors failed (%d)\n", status);
1118 /*
1119 * Don't treat an error as fatal, as we potentially already
1120 * have a NGUID or EUI-64.
1121 */
1122 if (status > 0 && !(status & NVME_SC_DNR))
1123 status = 0;
1124 goto free_data;
1125 }
1126
1127 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1128 struct nvme_ns_id_desc *cur = data + pos;
1129
1130 if (cur->nidl == 0)
1131 break;
1132
1133 len = nvme_process_ns_desc(ctrl, ids, cur);
1134 if (len < 0)
1135 goto free_data;
1136
1137 len += sizeof(*cur);
1138 }
1139 free_data:
1140 kfree(data);
1141 return status;
1142 }
1143
1144 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1145 {
1146 struct nvme_command c = { };
1147
1148 c.identify.opcode = nvme_admin_identify;
1149 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1150 c.identify.nsid = cpu_to_le32(nsid);
1151 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1152 NVME_IDENTIFY_DATA_SIZE);
1153 }
1154
1155 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1156 unsigned nsid, struct nvme_id_ns **id)
1157 {
1158 struct nvme_command c = { };
1159 int error;
1160
1161 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1162 c.identify.opcode = nvme_admin_identify;
1163 c.identify.nsid = cpu_to_le32(nsid);
1164 c.identify.cns = NVME_ID_CNS_NS;
1165
1166 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1167 if (!*id)
1168 return -ENOMEM;
1169
1170 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1171 if (error) {
1172 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1173 kfree(*id);
1174 }
1175
1176 return error;
1177 }
1178
1179 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1180 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1181 {
1182 union nvme_result res = { 0 };
1183 struct nvme_command c;
1184 int ret;
1185
1186 memset(&c, 0, sizeof(c));
1187 c.features.opcode = op;
1188 c.features.fid = cpu_to_le32(fid);
1189 c.features.dword11 = cpu_to_le32(dword11);
1190
1191 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1192 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1193 if (ret >= 0 && result)
1194 *result = le32_to_cpu(res.u32);
1195 return ret;
1196 }
1197
1198 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1199 unsigned int dword11, void *buffer, size_t buflen,
1200 u32 *result)
1201 {
1202 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1203 buflen, result);
1204 }
1205 EXPORT_SYMBOL_GPL(nvme_set_features);
1206
1207 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1208 unsigned int dword11, void *buffer, size_t buflen,
1209 u32 *result)
1210 {
1211 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1212 buflen, result);
1213 }
1214 EXPORT_SYMBOL_GPL(nvme_get_features);
1215
1216 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1217 {
1218 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1219 u32 result;
1220 int status, nr_io_queues;
1221
1222 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1223 &result);
1224 if (status < 0)
1225 return status;
1226
1227 /*
1228 * Degraded controllers might return an error when setting the queue
1229 * count. We still want to be able to bring them online and offer
1230 * access to the admin queue, as that might be only way to fix them up.
1231 */
1232 if (status > 0) {
1233 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1234 *count = 0;
1235 } else {
1236 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1237 *count = min(*count, nr_io_queues);
1238 }
1239
1240 return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1243
1244 #define NVME_AEN_SUPPORTED \
1245 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1246 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1247
1248 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1249 {
1250 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1251 int status;
1252
1253 if (!supported_aens)
1254 return;
1255
1256 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1257 NULL, 0, &result);
1258 if (status)
1259 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1260 supported_aens);
1261
1262 queue_work(nvme_wq, &ctrl->async_event_work);
1263 }
1264
1265 /*
1266 * Convert integer values from ioctl structures to user pointers, silently
1267 * ignoring the upper bits in the compat case to match behaviour of 32-bit
1268 * kernels.
1269 */
1270 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1271 {
1272 if (in_compat_syscall())
1273 ptrval = (compat_uptr_t)ptrval;
1274 return (void __user *)ptrval;
1275 }
1276
1277 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1278 {
1279 struct nvme_user_io io;
1280 struct nvme_command c;
1281 unsigned length, meta_len;
1282 void __user *metadata;
1283
1284 if (copy_from_user(&io, uio, sizeof(io)))
1285 return -EFAULT;
1286 if (io.flags)
1287 return -EINVAL;
1288
1289 switch (io.opcode) {
1290 case nvme_cmd_write:
1291 case nvme_cmd_read:
1292 case nvme_cmd_compare:
1293 break;
1294 default:
1295 return -EINVAL;
1296 }
1297
1298 length = (io.nblocks + 1) << ns->lba_shift;
1299 meta_len = (io.nblocks + 1) * ns->ms;
1300 metadata = nvme_to_user_ptr(io.metadata);
1301
1302 if (ns->features & NVME_NS_EXT_LBAS) {
1303 length += meta_len;
1304 meta_len = 0;
1305 } else if (meta_len) {
1306 if ((io.metadata & 3) || !io.metadata)
1307 return -EINVAL;
1308 }
1309
1310 memset(&c, 0, sizeof(c));
1311 c.rw.opcode = io.opcode;
1312 c.rw.flags = io.flags;
1313 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1314 c.rw.slba = cpu_to_le64(io.slba);
1315 c.rw.length = cpu_to_le16(io.nblocks);
1316 c.rw.control = cpu_to_le16(io.control);
1317 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1318 c.rw.reftag = cpu_to_le32(io.reftag);
1319 c.rw.apptag = cpu_to_le16(io.apptag);
1320 c.rw.appmask = cpu_to_le16(io.appmask);
1321
1322 return nvme_submit_user_cmd(ns->queue, &c,
1323 nvme_to_user_ptr(io.addr), length,
1324 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1325 }
1326
1327 static u32 nvme_known_admin_effects(u8 opcode)
1328 {
1329 switch (opcode) {
1330 case nvme_admin_format_nvm:
1331 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1332 NVME_CMD_EFFECTS_CSE_MASK;
1333 case nvme_admin_sanitize_nvm:
1334 return NVME_CMD_EFFECTS_CSE_MASK;
1335 default:
1336 break;
1337 }
1338 return 0;
1339 }
1340
1341 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1342 u8 opcode)
1343 {
1344 u32 effects = 0;
1345
1346 if (ns) {
1347 if (ctrl->effects)
1348 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1349 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1350 dev_warn(ctrl->device,
1351 "IO command:%02x has unhandled effects:%08x\n",
1352 opcode, effects);
1353 return 0;
1354 }
1355
1356 if (ctrl->effects)
1357 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1358 effects |= nvme_known_admin_effects(opcode);
1359
1360 /*
1361 * For simplicity, IO to all namespaces is quiesced even if the command
1362 * effects say only one namespace is affected.
1363 */
1364 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1365 mutex_lock(&ctrl->scan_lock);
1366 mutex_lock(&ctrl->subsys->lock);
1367 nvme_mpath_start_freeze(ctrl->subsys);
1368 nvme_mpath_wait_freeze(ctrl->subsys);
1369 nvme_start_freeze(ctrl);
1370 nvme_wait_freeze(ctrl);
1371 }
1372 return effects;
1373 }
1374
1375 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1376 {
1377 struct nvme_ns *ns;
1378
1379 down_read(&ctrl->namespaces_rwsem);
1380 list_for_each_entry(ns, &ctrl->namespaces, list)
1381 if (ns->disk && nvme_revalidate_disk(ns->disk))
1382 nvme_set_queue_dying(ns);
1383 up_read(&ctrl->namespaces_rwsem);
1384 }
1385
1386 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1387 {
1388 /*
1389 * Revalidate LBA changes prior to unfreezing. This is necessary to
1390 * prevent memory corruption if a logical block size was changed by
1391 * this command.
1392 */
1393 if (effects & NVME_CMD_EFFECTS_LBCC)
1394 nvme_update_formats(ctrl);
1395 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1396 nvme_unfreeze(ctrl);
1397 nvme_mpath_unfreeze(ctrl->subsys);
1398 mutex_unlock(&ctrl->subsys->lock);
1399 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1400 mutex_unlock(&ctrl->scan_lock);
1401 }
1402 if (effects & NVME_CMD_EFFECTS_CCC)
1403 nvme_init_identify(ctrl);
1404 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1405 nvme_queue_scan(ctrl);
1406 flush_work(&ctrl->scan_work);
1407 }
1408 }
1409
1410 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1411 struct nvme_passthru_cmd __user *ucmd)
1412 {
1413 struct nvme_passthru_cmd cmd;
1414 struct nvme_command c;
1415 unsigned timeout = 0;
1416 u32 effects;
1417 u64 result;
1418 int status;
1419
1420 if (!capable(CAP_SYS_ADMIN))
1421 return -EACCES;
1422 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1423 return -EFAULT;
1424 if (cmd.flags)
1425 return -EINVAL;
1426
1427 memset(&c, 0, sizeof(c));
1428 c.common.opcode = cmd.opcode;
1429 c.common.flags = cmd.flags;
1430 c.common.nsid = cpu_to_le32(cmd.nsid);
1431 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1432 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1433 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1434 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1435 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1436 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1437 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1438 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1439
1440 if (cmd.timeout_ms)
1441 timeout = msecs_to_jiffies(cmd.timeout_ms);
1442
1443 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1444 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1445 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1446 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1447 0, &result, timeout);
1448 nvme_passthru_end(ctrl, effects);
1449
1450 if (status >= 0) {
1451 if (put_user(result, &ucmd->result))
1452 return -EFAULT;
1453 }
1454
1455 return status;
1456 }
1457
1458 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1459 struct nvme_passthru_cmd64 __user *ucmd)
1460 {
1461 struct nvme_passthru_cmd64 cmd;
1462 struct nvme_command c;
1463 unsigned timeout = 0;
1464 u32 effects;
1465 int status;
1466
1467 if (!capable(CAP_SYS_ADMIN))
1468 return -EACCES;
1469 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1470 return -EFAULT;
1471 if (cmd.flags)
1472 return -EINVAL;
1473
1474 memset(&c, 0, sizeof(c));
1475 c.common.opcode = cmd.opcode;
1476 c.common.flags = cmd.flags;
1477 c.common.nsid = cpu_to_le32(cmd.nsid);
1478 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1479 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1480 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1481 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1482 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1483 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1484 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1485 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1486
1487 if (cmd.timeout_ms)
1488 timeout = msecs_to_jiffies(cmd.timeout_ms);
1489
1490 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1491 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1492 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1493 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1494 0, &cmd.result, timeout);
1495 nvme_passthru_end(ctrl, effects);
1496
1497 if (status >= 0) {
1498 if (put_user(cmd.result, &ucmd->result))
1499 return -EFAULT;
1500 }
1501
1502 return status;
1503 }
1504
1505 /*
1506 * Issue ioctl requests on the first available path. Note that unlike normal
1507 * block layer requests we will not retry failed request on another controller.
1508 */
1509 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1510 struct nvme_ns_head **head, int *srcu_idx)
1511 {
1512 #ifdef CONFIG_NVME_MULTIPATH
1513 if (disk->fops == &nvme_ns_head_ops) {
1514 struct nvme_ns *ns;
1515
1516 *head = disk->private_data;
1517 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1518 ns = nvme_find_path(*head);
1519 if (!ns)
1520 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1521 return ns;
1522 }
1523 #endif
1524 *head = NULL;
1525 *srcu_idx = -1;
1526 return disk->private_data;
1527 }
1528
1529 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1530 {
1531 if (head)
1532 srcu_read_unlock(&head->srcu, idx);
1533 }
1534
1535 static bool is_ctrl_ioctl(unsigned int cmd)
1536 {
1537 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1538 return true;
1539 if (is_sed_ioctl(cmd))
1540 return true;
1541 return false;
1542 }
1543
1544 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1545 void __user *argp,
1546 struct nvme_ns_head *head,
1547 int srcu_idx)
1548 {
1549 struct nvme_ctrl *ctrl = ns->ctrl;
1550 int ret;
1551
1552 nvme_get_ctrl(ns->ctrl);
1553 nvme_put_ns_from_disk(head, srcu_idx);
1554
1555 switch (cmd) {
1556 case NVME_IOCTL_ADMIN_CMD:
1557 ret = nvme_user_cmd(ctrl, NULL, argp);
1558 break;
1559 case NVME_IOCTL_ADMIN64_CMD:
1560 ret = nvme_user_cmd64(ctrl, NULL, argp);
1561 break;
1562 default:
1563 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1564 break;
1565 }
1566 nvme_put_ctrl(ctrl);
1567 return ret;
1568 }
1569
1570 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1571 unsigned int cmd, unsigned long arg)
1572 {
1573 struct nvme_ns_head *head = NULL;
1574 void __user *argp = (void __user *)arg;
1575 struct nvme_ns *ns;
1576 int srcu_idx, ret;
1577
1578 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1579 if (unlikely(!ns))
1580 return -EWOULDBLOCK;
1581
1582 /*
1583 * Handle ioctls that apply to the controller instead of the namespace
1584 * seperately and drop the ns SRCU reference early. This avoids a
1585 * deadlock when deleting namespaces using the passthrough interface.
