]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/nvme/host/core.c
mac80211: don't WARN on bad WMM parameters from buggy APs
[mirror_ubuntu-eoan-kernel.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38 #define NVME_MINORS (1U << MINORBITS)
39
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 "max power saving latency for new devices; use PM QOS to change per device");
62
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70
71 /*
72 * nvme_wq - hosts nvme related works that are not reset or delete
73 * nvme_reset_wq - hosts nvme reset works
74 * nvme_delete_wq - hosts nvme delete works
75 *
76 * nvme_wq will host works such are scan, aen handling, fw activation,
77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78 * runs reset works which also flush works hosted on nvme_wq for
79 * serialization purposes. nvme_delete_wq host controller deletion
80 * works which flush reset works for serialization.
81 */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102
103 static __le32 nvme_get_log_dw10(u8 lid, size_t size)
104 {
105 return cpu_to_le32((((size / 4) - 1) << 16) | lid);
106 }
107
108 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
109 {
110 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
111 return -EBUSY;
112 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
113 return -EBUSY;
114 return 0;
115 }
116 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
117
118 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
119 {
120 int ret;
121
122 ret = nvme_reset_ctrl(ctrl);
123 if (!ret) {
124 flush_work(&ctrl->reset_work);
125 if (ctrl->state != NVME_CTRL_LIVE)
126 ret = -ENETRESET;
127 }
128
129 return ret;
130 }
131 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
132
133 static void nvme_delete_ctrl_work(struct work_struct *work)
134 {
135 struct nvme_ctrl *ctrl =
136 container_of(work, struct nvme_ctrl, delete_work);
137
138 flush_work(&ctrl->reset_work);
139 nvme_stop_ctrl(ctrl);
140 nvme_remove_namespaces(ctrl);
141 ctrl->ops->delete_ctrl(ctrl);
142 nvme_uninit_ctrl(ctrl);
143 nvme_put_ctrl(ctrl);
144 }
145
146 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
147 {
148 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
149 return -EBUSY;
150 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
151 return -EBUSY;
152 return 0;
153 }
154 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
155
156 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
157 {
158 int ret = 0;
159
160 /*
161 * Keep a reference until the work is flushed since ->delete_ctrl
162 * can free the controller.
163 */
164 nvme_get_ctrl(ctrl);
165 ret = nvme_delete_ctrl(ctrl);
166 if (!ret)
167 flush_work(&ctrl->delete_work);
168 nvme_put_ctrl(ctrl);
169 return ret;
170 }
171 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
172
173 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
174 {
175 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
176 }
177
178 static blk_status_t nvme_error_status(struct request *req)
179 {
180 switch (nvme_req(req)->status & 0x7ff) {
181 case NVME_SC_SUCCESS:
182 return BLK_STS_OK;
183 case NVME_SC_CAP_EXCEEDED:
184 return BLK_STS_NOSPC;
185 case NVME_SC_LBA_RANGE:
186 return BLK_STS_TARGET;
187 case NVME_SC_BAD_ATTRIBUTES:
188 case NVME_SC_ONCS_NOT_SUPPORTED:
189 case NVME_SC_INVALID_OPCODE:
190 case NVME_SC_INVALID_FIELD:
191 case NVME_SC_INVALID_NS:
192 return BLK_STS_NOTSUPP;
193 case NVME_SC_WRITE_FAULT:
194 case NVME_SC_READ_ERROR:
195 case NVME_SC_UNWRITTEN_BLOCK:
196 case NVME_SC_ACCESS_DENIED:
197 case NVME_SC_READ_ONLY:
198 case NVME_SC_COMPARE_FAILED:
199 return BLK_STS_MEDIUM;
200 case NVME_SC_GUARD_CHECK:
201 case NVME_SC_APPTAG_CHECK:
202 case NVME_SC_REFTAG_CHECK:
203 case NVME_SC_INVALID_PI:
204 return BLK_STS_PROTECTION;
205 case NVME_SC_RESERVATION_CONFLICT:
206 return BLK_STS_NEXUS;
207 default:
208 return BLK_STS_IOERR;
209 }
210 }
211
212 static inline bool nvme_req_needs_retry(struct request *req)
213 {
214 if (blk_noretry_request(req))
215 return false;
216 if (nvme_req(req)->status & NVME_SC_DNR)
217 return false;
218 if (nvme_req(req)->retries >= nvme_max_retries)
219 return false;
220 return true;
221 }
222
223 void nvme_complete_rq(struct request *req)
224 {
225 blk_status_t status = nvme_error_status(req);
226
227 trace_nvme_complete_rq(req);
228
229 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
230 if (nvme_req_needs_failover(req, status)) {
231 nvme_failover_req(req);
232 return;
233 }
234
235 if (!blk_queue_dying(req->q)) {
236 nvme_req(req)->retries++;
237 blk_mq_requeue_request(req, true);
238 return;
239 }
240 }
241 blk_mq_end_request(req, status);
242 }
243 EXPORT_SYMBOL_GPL(nvme_complete_rq);
244
245 void nvme_cancel_request(struct request *req, void *data, bool reserved)
246 {
247 if (!blk_mq_request_started(req))
248 return;
249
250 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
251 "Cancelling I/O %d", req->tag);
252
253 nvme_req(req)->status = NVME_SC_ABORT_REQ;
254 blk_mq_complete_request(req);
255
256 }
257 EXPORT_SYMBOL_GPL(nvme_cancel_request);
258
259 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
260 enum nvme_ctrl_state new_state)
261 {
262 enum nvme_ctrl_state old_state;
263 unsigned long flags;
264 bool changed = false;
265
266 spin_lock_irqsave(&ctrl->lock, flags);
267
268 old_state = ctrl->state;
269 switch (new_state) {
270 case NVME_CTRL_ADMIN_ONLY:
271 switch (old_state) {
272 case NVME_CTRL_CONNECTING:
273 changed = true;
274 /* FALLTHRU */
275 default:
276 break;
277 }
278 break;
279 case NVME_CTRL_LIVE:
280 switch (old_state) {
281 case NVME_CTRL_NEW:
282 case NVME_CTRL_RESETTING:
283 case NVME_CTRL_CONNECTING:
284 changed = true;
285 /* FALLTHRU */
286 default:
287 break;
288 }
289 break;
290 case NVME_CTRL_RESETTING:
291 switch (old_state) {
292 case NVME_CTRL_NEW:
293 case NVME_CTRL_LIVE:
294 case NVME_CTRL_ADMIN_ONLY:
295 changed = true;
296 /* FALLTHRU */
297 default:
298 break;
299 }
300 break;
301 case NVME_CTRL_CONNECTING:
302 switch (old_state) {
303 case NVME_CTRL_NEW:
304 case NVME_CTRL_RESETTING:
305 changed = true;
306 /* FALLTHRU */
307 default:
308 break;
309 }
310 break;
311 case NVME_CTRL_DELETING:
312 switch (old_state) {
313 case NVME_CTRL_LIVE:
314 case NVME_CTRL_ADMIN_ONLY:
315 case NVME_CTRL_RESETTING:
316 case NVME_CTRL_CONNECTING:
317 changed = true;
318 /* FALLTHRU */
319 default:
320 break;
321 }
322 break;
323 case NVME_CTRL_DEAD:
324 switch (old_state) {
325 case NVME_CTRL_DELETING:
326 changed = true;
327 /* FALLTHRU */
328 default:
329 break;
330 }
331 break;
332 default:
333 break;
334 }
335
336 if (changed)
337 ctrl->state = new_state;
338
339 spin_unlock_irqrestore(&ctrl->lock, flags);
340 if (changed && ctrl->state == NVME_CTRL_LIVE)
341 nvme_kick_requeue_lists(ctrl);
342 return changed;
343 }
344 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
345
346 static void nvme_free_ns_head(struct kref *ref)
347 {
348 struct nvme_ns_head *head =
349 container_of(ref, struct nvme_ns_head, ref);
350
351 nvme_mpath_remove_disk(head);
352 ida_simple_remove(&head->subsys->ns_ida, head->instance);
353 list_del_init(&head->entry);
354 cleanup_srcu_struct(&head->srcu);
355 kfree(head);
356 }
357
358 static void nvme_put_ns_head(struct nvme_ns_head *head)
359 {
360 kref_put(&head->ref, nvme_free_ns_head);
361 }
362
363 static void nvme_free_ns(struct kref *kref)
364 {
365 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
366
367 if (ns->ndev)
368 nvme_nvm_unregister(ns);
369
370 put_disk(ns->disk);
371 nvme_put_ns_head(ns->head);
372 nvme_put_ctrl(ns->ctrl);
373 kfree(ns);
374 }
375
376 static void nvme_put_ns(struct nvme_ns *ns)
377 {
378 kref_put(&ns->kref, nvme_free_ns);
379 }
380
381 struct request *nvme_alloc_request(struct request_queue *q,
382 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
383 {
384 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
385 struct request *req;
386
387 if (qid == NVME_QID_ANY) {
388 req = blk_mq_alloc_request(q, op, flags);
389 } else {
390 req = blk_mq_alloc_request_hctx(q, op, flags,
391 qid ? qid - 1 : 0);
392 }
393 if (IS_ERR(req))
394 return req;
395
396 req->cmd_flags |= REQ_FAILFAST_DRIVER;
397 nvme_req(req)->cmd = cmd;
398
399 return req;
400 }
401 EXPORT_SYMBOL_GPL(nvme_alloc_request);
402
403 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
404 {
405 struct nvme_command c;
406
407 memset(&c, 0, sizeof(c));
408
409 c.directive.opcode = nvme_admin_directive_send;
410 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
411 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
412 c.directive.dtype = NVME_DIR_IDENTIFY;
413 c.directive.tdtype = NVME_DIR_STREAMS;
414 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
415
416 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
417 }
418
419 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
420 {
421 return nvme_toggle_streams(ctrl, false);
422 }
423
424 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
425 {
426 return nvme_toggle_streams(ctrl, true);
427 }
428
429 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
430 struct streams_directive_params *s, u32 nsid)
431 {
432 struct nvme_command c;
433
434 memset(&c, 0, sizeof(c));
435 memset(s, 0, sizeof(*s));
436
437 c.directive.opcode = nvme_admin_directive_recv;
438 c.directive.nsid = cpu_to_le32(nsid);
439 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
440 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
441 c.directive.dtype = NVME_DIR_STREAMS;
442
443 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
444 }
445
446 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
447 {
448 struct streams_directive_params s;
449 int ret;
450
451 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
452 return 0;
453 if (!streams)
454 return 0;
455
456 ret = nvme_enable_streams(ctrl);
457 if (ret)
458 return ret;
459
460 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
461 if (ret)
462 return ret;
463
464 ctrl->nssa = le16_to_cpu(s.nssa);
465 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
466 dev_info(ctrl->device, "too few streams (%u) available\n",
467 ctrl->nssa);
468 nvme_disable_streams(ctrl);
469 return 0;
470 }
471
472 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
473 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
474 return 0;
475 }
476
477 /*
478 * Check if 'req' has a write hint associated with it. If it does, assign
479 * a valid namespace stream to the write.
480 */
481 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
482 struct request *req, u16 *control,
483 u32 *dsmgmt)
484 {
485 enum rw_hint streamid = req->write_hint;
486
487 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
488 streamid = 0;
489 else {
490 streamid--;
491 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
492 return;
493
494 *control |= NVME_RW_DTYPE_STREAMS;
495 *dsmgmt |= streamid << 16;
496 }
497
498 if (streamid < ARRAY_SIZE(req->q->write_hints))
499 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
500 }
501
502 static inline void nvme_setup_flush(struct nvme_ns *ns,
503 struct nvme_command *cmnd)
504 {
505 memset(cmnd, 0, sizeof(*cmnd));
506 cmnd->common.opcode = nvme_cmd_flush;
507 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
508 }
509
510 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
511 struct nvme_command *cmnd)
512 {
513 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
514 struct nvme_dsm_range *range;
515 struct bio *bio;
516
517 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
518 if (!range)
519 return BLK_STS_RESOURCE;
520
521 __rq_for_each_bio(bio, req) {
522 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
523 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
524
525 if (n < segments) {
526 range[n].cattr = cpu_to_le32(0);
527 range[n].nlb = cpu_to_le32(nlb);
528 range[n].slba = cpu_to_le64(slba);
529 }
530 n++;
531 }
532
533 if (WARN_ON_ONCE(n != segments)) {
534 kfree(range);
535 return BLK_STS_IOERR;
536 }
537
538 memset(cmnd, 0, sizeof(*cmnd));
539 cmnd->dsm.opcode = nvme_cmd_dsm;
540 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
541 cmnd->dsm.nr = cpu_to_le32(segments - 1);
542 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
543
544 req->special_vec.bv_page = virt_to_page(range);
545 req->special_vec.bv_offset = offset_in_page(range);
546 req->special_vec.bv_len = sizeof(*range) * segments;
547 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
548
549 return BLK_STS_OK;
550 }
551
552 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
553 struct request *req, struct nvme_command *cmnd)
554 {
555 struct nvme_ctrl *ctrl = ns->ctrl;
556 u16 control = 0;
557 u32 dsmgmt = 0;
558
559 if (req->cmd_flags & REQ_FUA)
560 control |= NVME_RW_FUA;
561 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
562 control |= NVME_RW_LR;
563
564 if (req->cmd_flags & REQ_RAHEAD)
565 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
566
567 memset(cmnd, 0, sizeof(*cmnd));
568 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
569 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
570 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
571 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
572
573 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
574 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
575
576 if (ns->ms) {
577 /*
578 * If formated with metadata, the block layer always provides a
579 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
580 * we enable the PRACT bit for protection information or set the
581 * namespace capacity to zero to prevent any I/O.
