]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/core.c
4a6d7f40876921ded21ad061399e94b46a2732ed
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <scsi/sg.h>
31 #include <asm/unaligned.h>
32
33 #include "nvme.h"
34 #include "fabrics.h"
35
36 #define NVME_MINORS (1U << MINORBITS)
37
38 unsigned char admin_timeout = 60;
39 module_param(admin_timeout, byte, 0644);
40 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41 EXPORT_SYMBOL_GPL(admin_timeout);
42
43 unsigned char nvme_io_timeout = 30;
44 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
45 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46 EXPORT_SYMBOL_GPL(nvme_io_timeout);
47
48 unsigned char shutdown_timeout = 5;
49 module_param(shutdown_timeout, byte, 0644);
50 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
51
52 unsigned int nvme_max_retries = 5;
53 module_param_named(max_retries, nvme_max_retries, uint, 0644);
54 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55 EXPORT_SYMBOL_GPL(nvme_max_retries);
56
57 static int nvme_char_major;
58 module_param(nvme_char_major, int, 0);
59
60 static unsigned long default_ps_max_latency_us = 25000;
61 module_param(default_ps_max_latency_us, ulong, 0644);
62 MODULE_PARM_DESC(default_ps_max_latency_us,
63 "max power saving latency for new devices; use PM QOS to change per device");
64
65 static LIST_HEAD(nvme_ctrl_list);
66 static DEFINE_SPINLOCK(dev_list_lock);
67
68 static struct class *nvme_class;
69
70 void nvme_cancel_request(struct request *req, void *data, bool reserved)
71 {
72 int status;
73
74 if (!blk_mq_request_started(req))
75 return;
76
77 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
78 "Cancelling I/O %d", req->tag);
79
80 status = NVME_SC_ABORT_REQ;
81 if (blk_queue_dying(req->q))
82 status |= NVME_SC_DNR;
83 blk_mq_complete_request(req, status);
84 }
85 EXPORT_SYMBOL_GPL(nvme_cancel_request);
86
87 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
88 enum nvme_ctrl_state new_state)
89 {
90 enum nvme_ctrl_state old_state;
91 bool changed = false;
92
93 spin_lock_irq(&ctrl->lock);
94
95 old_state = ctrl->state;
96 switch (new_state) {
97 case NVME_CTRL_LIVE:
98 switch (old_state) {
99 case NVME_CTRL_NEW:
100 case NVME_CTRL_RESETTING:
101 case NVME_CTRL_RECONNECTING:
102 changed = true;
103 /* FALLTHRU */
104 default:
105 break;
106 }
107 break;
108 case NVME_CTRL_RESETTING:
109 switch (old_state) {
110 case NVME_CTRL_NEW:
111 case NVME_CTRL_LIVE:
112 case NVME_CTRL_RECONNECTING:
113 changed = true;
114 /* FALLTHRU */
115 default:
116 break;
117 }
118 break;
119 case NVME_CTRL_RECONNECTING:
120 switch (old_state) {
121 case NVME_CTRL_LIVE:
122 changed = true;
123 /* FALLTHRU */
124 default:
125 break;
126 }
127 break;
128 case NVME_CTRL_DELETING:
129 switch (old_state) {
130 case NVME_CTRL_LIVE:
131 case NVME_CTRL_RESETTING:
132 case NVME_CTRL_RECONNECTING:
133 changed = true;
134 /* FALLTHRU */
135 default:
136 break;
137 }
138 break;
139 case NVME_CTRL_DEAD:
140 switch (old_state) {
141 case NVME_CTRL_DELETING:
142 changed = true;
143 /* FALLTHRU */
144 default:
145 break;
146 }
147 break;
148 default:
149 break;
150 }
151
152 if (changed)
153 ctrl->state = new_state;
154
155 spin_unlock_irq(&ctrl->lock);
156
157 return changed;
158 }
159 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
160
161 static void nvme_free_ns(struct kref *kref)
162 {
163 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
164
165 if (ns->ndev)
166 nvme_nvm_unregister(ns);
167
168 if (ns->disk) {
169 spin_lock(&dev_list_lock);
170 ns->disk->private_data = NULL;
171 spin_unlock(&dev_list_lock);
172 }
173
174 put_disk(ns->disk);
175 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
176 nvme_put_ctrl(ns->ctrl);
177 kfree(ns);
178 }
179
180 static void nvme_put_ns(struct nvme_ns *ns)
181 {
182 kref_put(&ns->kref, nvme_free_ns);
183 }
184
185 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
186 {
187 struct nvme_ns *ns;
188
189 spin_lock(&dev_list_lock);
190 ns = disk->private_data;
191 if (ns) {
192 if (!kref_get_unless_zero(&ns->kref))
193 goto fail;
194 if (!try_module_get(ns->ctrl->ops->module))
195 goto fail_put_ns;
196 }
197 spin_unlock(&dev_list_lock);
198
199 return ns;
200
201 fail_put_ns:
202 kref_put(&ns->kref, nvme_free_ns);
203 fail:
204 spin_unlock(&dev_list_lock);
205 return NULL;
206 }
207
208 void nvme_requeue_req(struct request *req)
209 {
210 blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
211 }
212 EXPORT_SYMBOL_GPL(nvme_requeue_req);
213
214 struct request *nvme_alloc_request(struct request_queue *q,
215 struct nvme_command *cmd, unsigned int flags, int qid)
216 {
217 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
218 struct request *req;
219
220 if (qid == NVME_QID_ANY) {
221 req = blk_mq_alloc_request(q, op, flags);
222 } else {
223 req = blk_mq_alloc_request_hctx(q, op, flags,
224 qid ? qid - 1 : 0);
225 }
226 if (IS_ERR(req))
227 return req;
228
229 req->cmd_flags |= REQ_FAILFAST_DRIVER;
230 nvme_req(req)->cmd = cmd;
231
232 return req;
233 }
234 EXPORT_SYMBOL_GPL(nvme_alloc_request);
235
236 static inline void nvme_setup_flush(struct nvme_ns *ns,
237 struct nvme_command *cmnd)
238 {
239 memset(cmnd, 0, sizeof(*cmnd));
240 cmnd->common.opcode = nvme_cmd_flush;
241 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
242 }
243
244 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
245 struct nvme_command *cmnd)
246 {
247 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
248 struct nvme_dsm_range *range;
249 struct bio *bio;
250
251 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
252 if (!range)
253 return BLK_MQ_RQ_QUEUE_BUSY;
254
255 __rq_for_each_bio(bio, req) {
256 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
257 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
258
259 range[n].cattr = cpu_to_le32(0);
260 range[n].nlb = cpu_to_le32(nlb);
261 range[n].slba = cpu_to_le64(slba);
262 n++;
263 }
264
265 if (WARN_ON_ONCE(n != segments)) {
266 kfree(range);
267 return BLK_MQ_RQ_QUEUE_ERROR;
268 }
269
270 memset(cmnd, 0, sizeof(*cmnd));
271 cmnd->dsm.opcode = nvme_cmd_dsm;
272 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
273 cmnd->dsm.nr = segments - 1;
274 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
275
276 req->special_vec.bv_page = virt_to_page(range);
277 req->special_vec.bv_offset = offset_in_page(range);
278 req->special_vec.bv_len = sizeof(*range) * segments;
279 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
280
281 return BLK_MQ_RQ_QUEUE_OK;
282 }
283
284 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
285 struct nvme_command *cmnd)
286 {
287 u16 control = 0;
288 u32 dsmgmt = 0;
289
290 if (req->cmd_flags & REQ_FUA)
291 control |= NVME_RW_FUA;
292 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
293 control |= NVME_RW_LR;
294
295 if (req->cmd_flags & REQ_RAHEAD)
296 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
297
298 memset(cmnd, 0, sizeof(*cmnd));
299 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
300 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
301 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
302 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
303
304 if (ns->ms) {
305 switch (ns->pi_type) {
306 case NVME_NS_DPS_PI_TYPE3:
307 control |= NVME_RW_PRINFO_PRCHK_GUARD;
308 break;
309 case NVME_NS_DPS_PI_TYPE1:
310 case NVME_NS_DPS_PI_TYPE2:
311 control |= NVME_RW_PRINFO_PRCHK_GUARD |
312 NVME_RW_PRINFO_PRCHK_REF;
313 cmnd->rw.reftag = cpu_to_le32(
314 nvme_block_nr(ns, blk_rq_pos(req)));
315 break;
316 }
317 if (!blk_integrity_rq(req))
318 control |= NVME_RW_PRINFO_PRACT;
319 }
320
321 cmnd->rw.control = cpu_to_le16(control);
322 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
323 }
324
325 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
326 struct nvme_command *cmd)
327 {
328 int ret = BLK_MQ_RQ_QUEUE_OK;
329
330 switch (req_op(req)) {
331 case REQ_OP_DRV_IN:
332 case REQ_OP_DRV_OUT:
333 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
334 break;
335 case REQ_OP_FLUSH:
336 nvme_setup_flush(ns, cmd);
337 break;
338 case REQ_OP_DISCARD:
339 ret = nvme_setup_discard(ns, req, cmd);
340 break;
341 case REQ_OP_READ:
342 case REQ_OP_WRITE:
343 nvme_setup_rw(ns, req, cmd);
344 break;
345 default:
346 WARN_ON_ONCE(1);
347 return BLK_MQ_RQ_QUEUE_ERROR;
348 }
349
350 cmd->common.command_id = req->tag;
351 return ret;
352 }
353 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
354
355 /*
356 * Returns 0 on success. If the result is negative, it's a Linux error code;
357 * if the result is positive, it's an NVM Express status code
358 */