1586 */
1587 if (is_ctrl_ioctl(cmd))
1588 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1589
1590 switch (cmd) {
1591 case NVME_IOCTL_ID:
1592 force_successful_syscall_return();
1593 ret = ns->head->ns_id;
1594 break;
1595 case NVME_IOCTL_IO_CMD:
1596 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1597 break;
1598 case NVME_IOCTL_SUBMIT_IO:
1599 ret = nvme_submit_io(ns, argp);
1600 break;
1601 case NVME_IOCTL_IO64_CMD:
1602 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1603 break;
1604 default:
1605 if (ns->ndev)
1606 ret = nvme_nvm_ioctl(ns, cmd, arg);
1607 else
1608 ret = -ENOTTY;
1609 }
1610
1611 nvme_put_ns_from_disk(head, srcu_idx);
1612 return ret;
1613 }
1614
1615 #ifdef CONFIG_COMPAT
1616 struct nvme_user_io32 {
1617 __u8 opcode;
1618 __u8 flags;
1619 __u16 control;
1620 __u16 nblocks;
1621 __u16 rsvd;
1622 __u64 metadata;
1623 __u64 addr;
1624 __u64 slba;
1625 __u32 dsmgmt;
1626 __u32 reftag;
1627 __u16 apptag;
1628 __u16 appmask;
1629 } __attribute__((__packed__));
1630
1631 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
1632
1633 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1634 unsigned int cmd, unsigned long arg)
1635 {
1636 /*
1637 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1638 * between 32 bit programs and 64 bit kernel.
1639 * The cause is that the results of sizeof(struct nvme_user_io),
1640 * which is used to define NVME_IOCTL_SUBMIT_IO,
1641 * are not same between 32 bit compiler and 64 bit compiler.
1642 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1643 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1644 * Other IOCTL numbers are same between 32 bit and 64 bit.
1645 * So there is nothing to do regarding to other IOCTL numbers.
1646 */
1647 if (cmd == NVME_IOCTL_SUBMIT_IO32)
1648 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1649
1650 return nvme_ioctl(bdev, mode, cmd, arg);
1651 }
1652 #else
1653 #define nvme_compat_ioctl NULL
1654 #endif /* CONFIG_COMPAT */
1655
1656 static int nvme_open(struct block_device *bdev, fmode_t mode)
1657 {
1658 struct nvme_ns *ns = bdev->bd_disk->private_data;
1659
1660 #ifdef CONFIG_NVME_MULTIPATH
1661 /* should never be called due to GENHD_FL_HIDDEN */
1662 if (WARN_ON_ONCE(ns->head->disk))
1663 goto fail;
1664 #endif
1665 if (!kref_get_unless_zero(&ns->kref))
1666 goto fail;
1667 if (!try_module_get(ns->ctrl->ops->module))
1668 goto fail_put_ns;
1669
1670 return 0;
1671
1672 fail_put_ns:
1673 nvme_put_ns(ns);
1674 fail:
1675 return -ENXIO;
1676 }
1677
1678 static void nvme_release(struct gendisk *disk, fmode_t mode)
1679 {
1680 struct nvme_ns *ns = disk->private_data;
1681
1682 module_put(ns->ctrl->ops->module);
1683 nvme_put_ns(ns);
1684 }
1685
1686 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1687 {
1688 /* some standard values */
1689 geo->heads = 1 << 6;
1690 geo->sectors = 1 << 5;
1691 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1692 return 0;
1693 }
1694
1695 #ifdef CONFIG_BLK_DEV_INTEGRITY
1696 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1697 u32 max_integrity_segments)
1698 {
1699 struct blk_integrity integrity;
1700
1701 memset(&integrity, 0, sizeof(integrity));
1702 switch (pi_type) {
1703 case NVME_NS_DPS_PI_TYPE3:
1704 integrity.profile = &t10_pi_type3_crc;
1705 integrity.tag_size = sizeof(u16) + sizeof(u32);
1706 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1707 break;
1708 case NVME_NS_DPS_PI_TYPE1:
1709 case NVME_NS_DPS_PI_TYPE2:
1710 integrity.profile = &t10_pi_type1_crc;
1711 integrity.tag_size = sizeof(u16);
1712 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1713 break;
1714 default:
1715 integrity.profile = NULL;
1716 break;
1717 }
1718 integrity.tuple_size = ms;
1719 blk_integrity_register(disk, &integrity);
1720 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1721 }
1722 #else
1723 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1724 u32 max_integrity_segments)
1725 {
1726 }
1727 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1728
1729 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1730 {
1731 struct nvme_ctrl *ctrl = ns->ctrl;
1732 struct request_queue *queue = disk->queue;
1733 u32 size = queue_logical_block_size(queue);
1734
1735 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1736 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1737 return;
1738 }
1739
1740 if (ctrl->nr_streams && ns->sws && ns->sgs)
1741 size *= ns->sws * ns->sgs;
1742
1743 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1744 NVME_DSM_MAX_RANGES);
1745
1746 queue->limits.discard_alignment = 0;
1747 queue->limits.discard_granularity = size;
1748
1749 /* If discard is already enabled, don't reset queue limits */
1750 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1751 return;
1752
1753 blk_queue_max_discard_sectors(queue, UINT_MAX);
1754 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1755
1756 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1757 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1758 }
1759
1760 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1761 {
1762 u64 max_blocks;
1763
1764 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1765 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1766 return;
1767 /*
1768 * Even though NVMe spec explicitly states that MDTS is not
1769 * applicable to the write-zeroes:- "The restriction does not apply to
1770 * commands that do not transfer data between the host and the
1771 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1772 * In order to be more cautious use controller's max_hw_sectors value
1773 * to configure the maximum sectors for the write-zeroes which is
1774 * configured based on the controller's MDTS field in the
1775 * nvme_init_identify() if available.
1776 */
1777 if (ns->ctrl->max_hw_sectors == UINT_MAX)
1778 max_blocks = (u64)USHRT_MAX + 1;
1779 else
1780 max_blocks = ns->ctrl->max_hw_sectors + 1;
1781
1782 blk_queue_max_write_zeroes_sectors(disk->queue,
1783 nvme_lba_to_sect(ns, max_blocks));
1784 }
1785
1786 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1787 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1788 {
1789 memset(ids, 0, sizeof(*ids));
1790
1791 if (ctrl->vs >= NVME_VS(1, 1, 0))
1792 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1793 if (ctrl->vs >= NVME_VS(1, 2, 0))
1794 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1795 if (ctrl->vs >= NVME_VS(1, 3, 0))
1796 return nvme_identify_ns_descs(ctrl, nsid, ids);
1797 return 0;
1798 }
1799
1800 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1801 {
1802 return !uuid_is_null(&ids->uuid) ||
1803 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1804 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1805 }
1806
1807 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1808 {
1809 return uuid_equal(&a->uuid, &b->uuid) &&
1810 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1811 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1812 }
1813
1814 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1815 u32 *phys_bs, u32 *io_opt)
1816 {
1817 struct streams_directive_params s;
1818 int ret;
1819
1820 if (!ctrl->nr_streams)
1821 return 0;
1822
1823 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1824 if (ret)
1825 return ret;
1826
1827 ns->sws = le32_to_cpu(s.sws);
1828 ns->sgs = le16_to_cpu(s.sgs);
1829
1830 if (ns->sws) {
1831 *phys_bs = ns->sws * (1 << ns->lba_shift);
1832 if (ns->sgs)
1833 *io_opt = *phys_bs * ns->sgs;
1834 }
1835
1836 return 0;
1837 }
1838
1839 static void nvme_update_disk_info(struct gendisk *disk,
1840 struct nvme_ns *ns, struct nvme_id_ns *id)
1841 {
1842 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1843 unsigned short bs = 1 << ns->lba_shift;
1844 u32 atomic_bs, phys_bs, io_opt = 0;
1845
1846 if (ns->lba_shift > PAGE_SHIFT) {
1847 /* unsupported block size, set capacity to 0 later */
1848 bs = (1 << 9);
1849 }
1850 blk_mq_freeze_queue(disk->queue);
1851 blk_integrity_unregister(disk);
1852
1853 atomic_bs = phys_bs = bs;
1854 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1855 if (id->nabo == 0) {
1856 /*
1857 * Bit 1 indicates whether NAWUPF is defined for this namespace
1858 * and whether it should be used instead of AWUPF. If NAWUPF ==
1859 * 0 then AWUPF must be used instead.
1860 */
1861 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1862 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1863 else
1864 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1865 }
1866
1867 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1868 /* NPWG = Namespace Preferred Write Granularity */
1869 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1870 /* NOWS = Namespace Optimal Write Size */
1871 io_opt = bs * (1 + le16_to_cpu(id->nows));
1872 }
1873
1874 blk_queue_logical_block_size(disk->queue, bs);
1875 /*
1876 * Linux filesystems assume writing a single physical block is
1877 * an atomic operation. Hence limit the physical block size to the
1878 * value of the Atomic Write Unit Power Fail parameter.
1879 */
1880 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1881 blk_queue_io_min(disk->queue, phys_bs);
1882 blk_queue_io_opt(disk->queue, io_opt);
1883
1884 /*
1885 * The block layer can't support LBA sizes larger than the page size
1886 * yet, so catch this early and don't allow block I/O.
1887 */
1888 if (ns->lba_shift > PAGE_SHIFT)
1889 capacity = 0;
1890
1891 /*
1892 * Register a metadata profile for PI, or the plain non-integrity NVMe
1893 * metadata masquerading as Type 0 if supported, otherwise reject block
1894 * I/O to namespaces with metadata except when the namespace supports
1895 * PI, as it can strip/insert in that case.
1896 */
1897 if (ns->ms) {
1898 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1899 (ns->features & NVME_NS_METADATA_SUPPORTED))
1900 nvme_init_integrity(disk, ns->ms, ns->pi_type,
1901 ns->ctrl->max_integrity_segments);
1902 else if (!nvme_ns_has_pi(ns))
1903 capacity = 0;
1904 }
1905
1906 set_capacity_revalidate_and_notify(disk, capacity, false);
1907
1908 nvme_config_discard(disk, ns);
1909 nvme_config_write_zeroes(disk, ns);
1910
1911 if (id->nsattr & NVME_NS_ATTR_RO)
1912 set_disk_ro(disk, true);
1913 else
1914 set_disk_ro(disk, false);
1915
1916 blk_mq_unfreeze_queue(disk->queue);
1917 }
1918
1919 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1920 {
1921 struct nvme_ns *ns = disk->private_data;
1922 u32 iob;
1923
1924 /*
1925 * If identify namespace failed, use default 512 byte block size so
1926 * block layer can use before failing read/write for 0 capacity.
