]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/core.c
nvme: introduce a controller state machine
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58
59 static struct class *nvme_class;
60
61 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
62 enum nvme_ctrl_state new_state)
63 {
64 enum nvme_ctrl_state old_state = ctrl->state;
65 bool changed = false;
66
67 spin_lock_irq(&ctrl->lock);
68 switch (new_state) {
69 case NVME_CTRL_LIVE:
70 switch (old_state) {
71 case NVME_CTRL_RESETTING:
72 changed = true;
73 /* FALLTHRU */
74 default:
75 break;
76 }
77 break;
78 case NVME_CTRL_RESETTING:
79 switch (old_state) {
80 case NVME_CTRL_NEW:
81 case NVME_CTRL_LIVE:
82 changed = true;
83 /* FALLTHRU */
84 default:
85 break;
86 }
87 break;
88 case NVME_CTRL_DELETING:
89 switch (old_state) {
90 case NVME_CTRL_LIVE:
91 case NVME_CTRL_RESETTING:
92 changed = true;
93 /* FALLTHRU */
94 default:
95 break;
96 }
97 break;
98 default:
99 break;
100 }
101 spin_unlock_irq(&ctrl->lock);
102
103 if (changed)
104 ctrl->state = new_state;
105
106 return changed;
107 }
108 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
109
110 static void nvme_free_ns(struct kref *kref)
111 {
112 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
113
114 if (ns->type == NVME_NS_LIGHTNVM)
115 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
116
117 spin_lock(&dev_list_lock);
118 ns->disk->private_data = NULL;
119 spin_unlock(&dev_list_lock);
120
121 put_disk(ns->disk);
122 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
123 nvme_put_ctrl(ns->ctrl);
124 kfree(ns);
125 }
126
127 static void nvme_put_ns(struct nvme_ns *ns)
128 {
129 kref_put(&ns->kref, nvme_free_ns);
130 }
131
132 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
133 {
134 struct nvme_ns *ns;
135
136 spin_lock(&dev_list_lock);
137 ns = disk->private_data;
138 if (ns) {
139 if (!kref_get_unless_zero(&ns->kref))
140 goto fail;
141 if (!try_module_get(ns->ctrl->ops->module))
142 goto fail_put_ns;
143 }
144 spin_unlock(&dev_list_lock);
145
146 return ns;
147
148 fail_put_ns:
149 kref_put(&ns->kref, nvme_free_ns);
150 fail:
151 spin_unlock(&dev_list_lock);
152 return NULL;
153 }
154
155 void nvme_requeue_req(struct request *req)
156 {
157 unsigned long flags;
158
159 blk_mq_requeue_request(req);
160 spin_lock_irqsave(req->q->queue_lock, flags);
161 if (!blk_queue_stopped(req->q))
162 blk_mq_kick_requeue_list(req->q);
163 spin_unlock_irqrestore(req->q->queue_lock, flags);
164 }
165 EXPORT_SYMBOL_GPL(nvme_requeue_req);
166
167 struct request *nvme_alloc_request(struct request_queue *q,
168 struct nvme_command *cmd, unsigned int flags)
169 {
170 bool write = cmd->common.opcode & 1;
171 struct request *req;
172
173 req = blk_mq_alloc_request(q, write, flags);
174 if (IS_ERR(req))
175 return req;
176
177 req->cmd_type = REQ_TYPE_DRV_PRIV;
178 req->cmd_flags |= REQ_FAILFAST_DRIVER;
179 req->__data_len = 0;
180 req->__sector = (sector_t) -1;
181 req->bio = req->biotail = NULL;
182
183 req->cmd = (unsigned char *)cmd;
184 req->cmd_len = sizeof(struct nvme_command);
185
186 return req;
187 }
188 EXPORT_SYMBOL_GPL(nvme_alloc_request);
189
190 static inline void nvme_setup_flush(struct nvme_ns *ns,
191 struct nvme_command *cmnd)
192 {
193 memset(cmnd, 0, sizeof(*cmnd));
194 cmnd->common.opcode = nvme_cmd_flush;
195 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
196 }
197
198 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
199 struct nvme_command *cmnd)
200 {
201 struct nvme_dsm_range *range;
202 struct page *page;
203 int offset;
204 unsigned int nr_bytes = blk_rq_bytes(req);
205
206 range = kmalloc(sizeof(*range), GFP_ATOMIC);
207 if (!range)
208 return BLK_MQ_RQ_QUEUE_BUSY;
209
210 range->cattr = cpu_to_le32(0);
211 range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
212 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
213
214 memset(cmnd, 0, sizeof(*cmnd));
215 cmnd->dsm.opcode = nvme_cmd_dsm;
216 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
217 cmnd->dsm.nr = 0;
218 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
219
220 req->completion_data = range;
221 page = virt_to_page(range);
222 offset = offset_in_page(range);
223 blk_add_request_payload(req, page, offset, sizeof(*range));
224
225 /*
226 * we set __data_len back to the size of the area to be discarded
227 * on disk. This allows us to report completion on the full amount
228 * of blocks described by the request.