582 */
583 if (!blk_integrity_rq(req)) {
584 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
585 return BLK_STS_NOTSUPP;
586 control |= NVME_RW_PRINFO_PRACT;
587 }
588
589 switch (ns->pi_type) {
590 case NVME_NS_DPS_PI_TYPE3:
591 control |= NVME_RW_PRINFO_PRCHK_GUARD;
592 break;
593 case NVME_NS_DPS_PI_TYPE1:
594 case NVME_NS_DPS_PI_TYPE2:
595 control |= NVME_RW_PRINFO_PRCHK_GUARD |
596 NVME_RW_PRINFO_PRCHK_REF;
597 cmnd->rw.reftag = cpu_to_le32(
598 nvme_block_nr(ns, blk_rq_pos(req)));
599 break;
600 }
601 }
602
603 cmnd->rw.control = cpu_to_le16(control);
604 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
605 return 0;
606 }
607
608 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
609 struct nvme_command *cmd)
610 {
611 blk_status_t ret = BLK_STS_OK;
612
613 if (!(req->rq_flags & RQF_DONTPREP)) {
614 nvme_req(req)->retries = 0;
615 nvme_req(req)->flags = 0;
616 req->rq_flags |= RQF_DONTPREP;
617 }
618
619 switch (req_op(req)) {
620 case REQ_OP_DRV_IN:
621 case REQ_OP_DRV_OUT:
622 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
623 break;
624 case REQ_OP_FLUSH:
625 nvme_setup_flush(ns, cmd);
626 break;
627 case REQ_OP_WRITE_ZEROES:
628 /* currently only aliased to deallocate for a few ctrls: */
629 case REQ_OP_DISCARD:
630 ret = nvme_setup_discard(ns, req, cmd);
631 break;
632 case REQ_OP_READ:
633 case REQ_OP_WRITE:
634 ret = nvme_setup_rw(ns, req, cmd);
635 break;
636 default:
637 WARN_ON_ONCE(1);
638 return BLK_STS_IOERR;
639 }
640
641 cmd->common.command_id = req->tag;
642 if (ns)
643 trace_nvme_setup_nvm_cmd(req->q->id, cmd);
644 else
645 trace_nvme_setup_admin_cmd(cmd);
646 return ret;
647 }
648 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
649
650 /*
651 * Returns 0 on success. If the result is negative, it's a Linux error code;
652 * if the result is positive, it's an NVM Express status code
653 */
654 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
655 union nvme_result *result, void *buffer, unsigned bufflen,
656 unsigned timeout, int qid, int at_head,
657 blk_mq_req_flags_t flags)
658 {
659 struct request *req;
660 int ret;
661
662 req = nvme_alloc_request(q, cmd, flags, qid);
663 if (IS_ERR(req))
664 return PTR_ERR(req);
665
666 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
667
668 if (buffer && bufflen) {
669 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
670 if (ret)
671 goto out;
672 }
673
674 blk_execute_rq(req->q, NULL, req, at_head);
675 if (result)
676 *result = nvme_req(req)->result;
677 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
678 ret = -EINTR;
679 else
680 ret = nvme_req(req)->status;
681 out:
682 blk_mq_free_request(req);
683 return ret;
684 }
685 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
686
687 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
688 void *buffer, unsigned bufflen)
689 {
690 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
691 NVME_QID_ANY, 0, 0);
692 }
693 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
694
695 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
696 unsigned len, u32 seed, bool write)
697 {
698 struct bio_integrity_payload *bip;
699 int ret = -ENOMEM;
700 void *buf;
701
702 buf = kmalloc(len, GFP_KERNEL);
703 if (!buf)
704 goto out;
705
706 ret = -EFAULT;
707 if (write && copy_from_user(buf, ubuf, len))
708 goto out_free_meta;
709
710 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
711 if (IS_ERR(bip)) {
712 ret = PTR_ERR(bip);
713 goto out_free_meta;
714 }
715
716 bip->bip_iter.bi_size = len;
717 bip->bip_iter.bi_sector = seed;
718 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
719 offset_in_page(buf));
720 if (ret == len)
721 return buf;
722 ret = -ENOMEM;
723 out_free_meta:
724 kfree(buf);
725 out:
726 return ERR_PTR(ret);
727 }
728
729 static int nvme_submit_user_cmd(struct request_queue *q,
730 struct nvme_command *cmd, void __user *ubuffer,
731 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
732 u32 meta_seed, u32 *result, unsigned timeout)
733 {
734 bool write = nvme_is_write(cmd);
735 struct nvme_ns *ns = q->queuedata;
736 struct gendisk *disk = ns ? ns->disk : NULL;
737 struct request *req;
738 struct bio *bio = NULL;
739 void *meta = NULL;
740 int ret;
741
742 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
743 if (IS_ERR(req))
744 return PTR_ERR(req);
745
746 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
747
748 if (ubuffer && bufflen) {
749 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
750 GFP_KERNEL);
751 if (ret)
752 goto out;
753 bio = req->bio;
754 bio->bi_disk = disk;
755 if (disk && meta_buffer && meta_len) {
756 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
757 meta_seed, write);
758 if (IS_ERR(meta)) {
759 ret = PTR_ERR(meta);
760 goto out_unmap;
761 }
762 }
763 }
764
765 blk_execute_rq(req->q, disk, req, 0);
766 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
767 ret = -EINTR;
768 else
769 ret = nvme_req(req)->status;
770 if (result)
771 *result = le32_to_cpu(nvme_req(req)->result.u32);
772 if (meta && !ret && !write) {
773 if (copy_to_user(meta_buffer, meta, meta_len))
774 ret = -EFAULT;
775 }
776 kfree(meta);
777 out_unmap:
778 if (bio)
779 blk_rq_unmap_user(bio);
780 out:
781 blk_mq_free_request(req);
782 return ret;
783 }
784
785 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
786 {
787 struct nvme_ctrl *ctrl = rq->end_io_data;
788
789 blk_mq_free_request(rq);
790
791 if (status) {
792 dev_err(ctrl->device,
793 "failed nvme_keep_alive_end_io error=%d\n",
794 status);
795 return;
796 }
797
798 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
799 }
800
801 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
802 {
803 struct request *rq;
804
805 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
806 NVME_QID_ANY);
807 if (IS_ERR(rq))
808 return PTR_ERR(rq);
809
810 rq->timeout = ctrl->kato * HZ;
811 rq->end_io_data = ctrl;
812
813 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
814
815 return 0;
816 }
817
818 static void nvme_keep_alive_work(struct work_struct *work)
819 {
820 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
821 struct nvme_ctrl, ka_work);
822
823 if (nvme_keep_alive(ctrl)) {
824 /* allocation failure, reset the controller */
825 dev_err(ctrl->device, "keep-alive failed\n");
826 nvme_reset_ctrl(ctrl);
827 return;
828 }
829 }
830
831 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
832 {
833 if (unlikely(ctrl->kato == 0))
834 return;
835
836 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
837 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
838 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
839 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
840 }
841 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
842
843 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
844 {
845 if (unlikely(ctrl->kato == 0))
846 return;
847
848 cancel_delayed_work_sync(&ctrl->ka_work);
849 }
850 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
851
852 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
853 {
854 struct nvme_command c = { };
855 int error;
856
857 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
858 c.identify.opcode = nvme_admin_identify;
859 c.identify.cns = NVME_ID_CNS_CTRL;
860
861 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
862 if (!*id)
863 return -ENOMEM;
864
865 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
866 sizeof(struct nvme_id_ctrl));
867 if (error)
868 kfree(*id);
869 return error;
870 }
871
872 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
873 struct nvme_ns_ids *ids)
874 {
875 struct nvme_command c = { };
876 int status;
877 void *data;
878 int pos;
879 int len;
880
881 c.identify.opcode = nvme_admin_identify;
882 c.identify.nsid = cpu_to_le32(nsid);
883 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
884
885 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
886 if (!data)
887 return -ENOMEM;
888
889 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
890 NVME_IDENTIFY_DATA_SIZE);
891 if (status)
892 goto free_data;
893
894 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
895 struct nvme_ns_id_desc *cur = data + pos;
896
897 if (cur->nidl == 0)
898 break;
899
900 switch (cur->nidt) {
901 case NVME_NIDT_EUI64:
902 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
903 dev_warn(ctrl->device,
904 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
905 cur->nidl);
906 goto free_data;
907 }
908 len = NVME_NIDT_EUI64_LEN;
909 memcpy(ids->eui64, data + pos + sizeof(*cur), len);
910 break;
911 case NVME_NIDT_NGUID:
912 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
913 dev_warn(ctrl->device,
914 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
915 cur->nidl);
916 goto free_data;
917 }
918 len = NVME_NIDT_NGUID_LEN;
919 memcpy(ids->nguid, data + pos + sizeof(*cur), len);
920 break;
921 case NVME_NIDT_UUID:
922 if (cur->nidl != NVME_NIDT_UUID_LEN) {
923 dev_warn(ctrl->device,
924 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
925 cur->nidl);
926 goto free_data;
927 }
928 len = NVME_NIDT_UUID_LEN;
929 uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
930 break;
931 default:
932 /* Skip unnkown types */
933 len = cur->nidl;
934 break;
935 }
936
937 len += sizeof(*cur);
938 }
939 free_data:
940 kfree(data);
941 return status;
942 }
943
944 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
945 {
946 struct nvme_command c = { };
947
948 c.identify.opcode = nvme_admin_identify;
949 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
950 c.identify.nsid = cpu_to_le32(nsid);
951 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
952 }
953
954 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
955 unsigned nsid)
956 {
957 struct nvme_id_ns *id;
958 struct nvme_command c = { };
959 int error;
960
961 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
962 c.identify.opcode = nvme_admin_identify;
963 c.identify.nsid = cpu_to_le32(nsid);
964 c.identify.cns = NVME_ID_CNS_NS;
965
966 id = kmalloc(sizeof(*id), GFP_KERNEL);
967 if (!id)
968 return NULL;
969
970 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
971 if (error) {
972 dev_warn(ctrl->device, "Identify namespace failed\n");
973 kfree(id);
974 return NULL;
975 }
976
977 return id;
978 }
979
980 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
981 void *buffer, size_t buflen, u32 *result)
982 {
983 struct nvme_command c;
984 union nvme_result res;
985 int ret;
986
987 memset(&c, 0, sizeof(c));
988 c.features.opcode = nvme_admin_set_features;
989 c.features.fid = cpu_to_le32(fid);
990 c.features.dword11 = cpu_to_le32(dword11);
991
992 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
993 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
994 if (ret >= 0 && result)
995 *result = le32_to_cpu(res.u32);
996 return ret;
997 }
998
999 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1000 {
1001 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1002 u32 result;
1003 int status, nr_io_queues;
1004
1005 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1006 &result);
1007 if (status < 0)
1008 return status;
1009
1010 /*
1011 * Degraded controllers might return an error when setting the queue
1012 * count. We still want to be able to bring them online and offer
1013 * access to the admin queue, as that might be only way to fix them up.