1927 */
1928 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1929 if (ns->lba_shift == 0)
1930 ns->lba_shift = 9;
1931
1932 if ((ns->ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1933 is_power_of_2(ns->ctrl->max_hw_sectors))
1934 iob = ns->ctrl->max_hw_sectors;
1935 else
1936 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1937
1938 ns->features = 0;
1939 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1940 /* the PI implementation requires metadata equal t10 pi tuple size */
1941 if (ns->ms == sizeof(struct t10_pi_tuple))
1942 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1943 else
1944 ns->pi_type = 0;
1945
1946 if (ns->ms) {
1947 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1948 ns->features |= NVME_NS_EXT_LBAS;
1949
1950 /*
1951 * For PCI, Extended logical block will be generated by the
1952 * controller. Non-extended format can be generated by the
1953 * block layer.
1954 */
1955 if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) {
1956 if (!(ns->features & NVME_NS_EXT_LBAS))
1957 ns->features |= NVME_NS_METADATA_SUPPORTED;
1958 }
1959 }
1960
1961 if (iob)
1962 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(iob));
1963 nvme_update_disk_info(disk, ns, id);
1964 #ifdef CONFIG_NVME_MULTIPATH
1965 if (ns->head->disk) {
1966 nvme_update_disk_info(ns->head->disk, ns, id);
1967 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1968 revalidate_disk(ns->head->disk);
1969 }
1970 #endif
1971 }
1972
1973 static int nvme_revalidate_disk(struct gendisk *disk)
1974 {
1975 struct nvme_ns *ns = disk->private_data;
1976 struct nvme_ctrl *ctrl = ns->ctrl;
1977 struct nvme_id_ns *id;
1978 struct nvme_ns_ids ids;
1979 int ret = 0;
1980
1981 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1982 set_capacity(disk, 0);
1983 return -ENODEV;
1984 }
1985
1986 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1987 if (ret)
1988 goto out;
1989
1990 if (id->ncap == 0) {
1991 ret = -ENODEV;
1992 goto free_id;
1993 }
1994
1995 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1996 if (ret)
1997 goto free_id;
1998
1999 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
2000 dev_err(ctrl->device,
2001 "identifiers changed for nsid %d\n", ns->head->ns_id);
2002 ret = -ENODEV;
2003 goto free_id;
2004 }
2005
2006 __nvme_revalidate_disk(disk, id);
2007 free_id:
2008 kfree(id);
2009 out:
2010 /*
2011 * Only fail the function if we got a fatal error back from the
2012 * device, otherwise ignore the error and just move on.
2013 */
2014 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
2015 ret = 0;
2016 else if (ret > 0)
2017 ret = blk_status_to_errno(nvme_error_status(ret));
2018 return ret;
2019 }
2020
2021 static char nvme_pr_type(enum pr_type type)
2022 {
2023 switch (type) {
2024 case PR_WRITE_EXCLUSIVE:
2025 return 1;
2026 case PR_EXCLUSIVE_ACCESS:
2027 return 2;
2028 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2029 return 3;
2030 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2031 return 4;
2032 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2033 return 5;
2034 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2035 return 6;
2036 default:
2037 return 0;
2038 }
2039 };
2040
2041 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2042 u64 key, u64 sa_key, u8 op)
2043 {
2044 struct nvme_ns_head *head = NULL;
2045 struct nvme_ns *ns;
2046 struct nvme_command c;
2047 int srcu_idx, ret;
2048 u8 data[16] = { 0, };
2049
2050 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2051 if (unlikely(!ns))
2052 return -EWOULDBLOCK;
2053
2054 put_unaligned_le64(key, &data[0]);
2055 put_unaligned_le64(sa_key, &data[8]);
2056
2057 memset(&c, 0, sizeof(c));
2058 c.common.opcode = op;
2059 c.common.nsid = cpu_to_le32(ns->head->ns_id);
2060 c.common.cdw10 = cpu_to_le32(cdw10);
2061
2062 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2063 nvme_put_ns_from_disk(head, srcu_idx);
2064 return ret;
2065 }
2066
2067 static int nvme_pr_register(struct block_device *bdev, u64 old,
2068 u64 new, unsigned flags)
2069 {
2070 u32 cdw10;
2071
2072 if (flags & ~PR_FL_IGNORE_KEY)
2073 return -EOPNOTSUPP;
2074
2075 cdw10 = old ? 2 : 0;
2076 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2077 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2078 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2079 }
2080
2081 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2082 enum pr_type type, unsigned flags)
2083 {
2084 u32 cdw10;
2085
2086 if (flags & ~PR_FL_IGNORE_KEY)
2087 return -EOPNOTSUPP;
2088
2089 cdw10 = nvme_pr_type(type) << 8;
2090 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2091 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2092 }
2093
2094 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2095 enum pr_type type, bool abort)
2096 {
2097 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2098 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2099 }
2100
2101 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2102 {
2103 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2104 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2105 }
2106
2107 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2108 {
2109 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2110 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2111 }
2112
2113 static const struct pr_ops nvme_pr_ops = {
2114 .pr_register = nvme_pr_register,
2115 .pr_reserve = nvme_pr_reserve,
2116 .pr_release = nvme_pr_release,
2117 .pr_preempt = nvme_pr_preempt,
2118 .pr_clear = nvme_pr_clear,
2119 };
2120
2121 #ifdef CONFIG_BLK_SED_OPAL
2122 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2123 bool send)
2124 {
2125 struct nvme_ctrl *ctrl = data;
2126 struct nvme_command cmd;
2127
2128 memset(&cmd, 0, sizeof(cmd));
2129 if (send)
2130 cmd.common.opcode = nvme_admin_security_send;
2131 else
2132 cmd.common.opcode = nvme_admin_security_recv;
2133 cmd.common.nsid = 0;
2134 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2135 cmd.common.cdw11 = cpu_to_le32(len);
2136
2137 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2138 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2139 }
2140 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2141 #endif /* CONFIG_BLK_SED_OPAL */
2142
2143 static const struct block_device_operations nvme_fops = {
2144 .owner = THIS_MODULE,
2145 .ioctl = nvme_ioctl,
2146 .compat_ioctl = nvme_compat_ioctl,
2147 .open = nvme_open,
2148 .release = nvme_release,
2149 .getgeo = nvme_getgeo,
2150 .revalidate_disk= nvme_revalidate_disk,
2151 .pr_ops = &nvme_pr_ops,
2152 };
2153
2154 #ifdef CONFIG_NVME_MULTIPATH
2155 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2156 {
2157 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2158
2159 if (!kref_get_unless_zero(&head->ref))
2160 return -ENXIO;
2161 return 0;
2162 }
2163
2164 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2165 {
2166 nvme_put_ns_head(disk->private_data);
2167 }
2168
2169 const struct block_device_operations nvme_ns_head_ops = {
2170 .owner = THIS_MODULE,
2171 .open = nvme_ns_head_open,
2172 .release = nvme_ns_head_release,
2173 .ioctl = nvme_ioctl,
2174 .compat_ioctl = nvme_compat_ioctl,
2175 .getgeo = nvme_getgeo,
2176 .pr_ops = &nvme_pr_ops,
2177 };
2178 #endif /* CONFIG_NVME_MULTIPATH */
2179
2180 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2181 {
2182 unsigned long timeout =
2183 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2184 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2185 int ret;
2186
2187 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2188 if (csts == ~0)
2189 return -ENODEV;
2190 if ((csts & NVME_CSTS_RDY) == bit)
2191 break;
2192
2193 usleep_range(1000, 2000);
2194 if (fatal_signal_pending(current))
2195 return -EINTR;
2196 if (time_after(jiffies, timeout)) {
2197 dev_err(ctrl->device,
2198 "Device not ready; aborting %s, CSTS=0x%x\n",
2199 enabled ? "initialisation" : "reset", csts);
2200 return -ENODEV;
2201 }
2202 }
2203
2204 return ret;
2205 }
2206
2207 /*
2208 * If the device has been passed off to us in an enabled state, just clear
2209 * the enabled bit. The spec says we should set the 'shutdown notification
2210 * bits', but doing so may cause the device to complete commands to the
2211 * admin queue ... and we don't know what memory that might be pointing at!
2212 */
2213 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2214 {
2215 int ret;
2216
2217 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2218 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2219
2220 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2221 if (ret)
2222 return ret;
2223
2224 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2225 msleep(NVME_QUIRK_DELAY_AMOUNT);
2226
2227 return nvme_wait_ready(ctrl, ctrl->cap, false);
2228 }
2229 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2230
2231 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2232 {
2233 /*
2234 * Default to a 4K page size, with the intention to update this
2235 * path in the future to accomodate architectures with differing
2236 * kernel and IO page sizes.
2237 */
2238 unsigned dev_page_min, page_shift = 12;
2239 int ret;
2240
2241 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2242 if (ret) {
2243 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2244 return ret;
2245 }
2246 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2247
2248 if (page_shift < dev_page_min) {
2249 dev_err(ctrl->device,
2250 "Minimum device page size %u too large for host (%u)\n",
2251 1 << dev_page_min, 1 << page_shift);
2252 return -ENODEV;
2253 }
2254
2255 ctrl->page_size = 1 << page_shift;
2256
2257 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2258 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2259 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2260 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2261 ctrl->ctrl_config |= NVME_CC_ENABLE;
2262
2263 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2264 if (ret)
2265 return ret;
2266 return nvme_wait_ready(ctrl, ctrl->cap, true);
2267 }
2268 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2269
2270 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2271 {
2272 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2273 u32 csts;
2274 int ret;
2275
2276 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2277 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2278
2279 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2280 if (ret)
2281 return ret;
2282
2283 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2284 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2285 break;
2286
2287 msleep(100);
2288 if (fatal_signal_pending(current))
2289 return -EINTR;
2290 if (time_after(jiffies, timeout)) {
2291 dev_err(ctrl->device,
2292 "Device shutdown incomplete; abort shutdown\n");
2293 return -ENODEV;
2294 }
2295 }
2296
2297 return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2300
2301 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2302 struct request_queue *q)
2303 {
2304 bool vwc = false;
2305
2306 if (ctrl->max_hw_sectors) {
2307 u32 max_segments =
2308 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2309
2310 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2311 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2312 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2313 }
2314 blk_queue_virt_boundary(q, ctrl->page_size - 1);
2315 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2316 vwc = true;
2317 blk_queue_write_cache(q, vwc, vwc);
2318 }
2319
2320 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2321 {
2322 __le64 ts;
2323 int ret;
2324
2325 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2326 return 0;
2327
2328 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2329 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2330 NULL);
2331 if (ret)
2332 dev_warn_once(ctrl->device,
2333 "could not set timestamp (%d)\n", ret);
2334 return ret;
2335 }
2336
2337 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2338 {
2339 struct nvme_feat_host_behavior *host;
2340 int ret;
2341
2342 /* Don't bother enabling the feature if retry delay is not reported */
2343 if (!ctrl->crdt[0])
2344 return 0;
2345
2346 host = kzalloc(sizeof(*host), GFP_KERNEL);
2347 if (!host)
2348 return 0;
2349
2350 host->acre = NVME_ENABLE_ACRE;
2351 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2352 host, sizeof(*host), NULL);
2353 kfree(host);
2354 return ret;
2355 }
2356
2357 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2358 {
2359 /*
2360 * APST (Autonomous Power State Transition) lets us program a
2361 * table of power state transitions that the controller will
2362 * perform automatically. We configure it with a simple
2363 * heuristic: we are willing to spend at most 2% of the time
2364 * transitioning between power states. Therefore, when running
2365 * in any given state, we will enter the next lower-power
2366 * non-operational state after waiting 50 * (enlat + exlat)
2367 * microseconds, as long as that state's exit latency is under
2368 * the requested maximum latency.
2369 *
2370 * We will not autonomously enter any non-operational state for
2371 * which the total latency exceeds ps_max_latency_us. Users
2372 * can set ps_max_latency_us to zero to turn off APST.