229 */
230 req->__data_len = nr_bytes;
231
232 return 0;
233 }
234
235 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
236 struct nvme_command *cmnd)
237 {
238 u16 control = 0;
239 u32 dsmgmt = 0;
240
241 if (req->cmd_flags & REQ_FUA)
242 control |= NVME_RW_FUA;
243 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
244 control |= NVME_RW_LR;
245
246 if (req->cmd_flags & REQ_RAHEAD)
247 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
248
249 memset(cmnd, 0, sizeof(*cmnd));
250 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
251 cmnd->rw.command_id = req->tag;
252 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
253 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
254 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
255
256 if (ns->ms) {
257 switch (ns->pi_type) {
258 case NVME_NS_DPS_PI_TYPE3:
259 control |= NVME_RW_PRINFO_PRCHK_GUARD;
260 break;
261 case NVME_NS_DPS_PI_TYPE1:
262 case NVME_NS_DPS_PI_TYPE2:
263 control |= NVME_RW_PRINFO_PRCHK_GUARD |
264 NVME_RW_PRINFO_PRCHK_REF;
265 cmnd->rw.reftag = cpu_to_le32(
266 nvme_block_nr(ns, blk_rq_pos(req)));
267 break;
268 }
269 if (!blk_integrity_rq(req))
270 control |= NVME_RW_PRINFO_PRACT;
271 }
272
273 cmnd->rw.control = cpu_to_le16(control);
274 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
275 }
276
277 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
278 struct nvme_command *cmd)
279 {
280 int ret = 0;
281
282 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
283 memcpy(cmd, req->cmd, sizeof(*cmd));
284 else if (req->cmd_flags & REQ_FLUSH)
285 nvme_setup_flush(ns, cmd);
286 else if (req->cmd_flags & REQ_DISCARD)
287 ret = nvme_setup_discard(ns, req, cmd);
288 else
289 nvme_setup_rw(ns, req, cmd);
290
291 return ret;
292 }
293 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
294
295 /*
296 * Returns 0 on success. If the result is negative, it's a Linux error code;
297 * if the result is positive, it's an NVM Express status code
298 */
299 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
300 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
301 unsigned timeout)
302 {
303 struct request *req;
304 int ret;
305
306 req = nvme_alloc_request(q, cmd, 0);
307 if (IS_ERR(req))
308 return PTR_ERR(req);
309
310 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
311 req->special = cqe;
312
313 if (buffer && bufflen) {
314 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
315 if (ret)
316 goto out;
317 }
318
319 blk_execute_rq(req->q, NULL, req, 0);
320 ret = req->errors;
321 out:
322 blk_mq_free_request(req);
323 return ret;
324 }
325
326 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
327 void *buffer, unsigned bufflen)
328 {
329 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
330 }
331 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
332
333 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
334 void __user *ubuffer, unsigned bufflen,
335 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
336 u32 *result, unsigned timeout)
337 {
338 bool write = cmd->common.opcode & 1;
339 struct nvme_completion cqe;
340 struct nvme_ns *ns = q->queuedata;
341 struct gendisk *disk = ns ? ns->disk : NULL;
342 struct request *req;
343 struct bio *bio = NULL;
344 void *meta = NULL;
345 int ret;
346
347 req = nvme_alloc_request(q, cmd, 0);
348 if (IS_ERR(req))
349 return PTR_ERR(req);
350
351 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
352 req->special = &cqe;
353
354 if (ubuffer && bufflen) {
355 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
356 GFP_KERNEL);
357 if (ret)
358 goto out;
359 bio = req->bio;
360
361 if (!disk)
362 goto submit;
363 bio->bi_bdev = bdget_disk(disk, 0);
364 if (!bio->bi_bdev) {
365 ret = -ENODEV;
366 goto out_unmap;
367 }
368
369 if (meta_buffer && meta_len) {
370 struct bio_integrity_payload *bip;
371
372 meta = kmalloc(meta_len, GFP_KERNEL);
373 if (!meta) {
374 ret = -ENOMEM;
375 goto out_unmap;
376 }
377
378 if (write) {
379 if (copy_from_user(meta, meta_buffer,
380 meta_len)) {
381 ret = -EFAULT;
382 goto out_free_meta;
383 }
384 }
385
386 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
387 if (IS_ERR(bip)) {
388 ret = PTR_ERR(bip);
389 goto out_free_meta;
390 }
391
392 bip->bip_iter.bi_size = meta_len;
393 bip->bip_iter.bi_sector = meta_seed;
394
395 ret = bio_integrity_add_page(bio, virt_to_page(meta),
396 meta_len, offset_in_page(meta));
397 if (ret != meta_len) {
398 ret = -ENOMEM;
399 goto out_free_meta;
400 }
401 }
402 }
403 submit:
404 blk_execute_rq(req->q, disk, req, 0);
405 ret = req->errors;
406 if (result)
407 *result = le32_to_cpu(cqe.result);
408 if (meta && !ret && !write) {
409 if (copy_to_user(meta_buffer, meta, meta_len))
410 ret = -EFAULT;
411 }
412 out_free_meta:
413 kfree(meta);
414 out_unmap:
415 if (bio) {
416 if (disk && bio->bi_bdev)
417 bdput(bio->bi_bdev);
418 blk_rq_unmap_user(bio);
419 }
420 out:
421 blk_mq_free_request(req);
422 return ret;
423 }
424
425 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
426 void __user *ubuffer, unsigned bufflen, u32 *result,
427 unsigned timeout)
428 {
429 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
430 result, timeout);
431 }
432
433 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