359 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
360 union nvme_result *result, void *buffer, unsigned bufflen,
361 unsigned timeout, int qid, int at_head, int flags)
362 {
363 struct request *req;
364 int ret;
365
366 req = nvme_alloc_request(q, cmd, flags, qid);
367 if (IS_ERR(req))
368 return PTR_ERR(req);
369
370 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
371
372 if (buffer && bufflen) {
373 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
374 if (ret)
375 goto out;
376 }
377
378 blk_execute_rq(req->q, NULL, req, at_head);
379 if (result)
380 *result = nvme_req(req)->result;
381 ret = req->errors;
382 out:
383 blk_mq_free_request(req);
384 return ret;
385 }
386 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
387
388 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
389 void *buffer, unsigned bufflen)
390 {
391 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
392 NVME_QID_ANY, 0, 0);
393 }
394 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
395
396 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
397 void __user *ubuffer, unsigned bufflen,
398 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
399 u32 *result, unsigned timeout)
400 {
401 bool write = nvme_is_write(cmd);
402 struct nvme_ns *ns = q->queuedata;
403 struct gendisk *disk = ns ? ns->disk : NULL;
404 struct request *req;
405 struct bio *bio = NULL;
406 void *meta = NULL;
407 int ret;
408
409 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
410 if (IS_ERR(req))
411 return PTR_ERR(req);
412
413 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
414
415 if (ubuffer && bufflen) {
416 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
417 GFP_KERNEL);
418 if (ret)
419 goto out;
420 bio = req->bio;
421
422 if (!disk)
423 goto submit;
424 bio->bi_bdev = bdget_disk(disk, 0);
425 if (!bio->bi_bdev) {
426 ret = -ENODEV;
427 goto out_unmap;
428 }
429
430 if (meta_buffer && meta_len) {
431 struct bio_integrity_payload *bip;
432
433 meta = kmalloc(meta_len, GFP_KERNEL);
434 if (!meta) {
435 ret = -ENOMEM;
436 goto out_unmap;
437 }
438
439 if (write) {
440 if (copy_from_user(meta, meta_buffer,
441 meta_len)) {
442 ret = -EFAULT;
443 goto out_free_meta;
444 }
445 }
446
447 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
448 if (IS_ERR(bip)) {
449 ret = PTR_ERR(bip);
450 goto out_free_meta;
451 }
452
453 bip->bip_iter.bi_size = meta_len;
454 bip->bip_iter.bi_sector = meta_seed;
455
456 ret = bio_integrity_add_page(bio, virt_to_page(meta),
457 meta_len, offset_in_page(meta));
458 if (ret != meta_len) {
459 ret = -ENOMEM;
460 goto out_free_meta;
461 }
462 }
463 }
464 submit:
465 blk_execute_rq(req->q, disk, req, 0);
466 ret = req->errors;
467 if (result)
468 *result = le32_to_cpu(nvme_req(req)->result.u32);
469 if (meta && !ret && !write) {
470 if (copy_to_user(meta_buffer, meta, meta_len))
471 ret = -EFAULT;
472 }
473 out_free_meta:
474 kfree(meta);
475 out_unmap:
476 if (bio) {
477 if (disk && bio->bi_bdev)
478 bdput(bio->bi_bdev);
479 blk_rq_unmap_user(bio);
480 }
481 out:
482 blk_mq_free_request(req);
483 return ret;
484 }
485
486 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
487 void __user *ubuffer, unsigned bufflen, u32 *result,
488 unsigned timeout)
489 {
490 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
491 result, timeout);
492 }
493
494 static void nvme_keep_alive_end_io(struct request *rq, int error)
495 {
496 struct nvme_ctrl *ctrl = rq->end_io_data;
497
498 blk_mq_free_request(rq);
499
500 if (error) {
501 dev_err(ctrl->device,
502 "failed nvme_keep_alive_end_io error=%d\n", error);
503 return;
504 }
505
506 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
507 }
508
509 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
510 {
511 struct nvme_command c;
512 struct request *rq;
513
514 memset(&c, 0, sizeof(c));
515 c.common.opcode = nvme_admin_keep_alive;
516
517 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
518 NVME_QID_ANY);
519 if (IS_ERR(rq))
520 return PTR_ERR(rq);
521
522 rq->timeout = ctrl->kato * HZ;
523 rq->end_io_data = ctrl;
524
525 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
526
527 return 0;
528 }
529
530 static void nvme_keep_alive_work(struct work_struct *work)
531 {
532 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
533 struct nvme_ctrl, ka_work);
534
535 if (nvme_keep_alive(ctrl)) {
536 /* allocation failure, reset the controller */
537 dev_err(ctrl->device, "keep-alive failed\n");
538 ctrl->ops->reset_ctrl(ctrl);
539 return;
540 }
541 }
542
543 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
544 {
545 if (unlikely(ctrl->kato == 0))
546 return;
547
548 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
549 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
550 }
551 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
552
553 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
554 {
555 if (unlikely(ctrl->kato == 0))
556 return;
557
558 cancel_delayed_work_sync(&ctrl->ka_work);
559 }
560 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
561
562 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
563 {
564 struct nvme_command c = { };
565 int error;
566
567 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
568 c.identify.opcode = nvme_admin_identify;
569 c.identify.cns = NVME_ID_CNS_CTRL;
570
571 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
572 if (!*id)
573 return -ENOMEM;
574
575 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
576 sizeof(struct nvme_id_ctrl));
577 if (error)
578 kfree(*id);
579 return error;
580 }
581
582 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
583 {
584 struct nvme_command c = { };
585
586 c.identify.opcode = nvme_admin_identify;
587 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
588 c.identify.nsid = cpu_to_le32(nsid);
589 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
590 }
591
592 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
593 struct nvme_id_ns **id)
594 {
595 struct nvme_command c = { };
596 int error;
597
598 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
599 c.identify.opcode = nvme_admin_identify;
600 c.identify.nsid = cpu_to_le32(nsid);
601 c.identify.cns = NVME_ID_CNS_NS;
602
603 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
604 if (!*id)
605 return -ENOMEM;
606
607 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
608 sizeof(struct nvme_id_ns));
609 if (error)
610 kfree(*id);
611 return error;
612 }
613
614 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
615 void *buffer, size_t buflen, u32 *result)
616 {
617 struct nvme_command c;
618 union nvme_result res;
619 int ret;
620
621 memset(&c, 0, sizeof(c));
622 c.features.opcode = nvme_admin_get_features;
623 c.features.nsid = cpu_to_le32(nsid);
624 c.features.fid = cpu_to_le32(fid);
625
626 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
627 NVME_QID_ANY, 0, 0);
628 if (ret >= 0 && result)
629 *result = le32_to_cpu(res.u32);
630 return ret;
631 }
632
633 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
634 void *buffer, size_t buflen, u32 *result)
635 {
636 struct nvme_command c;
637 union nvme_result res;
638 int ret;
639
640 memset(&c, 0, sizeof(c));
641 c.features.opcode = nvme_admin_set_features;
642 c.features.fid = cpu_to_le32(fid);
643 c.features.dword11 = cpu_to_le32(dword11);
644
645 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
646 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
647 if (ret >= 0 && result)
648 *result = le32_to_cpu(res.u32);
649 return ret;
650 }
651
652 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
653 {
654 struct nvme_command c = { };
655 int error;
656
657 c.common.opcode = nvme_admin_get_log_page,
658 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
659 c.common.cdw10[0] = cpu_to_le32(
660 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
661 NVME_LOG_SMART),
662
663 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
664 if (!*log)
665 return -ENOMEM;
666
667 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
668 sizeof(struct nvme_smart_log));
669 if (error)
670 kfree(*log);
671 return error;
672 }
673
674 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
675 {
676 u32 q_count = (*count - 1) | ((*count - 1) << 16);
677 u32 result;
678 int status, nr_io_queues;
679
680 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
681 &result);
682 if (status < 0)
683 return status;
684
685 /*
686 * Degraded controllers might return an error when setting the queue
687 * count. We still want to be able to bring them online and offer
688 * access to the admin queue, as that might be only way to fix them up.