1014 */
1015 if (status > 0) {
1016 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1017 *count = 0;
1018 } else {
1019 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1020 *count = min(*count, nr_io_queues);
1021 }
1022
1023 return 0;
1024 }
1025 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1026
1027 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1028 {
1029 struct nvme_user_io io;
1030 struct nvme_command c;
1031 unsigned length, meta_len;
1032 void __user *metadata;
1033
1034 if (copy_from_user(&io, uio, sizeof(io)))
1035 return -EFAULT;
1036 if (io.flags)
1037 return -EINVAL;
1038
1039 switch (io.opcode) {
1040 case nvme_cmd_write:
1041 case nvme_cmd_read:
1042 case nvme_cmd_compare:
1043 break;
1044 default:
1045 return -EINVAL;
1046 }
1047
1048 length = (io.nblocks + 1) << ns->lba_shift;
1049 meta_len = (io.nblocks + 1) * ns->ms;
1050 metadata = (void __user *)(uintptr_t)io.metadata;
1051
1052 if (ns->ext) {
1053 length += meta_len;
1054 meta_len = 0;
1055 } else if (meta_len) {
1056 if ((io.metadata & 3) || !io.metadata)
1057 return -EINVAL;
1058 }
1059
1060 memset(&c, 0, sizeof(c));
1061 c.rw.opcode = io.opcode;
1062 c.rw.flags = io.flags;
1063 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1064 c.rw.slba = cpu_to_le64(io.slba);
1065 c.rw.length = cpu_to_le16(io.nblocks);
1066 c.rw.control = cpu_to_le16(io.control);
1067 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1068 c.rw.reftag = cpu_to_le32(io.reftag);
1069 c.rw.apptag = cpu_to_le16(io.apptag);
1070 c.rw.appmask = cpu_to_le16(io.appmask);
1071
1072 return nvme_submit_user_cmd(ns->queue, &c,
1073 (void __user *)(uintptr_t)io.addr, length,
1074 metadata, meta_len, io.slba, NULL, 0);
1075 }
1076
1077 static u32 nvme_known_admin_effects(u8 opcode)
1078 {
1079 switch (opcode) {
1080 case nvme_admin_format_nvm:
1081 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1082 NVME_CMD_EFFECTS_CSE_MASK;
1083 case nvme_admin_sanitize_nvm:
1084 return NVME_CMD_EFFECTS_CSE_MASK;
1085 default:
1086 break;
1087 }
1088 return 0;
1089 }
1090
1091 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1092 u8 opcode)
1093 {
1094 u32 effects = 0;
1095
1096 if (ns) {
1097 if (ctrl->effects)
1098 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1099 if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1100 dev_warn(ctrl->device,
1101 "IO command:%02x has unhandled effects:%08x\n",
1102 opcode, effects);
1103 return 0;
1104 }
1105
1106 if (ctrl->effects)
1107 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1108 else
1109 effects = nvme_known_admin_effects(opcode);
1110
1111 /*
1112 * For simplicity, IO to all namespaces is quiesced even if the command
1113 * effects say only one namespace is affected.
1114 */
1115 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1116 nvme_start_freeze(ctrl);
1117 nvme_wait_freeze(ctrl);
1118 }
1119 return effects;
1120 }
1121
1122 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1123 {
1124 struct nvme_ns *ns, *next;
1125 LIST_HEAD(rm_list);
1126
1127 mutex_lock(&ctrl->namespaces_mutex);
1128 list_for_each_entry(ns, &ctrl->namespaces, list) {
1129 if (ns->disk && nvme_revalidate_disk(ns->disk)) {
1130 list_move_tail(&ns->list, &rm_list);
1131 }
1132 }
1133 mutex_unlock(&ctrl->namespaces_mutex);
1134
1135 list_for_each_entry_safe(ns, next, &rm_list, list)
1136 nvme_ns_remove(ns);
1137 }
1138
1139 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1140 {
1141 /*
1142 * Revalidate LBA changes prior to unfreezing. This is necessary to
1143 * prevent memory corruption if a logical block size was changed by
1144 * this command.
1145 */
1146 if (effects & NVME_CMD_EFFECTS_LBCC)
1147 nvme_update_formats(ctrl);
1148 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1149 nvme_unfreeze(ctrl);
1150 if (effects & NVME_CMD_EFFECTS_CCC)
1151 nvme_init_identify(ctrl);
1152 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1153 nvme_queue_scan(ctrl);
1154 }
1155
1156 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1157 struct nvme_passthru_cmd __user *ucmd)
1158 {
1159 struct nvme_passthru_cmd cmd;
1160 struct nvme_command c;
1161 unsigned timeout = 0;
1162 u32 effects;
1163 int status;
1164
1165 if (!capable(CAP_SYS_ADMIN))
1166 return -EACCES;
1167 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1168 return -EFAULT;
1169 if (cmd.flags)
1170 return -EINVAL;
1171
1172 memset(&c, 0, sizeof(c));
1173 c.common.opcode = cmd.opcode;
1174 c.common.flags = cmd.flags;
1175 c.common.nsid = cpu_to_le32(cmd.nsid);
1176 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1177 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1178 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1179 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1180 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1181 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1182 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1183 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1184
1185 if (cmd.timeout_ms)
1186 timeout = msecs_to_jiffies(cmd.timeout_ms);
1187
1188 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1189 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1190 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1191 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1192 0, &cmd.result, timeout);
1193 nvme_passthru_end(ctrl, effects);
1194
1195 if (status >= 0) {
1196 if (put_user(cmd.result, &ucmd->result))
1197 return -EFAULT;
1198 }
1199
1200 return status;
1201 }
1202
1203 /*
1204 * Issue ioctl requests on the first available path. Note that unlike normal
1205 * block layer requests we will not retry failed request on another controller.
1206 */
1207 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1208 struct nvme_ns_head **head, int *srcu_idx)
1209 {
1210 #ifdef CONFIG_NVME_MULTIPATH
1211 if (disk->fops == &nvme_ns_head_ops) {
1212 *head = disk->private_data;
1213 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1214 return nvme_find_path(*head);
1215 }
1216 #endif
1217 *head = NULL;
1218 *srcu_idx = -1;
1219 return disk->private_data;
1220 }
1221
1222 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1223 {
1224 if (head)
1225 srcu_read_unlock(&head->srcu, idx);
1226 }
1227
1228 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1229 {
1230 switch (cmd) {
1231 case NVME_IOCTL_ID:
1232 force_successful_syscall_return();
1233 return ns->head->ns_id;
1234 case NVME_IOCTL_ADMIN_CMD:
1235 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1236 case NVME_IOCTL_IO_CMD:
1237 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1238 case NVME_IOCTL_SUBMIT_IO:
1239 return nvme_submit_io(ns, (void __user *)arg);
1240 default:
1241 #ifdef CONFIG_NVM
1242 if (ns->ndev)
1243 return nvme_nvm_ioctl(ns, cmd, arg);
1244 #endif
1245 if (is_sed_ioctl(cmd))
1246 return sed_ioctl(ns->ctrl->opal_dev, cmd,
1247 (void __user *) arg);
1248 return -ENOTTY;
1249 }
1250 }
1251
1252 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1253 unsigned int cmd, unsigned long arg)
1254 {
1255 struct nvme_ns_head *head = NULL;
1256 struct nvme_ns *ns;
1257 int srcu_idx, ret;
1258
1259 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1260 if (unlikely(!ns))
1261 ret = -EWOULDBLOCK;
1262 else
1263 ret = nvme_ns_ioctl(ns, cmd, arg);
1264 nvme_put_ns_from_disk(head, srcu_idx);
1265 return ret;
1266 }
1267
1268 static int nvme_open(struct block_device *bdev, fmode_t mode)
1269 {
1270 struct nvme_ns *ns = bdev->bd_disk->private_data;
1271
1272 #ifdef CONFIG_NVME_MULTIPATH
1273 /* should never be called due to GENHD_FL_HIDDEN */
1274 if (WARN_ON_ONCE(ns->head->disk))
1275 goto fail;
1276 #endif
1277 if (!kref_get_unless_zero(&ns->kref))
1278 goto fail;
1279 if (!try_module_get(ns->ctrl->ops->module))
1280 goto fail_put_ns;
1281
1282 return 0;
1283
1284 fail_put_ns:
1285 nvme_put_ns(ns);
1286 fail:
1287 return -ENXIO;
1288 }
1289
1290 static void nvme_release(struct gendisk *disk, fmode_t mode)
1291 {
1292 struct nvme_ns *ns = disk->private_data;
1293
1294 module_put(ns->ctrl->ops->module);
1295 nvme_put_ns(ns);
1296 }
1297
1298 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1299 {
1300 /* some standard values */
1301 geo->heads = 1 << 6;
1302 geo->sectors = 1 << 5;
1303 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1304 return 0;
1305 }
1306
1307 #ifdef CONFIG_BLK_DEV_INTEGRITY
1308 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1309 {
1310 struct blk_integrity integrity;
1311
1312 memset(&integrity, 0, sizeof(integrity));
1313 switch (pi_type) {
1314 case NVME_NS_DPS_PI_TYPE3:
1315 integrity.profile = &t10_pi_type3_crc;
1316 integrity.tag_size = sizeof(u16) + sizeof(u32);
1317 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1318 break;
1319 case NVME_NS_DPS_PI_TYPE1:
1320 case NVME_NS_DPS_PI_TYPE2:
1321 integrity.profile = &t10_pi_type1_crc;
1322 integrity.tag_size = sizeof(u16);
1323 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1324 break;
1325 default:
1326 integrity.profile = NULL;
1327 break;
1328 }
1329 integrity.tuple_size = ms;
1330 blk_integrity_register(disk, &integrity);
1331 blk_queue_max_integrity_segments(disk->queue, 1);
1332 }
1333 #else
1334 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1335 {
1336 }
1337 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1338
1339 static void nvme_set_chunk_size(struct nvme_ns *ns)
1340 {
1341 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1342 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1343 }
1344
1345 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1346 unsigned stream_alignment, struct request_queue *queue)
1347 {
1348 u32 size = queue_logical_block_size(queue);
1349
1350 if (stream_alignment)
1351 size *= stream_alignment;
1352
1353 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1354 NVME_DSM_MAX_RANGES);
1355
1356 queue->limits.discard_alignment = 0;
1357 queue->limits.discard_granularity = size;
1358
1359 blk_queue_max_discard_sectors(queue, UINT_MAX);
1360 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1361 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, queue);
1362
1363 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1364 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1365 }
1366
1367 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1368 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1369 {
1370 memset(ids, 0, sizeof(*ids));
1371
1372 if (ctrl->vs >= NVME_VS(1, 1, 0))
1373 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1374 if (ctrl->vs >= NVME_VS(1, 2, 0))
1375 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1376 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1377 /* Don't treat error as fatal we potentially
1378 * already have a NGUID or EUI-64
1379 */
1380 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1381 dev_warn(ctrl->device,
1382 "%s: Identify Descriptors failed\n", __func__);
1383 }
1384 }
1385
1386 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1387 {
1388 return !uuid_is_null(&ids->uuid) ||
1389 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1390 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1391 }
1392
1393 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1394 {
1395 return uuid_equal(&a->uuid, &b->uuid) &&
1396 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1397 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1398 }
1399
1400 static void nvme_update_disk_info(struct gendisk *disk,
1401 struct nvme_ns *ns, struct nvme_id_ns *id)
1402 {
1403 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1404 unsigned short bs = 1 << ns->lba_shift;
1405 unsigned stream_alignment = 0;
1406
1407 if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1408 stream_alignment = ns->sws * ns->sgs;
1409
1410 blk_mq_freeze_queue(disk->queue);
1411 blk_integrity_unregister(disk);
1412
1413 blk_queue_logical_block_size(disk->queue, bs);
1414 blk_queue_physical_block_size(disk->queue, bs);
1415 blk_queue_io_min(disk->queue, bs);
1416
1417 if (ns->ms && !ns->ext &&
1418 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1419 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1420 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1421 capacity = 0;
1422 set_capacity(disk, capacity);
1423
1424 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1425 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1426 blk_mq_unfreeze_queue(disk->queue);
1427 }
1428
1429 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1430 {
1431 struct nvme_ns *ns = disk->private_data;
1432
1433 /*
1434 * If identify namespace failed, use default 512 byte block size so
1435 * block layer can use before failing read/write for 0 capacity.