434 {
435 struct nvme_command c = { };
436 int error;
437
438 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
439 c.identify.opcode = nvme_admin_identify;
440 c.identify.cns = cpu_to_le32(1);
441
442 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
443 if (!*id)
444 return -ENOMEM;
445
446 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
447 sizeof(struct nvme_id_ctrl));
448 if (error)
449 kfree(*id);
450 return error;
451 }
452
453 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
454 {
455 struct nvme_command c = { };
456
457 c.identify.opcode = nvme_admin_identify;
458 c.identify.cns = cpu_to_le32(2);
459 c.identify.nsid = cpu_to_le32(nsid);
460 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
461 }
462
463 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
464 struct nvme_id_ns **id)
465 {
466 struct nvme_command c = { };
467 int error;
468
469 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
470 c.identify.opcode = nvme_admin_identify,
471 c.identify.nsid = cpu_to_le32(nsid),
472
473 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
474 if (!*id)
475 return -ENOMEM;
476
477 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
478 sizeof(struct nvme_id_ns));
479 if (error)
480 kfree(*id);
481 return error;
482 }
483
484 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
485 dma_addr_t dma_addr, u32 *result)
486 {
487 struct nvme_command c;
488 struct nvme_completion cqe;
489 int ret;
490
491 memset(&c, 0, sizeof(c));
492 c.features.opcode = nvme_admin_get_features;
493 c.features.nsid = cpu_to_le32(nsid);
494 c.features.prp1 = cpu_to_le64(dma_addr);
495 c.features.fid = cpu_to_le32(fid);
496
497 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
498 if (ret >= 0)
499 *result = le32_to_cpu(cqe.result);
500 return ret;
501 }
502
503 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
504 dma_addr_t dma_addr, u32 *result)
505 {
506 struct nvme_command c;
507 struct nvme_completion cqe;
508 int ret;
509
510 memset(&c, 0, sizeof(c));
511 c.features.opcode = nvme_admin_set_features;
512 c.features.prp1 = cpu_to_le64(dma_addr);
513 c.features.fid = cpu_to_le32(fid);
514 c.features.dword11 = cpu_to_le32(dword11);
515
516 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
517 if (ret >= 0)
518 *result = le32_to_cpu(cqe.result);
519 return ret;
520 }
521
522 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
523 {
524 struct nvme_command c = { };
525 int error;
526
527 c.common.opcode = nvme_admin_get_log_page,
528 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
529 c.common.cdw10[0] = cpu_to_le32(
530 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
531 NVME_LOG_SMART),
532
533 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
534 if (!*log)
535 return -ENOMEM;
536
537 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
538 sizeof(struct nvme_smart_log));
539 if (error)
540 kfree(*log);
541 return error;
542 }
543
544 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
545 {
546 u32 q_count = (*count - 1) | ((*count - 1) << 16);
547 u32 result;
548 int status, nr_io_queues;
549
550 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
551 &result);
552 if (status)
553 return status;
554
555 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
556 *count = min(*count, nr_io_queues);
557 return 0;
558 }
559 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
560
561 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
562 {
563 struct nvme_user_io io;
564 struct nvme_command c;
565 unsigned length, meta_len;
566 void __user *metadata;
567
568 if (copy_from_user(&io, uio, sizeof(io)))
569 return -EFAULT;
570 if (io.flags)
571 return -EINVAL;
572
573 switch (io.opcode) {
574 case nvme_cmd_write:
575 case nvme_cmd_read:
576 case nvme_cmd_compare:
577 break;
578 default:
579 return -EINVAL;
580 }
581
582 length = (io.nblocks + 1) << ns->lba_shift;
583 meta_len = (io.nblocks + 1) * ns->ms;
584 metadata = (void __user *)(uintptr_t)io.metadata;
585
586 if (ns->ext) {
587 length += meta_len;
588 meta_len = 0;
589 } else if (meta_len) {
590 if ((io.metadata & 3) || !io.metadata)
591 return -EINVAL;
592 }
593
594 memset(&c, 0, sizeof(c));
595 c.rw.opcode = io.opcode;
596 c.rw.flags = io.flags;
597 c.rw.nsid = cpu_to_le32(ns->ns_id);
598 c.rw.slba = cpu_to_le64(io.slba);
599 c.rw.length = cpu_to_le16(io.nblocks);
600 c.rw.control = cpu_to_le16(io.control);
601 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
602 c.rw.reftag = cpu_to_le32(io.reftag);
603 c.rw.apptag = cpu_to_le16(io.apptag);
604 c.rw.appmask = cpu_to_le16(io.appmask);
605
606 return __nvme_submit_user_cmd(ns->queue, &c,
607 (void __user *)(uintptr_t)io.addr, length,
608 metadata, meta_len, io.slba, NULL, 0);
609 }
610
611 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
612 struct nvme_passthru_cmd __user *ucmd)
613 {
614 struct nvme_passthru_cmd cmd;
615 struct nvme_command c;
616 unsigned timeout = 0;
617 int status;
618
619 if (!capable(CAP_SYS_ADMIN))
620 return -EACCES;
621 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
622 return -EFAULT;
623 if (cmd.flags)
624 return -EINVAL;
625
626 memset(&c, 0, sizeof(c));
627 c.common.opcode = cmd.opcode;