689 */
690 if (status > 0) {
691 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
692 *count = 0;
693 } else {
694 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
695 *count = min(*count, nr_io_queues);
696 }
697
698 return 0;
699 }
700 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
701
702 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
703 {
704 struct nvme_user_io io;
705 struct nvme_command c;
706 unsigned length, meta_len;
707 void __user *metadata;
708
709 if (copy_from_user(&io, uio, sizeof(io)))
710 return -EFAULT;
711 if (io.flags)
712 return -EINVAL;
713
714 switch (io.opcode) {
715 case nvme_cmd_write:
716 case nvme_cmd_read:
717 case nvme_cmd_compare:
718 break;
719 default:
720 return -EINVAL;
721 }
722
723 length = (io.nblocks + 1) << ns->lba_shift;
724 meta_len = (io.nblocks + 1) * ns->ms;
725 metadata = (void __user *)(uintptr_t)io.metadata;
726
727 if (ns->ext) {
728 length += meta_len;
729 meta_len = 0;
730 } else if (meta_len) {
731 if ((io.metadata & 3) || !io.metadata)
732 return -EINVAL;
733 }
734
735 memset(&c, 0, sizeof(c));
736 c.rw.opcode = io.opcode;
737 c.rw.flags = io.flags;
738 c.rw.nsid = cpu_to_le32(ns->ns_id);
739 c.rw.slba = cpu_to_le64(io.slba);
740 c.rw.length = cpu_to_le16(io.nblocks);
741 c.rw.control = cpu_to_le16(io.control);
742 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
743 c.rw.reftag = cpu_to_le32(io.reftag);
744 c.rw.apptag = cpu_to_le16(io.apptag);
745 c.rw.appmask = cpu_to_le16(io.appmask);
746
747 return __nvme_submit_user_cmd(ns->queue, &c,
748 (void __user *)(uintptr_t)io.addr, length,
749 metadata, meta_len, io.slba, NULL, 0);
750 }
751
752 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
753 struct nvme_passthru_cmd __user *ucmd)
754 {
755 struct nvme_passthru_cmd cmd;
756 struct nvme_command c;
757 unsigned timeout = 0;
758 int status;
759
760 if (!capable(CAP_SYS_ADMIN))
761 return -EACCES;
762 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
763 return -EFAULT;
764 if (cmd.flags)
765 return -EINVAL;
766
767 memset(&c, 0, sizeof(c));
768 c.common.opcode = cmd.opcode;
769 c.common.flags = cmd.flags;
770 c.common.nsid = cpu_to_le32(cmd.nsid);
771 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
772 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
773 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
774 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
775 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
776 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
777 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
778 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
779
780 if (cmd.timeout_ms)
781 timeout = msecs_to_jiffies(cmd.timeout_ms);
782
783 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
784 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
785 &cmd.result, timeout);
786 if (status >= 0) {
787 if (put_user(cmd.result, &ucmd->result))
788 return -EFAULT;
789 }
790
791 return status;
792 }
793
794 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
795 unsigned int cmd, unsigned long arg)
796 {
797 struct nvme_ns *ns = bdev->bd_disk->private_data;
798
799 switch (cmd) {
800 case NVME_IOCTL_ID:
801 force_successful_syscall_return();
802 return ns->ns_id;
803 case NVME_IOCTL_ADMIN_CMD:
804 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
805 case NVME_IOCTL_IO_CMD:
806 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
807 case NVME_IOCTL_SUBMIT_IO:
808 return nvme_submit_io(ns, (void __user *)arg);
809 #ifdef CONFIG_BLK_DEV_NVME_SCSI
810 case SG_GET_VERSION_NUM:
811 return nvme_sg_get_version_num((void __user *)arg);
812 case SG_IO:
813 return nvme_sg_io(ns, (void __user *)arg);
814 #endif
815 default:
816 #ifdef CONFIG_NVM
817 if (ns->ndev)
818 return nvme_nvm_ioctl(ns, cmd, arg);
819 #endif
820 if (is_sed_ioctl(cmd))
821 return sed_ioctl(ns->ctrl->opal_dev, cmd,
822 (void __user *) arg);
823 return -ENOTTY;
824 }
825 }
826
827 #ifdef CONFIG_COMPAT
828 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
829 unsigned int cmd, unsigned long arg)
830 {
831 switch (cmd) {
832 case SG_IO:
833 return -ENOIOCTLCMD;
834 }
835 return nvme_ioctl(bdev, mode, cmd, arg);
836 }
837 #else
838 #define nvme_compat_ioctl NULL
839 #endif
840
841 static int nvme_open(struct block_device *bdev, fmode_t mode)
842 {
843 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
844 }
845
846 static void nvme_release(struct gendisk *disk, fmode_t mode)
847 {
848 struct nvme_ns *ns = disk->private_data;
849
850 module_put(ns->ctrl->ops->module);
851 nvme_put_ns(ns);
852 }
853
854 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
855 {
856 /* some standard values */
857 geo->heads = 1 << 6;
858 geo->sectors = 1 << 5;
859 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
860 return 0;
861 }
862
863 #ifdef CONFIG_BLK_DEV_INTEGRITY
864 static void nvme_init_integrity(struct nvme_ns *ns)
865 {
866 struct blk_integrity integrity;
867
868 memset(&integrity, 0, sizeof(integrity));
869 switch (ns->pi_type) {
870 case NVME_NS_DPS_PI_TYPE3:
871 integrity.profile = &t10_pi_type3_crc;
872 integrity.tag_size = sizeof(u16) + sizeof(u32);
873 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
874 break;
875 case NVME_NS_DPS_PI_TYPE1:
876 case NVME_NS_DPS_PI_TYPE2:
877 integrity.profile = &t10_pi_type1_crc;
878 integrity.tag_size = sizeof(u16);
879 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
880 break;
881 default:
882 integrity.profile = NULL;
883 break;
884 }
885 integrity.tuple_size = ns->ms;
886 blk_integrity_register(ns->disk, &integrity);
887 blk_queue_max_integrity_segments(ns->queue, 1);
888 }
889 #else
890 static void nvme_init_integrity(struct nvme_ns *ns)
891 {
892 }
893 #endif /* CONFIG_BLK_DEV_INTEGRITY */
894
895 static void nvme_config_discard(struct nvme_ns *ns)
896 {
897 struct nvme_ctrl *ctrl = ns->ctrl;
898 u32 logical_block_size = queue_logical_block_size(ns->queue);
899
900 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
901 NVME_DSM_MAX_RANGES);
902
903 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
904 ns->queue->limits.discard_zeroes_data = 1;
905 else
906 ns->queue->limits.discard_zeroes_data = 0;
907
908 ns->queue->limits.discard_alignment = logical_block_size;
909 ns->queue->limits.discard_granularity = logical_block_size;
910 blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
911 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
912 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
913 }
914
915 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
916 {
917 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
918 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
919 return -ENODEV;
920 }
921
922 if ((*id)->ncap == 0) {
923 kfree(*id);
924 return -ENODEV;
925 }
926
927 if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
928 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
929 if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
930 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
931
932 return 0;
933 }
934
935 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
936 {
937 struct nvme_ns *ns = disk->private_data;
938 u8 lbaf, pi_type;
939 u16 old_ms;
940 unsigned short bs;
941
942 old_ms = ns->ms;
943 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
944 ns->lba_shift = id->lbaf[lbaf].ds;
945 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
946 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
947
948 /*
949 * If identify namespace failed, use default 512 byte block size so
950 * block layer can use before failing read/write for 0 capacity.