1436 */
1437 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1438 if (ns->lba_shift == 0)
1439 ns->lba_shift = 9;
1440 ns->noiob = le16_to_cpu(id->noiob);
1441 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1442 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1443 /* the PI implementation requires metadata equal t10 pi tuple size */
1444 if (ns->ms == sizeof(struct t10_pi_tuple))
1445 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1446 else
1447 ns->pi_type = 0;
1448
1449 if (ns->noiob)
1450 nvme_set_chunk_size(ns);
1451 nvme_update_disk_info(disk, ns, id);
1452 #ifdef CONFIG_NVME_MULTIPATH
1453 if (ns->head->disk)
1454 nvme_update_disk_info(ns->head->disk, ns, id);
1455 #endif
1456 }
1457
1458 static int nvme_revalidate_disk(struct gendisk *disk)
1459 {
1460 struct nvme_ns *ns = disk->private_data;
1461 struct nvme_ctrl *ctrl = ns->ctrl;
1462 struct nvme_id_ns *id;
1463 struct nvme_ns_ids ids;
1464 int ret = 0;
1465
1466 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1467 set_capacity(disk, 0);
1468 return -ENODEV;
1469 }
1470
1471 id = nvme_identify_ns(ctrl, ns->head->ns_id);
1472 if (!id)
1473 return -ENODEV;
1474
1475 if (id->ncap == 0) {
1476 ret = -ENODEV;
1477 goto out;
1478 }
1479
1480 __nvme_revalidate_disk(disk, id);
1481 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1482 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1483 dev_err(ctrl->device,
1484 "identifiers changed for nsid %d\n", ns->head->ns_id);
1485 ret = -ENODEV;
1486 }
1487
1488 out:
1489 kfree(id);
1490 return ret;
1491 }
1492
1493 static char nvme_pr_type(enum pr_type type)
1494 {
1495 switch (type) {
1496 case PR_WRITE_EXCLUSIVE:
1497 return 1;
1498 case PR_EXCLUSIVE_ACCESS:
1499 return 2;
1500 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1501 return 3;
1502 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1503 return 4;
1504 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1505 return 5;
1506 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1507 return 6;
1508 default:
1509 return 0;
1510 }
1511 };
1512
1513 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1514 u64 key, u64 sa_key, u8 op)
1515 {
1516 struct nvme_ns_head *head = NULL;
1517 struct nvme_ns *ns;
1518 struct nvme_command c;
1519 int srcu_idx, ret;
1520 u8 data[16] = { 0, };
1521
1522 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1523 if (unlikely(!ns))
1524 return -EWOULDBLOCK;
1525
1526 put_unaligned_le64(key, &data[0]);
1527 put_unaligned_le64(sa_key, &data[8]);
1528
1529 memset(&c, 0, sizeof(c));
1530 c.common.opcode = op;
1531 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1532 c.common.cdw10[0] = cpu_to_le32(cdw10);
1533
1534 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1535 nvme_put_ns_from_disk(head, srcu_idx);
1536 return ret;
1537 }
1538
1539 static int nvme_pr_register(struct block_device *bdev, u64 old,
1540 u64 new, unsigned flags)
1541 {
1542 u32 cdw10;
1543
1544 if (flags & ~PR_FL_IGNORE_KEY)
1545 return -EOPNOTSUPP;
1546
1547 cdw10 = old ? 2 : 0;
1548 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1549 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1550 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1551 }
1552
1553 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1554 enum pr_type type, unsigned flags)
1555 {
1556 u32 cdw10;
1557
1558 if (flags & ~PR_FL_IGNORE_KEY)
1559 return -EOPNOTSUPP;
1560
1561 cdw10 = nvme_pr_type(type) << 8;
1562 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1563 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1564 }
1565
1566 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1567 enum pr_type type, bool abort)
1568 {
1569 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1570 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1571 }
1572
1573 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1574 {
1575 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1576 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1577 }
1578
1579 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1580 {
1581 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1582 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1583 }
1584
1585 static const struct pr_ops nvme_pr_ops = {
1586 .pr_register = nvme_pr_register,
1587 .pr_reserve = nvme_pr_reserve,
1588 .pr_release = nvme_pr_release,
1589 .pr_preempt = nvme_pr_preempt,
1590 .pr_clear = nvme_pr_clear,
1591 };
1592
1593 #ifdef CONFIG_BLK_SED_OPAL
1594 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1595 bool send)
1596 {
1597 struct nvme_ctrl *ctrl = data;
1598 struct nvme_command cmd;
1599
1600 memset(&cmd, 0, sizeof(cmd));
1601 if (send)
1602 cmd.common.opcode = nvme_admin_security_send;
1603 else
1604 cmd.common.opcode = nvme_admin_security_recv;
1605 cmd.common.nsid = 0;
1606 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1607 cmd.common.cdw10[1] = cpu_to_le32(len);
1608
1609 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1610 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1611 }
1612 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1613 #endif /* CONFIG_BLK_SED_OPAL */
1614
1615 static const struct block_device_operations nvme_fops = {
1616 .owner = THIS_MODULE,
1617 .ioctl = nvme_ioctl,
1618 .compat_ioctl = nvme_ioctl,
1619 .open = nvme_open,
1620 .release = nvme_release,
1621 .getgeo = nvme_getgeo,
1622 .revalidate_disk= nvme_revalidate_disk,
1623 .pr_ops = &nvme_pr_ops,
1624 };
1625
1626 #ifdef CONFIG_NVME_MULTIPATH
1627 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1628 {
1629 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1630
1631 if (!kref_get_unless_zero(&head->ref))
1632 return -ENXIO;
1633 return 0;
1634 }
1635
1636 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1637 {
1638 nvme_put_ns_head(disk->private_data);
1639 }
1640
1641 const struct block_device_operations nvme_ns_head_ops = {
1642 .owner = THIS_MODULE,
1643 .open = nvme_ns_head_open,
1644 .release = nvme_ns_head_release,
1645 .ioctl = nvme_ioctl,
1646 .compat_ioctl = nvme_ioctl,
1647 .getgeo = nvme_getgeo,
1648 .pr_ops = &nvme_pr_ops,
1649 };
1650 #endif /* CONFIG_NVME_MULTIPATH */
1651
1652 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1653 {
1654 unsigned long timeout =
1655 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1656 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1657 int ret;
1658
1659 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1660 if (csts == ~0)
1661 return -ENODEV;
1662 if ((csts & NVME_CSTS_RDY) == bit)
1663 break;
1664
1665 msleep(100);
1666 if (fatal_signal_pending(current))
1667 return -EINTR;
1668 if (time_after(jiffies, timeout)) {
1669 dev_err(ctrl->device,
1670 "Device not ready; aborting %s\n", enabled ?
1671 "initialisation" : "reset");
1672 return -ENODEV;
1673 }
1674 }
1675
1676 return ret;
1677 }
1678
1679 /*
1680 * If the device has been passed off to us in an enabled state, just clear
1681 * the enabled bit. The spec says we should set the 'shutdown notification
1682 * bits', but doing so may cause the device to complete commands to the
1683 * admin queue ... and we don't know what memory that might be pointing at!
1684 */
1685 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1686 {
1687 int ret;
1688
1689 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1690 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1691
1692 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1693 if (ret)
1694 return ret;
1695
1696 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1697 msleep(NVME_QUIRK_DELAY_AMOUNT);
1698
1699 return nvme_wait_ready(ctrl, cap, false);
1700 }
1701 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1702
1703 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1704 {
1705 /*
1706 * Default to a 4K page size, with the intention to update this
1707 * path in the future to accomodate architectures with differing
1708 * kernel and IO page sizes.
1709 */
1710 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1711 int ret;
1712
1713 if (page_shift < dev_page_min) {
1714 dev_err(ctrl->device,
1715 "Minimum device page size %u too large for host (%u)\n",
1716 1 << dev_page_min, 1 << page_shift);
1717 return -ENODEV;
1718 }
1719
1720 ctrl->page_size = 1 << page_shift;
1721
1722 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1723 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1724 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1725 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1726 ctrl->ctrl_config |= NVME_CC_ENABLE;
1727
1728 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1729 if (ret)
1730 return ret;
1731 return nvme_wait_ready(ctrl, cap, true);
1732 }
1733 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1734
1735 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1736 {
1737 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1738 u32 csts;
1739 int ret;
1740
1741 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1742 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1743
1744 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1745 if (ret)
1746 return ret;
1747
1748 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1749 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1750 break;
1751
1752 msleep(100);
1753 if (fatal_signal_pending(current))
1754 return -EINTR;
1755 if (time_after(jiffies, timeout)) {
1756 dev_err(ctrl->device,
1757 "Device shutdown incomplete; abort shutdown\n");
1758 return -ENODEV;
1759 }
1760 }
1761
1762 return ret;
1763 }
1764 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1765
1766 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1767 struct request_queue *q)
1768 {
1769 bool vwc = false;
1770
1771 if (ctrl->max_hw_sectors) {
1772 u32 max_segments =
1773 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1774
1775 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1776 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1777 }
1778 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1779 is_power_of_2(ctrl->max_hw_sectors))
1780 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1781 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1782 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1783 vwc = true;
1784 blk_queue_write_cache(q, vwc, vwc);
1785 }
1786
1787 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1788 {
1789 __le64 ts;
1790 int ret;
1791
1792 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1793 return 0;
1794
1795 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1796 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1797 NULL);
1798 if (ret)
1799 dev_warn_once(ctrl->device,
1800 "could not set timestamp (%d)\n", ret);
1801 return ret;
1802 }
1803
1804 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1805 {
1806 /*
1807 * APST (Autonomous Power State Transition) lets us program a
1808 * table of power state transitions that the controller will
1809 * perform automatically. We configure it with a simple
1810 * heuristic: we are willing to spend at most 2% of the time
1811 * transitioning between power states. Therefore, when running
1812 * in any given state, we will enter the next lower-power
1813 * non-operational state after waiting 50 * (enlat + exlat)
1814 * microseconds, as long as that state's exit latency is under
1815 * the requested maximum latency.
1816 *
1817 * We will not autonomously enter any non-operational state for
1818 * which the total latency exceeds ps_max_latency_us. Users
1819 * can set ps_max_latency_us to zero to turn off APST.
1820 */
1821
1822 unsigned apste;
1823 struct nvme_feat_auto_pst *table;
1824 u64 max_lat_us = 0;
1825 int max_ps = -1;
1826 int ret;
1827
1828 /*
1829 * If APST isn't supported or if we haven't been initialized yet,
1830 * then don't do anything.
1831 */
1832 if (!ctrl->apsta)
1833 return 0;
1834
1835 if (ctrl->npss > 31) {
1836 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1837 return 0;
1838 }
1839
1840 table = kzalloc(sizeof(*table), GFP_KERNEL);
1841 if (!table)
1842 return 0;
1843
1844 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1845 /* Turn off APST. */
1846 apste = 0;
1847 dev_dbg(ctrl->device, "APST disabled\n");
1848 } else {
1849 __le64 target = cpu_to_le64(0);
1850 int state;
1851
1852 /*
1853 * Walk through all states from lowest- to highest-power.
1854 * According to the spec, lower-numbered states use more
1855 * power. NPSS, despite the name, is the index of the
1856 * lowest-power state, not the number of states.
1857 */
1858 for (state = (int)ctrl->npss; state >= 0; state--) {
1859 u64 total_latency_us, exit_latency_us, transition_ms;
1860
1861 if (target)
1862 table->entries[state] = target;
1863
1864 /*
1865 * Don't allow transitions to the deepest state
1866 * if it's quirked off.
1867 */
1868 if (state == ctrl->npss &&
1869 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1870 continue;
1871
1872 /*
1873 * Is this state a useful non-operational state for
1874 * higher-power states to autonomously transition to?
1875 */
1876 if (!(ctrl->psd[state].flags &
1877 NVME_PS_FLAGS_NON_OP_STATE))
1878 continue;
1879
1880 exit_latency_us =
1881 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1882 if (exit_latency_us > ctrl->ps_max_latency_us)
1883 continue;
1884
1885 total_latency_us =
1886 exit_latency_us +
1887 le32_to_cpu(ctrl->psd[state].entry_lat);
1888
1889 /*
1890 * This state is good. Use it as the APST idle
1891 * target for higher power states.