628 c.common.flags = cmd.flags;
629 c.common.nsid = cpu_to_le32(cmd.nsid);
630 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
631 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
632 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
633 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
634 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
635 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
636 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
637 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
638
639 if (cmd.timeout_ms)
640 timeout = msecs_to_jiffies(cmd.timeout_ms);
641
642 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
643 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
644 &cmd.result, timeout);
645 if (status >= 0) {
646 if (put_user(cmd.result, &ucmd->result))
647 return -EFAULT;
648 }
649
650 return status;
651 }
652
653 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
654 unsigned int cmd, unsigned long arg)
655 {
656 struct nvme_ns *ns = bdev->bd_disk->private_data;
657
658 switch (cmd) {
659 case NVME_IOCTL_ID:
660 force_successful_syscall_return();
661 return ns->ns_id;
662 case NVME_IOCTL_ADMIN_CMD:
663 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
664 case NVME_IOCTL_IO_CMD:
665 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
666 case NVME_IOCTL_SUBMIT_IO:
667 return nvme_submit_io(ns, (void __user *)arg);
668 #ifdef CONFIG_BLK_DEV_NVME_SCSI
669 case SG_GET_VERSION_NUM:
670 return nvme_sg_get_version_num((void __user *)arg);
671 case SG_IO:
672 return nvme_sg_io(ns, (void __user *)arg);
673 #endif
674 default:
675 return -ENOTTY;
676 }
677 }
678
679 #ifdef CONFIG_COMPAT
680 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
681 unsigned int cmd, unsigned long arg)
682 {
683 switch (cmd) {
684 case SG_IO:
685 return -ENOIOCTLCMD;
686 }
687 return nvme_ioctl(bdev, mode, cmd, arg);
688 }
689 #else
690 #define nvme_compat_ioctl NULL
691 #endif
692
693 static int nvme_open(struct block_device *bdev, fmode_t mode)
694 {
695 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
696 }
697
698 static void nvme_release(struct gendisk *disk, fmode_t mode)
699 {
700 struct nvme_ns *ns = disk->private_data;
701
702 module_put(ns->ctrl->ops->module);
703 nvme_put_ns(ns);
704 }
705
706 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
707 {
708 /* some standard values */
709 geo->heads = 1 << 6;
710 geo->sectors = 1 << 5;
711 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
712 return 0;
713 }
714
715 #ifdef CONFIG_BLK_DEV_INTEGRITY
716 static void nvme_init_integrity(struct nvme_ns *ns)
717 {
718 struct blk_integrity integrity;
719
720 switch (ns->pi_type) {
721 case NVME_NS_DPS_PI_TYPE3:
722 integrity.profile = &t10_pi_type3_crc;
723 break;
724 case NVME_NS_DPS_PI_TYPE1:
725 case NVME_NS_DPS_PI_TYPE2:
726 integrity.profile = &t10_pi_type1_crc;
727 break;
728 default:
729 integrity.profile = NULL;
730 break;
731 }
732 integrity.tuple_size = ns->ms;
733 blk_integrity_register(ns->disk, &integrity);
734 blk_queue_max_integrity_segments(ns->queue, 1);
735 }
736 #else
737 static void nvme_init_integrity(struct nvme_ns *ns)
738 {
739 }
740 #endif /* CONFIG_BLK_DEV_INTEGRITY */
741
742 static void nvme_config_discard(struct nvme_ns *ns)
743 {
744 struct nvme_ctrl *ctrl = ns->ctrl;
745 u32 logical_block_size = queue_logical_block_size(ns->queue);
746
747 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
748 ns->queue->limits.discard_zeroes_data = 1;
749 else
750 ns->queue->limits.discard_zeroes_data = 0;
751
752 ns->queue->limits.discard_alignment = logical_block_size;
753 ns->queue->limits.discard_granularity = logical_block_size;
754 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
755 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
756 }
757
758 static int nvme_revalidate_disk(struct gendisk *disk)
759 {
760 struct nvme_ns *ns = disk->private_data;
761 struct nvme_id_ns *id;
762 u8 lbaf, pi_type;
763 u16 old_ms;
764 unsigned short bs;
765
766 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
767 set_capacity(disk, 0);
768 return -ENODEV;
769 }
770 if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
771 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
772 __func__);
773 return -ENODEV;
774 }
775 if (id->ncap == 0) {
776 kfree(id);
777 return -ENODEV;
778 }
779
780 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
781 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
782 dev_warn(disk_to_dev(ns->disk),
783 "%s: LightNVM init failure\n", __func__);
784 kfree(id);
785 return -ENODEV;
786 }
787 ns->type = NVME_NS_LIGHTNVM;
788 }
789
790 if (ns->ctrl->vs >= NVME_VS(1, 1))
791 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
792 if (ns->ctrl->vs >= NVME_VS(1, 2))
793 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
794
795 old_ms = ns->ms;
796 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
797 ns->lba_shift = id->lbaf[lbaf].ds;
798 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
799 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
800
801 /*
802 * If identify namespace failed, use default 512 byte block size so
803 * block layer can use before failing read/write for 0 capacity.