951 */
952 if (ns->lba_shift == 0)
953 ns->lba_shift = 9;
954 bs = 1 << ns->lba_shift;
955 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
956 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
957 id->dps & NVME_NS_DPS_PI_MASK : 0;
958
959 blk_mq_freeze_queue(disk->queue);
960 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
961 ns->ms != old_ms ||
962 bs != queue_logical_block_size(disk->queue) ||
963 (ns->ms && ns->ext)))
964 blk_integrity_unregister(disk);
965
966 ns->pi_type = pi_type;
967 blk_queue_logical_block_size(ns->queue, bs);
968
969 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
970 nvme_init_integrity(ns);
971 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
972 set_capacity(disk, 0);
973 else
974 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
975
976 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
977 nvme_config_discard(ns);
978 blk_mq_unfreeze_queue(disk->queue);
979 }
980
981 static int nvme_revalidate_disk(struct gendisk *disk)
982 {
983 struct nvme_ns *ns = disk->private_data;
984 struct nvme_id_ns *id = NULL;
985 int ret;
986
987 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
988 set_capacity(disk, 0);
989 return -ENODEV;
990 }
991
992 ret = nvme_revalidate_ns(ns, &id);
993 if (ret)
994 return ret;
995
996 __nvme_revalidate_disk(disk, id);
997 kfree(id);
998
999 return 0;
1000 }
1001
1002 static char nvme_pr_type(enum pr_type type)
1003 {
1004 switch (type) {
1005 case PR_WRITE_EXCLUSIVE:
1006 return 1;
1007 case PR_EXCLUSIVE_ACCESS:
1008 return 2;
1009 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1010 return 3;
1011 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1012 return 4;
1013 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1014 return 5;
1015 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1016 return 6;
1017 default:
1018 return 0;
1019 }
1020 };
1021
1022 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1023 u64 key, u64 sa_key, u8 op)
1024 {
1025 struct nvme_ns *ns = bdev->bd_disk->private_data;
1026 struct nvme_command c;
1027 u8 data[16] = { 0, };
1028
1029 put_unaligned_le64(key, &data[0]);
1030 put_unaligned_le64(sa_key, &data[8]);
1031
1032 memset(&c, 0, sizeof(c));
1033 c.common.opcode = op;
1034 c.common.nsid = cpu_to_le32(ns->ns_id);
1035 c.common.cdw10[0] = cpu_to_le32(cdw10);
1036
1037 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1038 }
1039
1040 static int nvme_pr_register(struct block_device *bdev, u64 old,
1041 u64 new, unsigned flags)
1042 {
1043 u32 cdw10;
1044
1045 if (flags & ~PR_FL_IGNORE_KEY)
1046 return -EOPNOTSUPP;
1047
1048 cdw10 = old ? 2 : 0;
1049 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1050 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1051 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1052 }
1053
1054 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1055 enum pr_type type, unsigned flags)
1056 {
1057 u32 cdw10;
1058
1059 if (flags & ~PR_FL_IGNORE_KEY)
1060 return -EOPNOTSUPP;
1061
1062 cdw10 = nvme_pr_type(type) << 8;
1063 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1064 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1065 }
1066
1067 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1068 enum pr_type type, bool abort)
1069 {
1070 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1071 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1072 }
1073
1074 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1075 {
1076 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1077 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1078 }
1079
1080 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1081 {
1082 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1083 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1084 }
1085
1086 static const struct pr_ops nvme_pr_ops = {
1087 .pr_register = nvme_pr_register,
1088 .pr_reserve = nvme_pr_reserve,
1089 .pr_release = nvme_pr_release,
1090 .pr_preempt = nvme_pr_preempt,
1091 .pr_clear = nvme_pr_clear,
1092 };
1093
1094 #ifdef CONFIG_BLK_SED_OPAL
1095 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1096 bool send)
1097 {
1098 struct nvme_ctrl *ctrl = data;
1099 struct nvme_command cmd;
1100
1101 memset(&cmd, 0, sizeof(cmd));
1102 if (send)
1103 cmd.common.opcode = nvme_admin_security_send;
1104 else
1105 cmd.common.opcode = nvme_admin_security_recv;
1106 cmd.common.nsid = 0;
1107 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1108 cmd.common.cdw10[1] = cpu_to_le32(len);
1109
1110 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1111 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1112 }
1113 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1114 #endif /* CONFIG_BLK_SED_OPAL */
1115
1116 static const struct block_device_operations nvme_fops = {
1117 .owner = THIS_MODULE,
1118 .ioctl = nvme_ioctl,
1119 .compat_ioctl = nvme_compat_ioctl,
1120 .open = nvme_open,
1121 .release = nvme_release,
1122 .getgeo = nvme_getgeo,
1123 .revalidate_disk= nvme_revalidate_disk,
1124 .pr_ops = &nvme_pr_ops,
1125 };
1126
1127 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1128 {
1129 unsigned long timeout =
1130 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1131 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1132 int ret;
1133
1134 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1135 if (csts == ~0)
1136 return -ENODEV;
1137 if ((csts & NVME_CSTS_RDY) == bit)
1138 break;
1139
1140 msleep(100);
1141 if (fatal_signal_pending(current))
1142 return -EINTR;
1143 if (time_after(jiffies, timeout)) {
1144 dev_err(ctrl->device,
1145 "Device not ready; aborting %s\n", enabled ?
1146 "initialisation" : "reset");
1147 return -ENODEV;
1148 }
1149 }
1150
1151 return ret;
1152 }
1153
1154 /*
1155 * If the device has been passed off to us in an enabled state, just clear
1156 * the enabled bit. The spec says we should set the 'shutdown notification
1157 * bits', but doing so may cause the device to complete commands to the
1158 * admin queue ... and we don't know what memory that might be pointing at!
1159 */
1160 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1161 {
1162 int ret;
1163
1164 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1165 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1166
1167 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1168 if (ret)
1169 return ret;
1170
1171 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1172 msleep(NVME_QUIRK_DELAY_AMOUNT);
1173
1174 return nvme_wait_ready(ctrl, cap, false);
1175 }
1176 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1177
1178 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1179 {
1180 /*
1181 * Default to a 4K page size, with the intention to update this
1182 * path in the future to accomodate architectures with differing
1183 * kernel and IO page sizes.
1184 */
1185 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1186 int ret;
1187
1188 if (page_shift < dev_page_min) {
1189 dev_err(ctrl->device,
1190 "Minimum device page size %u too large for host (%u)\n",
1191 1 << dev_page_min, 1 << page_shift);
1192 return -ENODEV;
1193 }
1194
1195 ctrl->page_size = 1 << page_shift;
1196
1197 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1198 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1199 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1200 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1201 ctrl->ctrl_config |= NVME_CC_ENABLE;
1202
1203 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1204 if (ret)
1205 return ret;
1206 return nvme_wait_ready(ctrl, cap, true);
1207 }
1208 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1209
1210 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1211 {
1212 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1213 u32 csts;
1214 int ret;
1215
1216 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1217 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1218
1219 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1220 if (ret)
1221 return ret;
1222
1223 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1224 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1225 break;
1226
1227 msleep(100);
1228 if (fatal_signal_pending(current))
1229 return -EINTR;
1230 if (time_after(jiffies, timeout)) {
1231 dev_err(ctrl->device,
1232 "Device shutdown incomplete; abort shutdown\n");
1233 return -ENODEV;
1234 }
1235 }
1236
1237 return ret;
1238 }
1239 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1240
1241 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1242 struct request_queue *q)
1243 {
1244 bool vwc = false;
1245
1246 if (ctrl->max_hw_sectors) {
1247 u32 max_segments =
1248 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1249
1250 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1251 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1252 }
1253 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1254 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1255 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1256 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1257 vwc = true;
1258 blk_queue_write_cache(q, vwc, vwc);
1259 }
1260
1261 static void nvme_configure_apst(struct nvme_ctrl *ctrl)
1262 {
1263 /*
1264 * APST (Autonomous Power State Transition) lets us program a
1265 * table of power state transitions that the controller will
1266 * perform automatically. We configure it with a simple
1267 * heuristic: we are willing to spend at most 2% of the time
1268 * transitioning between power states. Therefore, when running
1269 * in any given state, we will enter the next lower-power
1270 * non-operational state after waiting 100 * (enlat + exlat)
1271 * microseconds, as long as that state's total latency is under
1272 * the requested maximum latency.
1273 *
1274 * We will not autonomously enter any non-operational state for
1275 * which the total latency exceeds ps_max_latency_us. Users
1276 * can set ps_max_latency_us to zero to turn off APST.
1277 */
1278
1279 unsigned apste;
1280 struct nvme_feat_auto_pst *table;
1281 int ret;
1282
1283 /*
1284 * If APST isn't supported or if we haven't been initialized yet,
1285 * then don't do anything.