2373 */
2374
2375 unsigned apste;
2376 struct nvme_feat_auto_pst *table;
2377 u64 max_lat_us = 0;
2378 int max_ps = -1;
2379 int ret;
2380
2381 /*
2382 * If APST isn't supported or if we haven't been initialized yet,
2383 * then don't do anything.
2384 */
2385 if (!ctrl->apsta)
2386 return 0;
2387
2388 if (ctrl->npss > 31) {
2389 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2390 return 0;
2391 }
2392
2393 table = kzalloc(sizeof(*table), GFP_KERNEL);
2394 if (!table)
2395 return 0;
2396
2397 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2398 /* Turn off APST. */
2399 apste = 0;
2400 dev_dbg(ctrl->device, "APST disabled\n");
2401 } else {
2402 __le64 target = cpu_to_le64(0);
2403 int state;
2404
2405 /*
2406 * Walk through all states from lowest- to highest-power.
2407 * According to the spec, lower-numbered states use more
2408 * power. NPSS, despite the name, is the index of the
2409 * lowest-power state, not the number of states.
2410 */
2411 for (state = (int)ctrl->npss; state >= 0; state--) {
2412 u64 total_latency_us, exit_latency_us, transition_ms;
2413
2414 if (target)
2415 table->entries[state] = target;
2416
2417 /*
2418 * Don't allow transitions to the deepest state
2419 * if it's quirked off.
2420 */
2421 if (state == ctrl->npss &&
2422 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2423 continue;
2424
2425 /*
2426 * Is this state a useful non-operational state for
2427 * higher-power states to autonomously transition to?
2428 */
2429 if (!(ctrl->psd[state].flags &
2430 NVME_PS_FLAGS_NON_OP_STATE))
2431 continue;
2432
2433 exit_latency_us =
2434 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2435 if (exit_latency_us > ctrl->ps_max_latency_us)
2436 continue;
2437
2438 total_latency_us =
2439 exit_latency_us +
2440 le32_to_cpu(ctrl->psd[state].entry_lat);
2441
2442 /*
2443 * This state is good. Use it as the APST idle
2444 * target for higher power states.
2445 */
2446 transition_ms = total_latency_us + 19;
2447 do_div(transition_ms, 20);
2448 if (transition_ms > (1 << 24) - 1)
2449 transition_ms = (1 << 24) - 1;
2450
2451 target = cpu_to_le64((state << 3) |
2452 (transition_ms << 8));
2453
2454 if (max_ps == -1)
2455 max_ps = state;
2456
2457 if (total_latency_us > max_lat_us)
2458 max_lat_us = total_latency_us;
2459 }
2460
2461 apste = 1;
2462
2463 if (max_ps == -1) {
2464 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2465 } else {
2466 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2467 max_ps, max_lat_us, (int)sizeof(*table), table);
2468 }
2469 }
2470
2471 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2472 table, sizeof(*table), NULL);
2473 if (ret)
2474 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2475
2476 kfree(table);
2477 return ret;
2478 }
2479
2480 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2481 {
2482 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2483 u64 latency;
2484
2485 switch (val) {
2486 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2487 case PM_QOS_LATENCY_ANY:
2488 latency = U64_MAX;
2489 break;
2490
2491 default:
2492 latency = val;
2493 }
2494
2495 if (ctrl->ps_max_latency_us != latency) {
2496 ctrl->ps_max_latency_us = latency;
2497 nvme_configure_apst(ctrl);
2498 }
2499 }
2500
2501 struct nvme_core_quirk_entry {
2502 /*
2503 * NVMe model and firmware strings are padded with spaces. For
2504 * simplicity, strings in the quirk table are padded with NULLs
2505 * instead.
2506 */
2507 u16 vid;
2508 const char *mn;
2509 const char *fr;
2510 unsigned long quirks;
2511 };
2512
2513 static const struct nvme_core_quirk_entry core_quirks[] = {
2514 {
2515 /*
2516 * This Toshiba device seems to die using any APST states. See:
2517 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2518 */
2519 .vid = 0x1179,
2520 .mn = "THNSF5256GPUK TOSHIBA",
2521 .quirks = NVME_QUIRK_NO_APST,
2522 },
2523 {
2524 /*
2525 * This LiteON CL1-3D*-Q11 firmware version has a race
2526 * condition associated with actions related to suspend to idle
2527 * LiteON has resolved the problem in future firmware
2528 */
2529 .vid = 0x14a4,
2530 .fr = "22301111",
2531 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2532 }
2533 };
2534
2535 /* match is null-terminated but idstr is space-padded. */
2536 static bool string_matches(const char *idstr, const char *match, size_t len)
2537 {
2538 size_t matchlen;
2539
2540 if (!match)
2541 return true;
2542
2543 matchlen = strlen(match);
2544 WARN_ON_ONCE(matchlen > len);
2545
2546 if (memcmp(idstr, match, matchlen))
2547 return false;
2548
2549 for (; matchlen < len; matchlen++)
2550 if (idstr[matchlen] != ' ')
2551 return false;
2552
2553 return true;
2554 }
2555
2556 static bool quirk_matches(const struct nvme_id_ctrl *id,
2557 const struct nvme_core_quirk_entry *q)
2558 {
2559 return q->vid == le16_to_cpu(id->vid) &&
2560 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2561 string_matches(id->fr, q->fr, sizeof(id->fr));
2562 }
2563
2564 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2565 struct nvme_id_ctrl *id)
2566 {
2567 size_t nqnlen;
2568 int off;
2569
2570 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2571 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2572 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2573 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2574 return;
2575 }
2576
2577 if (ctrl->vs >= NVME_VS(1, 2, 1))
2578 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2579 }
2580
2581 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2582 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2583 "nqn.2014.08.org.nvmexpress:%04x%04x",
2584 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2585 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2586 off += sizeof(id->sn);
2587 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2588 off += sizeof(id->mn);
2589 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2590 }
2591
2592 static void nvme_release_subsystem(struct device *dev)
2593 {
2594 struct nvme_subsystem *subsys =
2595 container_of(dev, struct nvme_subsystem, dev);
2596
2597 if (subsys->instance >= 0)
2598 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2599 kfree(subsys);
2600 }
2601
2602 static void nvme_destroy_subsystem(struct kref *ref)
2603 {
2604 struct nvme_subsystem *subsys =
2605 container_of(ref, struct nvme_subsystem, ref);
2606
2607 mutex_lock(&nvme_subsystems_lock);
2608 list_del(&subsys->entry);
2609 mutex_unlock(&nvme_subsystems_lock);
2610
2611 ida_destroy(&subsys->ns_ida);
2612 device_del(&subsys->dev);
2613 put_device(&subsys->dev);
2614 }
2615
2616 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2617 {
2618 kref_put(&subsys->ref, nvme_destroy_subsystem);
2619 }
2620
2621 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2622 {
2623 struct nvme_subsystem *subsys;
2624
2625 lockdep_assert_held(&nvme_subsystems_lock);
2626
2627 /*
2628 * Fail matches for discovery subsystems. This results
2629 * in each discovery controller bound to a unique subsystem.
2630 * This avoids issues with validating controller values
2631 * that can only be true when there is a single unique subsystem.
2632 * There may be multiple and completely independent entities
2633 * that provide discovery controllers.
2634 */
2635 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2636 return NULL;
2637
2638 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2639 if (strcmp(subsys->subnqn, subsysnqn))
2640 continue;
2641 if (!kref_get_unless_zero(&subsys->ref))
2642 continue;
2643 return subsys;
2644 }
2645
2646 return NULL;
2647 }
2648
2649 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2650 struct device_attribute subsys_attr_##_name = \
2651 __ATTR(_name, _mode, _show, NULL)
2652
2653 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2654 struct device_attribute *attr,
2655 char *buf)
2656 {
2657 struct nvme_subsystem *subsys =
2658 container_of(dev, struct nvme_subsystem, dev);
2659
2660 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2661 }
2662 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2663
2664 #define nvme_subsys_show_str_function(field) \
2665 static ssize_t subsys_##field##_show(struct device *dev, \
2666 struct device_attribute *attr, char *buf) \
2667 { \
2668 struct nvme_subsystem *subsys = \
2669 container_of(dev, struct nvme_subsystem, dev); \
2670 return sprintf(buf, "%.*s\n", \
2671 (int)sizeof(subsys->field), subsys->field); \
2672 } \
2673 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2674
2675 nvme_subsys_show_str_function(model);
2676 nvme_subsys_show_str_function(serial);
2677 nvme_subsys_show_str_function(firmware_rev);
2678
2679 static struct attribute *nvme_subsys_attrs[] = {
2680 &subsys_attr_model.attr,
2681 &subsys_attr_serial.attr,
2682 &subsys_attr_firmware_rev.attr,
2683 &subsys_attr_subsysnqn.attr,
2684 #ifdef CONFIG_NVME_MULTIPATH
2685 &subsys_attr_iopolicy.attr,
2686 #endif
2687 NULL,
2688 };
2689
2690 static struct attribute_group nvme_subsys_attrs_group = {
2691 .attrs = nvme_subsys_attrs,
2692 };
2693
2694 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2695 &nvme_subsys_attrs_group,
2696 NULL,
2697 };
2698
2699 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2700 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2701 {
2702 struct nvme_ctrl *tmp;
2703
2704 lockdep_assert_held(&nvme_subsystems_lock);
2705
2706 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2707 if (nvme_state_terminal(tmp))
2708 continue;
2709
2710 if (tmp->cntlid == ctrl->cntlid) {
2711 dev_err(ctrl->device,
2712 "Duplicate cntlid %u with %s, rejecting\n",
2713 ctrl->cntlid, dev_name(tmp->device));
2714 return false;
2715 }
2716
2717 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2718 (ctrl->opts && ctrl->opts->discovery_nqn))
2719 continue;
2720
2721 dev_err(ctrl->device,
2722 "Subsystem does not support multiple controllers\n");
2723 return false;
2724 }
2725
2726 return true;
2727 }
2728
2729 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2730 {
2731 struct nvme_subsystem *subsys, *found;
2732 int ret;
2733
2734 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2735 if (!subsys)
2736 return -ENOMEM;
2737
2738 subsys->instance = -1;
2739 mutex_init(&subsys->lock);
2740 kref_init(&subsys->ref);
2741 INIT_LIST_HEAD(&subsys->ctrls);
2742 INIT_LIST_HEAD(&subsys->nsheads);
2743 nvme_init_subnqn(subsys, ctrl, id);
2744 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2745 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2746 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2747 subsys->vendor_id = le16_to_cpu(id->vid);
2748 subsys->cmic = id->cmic;
2749 subsys->awupf = le16_to_cpu(id->awupf);
2750 #ifdef CONFIG_NVME_MULTIPATH
2751 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2752 #endif
2753
2754 subsys->dev.class = nvme_subsys_class;
2755 subsys->dev.release = nvme_release_subsystem;
2756 subsys->dev.groups = nvme_subsys_attrs_groups;
2757 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2758 device_initialize(&subsys->dev);
2759
2760 mutex_lock(&nvme_subsystems_lock);
2761 found = __nvme_find_get_subsystem(subsys->subnqn);
2762 if (found) {
2763 put_device(&subsys->dev);
2764 subsys = found;
2765
2766 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2767 ret = -EINVAL;
2768 goto out_put_subsystem;
2769 }
2770 } else {
2771 ret = device_add(&subsys->dev);
2772 if (ret) {
2773 dev_err(ctrl->device,
2774 "failed to register subsystem device.\n");
2775 put_device(&subsys->dev);
2776 goto out_unlock;
2777 }
2778 ida_init(&subsys->ns_ida);
2779 list_add_tail(&subsys->entry, &nvme_subsystems);
2780 }
2781
2782 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2783 dev_name(ctrl->device));
2784 if (ret) {
2785 dev_err(ctrl->device,
2786 "failed to create sysfs link from subsystem.\n");
2787 goto out_put_subsystem;
2788 }
2789
2790 if (!found)
2791 subsys->instance = ctrl->instance;
2792 ctrl->subsys = subsys;
2793 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2794 mutex_unlock(&nvme_subsystems_lock);
2795 return 0;
2796
2797 out_put_subsystem:
2798 nvme_put_subsystem(subsys);
2799 out_unlock:
2800 mutex_unlock(&nvme_subsystems_lock);
2801 return ret;
2802 }
2803
2804 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2805 void *log, size_t size, u64 offset)
2806 {
2807 struct nvme_command c = { };
2808 u32 dwlen = nvme_bytes_to_numd(size);
2809
2810 c.get_log_page.opcode = nvme_admin_get_log_page;
2811 c.get_log_page.nsid = cpu_to_le32(nsid);
2812 c.get_log_page.lid = log_page;
2813 c.get_log_page.lsp = lsp;
2814 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2815 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2816 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2817 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2818
2819 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2820 }
2821
2822 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2823 {
2824 int ret;
2825
2826 if (!ctrl->effects)
2827 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2828
2829 if (!ctrl->effects)
2830 return 0;
2831
2832 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2833 ctrl->effects, sizeof(*ctrl->effects), 0);
2834 if (ret) {
2835 kfree(ctrl->effects);
2836 ctrl->effects = NULL;
2837 }
2838 return ret;
2839 }
2840
2841 /*
2842 * Initialize the cached copies of the Identify data and various controller
2843 * register in our nvme_ctrl structure. This should be called as soon as
2844 * the admin queue is fully up and running.