804 */
805 if (ns->lba_shift == 0)
806 ns->lba_shift = 9;
807 bs = 1 << ns->lba_shift;
808 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
809 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
810 id->dps & NVME_NS_DPS_PI_MASK : 0;
811
812 blk_mq_freeze_queue(disk->queue);
813 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
814 ns->ms != old_ms ||
815 bs != queue_logical_block_size(disk->queue) ||
816 (ns->ms && ns->ext)))
817 blk_integrity_unregister(disk);
818
819 ns->pi_type = pi_type;
820 blk_queue_logical_block_size(ns->queue, bs);
821
822 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
823 nvme_init_integrity(ns);
824 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
825 set_capacity(disk, 0);
826 else
827 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
828
829 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
830 nvme_config_discard(ns);
831 blk_mq_unfreeze_queue(disk->queue);
832
833 kfree(id);
834 return 0;
835 }
836
837 static char nvme_pr_type(enum pr_type type)
838 {
839 switch (type) {
840 case PR_WRITE_EXCLUSIVE:
841 return 1;
842 case PR_EXCLUSIVE_ACCESS:
843 return 2;
844 case PR_WRITE_EXCLUSIVE_REG_ONLY:
845 return 3;
846 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
847 return 4;
848 case PR_WRITE_EXCLUSIVE_ALL_REGS:
849 return 5;
850 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
851 return 6;
852 default:
853 return 0;
854 }
855 };
856
857 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
858 u64 key, u64 sa_key, u8 op)
859 {
860 struct nvme_ns *ns = bdev->bd_disk->private_data;
861 struct nvme_command c;
862 u8 data[16] = { 0, };
863
864 put_unaligned_le64(key, &data[0]);
865 put_unaligned_le64(sa_key, &data[8]);
866
867 memset(&c, 0, sizeof(c));
868 c.common.opcode = op;
869 c.common.nsid = cpu_to_le32(ns->ns_id);
870 c.common.cdw10[0] = cpu_to_le32(cdw10);
871
872 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
873 }
874
875 static int nvme_pr_register(struct block_device *bdev, u64 old,
876 u64 new, unsigned flags)
877 {
878 u32 cdw10;
879
880 if (flags & ~PR_FL_IGNORE_KEY)
881 return -EOPNOTSUPP;
882
883 cdw10 = old ? 2 : 0;
884 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
885 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
886 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
887 }
888
889 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
890 enum pr_type type, unsigned flags)
891 {
892 u32 cdw10;
893
894 if (flags & ~PR_FL_IGNORE_KEY)
895 return -EOPNOTSUPP;
896
897 cdw10 = nvme_pr_type(type) << 8;
898 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
899 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
900 }
901
902 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
903 enum pr_type type, bool abort)
904 {
905 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
906 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
907 }
908
909 static int nvme_pr_clear(struct block_device *bdev, u64 key)
910 {
911 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
912 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
913 }
914
915 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
916 {
917 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
918 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
919 }
920
921 static const struct pr_ops nvme_pr_ops = {
922 .pr_register = nvme_pr_register,
923 .pr_reserve = nvme_pr_reserve,
924 .pr_release = nvme_pr_release,
925 .pr_preempt = nvme_pr_preempt,
926 .pr_clear = nvme_pr_clear,
927 };
928
929 static const struct block_device_operations nvme_fops = {
930 .owner = THIS_MODULE,
931 .ioctl = nvme_ioctl,
932 .compat_ioctl = nvme_compat_ioctl,
933 .open = nvme_open,
934 .release = nvme_release,
935 .getgeo = nvme_getgeo,
936 .revalidate_disk= nvme_revalidate_disk,
937 .pr_ops = &nvme_pr_ops,
938 };
939
940 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
941 {
942 unsigned long timeout =
943 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
944 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
945 int ret;
946
947 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
948 if ((csts & NVME_CSTS_RDY) == bit)
949 break;
950
951 msleep(100);
952 if (fatal_signal_pending(current))
953 return -EINTR;
954 if (time_after(jiffies, timeout)) {
955 dev_err(ctrl->device,
956 "Device not ready; aborting %s\n", enabled ?
957 "initialisation" : "reset");
958 return -ENODEV;
959 }
960 }
961
962 return ret;
963 }
964
965 /*
966 * If the device has been passed off to us in an enabled state, just clear
967 * the enabled bit. The spec says we should set the 'shutdown notification
968 * bits', but doing so may cause the device to complete commands to the
969 * admin queue ... and we don't know what memory that might be pointing at!
970 */
971 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
972 {
973 int ret;
974
975 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
976 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
977
978 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
979 if (ret)
980 return ret;
981 return nvme_wait_ready(ctrl, cap, false);
982 }
983 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
984
985 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
986 {
987 /*
988 * Default to a 4K page size, with the intention to update this
989 * path in the future to accomodate architectures with differing
990 * kernel and IO page sizes.
991 */
992 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
993 int ret;
994
995 if (page_shift < dev_page_min) {
996 dev_err(ctrl->device,
997 "Minimum device page size %u too large for host (%u)\n",
998 1 << dev_page_min, 1 << page_shift);
999 return -ENODEV;
1000 }
1001
1002 ctrl->page_size = 1 << page_shift;
1003
1004 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1005 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1006 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1007 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1008 ctrl->ctrl_config |= NVME_CC_ENABLE;
1009
1010 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1011 if (ret)
1012 return ret;
1013 return nvme_wait_ready(ctrl, cap, true);
1014 }
1015 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1016
1017 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1018 {
1019 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1020 u32 csts;
1021 int ret;
1022
1023 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1024 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1025
1026 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1027 if (ret)
1028 return ret;
1029
1030 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1031 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1032 break;
1033
1034 msleep(100);
1035 if (fatal_signal_pending(current))
1036 return -EINTR;
1037 if (time_after(jiffies, timeout)) {
1038 dev_err(ctrl->device,
1039 "Device shutdown incomplete; abort shutdown\n");
1040 return -ENODEV;
1041 }
1042 }
1043
1044 return ret;
1045 }
1046 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1047
1048 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1049 struct request_queue *q)
1050 {
1051 bool vwc = false;
1052
1053 if (ctrl->max_hw_sectors) {
1054 u32 max_segments =
1055 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1056
1057 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1058 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1059 }
1060 if (ctrl->stripe_size)
1061 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1062 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1063 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1064 vwc = true;
1065 blk_queue_write_cache(q, vwc, vwc);
1066 }
1067
1068 /*
1069 * Initialize the cached copies of the Identify data and various controller
1070 * register in our nvme_ctrl structure. This should be called as soon as
1071 * the admin queue is fully up and running.