1286 */
1287 if (!ctrl->apsta)
1288 return;
1289
1290 if (ctrl->npss > 31) {
1291 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1292 return;
1293 }
1294
1295 table = kzalloc(sizeof(*table), GFP_KERNEL);
1296 if (!table)
1297 return;
1298
1299 if (ctrl->ps_max_latency_us == 0) {
1300 /* Turn off APST. */
1301 apste = 0;
1302 } else {
1303 __le64 target = cpu_to_le64(0);
1304 int state;
1305
1306 /*
1307 * Walk through all states from lowest- to highest-power.
1308 * According to the spec, lower-numbered states use more
1309 * power. NPSS, despite the name, is the index of the
1310 * lowest-power state, not the number of states.
1311 */
1312 for (state = (int)ctrl->npss; state >= 0; state--) {
1313 u64 total_latency_us, transition_ms;
1314
1315 if (target)
1316 table->entries[state] = target;
1317
1318 /*
1319 * Is this state a useful non-operational state for
1320 * higher-power states to autonomously transition to?
1321 */
1322 if (!(ctrl->psd[state].flags &
1323 NVME_PS_FLAGS_NON_OP_STATE))
1324 continue;
1325
1326 total_latency_us =
1327 (u64)le32_to_cpu(ctrl->psd[state].entry_lat) +
1328 + le32_to_cpu(ctrl->psd[state].exit_lat);
1329 if (total_latency_us > ctrl->ps_max_latency_us)
1330 continue;
1331
1332 /*
1333 * This state is good. Use it as the APST idle
1334 * target for higher power states.
1335 */
1336 transition_ms = total_latency_us + 19;
1337 do_div(transition_ms, 20);
1338 if (transition_ms > (1 << 24) - 1)
1339 transition_ms = (1 << 24) - 1;
1340
1341 target = cpu_to_le64((state << 3) |
1342 (transition_ms << 8));
1343 }
1344
1345 apste = 1;
1346 }
1347
1348 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1349 table, sizeof(*table), NULL);
1350 if (ret)
1351 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1352
1353 kfree(table);
1354 }
1355
1356 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1357 {
1358 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1359 u64 latency;
1360
1361 switch (val) {
1362 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1363 case PM_QOS_LATENCY_ANY:
1364 latency = U64_MAX;
1365 break;
1366
1367 default:
1368 latency = val;
1369 }
1370
1371 if (ctrl->ps_max_latency_us != latency) {
1372 ctrl->ps_max_latency_us = latency;
1373 nvme_configure_apst(ctrl);
1374 }
1375 }
1376
1377 struct nvme_core_quirk_entry {
1378 /*
1379 * NVMe model and firmware strings are padded with spaces. For
1380 * simplicity, strings in the quirk table are padded with NULLs
1381 * instead.
1382 */
1383 u16 vid;
1384 const char *mn;
1385 const char *fr;
1386 unsigned long quirks;
1387 };
1388
1389 static const struct nvme_core_quirk_entry core_quirks[] = {
1390 /*
1391 * Seen on a Samsung "SM951 NVMe SAMSUNG 256GB": using APST causes
1392 * the controller to go out to lunch. It dies when the watchdog
1393 * timer reads CSTS and gets 0xffffffff.
1394 */
1395 {
1396 .vid = 0x144d,
1397 .fr = "BXW75D0Q",
1398 .quirks = NVME_QUIRK_NO_APST,
1399 },
1400 };
1401
1402 /* match is null-terminated but idstr is space-padded. */
1403 static bool string_matches(const char *idstr, const char *match, size_t len)
1404 {
1405 size_t matchlen;
1406
1407 if (!match)
1408 return true;
1409
1410 matchlen = strlen(match);
1411 WARN_ON_ONCE(matchlen > len);
1412
1413 if (memcmp(idstr, match, matchlen))
1414 return false;
1415
1416 for (; matchlen < len; matchlen++)
1417 if (idstr[matchlen] != ' ')
1418 return false;
1419
1420 return true;
1421 }
1422
1423 static bool quirk_matches(const struct nvme_id_ctrl *id,
1424 const struct nvme_core_quirk_entry *q)
1425 {
1426 return q->vid == le16_to_cpu(id->vid) &&
1427 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1428 string_matches(id->fr, q->fr, sizeof(id->fr));
1429 }
1430
1431 /*
1432 * Initialize the cached copies of the Identify data and various controller
1433 * register in our nvme_ctrl structure. This should be called as soon as
1434 * the admin queue is fully up and running.
1435 */
1436 int nvme_init_identify(struct nvme_ctrl *ctrl)
1437 {
1438 struct nvme_id_ctrl *id;
1439 u64 cap;
1440 int ret, page_shift;
1441 u32 max_hw_sectors;
1442 u8 prev_apsta;
1443
1444 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1445 if (ret) {
1446 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1447 return ret;
1448 }
1449
1450 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1451 if (ret) {
1452 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1453 return ret;
1454 }
1455 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1456
1457 if (ctrl->vs >= NVME_VS(1, 1, 0))
1458 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1459
1460 ret = nvme_identify_ctrl(ctrl, &id);
1461 if (ret) {
1462 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1463 return -EIO;
1464 }
1465
1466 if (!ctrl->identified) {
1467 /*
1468 * Check for quirks. Quirk can depend on firmware version,
1469 * so, in principle, the set of quirks present can change
1470 * across a reset. As a possible future enhancement, we
1471 * could re-scan for quirks every time we reinitialize
1472 * the device, but we'd have to make sure that the driver
1473 * behaves intelligently if the quirks change.
1474 */
1475
1476 int i;
1477
1478 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1479 if (quirk_matches(id, &core_quirks[i]))
1480 ctrl->quirks |= core_quirks[i].quirks;
1481 }
1482 }
1483
1484 ctrl->oacs = le16_to_cpu(id->oacs);
1485 ctrl->vid = le16_to_cpu(id->vid);
1486 ctrl->oncs = le16_to_cpup(&id->oncs);
1487 atomic_set(&ctrl->abort_limit, id->acl + 1);
1488 ctrl->vwc = id->vwc;
1489 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1490 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1491 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1492 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1493 if (id->mdts)
1494 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1495 else
1496 max_hw_sectors = UINT_MAX;
1497 ctrl->max_hw_sectors =
1498 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1499
1500 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1501 ctrl->sgls = le32_to_cpu(id->sgls);
1502 ctrl->kas = le16_to_cpu(id->kas);
1503
1504 ctrl->npss = id->npss;
1505 prev_apsta = ctrl->apsta;
1506 ctrl->apsta = (ctrl->quirks & NVME_QUIRK_NO_APST) ? 0 : id->apsta;
1507 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1508
1509 if (ctrl->ops->is_fabrics) {
1510 ctrl->icdoff = le16_to_cpu(id->icdoff);
1511 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1512 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1513 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1514
1515 /*
1516 * In fabrics we need to verify the cntlid matches the
1517 * admin connect
1518 */
1519 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1520 ret = -EINVAL;
1521
1522 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1523 dev_err(ctrl->dev,
1524 "keep-alive support is mandatory for fabrics\n");
1525 ret = -EINVAL;
1526 }
1527 } else {
1528 ctrl->cntlid = le16_to_cpu(id->cntlid);
1529 }
1530
1531 kfree(id);
1532
1533 if (ctrl->apsta && !prev_apsta)
1534 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1535 else if (!ctrl->apsta && prev_apsta)
1536 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1537
1538 nvme_configure_apst(ctrl);
1539
1540 ctrl->identified = true;
1541
1542 return ret;
1543 }
1544 EXPORT_SYMBOL_GPL(nvme_init_identify);
1545
1546 static int nvme_dev_open(struct inode *inode, struct file *file)
1547 {
1548 struct nvme_ctrl *ctrl;
1549 int instance = iminor(inode);
1550 int ret = -ENODEV;
1551
1552 spin_lock(&dev_list_lock);
1553 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1554 if (ctrl->instance != instance)
1555 continue;
1556
1557 if (!ctrl->admin_q) {
1558 ret = -EWOULDBLOCK;
1559 break;
1560 }
1561 if (!kref_get_unless_zero(&ctrl->kref))
1562 break;
1563 file->private_data = ctrl;
1564 ret = 0;
1565 break;
1566 }
1567 spin_unlock(&dev_list_lock);
1568
1569 return ret;
1570 }
1571
1572 static int nvme_dev_release(struct inode *inode, struct file *file)
1573 {
1574 nvme_put_ctrl(file->private_data);