1892 */
1893 transition_ms = total_latency_us + 19;
1894 do_div(transition_ms, 20);
1895 if (transition_ms > (1 << 24) - 1)
1896 transition_ms = (1 << 24) - 1;
1897
1898 target = cpu_to_le64((state << 3) |
1899 (transition_ms << 8));
1900
1901 if (max_ps == -1)
1902 max_ps = state;
1903
1904 if (total_latency_us > max_lat_us)
1905 max_lat_us = total_latency_us;
1906 }
1907
1908 apste = 1;
1909
1910 if (max_ps == -1) {
1911 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1912 } else {
1913 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1914 max_ps, max_lat_us, (int)sizeof(*table), table);
1915 }
1916 }
1917
1918 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1919 table, sizeof(*table), NULL);
1920 if (ret)
1921 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1922
1923 kfree(table);
1924 return ret;
1925 }
1926
1927 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1928 {
1929 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1930 u64 latency;
1931
1932 switch (val) {
1933 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1934 case PM_QOS_LATENCY_ANY:
1935 latency = U64_MAX;
1936 break;
1937
1938 default:
1939 latency = val;
1940 }
1941
1942 if (ctrl->ps_max_latency_us != latency) {
1943 ctrl->ps_max_latency_us = latency;
1944 nvme_configure_apst(ctrl);
1945 }
1946 }
1947
1948 struct nvme_core_quirk_entry {
1949 /*
1950 * NVMe model and firmware strings are padded with spaces. For
1951 * simplicity, strings in the quirk table are padded with NULLs
1952 * instead.
1953 */
1954 u16 vid;
1955 const char *mn;
1956 const char *fr;
1957 unsigned long quirks;
1958 };
1959
1960 static const struct nvme_core_quirk_entry core_quirks[] = {
1961 {
1962 /*
1963 * This Toshiba device seems to die using any APST states. See:
1964 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1965 */
1966 .vid = 0x1179,
1967 .mn = "THNSF5256GPUK TOSHIBA",
1968 .quirks = NVME_QUIRK_NO_APST,
1969 }
1970 };
1971
1972 /* match is null-terminated but idstr is space-padded. */
1973 static bool string_matches(const char *idstr, const char *match, size_t len)
1974 {
1975 size_t matchlen;
1976
1977 if (!match)
1978 return true;
1979
1980 matchlen = strlen(match);
1981 WARN_ON_ONCE(matchlen > len);
1982
1983 if (memcmp(idstr, match, matchlen))
1984 return false;
1985
1986 for (; matchlen < len; matchlen++)
1987 if (idstr[matchlen] != ' ')
1988 return false;
1989
1990 return true;
1991 }
1992
1993 static bool quirk_matches(const struct nvme_id_ctrl *id,
1994 const struct nvme_core_quirk_entry *q)
1995 {
1996 return q->vid == le16_to_cpu(id->vid) &&
1997 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1998 string_matches(id->fr, q->fr, sizeof(id->fr));
1999 }
2000
2001 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2002 struct nvme_id_ctrl *id)
2003 {
2004 size_t nqnlen;
2005 int off;
2006
2007 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2008 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2009 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2010 return;
2011 }
2012
2013 if (ctrl->vs >= NVME_VS(1, 2, 1))
2014 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2015
2016 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2017 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2018 "nqn.2014.08.org.nvmexpress:%4x%4x",
2019 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2020 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2021 off += sizeof(id->sn);
2022 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2023 off += sizeof(id->mn);
2024 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2025 }
2026
2027 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2028 {
2029 ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2030 kfree(subsys);
2031 }
2032
2033 static void nvme_release_subsystem(struct device *dev)
2034 {
2035 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2036 }
2037
2038 static void nvme_destroy_subsystem(struct kref *ref)
2039 {
2040 struct nvme_subsystem *subsys =
2041 container_of(ref, struct nvme_subsystem, ref);
2042
2043 mutex_lock(&nvme_subsystems_lock);
2044 list_del(&subsys->entry);
2045 mutex_unlock(&nvme_subsystems_lock);
2046
2047 ida_destroy(&subsys->ns_ida);
2048 device_del(&subsys->dev);
2049 put_device(&subsys->dev);
2050 }
2051
2052 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2053 {
2054 kref_put(&subsys->ref, nvme_destroy_subsystem);
2055 }
2056
2057 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2058 {
2059 struct nvme_subsystem *subsys;
2060
2061 lockdep_assert_held(&nvme_subsystems_lock);
2062
2063 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2064 if (strcmp(subsys->subnqn, subsysnqn))
2065 continue;
2066 if (!kref_get_unless_zero(&subsys->ref))
2067 continue;
2068 return subsys;
2069 }
2070
2071 return NULL;
2072 }
2073
2074 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2075 struct device_attribute subsys_attr_##_name = \
2076 __ATTR(_name, _mode, _show, NULL)
2077
2078 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2079 struct device_attribute *attr,
2080 char *buf)
2081 {
2082 struct nvme_subsystem *subsys =
2083 container_of(dev, struct nvme_subsystem, dev);
2084
2085 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2086 }
2087 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2088
2089 #define nvme_subsys_show_str_function(field) \
2090 static ssize_t subsys_##field##_show(struct device *dev, \
2091 struct device_attribute *attr, char *buf) \
2092 { \
2093 struct nvme_subsystem *subsys = \
2094 container_of(dev, struct nvme_subsystem, dev); \
2095 return sprintf(buf, "%.*s\n", \
2096 (int)sizeof(subsys->field), subsys->field); \
2097 } \
2098 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2099
2100 nvme_subsys_show_str_function(model);
2101 nvme_subsys_show_str_function(serial);
2102 nvme_subsys_show_str_function(firmware_rev);
2103
2104 static struct attribute *nvme_subsys_attrs[] = {
2105 &subsys_attr_model.attr,
2106 &subsys_attr_serial.attr,
2107 &subsys_attr_firmware_rev.attr,
2108 &subsys_attr_subsysnqn.attr,
2109 NULL,
2110 };
2111
2112 static struct attribute_group nvme_subsys_attrs_group = {
2113 .attrs = nvme_subsys_attrs,
2114 };
2115
2116 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2117 &nvme_subsys_attrs_group,
2118 NULL,
2119 };
2120
2121 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2122 {
2123 int count = 0;
2124 struct nvme_ctrl *ctrl;
2125
2126 mutex_lock(&subsys->lock);
2127 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2128 if (ctrl->state != NVME_CTRL_DELETING &&
2129 ctrl->state != NVME_CTRL_DEAD)
2130 count++;
2131 }
2132 mutex_unlock(&subsys->lock);
2133
2134 return count;
2135 }
2136
2137 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2138 {
2139 struct nvme_subsystem *subsys, *found;
2140 int ret;
2141
2142 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2143 if (!subsys)
2144 return -ENOMEM;
2145 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2146 if (ret < 0) {
2147 kfree(subsys);
2148 return ret;
2149 }
2150 subsys->instance = ret;
2151 mutex_init(&subsys->lock);
2152 kref_init(&subsys->ref);
2153 INIT_LIST_HEAD(&subsys->ctrls);
2154 INIT_LIST_HEAD(&subsys->nsheads);
2155 nvme_init_subnqn(subsys, ctrl, id);
2156 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2157 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2158 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2159 subsys->vendor_id = le16_to_cpu(id->vid);
2160 subsys->cmic = id->cmic;
2161
2162 subsys->dev.class = nvme_subsys_class;
2163 subsys->dev.release = nvme_release_subsystem;
2164 subsys->dev.groups = nvme_subsys_attrs_groups;
2165 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2166 device_initialize(&subsys->dev);
2167
2168 mutex_lock(&nvme_subsystems_lock);
2169 found = __nvme_find_get_subsystem(subsys->subnqn);
2170 if (found) {
2171 /*
2172 * Verify that the subsystem actually supports multiple
2173 * controllers, else bail out.
2174 */
2175 if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2176 dev_err(ctrl->device,
2177 "ignoring ctrl due to duplicate subnqn (%s).\n",
2178 found->subnqn);
2179 nvme_put_subsystem(found);
2180 ret = -EINVAL;
2181 goto out_unlock;
2182 }
2183
2184 __nvme_release_subsystem(subsys);
2185 subsys = found;
2186 } else {
2187 ret = device_add(&subsys->dev);
2188 if (ret) {
2189 dev_err(ctrl->device,
2190 "failed to register subsystem device.\n");
2191 goto out_unlock;
2192 }
2193 ida_init(&subsys->ns_ida);
2194 list_add_tail(&subsys->entry, &nvme_subsystems);
2195 }
2196
2197 ctrl->subsys = subsys;
2198 mutex_unlock(&nvme_subsystems_lock);
2199
2200 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2201 dev_name(ctrl->device))) {
2202 dev_err(ctrl->device,
2203 "failed to create sysfs link from subsystem.\n");
2204 /* the transport driver will eventually put the subsystem */
2205 return -EINVAL;
2206 }
2207
2208 mutex_lock(&subsys->lock);
2209 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2210 mutex_unlock(&subsys->lock);
2211
2212 return 0;
2213
2214 out_unlock:
2215 mutex_unlock(&nvme_subsystems_lock);
2216 put_device(&subsys->dev);
2217 return ret;
2218 }
2219
2220 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2221 size_t size)
2222 {
2223 struct nvme_command c = { };
2224
2225 c.common.opcode = nvme_admin_get_log_page;
2226 c.common.nsid = cpu_to_le32(NVME_NSID_ALL);
2227 c.common.cdw10[0] = nvme_get_log_dw10(log_page, size);
2228
2229 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2230 }
2231
2232 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2233 {
2234 int ret;
2235
2236 if (!ctrl->effects)
2237 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2238
2239 if (!ctrl->effects)
2240 return 0;
2241
2242 ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2243 sizeof(*ctrl->effects));
2244 if (ret) {
2245 kfree(ctrl->effects);
2246 ctrl->effects = NULL;
2247 }
2248 return ret;
2249 }
2250
2251 /*
2252 * Initialize the cached copies of the Identify data and various controller
2253 * register in our nvme_ctrl structure. This should be called as soon as
2254 * the admin queue is fully up and running.
2255 */
2256 int nvme_init_identify(struct nvme_ctrl *ctrl)
2257 {
2258 struct nvme_id_ctrl *id;
2259 u64 cap;
2260 int ret, page_shift;
2261 u32 max_hw_sectors;
2262 bool prev_apst_enabled;
2263
2264 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2265 if (ret) {
2266 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2267 return ret;
2268 }
2269
2270 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2271 if (ret) {
2272 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2273 return ret;
2274 }
2275 page_shift = NVME_CAP_MPSMIN(cap) + 12;
2276
2277 if (ctrl->vs >= NVME_VS(1, 1, 0))
2278 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2279
2280 ret = nvme_identify_ctrl(ctrl, &id);
2281 if (ret) {
2282 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2283 return -EIO;
2284 }
2285
2286 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2287 ret = nvme_get_effects_log(ctrl);
2288 if (ret < 0)
2289 return ret;
2290 }
2291
2292 if (!ctrl->identified) {
2293 int i;
2294
2295 ret = nvme_init_subsystem(ctrl, id);
2296 if (ret)
2297 goto out_free;
2298
2299 /*
2300 * Check for quirks. Quirk can depend on firmware version,
2301 * so, in principle, the set of quirks present can change
2302 * across a reset. As a possible future enhancement, we
2303 * could re-scan for quirks every time we reinitialize
2304 * the device, but we'd have to make sure that the driver
2305 * behaves intelligently if the quirks change.