1072 */
1073 int nvme_init_identify(struct nvme_ctrl *ctrl)
1074 {
1075 struct nvme_id_ctrl *id;
1076 u64 cap;
1077 int ret, page_shift;
1078
1079 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1080 if (ret) {
1081 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1082 return ret;
1083 }
1084
1085 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1086 if (ret) {
1087 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1088 return ret;
1089 }
1090 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1091
1092 if (ctrl->vs >= NVME_VS(1, 1))
1093 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1094
1095 ret = nvme_identify_ctrl(ctrl, &id);
1096 if (ret) {
1097 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1098 return -EIO;
1099 }
1100
1101 ctrl->vid = le16_to_cpu(id->vid);
1102 ctrl->oncs = le16_to_cpup(&id->oncs);
1103 atomic_set(&ctrl->abort_limit, id->acl + 1);
1104 ctrl->vwc = id->vwc;
1105 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1106 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1107 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1108 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1109 if (id->mdts)
1110 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1111 else
1112 ctrl->max_hw_sectors = UINT_MAX;
1113
1114 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1115 unsigned int max_hw_sectors;
1116
1117 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1118 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1119 if (ctrl->max_hw_sectors) {
1120 ctrl->max_hw_sectors = min(max_hw_sectors,
1121 ctrl->max_hw_sectors);
1122 } else {
1123 ctrl->max_hw_sectors = max_hw_sectors;
1124 }
1125 }
1126
1127 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1128
1129 kfree(id);
1130 return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(nvme_init_identify);
1133
1134 static int nvme_dev_open(struct inode *inode, struct file *file)
1135 {
1136 struct nvme_ctrl *ctrl;
1137 int instance = iminor(inode);
1138 int ret = -ENODEV;
1139
1140 spin_lock(&dev_list_lock);
1141 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1142 if (ctrl->instance != instance)
1143 continue;
1144
1145 if (!ctrl->admin_q) {
1146 ret = -EWOULDBLOCK;
1147 break;
1148 }
1149 if (!kref_get_unless_zero(&ctrl->kref))
1150 break;
1151 file->private_data = ctrl;
1152 ret = 0;
1153 break;
1154 }
1155 spin_unlock(&dev_list_lock);
1156
1157 return ret;
1158 }
1159
1160 static int nvme_dev_release(struct inode *inode, struct file *file)
1161 {
1162 nvme_put_ctrl(file->private_data);
1163 return 0;
1164 }
1165
1166 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1167 {
1168 struct nvme_ns *ns;
1169 int ret;
1170
1171 mutex_lock(&ctrl->namespaces_mutex);
1172 if (list_empty(&ctrl->namespaces)) {
1173 ret = -ENOTTY;
1174 goto out_unlock;
1175 }
1176
1177 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1178 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1179 dev_warn(ctrl->device,
1180 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1181 ret = -EINVAL;
1182 goto out_unlock;
1183 }
1184
1185 dev_warn(ctrl->device,
1186 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1187 kref_get(&ns->kref);
1188 mutex_unlock(&ctrl->namespaces_mutex);
1189
1190 ret = nvme_user_cmd(ctrl, ns, argp);
1191 nvme_put_ns(ns);
1192 return ret;
1193
1194 out_unlock:
1195 mutex_unlock(&ctrl->namespaces_mutex);
1196 return ret;
1197 }
1198
1199 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1200 unsigned long arg)
1201 {
1202 struct nvme_ctrl *ctrl = file->private_data;
1203 void __user *argp = (void __user *)arg;
1204
1205 switch (cmd) {
1206 case NVME_IOCTL_ADMIN_CMD:
1207 return nvme_user_cmd(ctrl, NULL, argp);
1208 case NVME_IOCTL_IO_CMD:
1209 return nvme_dev_user_cmd(ctrl, argp);
1210 case NVME_IOCTL_RESET:
1211 dev_warn(ctrl->device, "resetting controller\n");
1212 return ctrl->ops->reset_ctrl(ctrl);
1213 case NVME_IOCTL_SUBSYS_RESET:
1214 return nvme_reset_subsystem(ctrl);
1215 default:
1216 return -ENOTTY;
1217 }
1218 }
1219
1220 static const struct file_operations nvme_dev_fops = {
1221 .owner = THIS_MODULE,
1222 .open = nvme_dev_open,
1223 .release = nvme_dev_release,
1224 .unlocked_ioctl = nvme_dev_ioctl,
1225 .compat_ioctl = nvme_dev_ioctl,
1226 };
1227
1228 static ssize_t nvme_sysfs_reset(struct device *dev,
1229 struct device_attribute *attr, const char *buf,
1230 size_t count)
1231 {
1232 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1233 int ret;
1234
1235 ret = ctrl->ops->reset_ctrl(ctrl);
1236 if (ret < 0)
1237 return ret;
1238 return count;
1239 }
1240 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1241
1242 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1243 char *buf)
1244 {
1245 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1246 struct nvme_ctrl *ctrl = ns->ctrl;
1247 int serial_len = sizeof(ctrl->serial);
1248 int model_len = sizeof(ctrl->model);
1249
1250 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1251 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1252