1575 return 0;
1576 }
1577
1578 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1579 {
1580 struct nvme_ns *ns;
1581 int ret;
1582
1583 mutex_lock(&ctrl->namespaces_mutex);
1584 if (list_empty(&ctrl->namespaces)) {
1585 ret = -ENOTTY;
1586 goto out_unlock;
1587 }
1588
1589 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1590 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1591 dev_warn(ctrl->device,
1592 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1593 ret = -EINVAL;
1594 goto out_unlock;
1595 }
1596
1597 dev_warn(ctrl->device,
1598 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1599 kref_get(&ns->kref);
1600 mutex_unlock(&ctrl->namespaces_mutex);
1601
1602 ret = nvme_user_cmd(ctrl, ns, argp);
1603 nvme_put_ns(ns);
1604 return ret;
1605
1606 out_unlock:
1607 mutex_unlock(&ctrl->namespaces_mutex);
1608 return ret;
1609 }
1610
1611 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1612 unsigned long arg)
1613 {
1614 struct nvme_ctrl *ctrl = file->private_data;
1615 void __user *argp = (void __user *)arg;
1616
1617 switch (cmd) {
1618 case NVME_IOCTL_ADMIN_CMD:
1619 return nvme_user_cmd(ctrl, NULL, argp);
1620 case NVME_IOCTL_IO_CMD:
1621 return nvme_dev_user_cmd(ctrl, argp);
1622 case NVME_IOCTL_RESET:
1623 dev_warn(ctrl->device, "resetting controller\n");
1624 return ctrl->ops->reset_ctrl(ctrl);
1625 case NVME_IOCTL_SUBSYS_RESET:
1626 return nvme_reset_subsystem(ctrl);
1627 case NVME_IOCTL_RESCAN:
1628 nvme_queue_scan(ctrl);
1629 return 0;
1630 default:
1631 return -ENOTTY;
1632 }
1633 }
1634
1635 static const struct file_operations nvme_dev_fops = {
1636 .owner = THIS_MODULE,
1637 .open = nvme_dev_open,
1638 .release = nvme_dev_release,
1639 .unlocked_ioctl = nvme_dev_ioctl,
1640 .compat_ioctl = nvme_dev_ioctl,
1641 };
1642
1643 static ssize_t nvme_sysfs_reset(struct device *dev,
1644 struct device_attribute *attr, const char *buf,
1645 size_t count)
1646 {
1647 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1648 int ret;
1649
1650 ret = ctrl->ops->reset_ctrl(ctrl);
1651 if (ret < 0)
1652 return ret;
1653 return count;
1654 }
1655 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1656
1657 static ssize_t nvme_sysfs_rescan(struct device *dev,
1658 struct device_attribute *attr, const char *buf,
1659 size_t count)
1660 {
1661 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1662
1663 nvme_queue_scan(ctrl);
1664 return count;
1665 }
1666 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1667
1668 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1669 char *buf)
1670 {
1671 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1672 struct nvme_ctrl *ctrl = ns->ctrl;
1673 int serial_len = sizeof(ctrl->serial);
1674 int model_len = sizeof(ctrl->model);
1675
1676 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1677 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1678
1679 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1680 return sprintf(buf, "eui.%8phN\n", ns->eui);
1681
1682 while (ctrl->serial[serial_len - 1] == ' ')
1683 serial_len--;
1684 while (ctrl->model[model_len - 1] == ' ')
1685 model_len--;
1686
1687 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1688 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1689 }
1690 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1691
1692 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1693 char *buf)
1694 {
1695 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1696 return sprintf(buf, "%pU\n", ns->uuid);
1697 }
1698 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1699
1700 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1701 char *buf)
1702 {
1703 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1704 return sprintf(buf, "%8phd\n", ns->eui);
1705 }
1706 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1707
1708 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1709 char *buf)
1710 {
1711 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1712 return sprintf(buf, "%d\n", ns->ns_id);
1713 }
1714 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1715
1716 static struct attribute *nvme_ns_attrs[] = {
1717 &dev_attr_wwid.attr,
1718 &dev_attr_uuid.attr,
1719 &dev_attr_eui.attr,
1720 &dev_attr_nsid.attr,
1721 NULL,
1722 };
1723
1724 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1725 struct attribute *a, int n)
1726 {
1727 struct device *dev = container_of(kobj, struct device, kobj);
1728 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1729
1730 if (a == &dev_attr_uuid.attr) {
1731 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1732 return 0;
1733 }
1734 if (a == &dev_attr_eui.attr) {
1735 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1736 return 0;
1737 }
1738 return a->mode;
1739 }
1740
1741 static const struct attribute_group nvme_ns_attr_group = {
1742 .attrs = nvme_ns_attrs,
1743 .is_visible = nvme_ns_attrs_are_visible,
1744 };
1745
1746 #define nvme_show_str_function(field) \
1747 static ssize_t field##_show(struct device *dev, \
1748 struct device_attribute *attr, char *buf) \
1749 { \
1750 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1751 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1752 } \
1753 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1754
1755 #define nvme_show_int_function(field) \
1756 static ssize_t field##_show(struct device *dev, \
1757 struct device_attribute *attr, char *buf) \
1758 { \
1759 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1760 return sprintf(buf, "%d\n", ctrl->field); \
1761 } \
1762 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1763
1764 nvme_show_str_function(model);
1765 nvme_show_str_function(serial);
1766 nvme_show_str_function(firmware_rev);
1767 nvme_show_int_function(cntlid);
1768
1769 static ssize_t nvme_sysfs_delete(struct device *dev,
1770 struct device_attribute *attr, const char *buf,
1771 size_t count)
1772 {
1773 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1774
1775 if (device_remove_file_self(dev, attr))
1776 ctrl->ops->delete_ctrl(ctrl);
1777 return count;
1778 }
1779 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1780
1781 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1782 struct device_attribute *attr,
1783 char *buf)
1784 {
1785 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1786
1787 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1788 }
1789 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1790
1791 static ssize_t nvme_sysfs_show_state(struct device *dev,
1792 struct device_attribute *attr,
1793 char *buf)
1794 {
1795 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1796 static const char *const state_name[] = {
1797 [NVME_CTRL_NEW] = "new",
1798 [NVME_CTRL_LIVE] = "live",
1799 [NVME_CTRL_RESETTING] = "resetting",
1800 [NVME_CTRL_RECONNECTING]= "reconnecting",
1801 [NVME_CTRL_DELETING] = "deleting",
1802 [NVME_CTRL_DEAD] = "dead",
1803 };
1804
1805 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
1806 state_name[ctrl->state])
1807 return sprintf(buf, "%s\n", state_name[ctrl->state]);
1808
1809 return sprintf(buf, "unknown state\n");
1810 }
1811
1812 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
1813
1814 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1815 struct device_attribute *attr,
1816 char *buf)
1817 {
1818 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1819
1820 return snprintf(buf, PAGE_SIZE, "%s\n",
1821 ctrl->ops->get_subsysnqn(ctrl));
1822 }
1823 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1824
1825 static ssize_t nvme_sysfs_show_address(struct device *dev,
1826 struct device_attribute *attr,
1827 char *buf)
1828 {
1829 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1830
1831 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1832 }
1833 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1834
1835 static struct attribute *nvme_dev_attrs[] = {
1836 &dev_attr_reset_controller.attr,
1837 &dev_attr_rescan_controller.attr,
1838 &dev_attr_model.attr,
1839 &dev_attr_serial.attr,
1840 &dev_attr_firmware_rev.attr,