2845 */
2846 int nvme_init_identify(struct nvme_ctrl *ctrl)
2847 {
2848 struct nvme_id_ctrl *id;
2849 int ret, page_shift;
2850 u32 max_hw_sectors;
2851 bool prev_apst_enabled;
2852
2853 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2854 if (ret) {
2855 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2856 return ret;
2857 }
2858 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2859 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2860
2861 if (ctrl->vs >= NVME_VS(1, 1, 0))
2862 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2863
2864 ret = nvme_identify_ctrl(ctrl, &id);
2865 if (ret) {
2866 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2867 return -EIO;
2868 }
2869
2870 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2871 ret = nvme_get_effects_log(ctrl);
2872 if (ret < 0)
2873 goto out_free;
2874 }
2875
2876 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2877 ctrl->cntlid = le16_to_cpu(id->cntlid);
2878
2879 if (!ctrl->identified) {
2880 int i;
2881
2882 ret = nvme_init_subsystem(ctrl, id);
2883 if (ret)
2884 goto out_free;
2885
2886 /*
2887 * Check for quirks. Quirk can depend on firmware version,
2888 * so, in principle, the set of quirks present can change
2889 * across a reset. As a possible future enhancement, we
2890 * could re-scan for quirks every time we reinitialize
2891 * the device, but we'd have to make sure that the driver
2892 * behaves intelligently if the quirks change.
2893 */
2894 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2895 if (quirk_matches(id, &core_quirks[i]))
2896 ctrl->quirks |= core_quirks[i].quirks;
2897 }
2898 }
2899
2900 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2901 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2902 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2903 }
2904
2905 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2906 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2907 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2908
2909 ctrl->oacs = le16_to_cpu(id->oacs);
2910 ctrl->oncs = le16_to_cpu(id->oncs);
2911 ctrl->mtfa = le16_to_cpu(id->mtfa);
2912 ctrl->oaes = le32_to_cpu(id->oaes);
2913 ctrl->wctemp = le16_to_cpu(id->wctemp);
2914 ctrl->cctemp = le16_to_cpu(id->cctemp);
2915
2916 atomic_set(&ctrl->abort_limit, id->acl + 1);
2917 ctrl->vwc = id->vwc;
2918 if (id->mdts)
2919 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2920 else
2921 max_hw_sectors = UINT_MAX;
2922 ctrl->max_hw_sectors =
2923 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2924
2925 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2926 ctrl->sgls = le32_to_cpu(id->sgls);
2927 ctrl->kas = le16_to_cpu(id->kas);
2928 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2929 ctrl->ctratt = le32_to_cpu(id->ctratt);
2930
2931 if (id->rtd3e) {
2932 /* us -> s */
2933 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2934
2935 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2936 shutdown_timeout, 60);
2937
2938 if (ctrl->shutdown_timeout != shutdown_timeout)
2939 dev_info(ctrl->device,
2940 "Shutdown timeout set to %u seconds\n",
2941 ctrl->shutdown_timeout);
2942 } else
2943 ctrl->shutdown_timeout = shutdown_timeout;
2944
2945 ctrl->npss = id->npss;
2946 ctrl->apsta = id->apsta;
2947 prev_apst_enabled = ctrl->apst_enabled;
2948 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2949 if (force_apst && id->apsta) {
2950 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2951 ctrl->apst_enabled = true;
2952 } else {
2953 ctrl->apst_enabled = false;
2954 }
2955 } else {
2956 ctrl->apst_enabled = id->apsta;
2957 }
2958 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2959
2960 if (ctrl->ops->flags & NVME_F_FABRICS) {
2961 ctrl->icdoff = le16_to_cpu(id->icdoff);
2962 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2963 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2964 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2965
2966 /*
2967 * In fabrics we need to verify the cntlid matches the
2968 * admin connect
2969 */
2970 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2971 dev_err(ctrl->device,
2972 "Mismatching cntlid: Connect %u vs Identify "
2973 "%u, rejecting\n",
2974 ctrl->cntlid, le16_to_cpu(id->cntlid));
2975 ret = -EINVAL;
2976 goto out_free;
2977 }
2978
2979 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2980 dev_err(ctrl->device,
2981 "keep-alive support is mandatory for fabrics\n");
2982 ret = -EINVAL;
2983 goto out_free;
2984 }
2985 } else {
2986 ctrl->hmpre = le32_to_cpu(id->hmpre);
2987 ctrl->hmmin = le32_to_cpu(id->hmmin);
2988 ctrl->hmminds = le32_to_cpu(id->hmminds);
2989 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2990 }
2991
2992 ret = nvme_mpath_init(ctrl, id);
2993 kfree(id);
2994
2995 if (ret < 0)
2996 return ret;
2997
2998 if (ctrl->apst_enabled && !prev_apst_enabled)
2999 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3000 else if (!ctrl->apst_enabled && prev_apst_enabled)
3001 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3002
3003 ret = nvme_configure_apst(ctrl);
3004 if (ret < 0)
3005 return ret;
3006
3007 ret = nvme_configure_timestamp(ctrl);
3008 if (ret < 0)
3009 return ret;
3010
3011 ret = nvme_configure_directives(ctrl);
3012 if (ret < 0)
3013 return ret;
3014
3015 ret = nvme_configure_acre(ctrl);
3016 if (ret < 0)
3017 return ret;
3018
3019 if (!ctrl->identified)
3020 nvme_hwmon_init(ctrl);
3021
3022 ctrl->identified = true;
3023
3024 return 0;
3025
3026 out_free:
3027 kfree(id);
3028 return ret;
3029 }
3030 EXPORT_SYMBOL_GPL(nvme_init_identify);
3031
3032 static int nvme_dev_open(struct inode *inode, struct file *file)
3033 {
3034 struct nvme_ctrl *ctrl =
3035 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3036
3037 switch (ctrl->state) {
3038 case NVME_CTRL_LIVE:
3039 break;
3040 default:
3041 return -EWOULDBLOCK;
3042 }
3043
3044 file->private_data = ctrl;
3045 return 0;
3046 }
3047
3048 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3049 {
3050 struct nvme_ns *ns;
3051 int ret;
3052
3053 down_read(&ctrl->namespaces_rwsem);
3054 if (list_empty(&ctrl->namespaces)) {
3055 ret = -ENOTTY;
3056 goto out_unlock;
3057 }
3058
3059 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3060 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3061 dev_warn(ctrl->device,
3062 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3063 ret = -EINVAL;
3064 goto out_unlock;
3065 }
3066
3067 dev_warn(ctrl->device,
3068 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3069 kref_get(&ns->kref);
3070 up_read(&ctrl->namespaces_rwsem);
3071
3072 ret = nvme_user_cmd(ctrl, ns, argp);
3073 nvme_put_ns(ns);
3074 return ret;
3075
3076 out_unlock:
3077 up_read(&ctrl->namespaces_rwsem);
3078 return ret;
3079 }
3080
3081 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3082 unsigned long arg)
3083 {
3084 struct nvme_ctrl *ctrl = file->private_data;
3085 void __user *argp = (void __user *)arg;
3086
3087 switch (cmd) {
3088 case NVME_IOCTL_ADMIN_CMD:
3089 return nvme_user_cmd(ctrl, NULL, argp);
3090 case NVME_IOCTL_ADMIN64_CMD:
3091 return nvme_user_cmd64(ctrl, NULL, argp);
3092 case NVME_IOCTL_IO_CMD:
3093 return nvme_dev_user_cmd(ctrl, argp);
3094 case NVME_IOCTL_RESET:
3095 dev_warn(ctrl->device, "resetting controller\n");
3096 return nvme_reset_ctrl_sync(ctrl);
3097 case NVME_IOCTL_SUBSYS_RESET:
3098 return nvme_reset_subsystem(ctrl);
3099 case NVME_IOCTL_RESCAN:
3100 nvme_queue_scan(ctrl);
3101 return 0;
3102 default:
3103 return -ENOTTY;
3104 }
3105 }
3106
3107 static const struct file_operations nvme_dev_fops = {
3108 .owner = THIS_MODULE,
3109 .open = nvme_dev_open,
3110 .unlocked_ioctl = nvme_dev_ioctl,
3111 .compat_ioctl = compat_ptr_ioctl,
3112 };
3113
3114 static ssize_t nvme_sysfs_reset(struct device *dev,
3115 struct device_attribute *attr, const char *buf,
3116 size_t count)
3117 {
3118 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3119 int ret;
3120
3121 ret = nvme_reset_ctrl_sync(ctrl);
3122 if (ret < 0)
3123 return ret;
3124 return count;
3125 }
3126 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3127
3128 static ssize_t nvme_sysfs_rescan(struct device *dev,
3129 struct device_attribute *attr, const char *buf,
3130 size_t count)
3131 {
3132 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3133
3134 nvme_queue_scan(ctrl);
3135 return count;
3136 }
3137 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3138
3139 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3140 {
3141 struct gendisk *disk = dev_to_disk(dev);
3142
3143 if (disk->fops == &nvme_fops)
3144 return nvme_get_ns_from_dev(dev)->head;
3145 else
3146 return disk->private_data;
3147 }
3148
3149 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3150 char *buf)
3151 {
3152 struct nvme_ns_head *head = dev_to_ns_head(dev);
3153 struct nvme_ns_ids *ids = &head->ids;
3154 struct nvme_subsystem *subsys = head->subsys;
3155 int serial_len = sizeof(subsys->serial);
3156 int model_len = sizeof(subsys->model);
3157
3158 if (!uuid_is_null(&ids->uuid))
3159 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3160
3161 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3162 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3163
3164 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3165 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3166
3167 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3168 subsys->serial[serial_len - 1] == '\0'))
3169 serial_len--;
3170 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3171 subsys->model[model_len - 1] == '\0'))
3172 model_len--;
3173
3174 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3175 serial_len, subsys->serial, model_len, subsys->model,
3176 head->ns_id);
3177 }
3178 static DEVICE_ATTR_RO(wwid);
3179
3180 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3181 char *buf)
3182 {
3183 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3184 }
3185 static DEVICE_ATTR_RO(nguid);
3186
3187 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3188 char *buf)
3189 {
3190 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3191
3192 /* For backward compatibility expose the NGUID to userspace if
3193 * we have no UUID set
3194 */
3195 if (uuid_is_null(&ids->uuid)) {
3196 printk_ratelimited(KERN_WARNING
3197 "No UUID available providing old NGUID\n");
3198 return sprintf(buf, "%pU\n", ids->nguid);
3199 }
3200 return sprintf(buf, "%pU\n", &ids->uuid);
3201 }
3202 static DEVICE_ATTR_RO(uuid);
3203
3204 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3205 char *buf)
3206 {
3207 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3208 }
3209 static DEVICE_ATTR_RO(eui);
3210
3211 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3212 char *buf)
3213 {
3214 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3215 }
3216 static DEVICE_ATTR_RO(nsid);
3217
3218 static struct attribute *nvme_ns_id_attrs[] = {
3219 &dev_attr_wwid.attr,
3220 &dev_attr_uuid.attr,
3221 &dev_attr_nguid.attr,
3222 &dev_attr_eui.attr,
3223 &dev_attr_nsid.attr,
3224 #ifdef CONFIG_NVME_MULTIPATH
3225 &dev_attr_ana_grpid.attr,
3226 &dev_attr_ana_state.attr,
3227 #endif
3228 NULL,
3229 };
3230
3231 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3232 struct attribute *a, int n)
3233 {
3234 struct device *dev = container_of(kobj, struct device, kobj);