2306 */
2307 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2308 if (quirk_matches(id, &core_quirks[i]))
2309 ctrl->quirks |= core_quirks[i].quirks;
2310 }
2311 }
2312
2313 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2314 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2315 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2316 }
2317
2318 ctrl->oacs = le16_to_cpu(id->oacs);
2319 ctrl->oncs = le16_to_cpup(&id->oncs);
2320 atomic_set(&ctrl->abort_limit, id->acl + 1);
2321 ctrl->vwc = id->vwc;
2322 ctrl->cntlid = le16_to_cpup(&id->cntlid);
2323 if (id->mdts)
2324 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2325 else
2326 max_hw_sectors = UINT_MAX;
2327 ctrl->max_hw_sectors =
2328 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2329
2330 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2331 ctrl->sgls = le32_to_cpu(id->sgls);
2332 ctrl->kas = le16_to_cpu(id->kas);
2333
2334 if (id->rtd3e) {
2335 /* us -> s */
2336 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2337
2338 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2339 shutdown_timeout, 60);
2340
2341 if (ctrl->shutdown_timeout != shutdown_timeout)
2342 dev_info(ctrl->device,
2343 "Shutdown timeout set to %u seconds\n",
2344 ctrl->shutdown_timeout);
2345 } else
2346 ctrl->shutdown_timeout = shutdown_timeout;
2347
2348 ctrl->npss = id->npss;
2349 ctrl->apsta = id->apsta;
2350 prev_apst_enabled = ctrl->apst_enabled;
2351 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2352 if (force_apst && id->apsta) {
2353 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2354 ctrl->apst_enabled = true;
2355 } else {
2356 ctrl->apst_enabled = false;
2357 }
2358 } else {
2359 ctrl->apst_enabled = id->apsta;
2360 }
2361 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2362
2363 if (ctrl->ops->flags & NVME_F_FABRICS) {
2364 ctrl->icdoff = le16_to_cpu(id->icdoff);
2365 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2366 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2367 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2368
2369 /*
2370 * In fabrics we need to verify the cntlid matches the
2371 * admin connect
2372 */
2373 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2374 ret = -EINVAL;
2375 goto out_free;
2376 }
2377
2378 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2379 dev_err(ctrl->device,
2380 "keep-alive support is mandatory for fabrics\n");
2381 ret = -EINVAL;
2382 goto out_free;
2383 }
2384 } else {
2385 ctrl->cntlid = le16_to_cpu(id->cntlid);
2386 ctrl->hmpre = le32_to_cpu(id->hmpre);
2387 ctrl->hmmin = le32_to_cpu(id->hmmin);
2388 ctrl->hmminds = le32_to_cpu(id->hmminds);
2389 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2390 }
2391
2392 kfree(id);
2393
2394 if (ctrl->apst_enabled && !prev_apst_enabled)
2395 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2396 else if (!ctrl->apst_enabled && prev_apst_enabled)
2397 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2398
2399 ret = nvme_configure_apst(ctrl);
2400 if (ret < 0)
2401 return ret;
2402
2403 ret = nvme_configure_timestamp(ctrl);
2404 if (ret < 0)
2405 return ret;
2406
2407 ret = nvme_configure_directives(ctrl);
2408 if (ret < 0)
2409 return ret;
2410
2411 ctrl->identified = true;
2412
2413 return 0;
2414
2415 out_free:
2416 kfree(id);
2417 return ret;
2418 }
2419 EXPORT_SYMBOL_GPL(nvme_init_identify);
2420
2421 static int nvme_dev_open(struct inode *inode, struct file *file)
2422 {
2423 struct nvme_ctrl *ctrl =
2424 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2425
2426 switch (ctrl->state) {
2427 case NVME_CTRL_LIVE:
2428 case NVME_CTRL_ADMIN_ONLY:
2429 break;
2430 default:
2431 return -EWOULDBLOCK;
2432 }
2433
2434 file->private_data = ctrl;
2435 return 0;
2436 }
2437
2438 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2439 {
2440 struct nvme_ns *ns;
2441 int ret;
2442
2443 mutex_lock(&ctrl->namespaces_mutex);
2444 if (list_empty(&ctrl->namespaces)) {
2445 ret = -ENOTTY;
2446 goto out_unlock;
2447 }
2448
2449 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2450 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2451 dev_warn(ctrl->device,
2452 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2453 ret = -EINVAL;
2454 goto out_unlock;
2455 }
2456
2457 dev_warn(ctrl->device,
2458 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2459 kref_get(&ns->kref);
2460 mutex_unlock(&ctrl->namespaces_mutex);
2461
2462 ret = nvme_user_cmd(ctrl, ns, argp);
2463 nvme_put_ns(ns);
2464 return ret;
2465
2466 out_unlock:
2467 mutex_unlock(&ctrl->namespaces_mutex);
2468 return ret;
2469 }
2470
2471 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2472 unsigned long arg)
2473 {
2474 struct nvme_ctrl *ctrl = file->private_data;
2475 void __user *argp = (void __user *)arg;
2476
2477 switch (cmd) {
2478 case NVME_IOCTL_ADMIN_CMD:
2479 return nvme_user_cmd(ctrl, NULL, argp);
2480 case NVME_IOCTL_IO_CMD:
2481 return nvme_dev_user_cmd(ctrl, argp);
2482 case NVME_IOCTL_RESET:
2483 dev_warn(ctrl->device, "resetting controller\n");
2484 return nvme_reset_ctrl_sync(ctrl);
2485 case NVME_IOCTL_SUBSYS_RESET:
2486 return nvme_reset_subsystem(ctrl);
2487 case NVME_IOCTL_RESCAN:
2488 nvme_queue_scan(ctrl);
2489 return 0;
2490 default:
2491 return -ENOTTY;
2492 }
2493 }
2494
2495 static const struct file_operations nvme_dev_fops = {
2496 .owner = THIS_MODULE,
2497 .open = nvme_dev_open,
2498 .unlocked_ioctl = nvme_dev_ioctl,
2499 .compat_ioctl = nvme_dev_ioctl,
2500 };
2501
2502 static ssize_t nvme_sysfs_reset(struct device *dev,
2503 struct device_attribute *attr, const char *buf,
2504 size_t count)
2505 {
2506 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2507 int ret;
2508
2509 ret = nvme_reset_ctrl_sync(ctrl);
2510 if (ret < 0)
2511 return ret;
2512 return count;
2513 }
2514 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2515
2516 static ssize_t nvme_sysfs_rescan(struct device *dev,
2517 struct device_attribute *attr, const char *buf,
2518 size_t count)
2519 {
2520 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2521
2522 nvme_queue_scan(ctrl);
2523 return count;
2524 }
2525 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2526
2527 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2528 {
2529 struct gendisk *disk = dev_to_disk(dev);
2530
2531 if (disk->fops == &nvme_fops)
2532 return nvme_get_ns_from_dev(dev)->head;
2533 else
2534 return disk->private_data;
2535 }
2536
2537 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2538 char *buf)
2539 {
2540 struct nvme_ns_head *head = dev_to_ns_head(dev);
2541 struct nvme_ns_ids *ids = &head->ids;
2542 struct nvme_subsystem *subsys = head->subsys;
2543 int serial_len = sizeof(subsys->serial);
2544 int model_len = sizeof(subsys->model);
2545
2546 if (!uuid_is_null(&ids->uuid))
2547 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2548
2549 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2550 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2551
2552 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2553 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2554
2555 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2556 subsys->serial[serial_len - 1] == '\0'))
2557 serial_len--;
2558 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2559 subsys->model[model_len - 1] == '\0'))
2560 model_len--;
2561
2562 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2563 serial_len, subsys->serial, model_len, subsys->model,
2564 head->ns_id);
2565 }
2566 static DEVICE_ATTR_RO(wwid);
2567
2568 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2569 char *buf)
2570 {
2571 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2572 }
2573 static DEVICE_ATTR_RO(nguid);
2574
2575 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2576 char *buf)
2577 {
2578 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2579
2580 /* For backward compatibility expose the NGUID to userspace if
2581 * we have no UUID set
2582 */
2583 if (uuid_is_null(&ids->uuid)) {
2584 printk_ratelimited(KERN_WARNING
2585 "No UUID available providing old NGUID\n");
2586 return sprintf(buf, "%pU\n", ids->nguid);
2587 }
2588 return sprintf(buf, "%pU\n", &ids->uuid);
2589 }
2590 static DEVICE_ATTR_RO(uuid);
2591
2592 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2593 char *buf)
2594 {
2595 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2596 }
2597 static DEVICE_ATTR_RO(eui);
2598
2599 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2600 char *buf)
2601 {
2602 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2603 }
2604 static DEVICE_ATTR_RO(nsid);
2605
2606 static struct attribute *nvme_ns_id_attrs[] = {
2607 &dev_attr_wwid.attr,
2608 &dev_attr_uuid.attr,
2609 &dev_attr_nguid.attr,
2610 &dev_attr_eui.attr,
2611 &dev_attr_nsid.attr,
2612 NULL,
2613 };
2614
2615 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2616 struct attribute *a, int n)
2617 {
2618 struct device *dev = container_of(kobj, struct device, kobj);
2619 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2620
2621 if (a == &dev_attr_uuid.attr) {
2622 if (uuid_is_null(&ids->uuid) &&
2623 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2624 return 0;
2625 }
2626 if (a == &dev_attr_nguid.attr) {
2627 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2628 return 0;
2629 }
2630 if (a == &dev_attr_eui.attr) {
2631 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2632 return 0;
2633 }
2634 return a->mode;
2635 }
2636
2637 const struct attribute_group nvme_ns_id_attr_group = {
2638 .attrs = nvme_ns_id_attrs,
2639 .is_visible = nvme_ns_id_attrs_are_visible,
2640 };
2641
2642 #define nvme_show_str_function(field) \
2643 static ssize_t field##_show(struct device *dev, \
2644 struct device_attribute *attr, char *buf) \
2645 { \
2646 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2647 return sprintf(buf, "%.*s\n", \
2648 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2649 } \
2650 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2651
2652 nvme_show_str_function(model);
2653 nvme_show_str_function(serial);
2654 nvme_show_str_function(firmware_rev);
2655
2656 #define nvme_show_int_function(field) \
2657 static ssize_t field##_show(struct device *dev, \
2658 struct device_attribute *attr, char *buf) \
2659 { \
2660 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2661 return sprintf(buf, "%d\n", ctrl->field); \
2662 } \
2663 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2664
2665 nvme_show_int_function(cntlid);
2666
2667 static ssize_t nvme_sysfs_delete(struct device *dev,
2668 struct device_attribute *attr, const char *buf,
2669 size_t count)
2670 {
2671 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2672
2673 if (device_remove_file_self(dev, attr))
2674 nvme_delete_ctrl_sync(ctrl);
2675 return count;
2676 }
2677 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2678
2679 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2680 struct device_attribute *attr,
2681 char *buf)
2682 {
2683 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2684
2685 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2686 }
2687 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2688
2689 static ssize_t nvme_sysfs_show_state(struct device *dev,
2690 struct device_attribute *attr,
2691 char *buf)
2692 {
2693 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2694 static const char *const state_name[] = {
2695 [NVME_CTRL_NEW] = "new",
2696 [NVME_CTRL_LIVE] = "live",
2697 [NVME_CTRL_ADMIN_ONLY] = "only-admin",
2698 [NVME_CTRL_RESETTING] = "resetting",
2699 [NVME_CTRL_CONNECTING] = "connecting",
2700 [NVME_CTRL_DELETING] = "deleting",
2701 [NVME_CTRL_DEAD] = "dead",
2702 };
2703
2704 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2705 state_name[ctrl->state])
2706 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2707
2708 return sprintf(buf, "unknown state\n");
2709 }
2710
2711 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2712
2713 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2714 struct device_attribute *attr,
2715 char *buf)
2716 {
2717 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2718
2719 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2720 }
2721 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2722
2723 static ssize_t nvme_sysfs_show_address(struct device *dev,
2724 struct device_attribute *attr,
2725 char *buf)
2726 {
2727 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2728
2729 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2730 }
2731 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2732
2733 static struct attribute *nvme_dev_attrs[] = {
2734 &dev_attr_reset_controller.attr,
2735 &dev_attr_rescan_controller.attr,
2736 &dev_attr_model.attr,