1841 &dev_attr_cntlid.attr,
1842 &dev_attr_delete_controller.attr,
1843 &dev_attr_transport.attr,
1844 &dev_attr_subsysnqn.attr,
1845 &dev_attr_address.attr,
1846 &dev_attr_state.attr,
1847 NULL
1848 };
1849
1850 #define CHECK_ATTR(ctrl, a, name) \
1851 if ((a) == &dev_attr_##name.attr && \
1852 !(ctrl)->ops->get_##name) \
1853 return 0
1854
1855 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1856 struct attribute *a, int n)
1857 {
1858 struct device *dev = container_of(kobj, struct device, kobj);
1859 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1860
1861 if (a == &dev_attr_delete_controller.attr) {
1862 if (!ctrl->ops->delete_ctrl)
1863 return 0;
1864 }
1865
1866 CHECK_ATTR(ctrl, a, subsysnqn);
1867 CHECK_ATTR(ctrl, a, address);
1868
1869 return a->mode;
1870 }
1871
1872 static struct attribute_group nvme_dev_attrs_group = {
1873 .attrs = nvme_dev_attrs,
1874 .is_visible = nvme_dev_attrs_are_visible,
1875 };
1876
1877 static const struct attribute_group *nvme_dev_attr_groups[] = {
1878 &nvme_dev_attrs_group,
1879 NULL,
1880 };
1881
1882 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1883 {
1884 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1885 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1886
1887 return nsa->ns_id - nsb->ns_id;
1888 }
1889
1890 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1891 {
1892 struct nvme_ns *ns, *ret = NULL;
1893
1894 mutex_lock(&ctrl->namespaces_mutex);
1895 list_for_each_entry(ns, &ctrl->namespaces, list) {
1896 if (ns->ns_id == nsid) {
1897 kref_get(&ns->kref);
1898 ret = ns;
1899 break;
1900 }
1901 if (ns->ns_id > nsid)
1902 break;
1903 }
1904 mutex_unlock(&ctrl->namespaces_mutex);
1905 return ret;
1906 }
1907
1908 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1909 {
1910 struct nvme_ns *ns;
1911 struct gendisk *disk;
1912 struct nvme_id_ns *id;
1913 char disk_name[DISK_NAME_LEN];
1914 int node = dev_to_node(ctrl->dev);
1915
1916 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1917 if (!ns)
1918 return;
1919
1920 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1921 if (ns->instance < 0)
1922 goto out_free_ns;
1923
1924 ns->queue = blk_mq_init_queue(ctrl->tagset);
1925 if (IS_ERR(ns->queue))
1926 goto out_release_instance;
1927 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1928 ns->queue->queuedata = ns;
1929 ns->ctrl = ctrl;
1930
1931 kref_init(&ns->kref);
1932 ns->ns_id = nsid;
1933 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1934
1935 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1936 nvme_set_queue_limits(ctrl, ns->queue);
1937
1938 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1939
1940 if (nvme_revalidate_ns(ns, &id))
1941 goto out_free_queue;
1942
1943 if (nvme_nvm_ns_supported(ns, id) &&
1944 nvme_nvm_register(ns, disk_name, node)) {
1945 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
1946 goto out_free_id;
1947 }
1948
1949 disk = alloc_disk_node(0, node);
1950 if (!disk)
1951 goto out_free_id;
1952
1953 disk->fops = &nvme_fops;
1954 disk->private_data = ns;
1955 disk->queue = ns->queue;
1956 disk->flags = GENHD_FL_EXT_DEVT;
1957 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
1958 ns->disk = disk;
1959
1960 __nvme_revalidate_disk(disk, id);
1961
1962 mutex_lock(&ctrl->namespaces_mutex);
1963 list_add_tail(&ns->list, &ctrl->namespaces);
1964 mutex_unlock(&ctrl->namespaces_mutex);
1965
1966 kref_get(&ctrl->kref);
1967
1968 kfree(id);
1969
1970 device_add_disk(ctrl->device, ns->disk);
1971 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1972 &nvme_ns_attr_group))
1973 pr_warn("%s: failed to create sysfs group for identification\n",
1974 ns->disk->disk_name);
1975 if (ns->ndev && nvme_nvm_register_sysfs(ns))
1976 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
1977 ns->disk->disk_name);
1978 return;
1979 out_free_id:
1980 kfree(id);
1981 out_free_queue:
1982 blk_cleanup_queue(ns->queue);
1983 out_release_instance:
1984 ida_simple_remove(&ctrl->ns_ida, ns->instance);
1985 out_free_ns:
1986 kfree(ns);
1987 }
1988
1989 static void nvme_ns_remove(struct nvme_ns *ns)
1990 {
1991 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1992 return;
1993
1994 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1995 if (blk_get_integrity(ns->disk))
1996 blk_integrity_unregister(ns->disk);
1997 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1998 &nvme_ns_attr_group);
1999 if (ns->ndev)
2000 nvme_nvm_unregister_sysfs(ns);
2001 del_gendisk(ns->disk);
2002 blk_mq_abort_requeue_list(ns->queue);
2003 blk_cleanup_queue(ns->queue);
2004 }
2005
2006 mutex_lock(&ns->ctrl->namespaces_mutex);
2007 list_del_init(&ns->list);
2008 mutex_unlock(&ns->ctrl->namespaces_mutex);
2009
2010 nvme_put_ns(ns);
2011 }
2012
2013 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2014 {
2015 struct nvme_ns *ns;
2016
2017 ns = nvme_find_get_ns(ctrl, nsid);
2018 if (ns) {
2019 if (ns->disk && revalidate_disk(ns->disk))
2020 nvme_ns_remove(ns);
2021 nvme_put_ns(ns);
2022 } else
2023 nvme_alloc_ns(ctrl, nsid);
2024 }
2025
2026 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2027 unsigned nsid)
2028 {
2029 struct nvme_ns *ns, *next;
2030
2031 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2032 if (ns->ns_id > nsid)
2033 nvme_ns_remove(ns);
2034 }
2035 }
2036
2037 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2038 {
2039 struct nvme_ns *ns;
2040 __le32 *ns_list;
2041 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2042 int ret = 0;
2043
2044 ns_list = kzalloc(0x1000, GFP_KERNEL);
2045 if (!ns_list)
2046 return -ENOMEM;
2047
2048 for (i = 0; i < num_lists; i++) {
2049 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2050 if (ret)
2051 goto free;
2052
2053 for (j = 0; j < min(nn, 1024U); j++) {
2054 nsid = le32_to_cpu(ns_list[j]);
2055 if (!nsid)
2056 goto out;
2057
2058 nvme_validate_ns(ctrl, nsid);
2059
2060 while (++prev < nsid) {
2061 ns = nvme_find_get_ns(ctrl, prev);
2062 if (ns) {
2063 nvme_ns_remove(ns);
2064 nvme_put_ns(ns);
2065 }
2066 }
2067 }
2068 nn -= j;
2069 }
2070 out:
2071 nvme_remove_invalid_namespaces(ctrl, prev);
2072 free:
2073 kfree(ns_list);
2074 return ret;
2075 }
2076
2077 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2078 {
2079 unsigned i;
2080
2081 for (i = 1; i <= nn; i++)
2082 nvme_validate_ns(ctrl, i);
2083
2084 nvme_remove_invalid_namespaces(ctrl, nn);
2085 }
2086
2087 static void nvme_scan_work(struct work_struct *work)
2088 {
2089 struct nvme_ctrl *ctrl =
2090 container_of(work, struct nvme_ctrl, scan_work);
2091 struct nvme_id_ctrl *id;
2092 unsigned nn;
2093
2094 if (ctrl->state != NVME_CTRL_LIVE)
2095 return;
2096
2097 if (nvme_identify_ctrl(ctrl, &id))
2098 return;
2099
2100 nn = le32_to_cpu(id->nn);
2101 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2102 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2103 if (!nvme_scan_ns_list(ctrl, nn))
2104 goto done;
2105 }
2106 nvme_scan_ns_sequential(ctrl, nn);
2107 done:
2108 mutex_lock(&ctrl->namespaces_mutex);
2109 list_sort(NULL, &ctrl->namespaces, ns_cmp);
2110 mutex_unlock(&ctrl->namespaces_mutex);
2111 kfree(id);
2112 }
2113
2114 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2115 {
2116 /*
2117 * Do not queue new scan work when a controller is reset during
2118 * removal.
2119 */
2120 if (ctrl->state == NVME_CTRL_LIVE)
2121 schedule_work(&ctrl->scan_work);
2122 }
2123 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2124
2125 /*
2126 * This function iterates the namespace list unlocked to allow recovery from
2127 * controller failure. It is up to the caller to ensure the namespace list is
2128 * not modified by scan work while this function is executing.
2129 */
2130 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2131 {
2132 struct nvme_ns *ns, *next;
2133
2134 /*
2135 * The dead states indicates the controller was not gracefully
2136 * disconnected. In that case, we won't be able to flush any data while
2137 * removing the namespaces' disks; fail all the queues now to avoid
2138 * potentially having to clean up the failed sync later.