3235 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3236
3237 if (a == &dev_attr_uuid.attr) {
3238 if (uuid_is_null(&ids->uuid) &&
3239 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3240 return 0;
3241 }
3242 if (a == &dev_attr_nguid.attr) {
3243 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3244 return 0;
3245 }
3246 if (a == &dev_attr_eui.attr) {
3247 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3248 return 0;
3249 }
3250 #ifdef CONFIG_NVME_MULTIPATH
3251 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3252 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3253 return 0;
3254 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3255 return 0;
3256 }
3257 #endif
3258 return a->mode;
3259 }
3260
3261 static const struct attribute_group nvme_ns_id_attr_group = {
3262 .attrs = nvme_ns_id_attrs,
3263 .is_visible = nvme_ns_id_attrs_are_visible,
3264 };
3265
3266 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3267 &nvme_ns_id_attr_group,
3268 #ifdef CONFIG_NVM
3269 &nvme_nvm_attr_group,
3270 #endif
3271 NULL,
3272 };
3273
3274 #define nvme_show_str_function(field) \
3275 static ssize_t field##_show(struct device *dev, \
3276 struct device_attribute *attr, char *buf) \
3277 { \
3278 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3279 return sprintf(buf, "%.*s\n", \
3280 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3281 } \
3282 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3283
3284 nvme_show_str_function(model);
3285 nvme_show_str_function(serial);
3286 nvme_show_str_function(firmware_rev);
3287
3288 #define nvme_show_int_function(field) \
3289 static ssize_t field##_show(struct device *dev, \
3290 struct device_attribute *attr, char *buf) \
3291 { \
3292 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3293 return sprintf(buf, "%d\n", ctrl->field); \
3294 } \
3295 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3296
3297 nvme_show_int_function(cntlid);
3298 nvme_show_int_function(numa_node);
3299 nvme_show_int_function(queue_count);
3300 nvme_show_int_function(sqsize);
3301
3302 static ssize_t nvme_sysfs_delete(struct device *dev,
3303 struct device_attribute *attr, const char *buf,
3304 size_t count)
3305 {
3306 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3307
3308 /* Can't delete non-created controllers */
3309 if (!ctrl->created)
3310 return -EBUSY;
3311
3312 if (device_remove_file_self(dev, attr))
3313 nvme_delete_ctrl_sync(ctrl);
3314 return count;
3315 }
3316 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3317
3318 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3319 struct device_attribute *attr,
3320 char *buf)
3321 {
3322 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3323
3324 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3325 }
3326 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3327
3328 static ssize_t nvme_sysfs_show_state(struct device *dev,
3329 struct device_attribute *attr,
3330 char *buf)
3331 {
3332 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3333 static const char *const state_name[] = {
3334 [NVME_CTRL_NEW] = "new",
3335 [NVME_CTRL_LIVE] = "live",
3336 [NVME_CTRL_RESETTING] = "resetting",
3337 [NVME_CTRL_CONNECTING] = "connecting",
3338 [NVME_CTRL_DELETING] = "deleting",
3339 [NVME_CTRL_DEAD] = "dead",
3340 };
3341
3342 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3343 state_name[ctrl->state])
3344 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3345
3346 return sprintf(buf, "unknown state\n");
3347 }
3348
3349 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3350
3351 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3352 struct device_attribute *attr,
3353 char *buf)
3354 {
3355 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3356
3357 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3358 }
3359 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3360
3361 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3362 struct device_attribute *attr,
3363 char *buf)
3364 {
3365 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3366
3367 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3368 }
3369 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3370
3371 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3372 struct device_attribute *attr,
3373 char *buf)
3374 {
3375 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3376
3377 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3378 }
3379 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3380
3381 static ssize_t nvme_sysfs_show_address(struct device *dev,
3382 struct device_attribute *attr,
3383 char *buf)
3384 {
3385 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3386
3387 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3388 }
3389 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3390
3391 static struct attribute *nvme_dev_attrs[] = {
3392 &dev_attr_reset_controller.attr,
3393 &dev_attr_rescan_controller.attr,
3394 &dev_attr_model.attr,
3395 &dev_attr_serial.attr,
3396 &dev_attr_firmware_rev.attr,
3397 &dev_attr_cntlid.attr,
3398 &dev_attr_delete_controller.attr,
3399 &dev_attr_transport.attr,
3400 &dev_attr_subsysnqn.attr,
3401 &dev_attr_address.attr,
3402 &dev_attr_state.attr,
3403 &dev_attr_numa_node.attr,
3404 &dev_attr_queue_count.attr,
3405 &dev_attr_sqsize.attr,
3406 &dev_attr_hostnqn.attr,
3407 &dev_attr_hostid.attr,
3408 NULL
3409 };
3410
3411 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3412 struct attribute *a, int n)
3413 {
3414 struct device *dev = container_of(kobj, struct device, kobj);
3415 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3416
3417 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3418 return 0;
3419 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3420 return 0;
3421 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3422 return 0;
3423 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3424 return 0;
3425
3426 return a->mode;
3427 }
3428
3429 static struct attribute_group nvme_dev_attrs_group = {
3430 .attrs = nvme_dev_attrs,
3431 .is_visible = nvme_dev_attrs_are_visible,
3432 };
3433
3434 static const struct attribute_group *nvme_dev_attr_groups[] = {
3435 &nvme_dev_attrs_group,
3436 NULL,
3437 };
3438
3439 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3440 unsigned nsid)
3441 {
3442 struct nvme_ns_head *h;
3443
3444 lockdep_assert_held(&subsys->lock);
3445
3446 list_for_each_entry(h, &subsys->nsheads, entry) {
3447 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3448 return h;
3449 }
3450
3451 return NULL;
3452 }
3453
3454 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3455 struct nvme_ns_head *new)
3456 {
3457 struct nvme_ns_head *h;
3458
3459 lockdep_assert_held(&subsys->lock);
3460
3461 list_for_each_entry(h, &subsys->nsheads, entry) {
3462 if (nvme_ns_ids_valid(&new->ids) &&
3463 nvme_ns_ids_equal(&new->ids, &h->ids))
3464 return -EINVAL;
3465 }
3466
3467 return 0;
3468 }
3469
3470 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3471 unsigned nsid, struct nvme_ns_ids *ids)
3472 {
3473 struct nvme_ns_head *head;
3474 size_t size = sizeof(*head);
3475 int ret = -ENOMEM;
3476
3477 #ifdef CONFIG_NVME_MULTIPATH
3478 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3479 #endif
3480
3481 head = kzalloc(size, GFP_KERNEL);
3482 if (!head)
3483 goto out;
3484 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3485 if (ret < 0)
3486 goto out_free_head;
3487 head->instance = ret;
3488 INIT_LIST_HEAD(&head->list);
3489 ret = init_srcu_struct(&head->srcu);
3490 if (ret)
3491 goto out_ida_remove;
3492 head->subsys = ctrl->subsys;
3493 head->ns_id = nsid;
3494 head->ids = *ids;
3495 kref_init(&head->ref);
3496
3497 ret = __nvme_check_ids(ctrl->subsys, head);
3498 if (ret) {
3499 dev_err(ctrl->device,
3500 "duplicate IDs for nsid %d\n", nsid);
3501 goto out_cleanup_srcu;
3502 }
3503
3504 ret = nvme_mpath_alloc_disk(ctrl, head);
3505 if (ret)
3506 goto out_cleanup_srcu;
3507
3508 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3509
3510 kref_get(&ctrl->subsys->ref);
3511
3512 return head;
3513 out_cleanup_srcu:
3514 cleanup_srcu_struct(&head->srcu);
3515 out_ida_remove:
3516 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3517 out_free_head:
3518 kfree(head);
3519 out:
3520 if (ret > 0)
3521 ret = blk_status_to_errno(nvme_error_status(ret));
3522 return ERR_PTR(ret);
3523 }
3524
3525 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3526 struct nvme_id_ns *id)
3527 {
3528 struct nvme_ctrl *ctrl = ns->ctrl;
3529 bool is_shared = id->nmic & NVME_NS_NMIC_SHARED;
3530 struct nvme_ns_head *head = NULL;
3531 struct nvme_ns_ids ids;
3532 int ret = 0;
3533
3534 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3535 if (ret) {
3536 if (ret < 0)
3537 return ret;
3538 return blk_status_to_errno(nvme_error_status(ret));
3539 }
3540
3541 mutex_lock(&ctrl->subsys->lock);
3542 head = nvme_find_ns_head(ctrl->subsys, nsid);
3543 if (!head) {
3544 head = nvme_alloc_ns_head(ctrl, nsid, &ids);
3545 if (IS_ERR(head)) {
3546 ret = PTR_ERR(head);
3547 goto out_unlock;
3548 }
3549 head->shared = is_shared;
3550 } else {
3551 ret = -EINVAL;
3552 if (!is_shared || !head->shared) {
3553 dev_err(ctrl->device,
3554 "Duplicate unshared namespace %d\n", nsid);
3555 goto out_put_ns_head;
3556 }
3557 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3558 dev_err(ctrl->device,
3559 "IDs don't match for shared namespace %d\n",
3560 nsid);
3561 goto out_put_ns_head;
3562 }
3563 }
3564
3565 list_add_tail(&ns->siblings, &head->list);
3566 ns->head = head;
3567 mutex_unlock(&ctrl->subsys->lock);
3568 return 0;
3569
3570 out_put_ns_head:
3571 nvme_put_ns_head(head);
3572 out_unlock:
3573 mutex_unlock(&ctrl->subsys->lock);
3574 return ret;
3575 }
3576
3577 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3578 {
3579 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3580 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3581
3582 return nsa->head->ns_id - nsb->head->ns_id;
3583 }
3584
3585 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3586 {
3587 struct nvme_ns *ns, *ret = NULL;
3588
3589 down_read(&ctrl->namespaces_rwsem);
3590 list_for_each_entry(ns, &ctrl->namespaces, list) {
3591 if (ns->head->ns_id == nsid) {
3592 if (!kref_get_unless_zero(&ns->kref))
3593 continue;
3594 ret = ns;
3595 break;
3596 }
3597 if (ns->head->ns_id > nsid)
3598 break;
3599 }
3600 up_read(&ctrl->namespaces_rwsem);
3601 return ret;
3602 }
3603
3604 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3605 {
3606 struct nvme_ns *ns;
3607 struct gendisk *disk;
3608 struct nvme_id_ns *id;
3609 char disk_name[DISK_NAME_LEN];
3610 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3611
3612 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3613 if (!ns)
3614 return;
3615
3616 ns->queue = blk_mq_init_queue(ctrl->tagset);
3617 if (IS_ERR(ns->queue))
3618 goto out_free_ns;
3619
3620 if (ctrl->opts && ctrl->opts->data_digest)
3621 ns->queue->backing_dev_info->capabilities
3622 |= BDI_CAP_STABLE_WRITES;
3623
3624 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3625 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3626 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3627
3628 ns->queue->queuedata = ns;
3629 ns->ctrl = ctrl;
3630