2737 &dev_attr_serial.attr,
2738 &dev_attr_firmware_rev.attr,
2739 &dev_attr_cntlid.attr,
2740 &dev_attr_delete_controller.attr,
2741 &dev_attr_transport.attr,
2742 &dev_attr_subsysnqn.attr,
2743 &dev_attr_address.attr,
2744 &dev_attr_state.attr,
2745 NULL
2746 };
2747
2748 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2749 struct attribute *a, int n)
2750 {
2751 struct device *dev = container_of(kobj, struct device, kobj);
2752 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2753
2754 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2755 return 0;
2756 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2757 return 0;
2758
2759 return a->mode;
2760 }
2761
2762 static struct attribute_group nvme_dev_attrs_group = {
2763 .attrs = nvme_dev_attrs,
2764 .is_visible = nvme_dev_attrs_are_visible,
2765 };
2766
2767 static const struct attribute_group *nvme_dev_attr_groups[] = {
2768 &nvme_dev_attrs_group,
2769 NULL,
2770 };
2771
2772 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2773 unsigned nsid)
2774 {
2775 struct nvme_ns_head *h;
2776
2777 lockdep_assert_held(&subsys->lock);
2778
2779 list_for_each_entry(h, &subsys->nsheads, entry) {
2780 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2781 return h;
2782 }
2783
2784 return NULL;
2785 }
2786
2787 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2788 struct nvme_ns_head *new)
2789 {
2790 struct nvme_ns_head *h;
2791
2792 lockdep_assert_held(&subsys->lock);
2793
2794 list_for_each_entry(h, &subsys->nsheads, entry) {
2795 if (nvme_ns_ids_valid(&new->ids) &&
2796 nvme_ns_ids_equal(&new->ids, &h->ids))
2797 return -EINVAL;
2798 }
2799
2800 return 0;
2801 }
2802
2803 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2804 unsigned nsid, struct nvme_id_ns *id)
2805 {
2806 struct nvme_ns_head *head;
2807 int ret = -ENOMEM;
2808
2809 head = kzalloc(sizeof(*head), GFP_KERNEL);
2810 if (!head)
2811 goto out;
2812 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2813 if (ret < 0)
2814 goto out_free_head;
2815 head->instance = ret;
2816 INIT_LIST_HEAD(&head->list);
2817 init_srcu_struct(&head->srcu);
2818 head->subsys = ctrl->subsys;
2819 head->ns_id = nsid;
2820 kref_init(&head->ref);
2821
2822 nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2823
2824 ret = __nvme_check_ids(ctrl->subsys, head);
2825 if (ret) {
2826 dev_err(ctrl->device,
2827 "duplicate IDs for nsid %d\n", nsid);
2828 goto out_cleanup_srcu;
2829 }
2830
2831 ret = nvme_mpath_alloc_disk(ctrl, head);
2832 if (ret)
2833 goto out_cleanup_srcu;
2834
2835 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2836 return head;
2837 out_cleanup_srcu:
2838 cleanup_srcu_struct(&head->srcu);
2839 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2840 out_free_head:
2841 kfree(head);
2842 out:
2843 return ERR_PTR(ret);
2844 }
2845
2846 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2847 struct nvme_id_ns *id)
2848 {
2849 struct nvme_ctrl *ctrl = ns->ctrl;
2850 bool is_shared = id->nmic & (1 << 0);
2851 struct nvme_ns_head *head = NULL;
2852 int ret = 0;
2853
2854 mutex_lock(&ctrl->subsys->lock);
2855 if (is_shared)
2856 head = __nvme_find_ns_head(ctrl->subsys, nsid);
2857 if (!head) {
2858 head = nvme_alloc_ns_head(ctrl, nsid, id);
2859 if (IS_ERR(head)) {
2860 ret = PTR_ERR(head);
2861 goto out_unlock;
2862 }
2863 } else {
2864 struct nvme_ns_ids ids;
2865
2866 nvme_report_ns_ids(ctrl, nsid, id, &ids);
2867 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2868 dev_err(ctrl->device,
2869 "IDs don't match for shared namespace %d\n",
2870 nsid);
2871 ret = -EINVAL;
2872 goto out_unlock;
2873 }
2874 }
2875
2876 list_add_tail(&ns->siblings, &head->list);
2877 ns->head = head;
2878
2879 out_unlock:
2880 mutex_unlock(&ctrl->subsys->lock);
2881 return ret;
2882 }
2883
2884 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2885 {
2886 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2887 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2888
2889 return nsa->head->ns_id - nsb->head->ns_id;
2890 }
2891
2892 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2893 {
2894 struct nvme_ns *ns, *ret = NULL;
2895
2896 mutex_lock(&ctrl->namespaces_mutex);
2897 list_for_each_entry(ns, &ctrl->namespaces, list) {
2898 if (ns->head->ns_id == nsid) {
2899 if (!kref_get_unless_zero(&ns->kref))
2900 continue;
2901 ret = ns;
2902 break;
2903 }
2904 if (ns->head->ns_id > nsid)
2905 break;
2906 }
2907 mutex_unlock(&ctrl->namespaces_mutex);
2908 return ret;
2909 }
2910
2911 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2912 {
2913 struct streams_directive_params s;
2914 int ret;
2915
2916 if (!ctrl->nr_streams)
2917 return 0;
2918
2919 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2920 if (ret)
2921 return ret;
2922
2923 ns->sws = le32_to_cpu(s.sws);
2924 ns->sgs = le16_to_cpu(s.sgs);
2925
2926 if (ns->sws) {
2927 unsigned int bs = 1 << ns->lba_shift;
2928
2929 blk_queue_io_min(ns->queue, bs * ns->sws);
2930 if (ns->sgs)
2931 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2932 }
2933
2934 return 0;
2935 }
2936
2937 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2938 {
2939 struct nvme_ns *ns;
2940 struct gendisk *disk;
2941 struct nvme_id_ns *id;
2942 char disk_name[DISK_NAME_LEN];
2943 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2944
2945 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2946 if (!ns)
2947 return;
2948
2949 ns->queue = blk_mq_init_queue(ctrl->tagset);
2950 if (IS_ERR(ns->queue))
2951 goto out_free_ns;
2952 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2953 ns->queue->queuedata = ns;
2954 ns->ctrl = ctrl;
2955
2956 kref_init(&ns->kref);
2957 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2958
2959 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2960 nvme_set_queue_limits(ctrl, ns->queue);
2961
2962 id = nvme_identify_ns(ctrl, nsid);
2963 if (!id)
2964 goto out_free_queue;
2965
2966 if (id->ncap == 0)
2967 goto out_free_id;
2968
2969 if (nvme_init_ns_head(ns, nsid, id))
2970 goto out_free_id;
2971 nvme_setup_streams_ns(ctrl, ns);
2972
2973 #ifdef CONFIG_NVME_MULTIPATH
2974 /*
2975 * If multipathing is enabled we need to always use the subsystem
2976 * instance number for numbering our devices to avoid conflicts
2977 * between subsystems that have multiple controllers and thus use
2978 * the multipath-aware subsystem node and those that have a single
2979 * controller and use the controller node directly.
2980 */
2981 if (ns->head->disk) {
2982 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
2983 ctrl->cntlid, ns->head->instance);
2984 flags = GENHD_FL_HIDDEN;
2985 } else {
2986 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
2987 ns->head->instance);
2988 }
2989 #else
2990 /*
2991 * But without the multipath code enabled, multiple controller per
2992 * subsystems are visible as devices and thus we cannot use the
2993 * subsystem instance.
2994 */
2995 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
2996 #endif
2997
2998 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
2999 if (nvme_nvm_register(ns, disk_name, node)) {
3000 dev_warn(ctrl->device, "LightNVM init failure\n");
3001 goto out_unlink_ns;
3002 }
3003 }
3004
3005 disk = alloc_disk_node(0, node);
3006 if (!disk)
3007 goto out_unlink_ns;
3008
3009 disk->fops = &nvme_fops;
3010 disk->private_data = ns;
3011 disk->queue = ns->queue;
3012 disk->flags = flags;
3013 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3014 ns->disk = disk;
3015
3016 __nvme_revalidate_disk(disk, id);
3017
3018 mutex_lock(&ctrl->namespaces_mutex);
3019 list_add_tail(&ns->list, &ctrl->namespaces);
3020 mutex_unlock(&ctrl->namespaces_mutex);
3021
3022 nvme_get_ctrl(ctrl);
3023
3024 kfree(id);
3025
3026 device_add_disk(ctrl->device, ns->disk);
3027 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3028 &nvme_ns_id_attr_group))
3029 pr_warn("%s: failed to create sysfs group for identification\n",
3030 ns->disk->disk_name);
3031 if (ns->ndev && nvme_nvm_register_sysfs(ns))
3032 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3033 ns->disk->disk_name);
3034
3035 nvme_mpath_add_disk(ns->head);
3036 nvme_mpath_add_disk_links(ns);
3037 return;
3038 out_unlink_ns:
3039 mutex_lock(&ctrl->subsys->lock);
3040 list_del_rcu(&ns->siblings);
3041 mutex_unlock(&ctrl->subsys->lock);
3042 out_free_id:
3043 kfree(id);
3044 out_free_queue:
3045 blk_cleanup_queue(ns->queue);
3046 out_free_ns:
3047 kfree(ns);
3048 }
3049
3050 static void nvme_ns_remove(struct nvme_ns *ns)
3051 {
3052 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3053 return;
3054
3055 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3056 nvme_mpath_remove_disk_links(ns);
3057 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3058 &nvme_ns_id_attr_group);
3059 if (ns->ndev)
3060 nvme_nvm_unregister_sysfs(ns);
3061 del_gendisk(ns->disk);
3062 blk_cleanup_queue(ns->queue);
3063 if (blk_get_integrity(ns->disk))
3064 blk_integrity_unregister(ns->disk);
3065 }
3066
3067 mutex_lock(&ns->ctrl->subsys->lock);
3068 nvme_mpath_clear_current_path(ns);
3069 list_del_rcu(&ns->siblings);
3070 mutex_unlock(&ns->ctrl->subsys->lock);
3071
3072 mutex_lock(&ns->ctrl->namespaces_mutex);
3073 list_del_init(&ns->list);
3074 mutex_unlock(&ns->ctrl->namespaces_mutex);
3075
3076 synchronize_srcu(&ns->head->srcu);
3077 nvme_mpath_check_last_path(ns);
3078 nvme_put_ns(ns);
3079 }
3080
3081 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3082 {
3083 struct nvme_ns *ns;
3084
3085 ns = nvme_find_get_ns(ctrl, nsid);
3086 if (ns) {
3087 if (ns->disk && revalidate_disk(ns->disk))
3088 nvme_ns_remove(ns);
3089 nvme_put_ns(ns);
3090 } else
3091 nvme_alloc_ns(ctrl, nsid);
3092 }
3093
3094 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3095 unsigned nsid)
3096 {
3097 struct nvme_ns *ns, *next;
3098
3099 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3100 if (ns->head->ns_id > nsid)
3101 nvme_ns_remove(ns);
3102 }
3103 }
3104
3105 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3106 {
3107 struct nvme_ns *ns;
3108 __le32 *ns_list;
3109 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3110 int ret = 0;
3111
3112 ns_list = kzalloc(0x1000, GFP_KERNEL);
3113 if (!ns_list)
3114 return -ENOMEM;
3115
3116 for (i = 0; i < num_lists; i++) {
3117 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3118 if (ret)
3119 goto free;
3120
3121 for (j = 0; j < min(nn, 1024U); j++) {
3122 nsid = le32_to_cpu(ns_list[j]);
3123 if (!nsid)
3124 goto out;
3125
3126 nvme_validate_ns(ctrl, nsid);
3127
3128 while (++prev < nsid) {
3129 ns = nvme_find_get_ns(ctrl, prev);
3130 if (ns) {
3131 nvme_ns_remove(ns);
3132 nvme_put_ns(ns);
3133 }
3134 }
3135 }
3136 nn -= j;
3137 }
3138 out:
3139 nvme_remove_invalid_namespaces(ctrl, prev);
3140 free:
3141 kfree(ns_list);
3142 return ret;
3143 }
3144
3145 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3146 {
3147 unsigned i;
3148
3149 for (i = 1; i <= nn; i++)
3150 nvme_validate_ns(ctrl, i);
3151
3152 nvme_remove_invalid_namespaces(ctrl, nn);
3153 }
3154
3155 static void nvme_scan_work(struct work_struct *work)
3156 {
3157 struct nvme_ctrl *ctrl =
3158 container_of(work, struct nvme_ctrl, scan_work);
3159 struct nvme_id_ctrl *id;
3160 unsigned nn;
3161
3162 if (ctrl->state != NVME_CTRL_LIVE)
3163 return;
3164
3165 WARN_ON_ONCE(!ctrl->tagset);
3166
3167 if (nvme_identify_ctrl(ctrl, &id))
3168 return;
3169
3170 nn = le32_to_cpu(id->nn);
3171 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3172 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3173 if (!nvme_scan_ns_list(ctrl, nn))
3174 goto done;
3175 }
3176 nvme_scan_ns_sequential(ctrl, nn);
3177 done:
3178 mutex_lock(&ctrl->namespaces_mutex);
3179 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3180 mutex_unlock(&ctrl->namespaces_mutex);
3181 kfree(id);
3182 }
3183
3184 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3185 {
3186 /*
3187 * Only new queue scan work when admin and IO queues are both alive
3188 */
3189 if (ctrl->state == NVME_CTRL_LIVE)
3190 queue_work(nvme_wq, &ctrl->scan_work);
3191 }
3192 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3193
3194 /*
3195 * This function iterates the namespace list unlocked to allow recovery from
3196 * controller failure. It is up to the caller to ensure the namespace list is
3197 * not modified by scan work while this function is executing.
3198 */
3199 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3200 {
3201 struct nvme_ns *ns, *next;
3202
3203 /*
3204 * The dead states indicates the controller was not gracefully
3205 * disconnected. In that case, we won't be able to flush any data while
3206 * removing the namespaces' disks; fail all the queues now to avoid
3207 * potentially having to clean up the failed sync later.