1253 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1254 return sprintf(buf, "eui.%8phN\n", ns->eui);
1255
1256 while (ctrl->serial[serial_len - 1] == ' ')
1257 serial_len--;
1258 while (ctrl->model[model_len - 1] == ' ')
1259 model_len--;
1260
1261 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1262 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1263 }
1264 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1265
1266 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1267 char *buf)
1268 {
1269 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1270 return sprintf(buf, "%pU\n", ns->uuid);
1271 }
1272 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1273
1274 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1275 char *buf)
1276 {
1277 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1278 return sprintf(buf, "%8phd\n", ns->eui);
1279 }
1280 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1281
1282 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1283 char *buf)
1284 {
1285 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1286 return sprintf(buf, "%d\n", ns->ns_id);
1287 }
1288 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1289
1290 static struct attribute *nvme_ns_attrs[] = {
1291 &dev_attr_wwid.attr,
1292 &dev_attr_uuid.attr,
1293 &dev_attr_eui.attr,
1294 &dev_attr_nsid.attr,
1295 NULL,
1296 };
1297
1298 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1299 struct attribute *a, int n)
1300 {
1301 struct device *dev = container_of(kobj, struct device, kobj);
1302 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1303
1304 if (a == &dev_attr_uuid.attr) {
1305 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1306 return 0;
1307 }
1308 if (a == &dev_attr_eui.attr) {
1309 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1310 return 0;
1311 }
1312 return a->mode;
1313 }
1314
1315 static const struct attribute_group nvme_ns_attr_group = {
1316 .attrs = nvme_ns_attrs,
1317 .is_visible = nvme_attrs_are_visible,
1318 };
1319
1320 #define nvme_show_str_function(field) \
1321 static ssize_t field##_show(struct device *dev, \
1322 struct device_attribute *attr, char *buf) \
1323 { \
1324 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1325 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1326 } \
1327 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1328
1329 #define nvme_show_int_function(field) \
1330 static ssize_t field##_show(struct device *dev, \
1331 struct device_attribute *attr, char *buf) \
1332 { \
1333 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1334 return sprintf(buf, "%d\n", ctrl->field); \
1335 } \
1336 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1337
1338 nvme_show_str_function(model);
1339 nvme_show_str_function(serial);
1340 nvme_show_str_function(firmware_rev);
1341 nvme_show_int_function(cntlid);
1342
1343 static struct attribute *nvme_dev_attrs[] = {
1344 &dev_attr_reset_controller.attr,
1345 &dev_attr_model.attr,
1346 &dev_attr_serial.attr,
1347 &dev_attr_firmware_rev.attr,
1348 &dev_attr_cntlid.attr,
1349 NULL
1350 };
1351
1352 static struct attribute_group nvme_dev_attrs_group = {
1353 .attrs = nvme_dev_attrs,
1354 };
1355
1356 static const struct attribute_group *nvme_dev_attr_groups[] = {
1357 &nvme_dev_attrs_group,
1358 NULL,
1359 };
1360
1361 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1362 {
1363 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1364 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1365
1366 return nsa->ns_id - nsb->ns_id;
1367 }
1368
1369 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1370 {
1371 struct nvme_ns *ns;
1372
1373 lockdep_assert_held(&ctrl->namespaces_mutex);
1374
1375 list_for_each_entry(ns, &ctrl->namespaces, list) {
1376 if (ns->ns_id == nsid)
1377 return ns;
1378 if (ns->ns_id > nsid)
1379 break;
1380 }
1381 return NULL;
1382 }
1383
1384 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1385 {
1386 struct nvme_ns *ns;
1387 struct gendisk *disk;
1388 int node = dev_to_node(ctrl->dev);
1389
1390 lockdep_assert_held(&ctrl->namespaces_mutex);
1391
1392 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1393 if (!ns)
1394 return;
1395
1396 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1397 if (ns->instance < 0)
1398 goto out_free_ns;
1399
1400 ns->queue = blk_mq_init_queue(ctrl->tagset);
1401 if (IS_ERR(ns->queue))
1402 goto out_release_instance;
1403 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1404 ns->queue->queuedata = ns;
1405 ns->ctrl = ctrl;
1406
1407 disk = alloc_disk_node(0, node);
1408 if (!disk)
1409 goto out_free_queue;
1410
1411 kref_init(&ns->kref);
1412 ns->ns_id = nsid;
1413 ns->disk = disk;
1414 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1415
1416
1417 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1418 nvme_set_queue_limits(ctrl, ns->queue);
1419
1420 disk->major = nvme_major;
1421 disk->first_minor = 0;
1422 disk->fops = &nvme_fops;
1423 disk->private_data = ns;
1424 disk->queue = ns->queue;
1425 disk->driverfs_dev = ctrl->device;
1426 disk->flags = GENHD_FL_EXT_DEVT;
1427 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1428