3631 kref_init(&ns->kref);
3632 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3633
3634 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3635 nvme_set_queue_limits(ctrl, ns->queue);
3636
3637 ret = nvme_identify_ns(ctrl, nsid, &id);
3638 if (ret)
3639 goto out_free_queue;
3640
3641 if (id->ncap == 0) /* no namespace (legacy quirk) */
3642 goto out_free_id;
3643
3644 ret = nvme_init_ns_head(ns, nsid, id);
3645 if (ret)
3646 goto out_free_id;
3647 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3648
3649 disk = alloc_disk_node(0, node);
3650 if (!disk)
3651 goto out_unlink_ns;
3652
3653 disk->fops = &nvme_fops;
3654 disk->private_data = ns;
3655 disk->queue = ns->queue;
3656 disk->flags = flags;
3657 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3658 ns->disk = disk;
3659
3660 __nvme_revalidate_disk(disk, id);
3661
3662 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3663 ret = nvme_nvm_register(ns, disk_name, node);
3664 if (ret) {
3665 dev_warn(ctrl->device, "LightNVM init failure\n");
3666 goto out_put_disk;
3667 }
3668 }
3669
3670 down_write(&ctrl->namespaces_rwsem);
3671 list_add_tail(&ns->list, &ctrl->namespaces);
3672 up_write(&ctrl->namespaces_rwsem);
3673
3674 nvme_get_ctrl(ctrl);
3675
3676 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3677
3678 nvme_mpath_add_disk(ns, id);
3679 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3680 kfree(id);
3681
3682 return;
3683 out_put_disk:
3684 /* prevent double queue cleanup */
3685 ns->disk->queue = NULL;
3686 put_disk(ns->disk);
3687 out_unlink_ns:
3688 mutex_lock(&ctrl->subsys->lock);
3689 list_del_rcu(&ns->siblings);
3690 if (list_empty(&ns->head->list))
3691 list_del_init(&ns->head->entry);
3692 mutex_unlock(&ctrl->subsys->lock);
3693 nvme_put_ns_head(ns->head);
3694 out_free_id:
3695 kfree(id);
3696 out_free_queue:
3697 blk_cleanup_queue(ns->queue);
3698 out_free_ns:
3699 kfree(ns);
3700 }
3701
3702 static void nvme_ns_remove(struct nvme_ns *ns)
3703 {
3704 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3705 return;
3706
3707 nvme_fault_inject_fini(&ns->fault_inject);
3708
3709 mutex_lock(&ns->ctrl->subsys->lock);
3710 list_del_rcu(&ns->siblings);
3711 if (list_empty(&ns->head->list))
3712 list_del_init(&ns->head->entry);
3713 mutex_unlock(&ns->ctrl->subsys->lock);
3714
3715 synchronize_rcu(); /* guarantee not available in head->list */
3716 nvme_mpath_clear_current_path(ns);
3717 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3718
3719 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3720 del_gendisk(ns->disk);
3721 blk_cleanup_queue(ns->queue);
3722 if (blk_get_integrity(ns->disk))
3723 blk_integrity_unregister(ns->disk);
3724 }
3725
3726 down_write(&ns->ctrl->namespaces_rwsem);
3727 list_del_init(&ns->list);
3728 up_write(&ns->ctrl->namespaces_rwsem);
3729
3730 nvme_mpath_check_last_path(ns);
3731 nvme_put_ns(ns);
3732 }
3733
3734 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3735 {
3736 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3737
3738 if (ns) {
3739 nvme_ns_remove(ns);
3740 nvme_put_ns(ns);
3741 }
3742 }
3743
3744 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3745 {
3746 struct nvme_ns *ns;
3747
3748 ns = nvme_find_get_ns(ctrl, nsid);
3749 if (ns) {
3750 if (ns->disk && revalidate_disk(ns->disk))
3751 nvme_ns_remove(ns);
3752 nvme_put_ns(ns);
3753 } else
3754 nvme_alloc_ns(ctrl, nsid);
3755 }
3756
3757 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3758 unsigned nsid)
3759 {
3760 struct nvme_ns *ns, *next;
3761 LIST_HEAD(rm_list);
3762
3763 down_write(&ctrl->namespaces_rwsem);
3764 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3765 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3766 list_move_tail(&ns->list, &rm_list);
3767 }
3768 up_write(&ctrl->namespaces_rwsem);
3769
3770 list_for_each_entry_safe(ns, next, &rm_list, list)
3771 nvme_ns_remove(ns);
3772
3773 }
3774
3775 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3776 {
3777 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3778 __le32 *ns_list;
3779 u32 prev = 0;
3780 int ret = 0, i;
3781
3782 if (nvme_ctrl_limited_cns(ctrl))
3783 return -EOPNOTSUPP;
3784
3785 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3786 if (!ns_list)
3787 return -ENOMEM;
3788
3789 for (;;) {
3790 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3791 if (ret)
3792 goto free;
3793
3794 for (i = 0; i < nr_entries; i++) {
3795 u32 nsid = le32_to_cpu(ns_list[i]);
3796
3797 if (!nsid) /* end of the list? */
3798 goto out;
3799 nvme_validate_ns(ctrl, nsid);
3800 while (++prev < nsid)
3801 nvme_ns_remove_by_nsid(ctrl, prev);
3802 }
3803 }
3804 out:
3805 nvme_remove_invalid_namespaces(ctrl, prev);
3806 free:
3807 kfree(ns_list);
3808 return ret;
3809 }
3810
3811 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3812 {
3813 struct nvme_id_ctrl *id;
3814 u32 nn, i;
3815
3816 if (nvme_identify_ctrl(ctrl, &id))
3817 return;
3818 nn = le32_to_cpu(id->nn);
3819 kfree(id);
3820
3821 for (i = 1; i <= nn; i++)
3822 nvme_validate_ns(ctrl, i);
3823
3824 nvme_remove_invalid_namespaces(ctrl, nn);
3825 }
3826
3827 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3828 {
3829 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3830 __le32 *log;
3831 int error;
3832
3833 log = kzalloc(log_size, GFP_KERNEL);
3834 if (!log)
3835 return;
3836
3837 /*
3838 * We need to read the log to clear the AEN, but we don't want to rely
3839 * on it for the changed namespace information as userspace could have
3840 * raced with us in reading the log page, which could cause us to miss
3841 * updates.
3842 */
3843 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3844 log_size, 0);
3845 if (error)
3846 dev_warn(ctrl->device,
3847 "reading changed ns log failed: %d\n", error);
3848
3849 kfree(log);
3850 }
3851
3852 static void nvme_scan_work(struct work_struct *work)
3853 {
3854 struct nvme_ctrl *ctrl =
3855 container_of(work, struct nvme_ctrl, scan_work);
3856
3857 /* No tagset on a live ctrl means IO queues could not created */
3858 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3859 return;
3860
3861 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3862 dev_info(ctrl->device, "rescanning namespaces.\n");
3863 nvme_clear_changed_ns_log(ctrl);
3864 }
3865
3866 mutex_lock(&ctrl->scan_lock);
3867 if (nvme_scan_ns_list(ctrl) != 0)
3868 nvme_scan_ns_sequential(ctrl);
3869 mutex_unlock(&ctrl->scan_lock);
3870
3871 down_write(&ctrl->namespaces_rwsem);
3872 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3873 up_write(&ctrl->namespaces_rwsem);
3874 }
3875
3876 /*
3877 * This function iterates the namespace list unlocked to allow recovery from
3878 * controller failure. It is up to the caller to ensure the namespace list is
3879 * not modified by scan work while this function is executing.
3880 */
3881 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3882 {
3883 struct nvme_ns *ns, *next;
3884 LIST_HEAD(ns_list);
3885
3886 /*
3887 * make sure to requeue I/O to all namespaces as these
3888 * might result from the scan itself and must complete
3889 * for the scan_work to make progress
3890 */
3891 nvme_mpath_clear_ctrl_paths(ctrl);
3892
3893 /* prevent racing with ns scanning */
3894 flush_work(&ctrl->scan_work);
3895
3896 /*
3897 * The dead states indicates the controller was not gracefully
3898 * disconnected. In that case, we won't be able to flush any data while
3899 * removing the namespaces' disks; fail all the queues now to avoid
3900 * potentially having to clean up the failed sync later.
3901 */
3902 if (ctrl->state == NVME_CTRL_DEAD)
3903 nvme_kill_queues(ctrl);
3904
3905 down_write(&ctrl->namespaces_rwsem);
3906 list_splice_init(&ctrl->namespaces, &ns_list);
3907 up_write(&ctrl->namespaces_rwsem);
3908
3909 list_for_each_entry_safe(ns, next, &ns_list, list)
3910 nvme_ns_remove(ns);
3911 }
3912 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3913
3914 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3915 {
3916 struct nvme_ctrl *ctrl =
3917 container_of(dev, struct nvme_ctrl, ctrl_device);
3918 struct nvmf_ctrl_options *opts = ctrl->opts;
3919 int ret;
3920
3921 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3922 if (ret)
3923 return ret;
3924
3925 if (opts) {
3926 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3927 if (ret)
3928 return ret;
3929
3930 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3931 opts->trsvcid ?: "none");
3932 if (ret)
3933 return ret;
3934
3935 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3936 opts->host_traddr ?: "none");
3937 }
3938 return ret;
3939 }
3940
3941 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3942 {
3943 char *envp[2] = { NULL, NULL };
3944 u32 aen_result = ctrl->aen_result;
3945
3946 ctrl->aen_result = 0;
3947 if (!aen_result)
3948 return;
3949
3950 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3951 if (!envp[0])
3952 return;
3953 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3954 kfree(envp[0]);
3955 }
3956
3957 static void nvme_async_event_work(struct work_struct *work)
3958 {
3959 struct nvme_ctrl *ctrl =
3960 container_of(work, struct nvme_ctrl, async_event_work);
3961
3962 nvme_aen_uevent(ctrl);
3963 ctrl->ops->submit_async_event(ctrl);
3964 }
3965
3966 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3967 {
3968
3969 u32 csts;
3970
3971 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3972 return false;
3973
3974 if (csts == ~0)
3975 return false;
3976
3977 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3978 }
3979
3980 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3981 {
3982 struct nvme_fw_slot_info_log *log;
3983
3984 log = kmalloc(sizeof(*log), GFP_KERNEL);
3985 if (!log)
3986 return;
3987
3988 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
3989 sizeof(*log), 0))
3990 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3991 kfree(log);
3992 }
3993
3994 static void nvme_fw_act_work(struct work_struct *work)
3995 {
3996 struct nvme_ctrl *ctrl = container_of(work,
3997 struct nvme_ctrl, fw_act_work);
3998 unsigned long fw_act_timeout;
3999
4000 if (ctrl->mtfa)
4001 fw_act_timeout = jiffies +
4002 msecs_to_jiffies(ctrl->mtfa * 100);
4003 else
4004 fw_act_timeout = jiffies +
4005 msecs_to_jiffies(admin_timeout * 1000);
4006
4007 nvme_stop_queues(ctrl);
4008 while (nvme_ctrl_pp_status(ctrl)) {
4009 if (time_after(jiffies, fw_act_timeout)) {
4010 dev_warn(ctrl->device,
4011 "Fw activation timeout, reset controller\n");
4012 nvme_try_sched_reset(ctrl);
4013 return;
4014 }
4015 msleep(100);
4016 }
4017
4018 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4019 return;
4020
4021 nvme_start_queues(ctrl);
4022 /* read FW slot information to clear the AER */
4023 nvme_get_fw_slot_info(ctrl);
4024 }
4025
4026 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4027 {
4028 u32 aer_notice_type = (result & 0xff00) >> 8;
4029
4030 trace_nvme_async_event(ctrl, aer_notice_type);
4031
4032 switch (aer_notice_type) {
4033 case NVME_AER_NOTICE_NS_CHANGED:
4034 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4035 nvme_queue_scan(ctrl);
4036 break;
4037 case NVME_AER_NOTICE_FW_ACT_STARTING:
4038 /*
4039 * We are (ab)using the RESETTING state to prevent subsequent
4040 * recovery actions from interfering with the controller's
4041 * firmware activation.