3208 */
3209 if (ctrl->state == NVME_CTRL_DEAD)
3210 nvme_kill_queues(ctrl);
3211
3212 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
3213 nvme_ns_remove(ns);
3214 }
3215 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3216
3217 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3218 {
3219 char *envp[2] = { NULL, NULL };
3220 u32 aen_result = ctrl->aen_result;
3221
3222 ctrl->aen_result = 0;
3223 if (!aen_result)
3224 return;
3225
3226 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3227 if (!envp[0])
3228 return;
3229 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3230 kfree(envp[0]);
3231 }
3232
3233 static void nvme_async_event_work(struct work_struct *work)
3234 {
3235 struct nvme_ctrl *ctrl =
3236 container_of(work, struct nvme_ctrl, async_event_work);
3237
3238 nvme_aen_uevent(ctrl);
3239 ctrl->ops->submit_async_event(ctrl);
3240 }
3241
3242 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3243 {
3244
3245 u32 csts;
3246
3247 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3248 return false;
3249
3250 if (csts == ~0)
3251 return false;
3252
3253 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3254 }
3255
3256 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3257 {
3258 struct nvme_fw_slot_info_log *log;
3259
3260 log = kmalloc(sizeof(*log), GFP_KERNEL);
3261 if (!log)
3262 return;
3263
3264 if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3265 dev_warn(ctrl->device,
3266 "Get FW SLOT INFO log error\n");
3267 kfree(log);
3268 }
3269
3270 static void nvme_fw_act_work(struct work_struct *work)
3271 {
3272 struct nvme_ctrl *ctrl = container_of(work,
3273 struct nvme_ctrl, fw_act_work);
3274 unsigned long fw_act_timeout;
3275
3276 if (ctrl->mtfa)
3277 fw_act_timeout = jiffies +
3278 msecs_to_jiffies(ctrl->mtfa * 100);
3279 else
3280 fw_act_timeout = jiffies +
3281 msecs_to_jiffies(admin_timeout * 1000);
3282
3283 nvme_stop_queues(ctrl);
3284 while (nvme_ctrl_pp_status(ctrl)) {
3285 if (time_after(jiffies, fw_act_timeout)) {
3286 dev_warn(ctrl->device,
3287 "Fw activation timeout, reset controller\n");
3288 nvme_reset_ctrl(ctrl);
3289 break;
3290 }
3291 msleep(100);
3292 }
3293
3294 if (ctrl->state != NVME_CTRL_LIVE)
3295 return;
3296
3297 nvme_start_queues(ctrl);
3298 /* read FW slot information to clear the AER */
3299 nvme_get_fw_slot_info(ctrl);
3300 }
3301
3302 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3303 union nvme_result *res)
3304 {
3305 u32 result = le32_to_cpu(res->u32);
3306
3307 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3308 return;
3309
3310 switch (result & 0x7) {
3311 case NVME_AER_ERROR:
3312 case NVME_AER_SMART:
3313 case NVME_AER_CSS:
3314 case NVME_AER_VS:
3315 ctrl->aen_result = result;
3316 break;
3317 default:
3318 break;
3319 }
3320
3321 switch (result & 0xff07) {
3322 case NVME_AER_NOTICE_NS_CHANGED:
3323 dev_info(ctrl->device, "rescanning\n");
3324 nvme_queue_scan(ctrl);
3325 break;
3326 case NVME_AER_NOTICE_FW_ACT_STARTING:
3327 queue_work(nvme_wq, &ctrl->fw_act_work);
3328 break;
3329 default:
3330 dev_warn(ctrl->device, "async event result %08x\n", result);
3331 }
3332 queue_work(nvme_wq, &ctrl->async_event_work);
3333 }
3334 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3335
3336 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3337 {
3338 nvme_stop_keep_alive(ctrl);
3339 flush_work(&ctrl->async_event_work);
3340 flush_work(&ctrl->scan_work);
3341 cancel_work_sync(&ctrl->fw_act_work);
3342 }
3343 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3344
3345 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3346 {
3347 if (ctrl->kato)
3348 nvme_start_keep_alive(ctrl);
3349
3350 if (ctrl->queue_count > 1) {
3351 nvme_queue_scan(ctrl);
3352 queue_work(nvme_wq, &ctrl->async_event_work);
3353 nvme_start_queues(ctrl);
3354 }
3355 }
3356 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3357
3358 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3359 {
3360 cdev_device_del(&ctrl->cdev, ctrl->device);
3361 }
3362 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3363
3364 static void nvme_free_ctrl(struct device *dev)
3365 {
3366 struct nvme_ctrl *ctrl =
3367 container_of(dev, struct nvme_ctrl, ctrl_device);
3368 struct nvme_subsystem *subsys = ctrl->subsys;
3369
3370 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3371 kfree(ctrl->effects);
3372
3373 if (subsys) {
3374 mutex_lock(&subsys->lock);
3375 list_del(&ctrl->subsys_entry);
3376 mutex_unlock(&subsys->lock);
3377 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3378 }
3379
3380 ctrl->ops->free_ctrl(ctrl);
3381
3382 if (subsys)
3383 nvme_put_subsystem(subsys);
3384 }
3385
3386 /*
3387 * Initialize a NVMe controller structures. This needs to be called during
3388 * earliest initialization so that we have the initialized structured around
3389 * during probing.
3390 */
3391 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3392 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3393 {
3394 int ret;
3395
3396 ctrl->state = NVME_CTRL_NEW;
3397 spin_lock_init(&ctrl->lock);
3398 INIT_LIST_HEAD(&ctrl->namespaces);
3399 mutex_init(&ctrl->namespaces_mutex);
3400 ctrl->dev = dev;
3401 ctrl->ops = ops;
3402 ctrl->quirks = quirks;
3403 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3404 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3405 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3406 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3407
3408 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3409 if (ret < 0)
3410 goto out;
3411 ctrl->instance = ret;
3412
3413 device_initialize(&ctrl->ctrl_device);
3414 ctrl->device = &ctrl->ctrl_device;
3415 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3416 ctrl->device->class = nvme_class;
3417 ctrl->device->parent = ctrl->dev;
3418 ctrl->device->groups = nvme_dev_attr_groups;
3419 ctrl->device->release = nvme_free_ctrl;
3420 dev_set_drvdata(ctrl->device, ctrl);
3421 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3422 if (ret)
3423 goto out_release_instance;
3424
3425 cdev_init(&ctrl->cdev, &nvme_dev_fops);
3426 ctrl->cdev.owner = ops->module;
3427 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3428 if (ret)
3429 goto out_free_name;
3430
3431 /*
3432 * Initialize latency tolerance controls. The sysfs files won't
3433 * be visible to userspace unless the device actually supports APST.
3434 */
3435 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3436 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3437 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3438
3439 return 0;
3440 out_free_name:
3441 kfree_const(dev->kobj.name);
3442 out_release_instance:
3443 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3444 out:
3445 return ret;
3446 }
3447 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3448
3449 /**
3450 * nvme_kill_queues(): Ends all namespace queues
3451 * @ctrl: the dead controller that needs to end
3452 *
3453 * Call this function when the driver determines it is unable to get the
3454 * controller in a state capable of servicing IO.
3455 */
3456 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3457 {
3458 struct nvme_ns *ns;
3459
3460 mutex_lock(&ctrl->namespaces_mutex);
3461
3462 /* Forcibly unquiesce queues to avoid blocking dispatch */
3463 if (ctrl->admin_q)
3464 blk_mq_unquiesce_queue(ctrl->admin_q);
3465
3466 list_for_each_entry(ns, &ctrl->namespaces, list) {
3467 /*
3468 * Revalidating a dead namespace sets capacity to 0. This will
3469 * end buffered writers dirtying pages that can't be synced.
3470 */
3471 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3472 continue;
3473 revalidate_disk(ns->disk);
3474 blk_set_queue_dying(ns->queue);
3475
3476 /* Forcibly unquiesce queues to avoid blocking dispatch */
3477 blk_mq_unquiesce_queue(ns->queue);
3478 }
3479 mutex_unlock(&ctrl->namespaces_mutex);
3480 }
3481 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3482
3483 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3484 {
3485 struct nvme_ns *ns;
3486
3487 mutex_lock(&ctrl->namespaces_mutex);
3488 list_for_each_entry(ns, &ctrl->namespaces, list)
3489 blk_mq_unfreeze_queue(ns->queue);
3490 mutex_unlock(&ctrl->namespaces_mutex);
3491 }
3492 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3493
3494 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3495 {
3496 struct nvme_ns *ns;
3497
3498 mutex_lock(&ctrl->namespaces_mutex);
3499 list_for_each_entry(ns, &ctrl->namespaces, list) {
3500 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3501 if (timeout <= 0)
3502 break;
3503 }
3504 mutex_unlock(&ctrl->namespaces_mutex);
3505 }
3506 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3507
3508 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3509 {
3510 struct nvme_ns *ns;
3511
3512 mutex_lock(&ctrl->namespaces_mutex);
3513 list_for_each_entry(ns, &ctrl->namespaces, list)
3514 blk_mq_freeze_queue_wait(ns->queue);
3515 mutex_unlock(&ctrl->namespaces_mutex);
3516 }
3517 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3518
3519 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3520 {
3521 struct nvme_ns *ns;
3522
3523 mutex_lock(&ctrl->namespaces_mutex);
3524 list_for_each_entry(ns, &ctrl->namespaces, list)
3525 blk_freeze_queue_start(ns->queue);
3526 mutex_unlock(&ctrl->namespaces_mutex);
3527 }
3528 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3529
3530 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3531 {
3532 struct nvme_ns *ns;
3533
3534 mutex_lock(&ctrl->namespaces_mutex);
3535 list_for_each_entry(ns, &ctrl->namespaces, list)
3536 blk_mq_quiesce_queue(ns->queue);
3537 mutex_unlock(&ctrl->namespaces_mutex);
3538 }
3539 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3540
3541 void nvme_start_queues(struct nvme_ctrl *ctrl)
3542 {
3543 struct nvme_ns *ns;
3544
3545 mutex_lock(&ctrl->namespaces_mutex);
3546 list_for_each_entry(ns, &ctrl->namespaces, list)
3547 blk_mq_unquiesce_queue(ns->queue);
3548 mutex_unlock(&ctrl->namespaces_mutex);
3549 }
3550 EXPORT_SYMBOL_GPL(nvme_start_queues);
3551
3552 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3553 {
3554 if (!ctrl->ops->reinit_request)
3555 return 0;
3556
3557 return blk_mq_tagset_iter(set, set->driver_data,
3558 ctrl->ops->reinit_request);
3559 }
3560 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3561
3562 int __init nvme_core_init(void)
3563 {
3564 int result = -ENOMEM;
3565
3566 nvme_wq = alloc_workqueue("nvme-wq",
3567 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3568 if (!nvme_wq)
3569 goto out;
3570
3571 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3572 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3573 if (!nvme_reset_wq)
3574 goto destroy_wq;
3575
3576 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3577 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3578 if (!nvme_delete_wq)
3579 goto destroy_reset_wq;
3580
3581 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3582 if (result < 0)
3583 goto destroy_delete_wq;
3584
3585 nvme_class = class_create(THIS_MODULE, "nvme");
3586 if (IS_ERR(nvme_class)) {
3587 result = PTR_ERR(nvme_class);
3588 goto unregister_chrdev;
3589 }
3590
3591 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3592 if (IS_ERR(nvme_subsys_class)) {
3593 result = PTR_ERR(nvme_subsys_class);
3594 goto destroy_class;
3595 }
3596 return 0;
3597
3598 destroy_class:
3599 class_destroy(nvme_class);
3600 unregister_chrdev:
3601 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3602 destroy_delete_wq:
3603 destroy_workqueue(nvme_delete_wq);
3604 destroy_reset_wq:
3605 destroy_workqueue(nvme_reset_wq);
3606 destroy_wq:
3607 destroy_workqueue(nvme_wq);
3608 out:
3609 return result;
3610 }
3611
3612 void nvme_core_exit(void)
3613 {
3614 ida_destroy(&nvme_subsystems_ida);
3615 class_destroy(nvme_subsys_class);
3616 class_destroy(nvme_class);
3617 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3618 destroy_workqueue(nvme_delete_wq);
3619 destroy_workqueue(nvme_reset_wq);
3620 destroy_workqueue(nvme_wq);
3621 }
3622
3623 MODULE_LICENSE("GPL");
3624 MODULE_VERSION("1.0");
3625 module_init(nvme_core_init);
3626 module_exit(nvme_core_exit);