2139 */
2140 if (ctrl->state == NVME_CTRL_DEAD)
2141 nvme_kill_queues(ctrl);
2142
2143 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2144 nvme_ns_remove(ns);
2145 }
2146 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2147
2148 static void nvme_async_event_work(struct work_struct *work)
2149 {
2150 struct nvme_ctrl *ctrl =
2151 container_of(work, struct nvme_ctrl, async_event_work);
2152
2153 spin_lock_irq(&ctrl->lock);
2154 while (ctrl->event_limit > 0) {
2155 int aer_idx = --ctrl->event_limit;
2156
2157 spin_unlock_irq(&ctrl->lock);
2158 ctrl->ops->submit_async_event(ctrl, aer_idx);
2159 spin_lock_irq(&ctrl->lock);
2160 }
2161 spin_unlock_irq(&ctrl->lock);
2162 }
2163
2164 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2165 union nvme_result *res)
2166 {
2167 u32 result = le32_to_cpu(res->u32);
2168 bool done = true;
2169
2170 switch (le16_to_cpu(status) >> 1) {
2171 case NVME_SC_SUCCESS:
2172 done = false;
2173 /*FALLTHRU*/
2174 case NVME_SC_ABORT_REQ:
2175 ++ctrl->event_limit;
2176 schedule_work(&ctrl->async_event_work);
2177 break;
2178 default:
2179 break;
2180 }
2181
2182 if (done)
2183 return;
2184
2185 switch (result & 0xff07) {
2186 case NVME_AER_NOTICE_NS_CHANGED:
2187 dev_info(ctrl->device, "rescanning\n");
2188 nvme_queue_scan(ctrl);
2189 break;
2190 default:
2191 dev_warn(ctrl->device, "async event result %08x\n", result);
2192 }
2193 }
2194 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2195
2196 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2197 {
2198 ctrl->event_limit = NVME_NR_AERS;
2199 schedule_work(&ctrl->async_event_work);
2200 }
2201 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2202
2203 static DEFINE_IDA(nvme_instance_ida);
2204
2205 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2206 {
2207 int instance, error;
2208
2209 do {
2210 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2211 return -ENODEV;
2212
2213 spin_lock(&dev_list_lock);
2214 error = ida_get_new(&nvme_instance_ida, &instance);
2215 spin_unlock(&dev_list_lock);
2216 } while (error == -EAGAIN);
2217
2218 if (error)
2219 return -ENODEV;
2220
2221 ctrl->instance = instance;
2222 return 0;
2223 }
2224
2225 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2226 {
2227 spin_lock(&dev_list_lock);
2228 ida_remove(&nvme_instance_ida, ctrl->instance);
2229 spin_unlock(&dev_list_lock);
2230 }
2231
2232 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2233 {
2234 flush_work(&ctrl->async_event_work);
2235 flush_work(&ctrl->scan_work);
2236 nvme_remove_namespaces(ctrl);
2237
2238 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2239
2240 spin_lock(&dev_list_lock);
2241 list_del(&ctrl->node);
2242 spin_unlock(&dev_list_lock);
2243 }
2244 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2245
2246 static void nvme_free_ctrl(struct kref *kref)
2247 {
2248 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2249
2250 put_device(ctrl->device);
2251 nvme_release_instance(ctrl);
2252 ida_destroy(&ctrl->ns_ida);
2253
2254 ctrl->ops->free_ctrl(ctrl);
2255 }
2256
2257 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2258 {
2259 kref_put(&ctrl->kref, nvme_free_ctrl);
2260 }
2261 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2262
2263 /*
2264 * Initialize a NVMe controller structures. This needs to be called during
2265 * earliest initialization so that we have the initialized structured around
2266 * during probing.
2267 */
2268 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2269 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2270 {
2271 int ret;
2272
2273 ctrl->state = NVME_CTRL_NEW;
2274 spin_lock_init(&ctrl->lock);
2275 INIT_LIST_HEAD(&ctrl->namespaces);
2276 mutex_init(&ctrl->namespaces_mutex);
2277 kref_init(&ctrl->kref);
2278 ctrl->dev = dev;
2279 ctrl->ops = ops;
2280 ctrl->quirks = quirks;
2281 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2282 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2283
2284 ret = nvme_set_instance(ctrl);
2285 if (ret)
2286 goto out;
2287
2288 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2289 MKDEV(nvme_char_major, ctrl->instance),
2290 ctrl, nvme_dev_attr_groups,
2291 "nvme%d", ctrl->instance);
2292 if (IS_ERR(ctrl->device)) {
2293 ret = PTR_ERR(ctrl->device);
2294 goto out_release_instance;
2295 }
2296 get_device(ctrl->device);
2297 ida_init(&ctrl->ns_ida);
2298
2299 spin_lock(&dev_list_lock);
2300 list_add_tail(&ctrl->node, &nvme_ctrl_list);
2301 spin_unlock(&dev_list_lock);
2302
2303 /*
2304 * Initialize latency tolerance controls. The sysfs files won't
2305 * be visible to userspace unless the device actually supports APST.
2306 */
2307 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2308 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2309 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2310
2311 return 0;
2312 out_release_instance:
2313 nvme_release_instance(ctrl);
2314 out:
2315 return ret;
2316 }
2317 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2318
2319 /**
2320 * nvme_kill_queues(): Ends all namespace queues
2321 * @ctrl: the dead controller that needs to end
2322 *
2323 * Call this function when the driver determines it is unable to get the
2324 * controller in a state capable of servicing IO.
2325 */
2326 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2327 {
2328 struct nvme_ns *ns;
2329
2330 mutex_lock(&ctrl->namespaces_mutex);
2331 list_for_each_entry(ns, &ctrl->namespaces, list) {
2332 /*
2333 * Revalidating a dead namespace sets capacity to 0. This will
2334 * end buffered writers dirtying pages that can't be synced.
2335 */
2336 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2337 continue;
2338 revalidate_disk(ns->disk);
2339 blk_set_queue_dying(ns->queue);
2340 blk_mq_abort_requeue_list(ns->queue);
2341 blk_mq_start_stopped_hw_queues(ns->queue, true);
2342 }
2343 mutex_unlock(&ctrl->namespaces_mutex);
2344 }
2345 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2346
2347 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2348 {
2349 struct nvme_ns *ns;
2350
2351 mutex_lock(&ctrl->namespaces_mutex);
2352 list_for_each_entry(ns, &ctrl->namespaces, list)
2353 blk_mq_unfreeze_queue(ns->queue);
2354 mutex_unlock(&ctrl->namespaces_mutex);
2355 }
2356 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2357
2358 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2359 {
2360 struct nvme_ns *ns;
2361
2362 mutex_lock(&ctrl->namespaces_mutex);
2363 list_for_each_entry(ns, &ctrl->namespaces, list) {
2364 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2365 if (timeout <= 0)
2366 break;
2367 }
2368 mutex_unlock(&ctrl->namespaces_mutex);
2369 }
2370 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2371
2372 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2373 {
2374 struct nvme_ns *ns;
2375
2376 mutex_lock(&ctrl->namespaces_mutex);
2377 list_for_each_entry(ns, &ctrl->namespaces, list)
2378 blk_mq_freeze_queue_wait(ns->queue);
2379 mutex_unlock(&ctrl->namespaces_mutex);
2380 }
2381 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2382
2383 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2384 {
2385 struct nvme_ns *ns;
2386
2387 mutex_lock(&ctrl->namespaces_mutex);
2388 list_for_each_entry(ns, &ctrl->namespaces, list)
2389 blk_freeze_queue_start(ns->queue);
2390 mutex_unlock(&ctrl->namespaces_mutex);
2391 }
2392 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2393
2394 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2395 {
2396 struct nvme_ns *ns;
2397
2398 mutex_lock(&ctrl->namespaces_mutex);
2399 list_for_each_entry(ns, &ctrl->namespaces, list)
2400 blk_mq_quiesce_queue(ns->queue);
2401 mutex_unlock(&ctrl->namespaces_mutex);
2402 }
2403 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2404
2405 void nvme_start_queues(struct nvme_ctrl *ctrl)
2406 {
2407 struct nvme_ns *ns;
2408
2409 mutex_lock(&ctrl->namespaces_mutex);
2410 list_for_each_entry(ns, &ctrl->namespaces, list) {
2411 blk_mq_start_stopped_hw_queues(ns->queue, true);
2412 blk_mq_kick_requeue_list(ns->queue);
2413 }
2414 mutex_unlock(&ctrl->namespaces_mutex);
2415 }
2416 EXPORT_SYMBOL_GPL(nvme_start_queues);
2417
2418 int __init nvme_core_init(void)
2419 {
2420 int result;
2421
2422 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2423 &nvme_dev_fops);
2424 if (result < 0)
2425 return result;
2426 else if (result > 0)
2427 nvme_char_major = result;
2428
2429 nvme_class = class_create(THIS_MODULE, "nvme");
2430 if (IS_ERR(nvme_class)) {
2431 result = PTR_ERR(nvme_class);
2432 goto unregister_chrdev;
2433 }
2434
2435 return 0;
2436
2437 unregister_chrdev:
2438 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2439 return result;
2440 }
2441
2442 void nvme_core_exit(void)
2443 {
2444 class_destroy(nvme_class);
2445 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2446 }
2447
2448 MODULE_LICENSE("GPL");
2449 MODULE_VERSION("1.0");
2450 module_init(nvme_core_init);
2451 module_exit(nvme_core_exit);