4042 */
4043 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4044 queue_work(nvme_wq, &ctrl->fw_act_work);
4045 break;
4046 #ifdef CONFIG_NVME_MULTIPATH
4047 case NVME_AER_NOTICE_ANA:
4048 if (!ctrl->ana_log_buf)
4049 break;
4050 queue_work(nvme_wq, &ctrl->ana_work);
4051 break;
4052 #endif
4053 case NVME_AER_NOTICE_DISC_CHANGED:
4054 ctrl->aen_result = result;
4055 break;
4056 default:
4057 dev_warn(ctrl->device, "async event result %08x\n", result);
4058 }
4059 }
4060
4061 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4062 volatile union nvme_result *res)
4063 {
4064 u32 result = le32_to_cpu(res->u32);
4065 u32 aer_type = result & 0x07;
4066
4067 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4068 return;
4069
4070 switch (aer_type) {
4071 case NVME_AER_NOTICE:
4072 nvme_handle_aen_notice(ctrl, result);
4073 break;
4074 case NVME_AER_ERROR:
4075 case NVME_AER_SMART:
4076 case NVME_AER_CSS:
4077 case NVME_AER_VS:
4078 trace_nvme_async_event(ctrl, aer_type);
4079 ctrl->aen_result = result;
4080 break;
4081 default:
4082 break;
4083 }
4084 queue_work(nvme_wq, &ctrl->async_event_work);
4085 }
4086 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4087
4088 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4089 {
4090 nvme_mpath_stop(ctrl);
4091 nvme_stop_keep_alive(ctrl);
4092 flush_work(&ctrl->async_event_work);
4093 cancel_work_sync(&ctrl->fw_act_work);
4094 }
4095 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4096
4097 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4098 {
4099 if (ctrl->kato)
4100 nvme_start_keep_alive(ctrl);
4101
4102 nvme_enable_aen(ctrl);
4103
4104 if (ctrl->queue_count > 1) {
4105 nvme_queue_scan(ctrl);
4106 nvme_start_queues(ctrl);
4107 }
4108 ctrl->created = true;
4109 }
4110 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4111
4112 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4113 {
4114 nvme_fault_inject_fini(&ctrl->fault_inject);
4115 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4116 cdev_device_del(&ctrl->cdev, ctrl->device);
4117 nvme_put_ctrl(ctrl);
4118 }
4119 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4120
4121 static void nvme_free_ctrl(struct device *dev)
4122 {
4123 struct nvme_ctrl *ctrl =
4124 container_of(dev, struct nvme_ctrl, ctrl_device);
4125 struct nvme_subsystem *subsys = ctrl->subsys;
4126
4127 if (subsys && ctrl->instance != subsys->instance)
4128 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4129
4130 kfree(ctrl->effects);
4131 nvme_mpath_uninit(ctrl);
4132 __free_page(ctrl->discard_page);
4133
4134 if (subsys) {
4135 mutex_lock(&nvme_subsystems_lock);
4136 list_del(&ctrl->subsys_entry);
4137 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4138 mutex_unlock(&nvme_subsystems_lock);
4139 }
4140
4141 ctrl->ops->free_ctrl(ctrl);
4142
4143 if (subsys)
4144 nvme_put_subsystem(subsys);
4145 }
4146
4147 /*
4148 * Initialize a NVMe controller structures. This needs to be called during
4149 * earliest initialization so that we have the initialized structured around
4150 * during probing.
4151 */
4152 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4153 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4154 {
4155 int ret;
4156
4157 ctrl->state = NVME_CTRL_NEW;
4158 spin_lock_init(&ctrl->lock);
4159 mutex_init(&ctrl->scan_lock);
4160 INIT_LIST_HEAD(&ctrl->namespaces);
4161 init_rwsem(&ctrl->namespaces_rwsem);
4162 ctrl->dev = dev;
4163 ctrl->ops = ops;
4164 ctrl->quirks = quirks;
4165 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4166 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4167 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4168 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4169 init_waitqueue_head(&ctrl->state_wq);
4170
4171 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4172 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4173 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4174
4175 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4176 PAGE_SIZE);
4177 ctrl->discard_page = alloc_page(GFP_KERNEL);
4178 if (!ctrl->discard_page) {
4179 ret = -ENOMEM;
4180 goto out;
4181 }
4182
4183 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4184 if (ret < 0)
4185 goto out;
4186 ctrl->instance = ret;
4187
4188 device_initialize(&ctrl->ctrl_device);
4189 ctrl->device = &ctrl->ctrl_device;
4190 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4191 ctrl->device->class = nvme_class;
4192 ctrl->device->parent = ctrl->dev;
4193 ctrl->device->groups = nvme_dev_attr_groups;
4194 ctrl->device->release = nvme_free_ctrl;
4195 dev_set_drvdata(ctrl->device, ctrl);
4196 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4197 if (ret)
4198 goto out_release_instance;
4199
4200 nvme_get_ctrl(ctrl);
4201 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4202 ctrl->cdev.owner = ops->module;
4203 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4204 if (ret)
4205 goto out_free_name;
4206
4207 /*
4208 * Initialize latency tolerance controls. The sysfs files won't
4209 * be visible to userspace unless the device actually supports APST.
4210 */
4211 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4212 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4213 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4214
4215 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4216
4217 return 0;
4218 out_free_name:
4219 nvme_put_ctrl(ctrl);
4220 kfree_const(ctrl->device->kobj.name);
4221 out_release_instance:
4222 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4223 out:
4224 if (ctrl->discard_page)
4225 __free_page(ctrl->discard_page);
4226 return ret;
4227 }
4228 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4229
4230 /**
4231 * nvme_kill_queues(): Ends all namespace queues
4232 * @ctrl: the dead controller that needs to end
4233 *
4234 * Call this function when the driver determines it is unable to get the
4235 * controller in a state capable of servicing IO.
4236 */
4237 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4238 {
4239 struct nvme_ns *ns;
4240
4241 down_read(&ctrl->namespaces_rwsem);
4242
4243 /* Forcibly unquiesce queues to avoid blocking dispatch */
4244 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4245 blk_mq_unquiesce_queue(ctrl->admin_q);
4246
4247 list_for_each_entry(ns, &ctrl->namespaces, list)
4248 nvme_set_queue_dying(ns);
4249
4250 up_read(&ctrl->namespaces_rwsem);
4251 }
4252 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4253
4254 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4255 {
4256 struct nvme_ns *ns;
4257
4258 down_read(&ctrl->namespaces_rwsem);
4259 list_for_each_entry(ns, &ctrl->namespaces, list)
4260 blk_mq_unfreeze_queue(ns->queue);
4261 up_read(&ctrl->namespaces_rwsem);
4262 }
4263 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4264
4265 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4266 {
4267 struct nvme_ns *ns;
4268
4269 down_read(&ctrl->namespaces_rwsem);
4270 list_for_each_entry(ns, &ctrl->namespaces, list) {
4271 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4272 if (timeout <= 0)
4273 break;
4274 }
4275 up_read(&ctrl->namespaces_rwsem);
4276 }
4277 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4278
4279 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4280 {
4281 struct nvme_ns *ns;
4282
4283 down_read(&ctrl->namespaces_rwsem);
4284 list_for_each_entry(ns, &ctrl->namespaces, list)
4285 blk_mq_freeze_queue_wait(ns->queue);
4286 up_read(&ctrl->namespaces_rwsem);
4287 }
4288 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4289
4290 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4291 {
4292 struct nvme_ns *ns;
4293
4294 down_read(&ctrl->namespaces_rwsem);
4295 list_for_each_entry(ns, &ctrl->namespaces, list)
4296 blk_freeze_queue_start(ns->queue);
4297 up_read(&ctrl->namespaces_rwsem);
4298 }
4299 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4300
4301 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4302 {
4303 struct nvme_ns *ns;
4304
4305 down_read(&ctrl->namespaces_rwsem);
4306 list_for_each_entry(ns, &ctrl->namespaces, list)
4307 blk_mq_quiesce_queue(ns->queue);
4308 up_read(&ctrl->namespaces_rwsem);
4309 }
4310 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4311
4312 void nvme_start_queues(struct nvme_ctrl *ctrl)
4313 {
4314 struct nvme_ns *ns;
4315
4316 down_read(&ctrl->namespaces_rwsem);
4317 list_for_each_entry(ns, &ctrl->namespaces, list)
4318 blk_mq_unquiesce_queue(ns->queue);
4319 up_read(&ctrl->namespaces_rwsem);
4320 }
4321 EXPORT_SYMBOL_GPL(nvme_start_queues);
4322
4323
4324 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4325 {
4326 struct nvme_ns *ns;
4327
4328 down_read(&ctrl->namespaces_rwsem);
4329 list_for_each_entry(ns, &ctrl->namespaces, list)
4330 blk_sync_queue(ns->queue);
4331 up_read(&ctrl->namespaces_rwsem);
4332
4333 if (ctrl->admin_q)
4334 blk_sync_queue(ctrl->admin_q);
4335 }
4336 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4337
4338 /*
4339 * Check we didn't inadvertently grow the command structure sizes:
4340 */
4341 static inline void _nvme_check_size(void)
4342 {
4343 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4344 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4345 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4346 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4347 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4348 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4349 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4350 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4351 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4352 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4353 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4354 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4355 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4356 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4357 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4358 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4359 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4360 }
4361
4362
4363 static int __init nvme_core_init(void)
4364 {
4365 int result = -ENOMEM;
4366
4367 _nvme_check_size();
4368
4369 nvme_wq = alloc_workqueue("nvme-wq",
4370 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4371 if (!nvme_wq)
4372 goto out;
4373
4374 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4375 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4376 if (!nvme_reset_wq)
4377 goto destroy_wq;
4378
4379 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4380 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4381 if (!nvme_delete_wq)
4382 goto destroy_reset_wq;
4383
4384 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4385 if (result < 0)
4386 goto destroy_delete_wq;
4387
4388 nvme_class = class_create(THIS_MODULE, "nvme");
4389 if (IS_ERR(nvme_class)) {
4390 result = PTR_ERR(nvme_class);
4391 goto unregister_chrdev;
4392 }
4393 nvme_class->dev_uevent = nvme_class_uevent;
4394
4395 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4396 if (IS_ERR(nvme_subsys_class)) {
4397 result = PTR_ERR(nvme_subsys_class);
4398 goto destroy_class;
4399 }
4400 return 0;
4401
4402 destroy_class:
4403 class_destroy(nvme_class);
4404 unregister_chrdev:
4405 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4406 destroy_delete_wq:
4407 destroy_workqueue(nvme_delete_wq);
4408 destroy_reset_wq:
4409 destroy_workqueue(nvme_reset_wq);
4410 destroy_wq:
4411 destroy_workqueue(nvme_wq);
4412 out:
4413 return result;
4414 }
4415
4416 static void __exit nvme_core_exit(void)
4417 {
4418 class_destroy(nvme_subsys_class);
4419 class_destroy(nvme_class);
4420 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4421 destroy_workqueue(nvme_delete_wq);
4422 destroy_workqueue(nvme_reset_wq);
4423 destroy_workqueue(nvme_wq);
4424 ida_destroy(&nvme_instance_ida);
4425 }
4426
4427 MODULE_LICENSE("GPL");
4428 MODULE_VERSION("1.0");
4429 module_init(nvme_core_init);
4430 module_exit(nvme_core_exit);