1429 if (nvme_revalidate_disk(ns->disk))
1430 goto out_free_disk;
1431
1432 list_add_tail(&ns->list, &ctrl->namespaces);
1433 kref_get(&ctrl->kref);
1434 if (ns->type == NVME_NS_LIGHTNVM)
1435 return;
1436
1437 add_disk(ns->disk);
1438 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1439 &nvme_ns_attr_group))
1440 pr_warn("%s: failed to create sysfs group for identification\n",
1441 ns->disk->disk_name);
1442 return;
1443 out_free_disk:
1444 kfree(disk);
1445 out_free_queue:
1446 blk_cleanup_queue(ns->queue);
1447 out_release_instance:
1448 ida_simple_remove(&ctrl->ns_ida, ns->instance);
1449 out_free_ns:
1450 kfree(ns);
1451 }
1452
1453 static void nvme_ns_remove(struct nvme_ns *ns)
1454 {
1455 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1456 return;
1457
1458 if (ns->disk->flags & GENHD_FL_UP) {
1459 if (blk_get_integrity(ns->disk))
1460 blk_integrity_unregister(ns->disk);
1461 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1462 &nvme_ns_attr_group);
1463 del_gendisk(ns->disk);
1464 blk_mq_abort_requeue_list(ns->queue);
1465 blk_cleanup_queue(ns->queue);
1466 }
1467 mutex_lock(&ns->ctrl->namespaces_mutex);
1468 list_del_init(&ns->list);
1469 mutex_unlock(&ns->ctrl->namespaces_mutex);
1470 nvme_put_ns(ns);
1471 }
1472
1473 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1474 {
1475 struct nvme_ns *ns;
1476
1477 ns = nvme_find_ns(ctrl, nsid);
1478 if (ns) {
1479 if (revalidate_disk(ns->disk))
1480 nvme_ns_remove(ns);
1481 } else
1482 nvme_alloc_ns(ctrl, nsid);
1483 }
1484
1485 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1486 {
1487 struct nvme_ns *ns;
1488 __le32 *ns_list;
1489 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1490 int ret = 0;
1491
1492 ns_list = kzalloc(0x1000, GFP_KERNEL);
1493 if (!ns_list)
1494 return -ENOMEM;
1495
1496 for (i = 0; i < num_lists; i++) {
1497 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1498 if (ret)
1499 goto out;
1500
1501 for (j = 0; j < min(nn, 1024U); j++) {
1502 nsid = le32_to_cpu(ns_list[j]);
1503 if (!nsid)
1504 goto out;
1505
1506 nvme_validate_ns(ctrl, nsid);
1507
1508 while (++prev < nsid) {
1509 ns = nvme_find_ns(ctrl, prev);
1510 if (ns)
1511 nvme_ns_remove(ns);
1512 }
1513 }
1514 nn -= j;
1515 }
1516 out:
1517 kfree(ns_list);
1518 return ret;
1519 }
1520
1521 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1522 {
1523 struct nvme_ns *ns, *next;
1524 unsigned i;
1525
1526 lockdep_assert_held(&ctrl->namespaces_mutex);
1527
1528 for (i = 1; i <= nn; i++)
1529 nvme_validate_ns(ctrl, i);
1530
1531 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1532 if (ns->ns_id > nn)
1533 nvme_ns_remove(ns);
1534 }
1535 }
1536
1537 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1538 {
1539 struct nvme_id_ctrl *id;
1540 unsigned nn;
1541
1542 if (nvme_identify_ctrl(ctrl, &id))
1543 return;
1544
1545 mutex_lock(&ctrl->namespaces_mutex);
1546 nn = le32_to_cpu(id->nn);
1547 if (ctrl->vs >= NVME_VS(1, 1) &&
1548 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1549 if (!nvme_scan_ns_list(ctrl, nn))
1550 goto done;
1551 }
1552 __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1553 done:
1554 list_sort(NULL, &ctrl->namespaces, ns_cmp);
1555 mutex_unlock(&ctrl->namespaces_mutex);
1556 kfree(id);
1557 }
1558 EXPORT_SYMBOL_GPL(nvme_scan_namespaces);
1559
1560 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1561 {
1562 struct nvme_ns *ns, *next;
1563
1564 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1565 nvme_ns_remove(ns);
1566 }
1567 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1568
1569 static DEFINE_IDA(nvme_instance_ida);
1570
1571 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1572 {
1573 int instance, error;
1574
1575 do {
1576 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1577 return -ENODEV;
1578
1579 spin_lock(&dev_list_lock);
1580 error = ida_get_new(&nvme_instance_ida, &instance);
1581 spin_unlock(&dev_list_lock);
1582 } while (error == -EAGAIN);
1583
1584 if (error)
1585 return -ENODEV;
1586
1587 ctrl->instance = instance;
1588 return 0;
1589 }
1590
1591 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1592 {
1593 spin_lock(&dev_list_lock);
1594 ida_remove(&nvme_instance_ida, ctrl->instance);
1595 spin_unlock(&dev_list_lock);
1596 }
1597
1598 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1599 {
1600 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1601
1602 spin_lock(&dev_list_lock);
1603 list_del(&ctrl->node);
1604 spin_unlock(&dev_list_lock);
1605 }
1606 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1607
1608 static void nvme_free_ctrl(struct kref *kref)
1609 {
1610 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1611
1612 put_device(ctrl->device);
1613 nvme_release_instance(ctrl);
1614 ida_destroy(&ctrl->ns_ida);
1615
1616 ctrl->ops->free_ctrl(ctrl);
1617 }
1618
1619 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1620 {
1621 kref_put(&ctrl->kref, nvme_free_ctrl);
1622 }
1623 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1624
1625 /*
1626 * Initialize a NVMe controller structures. This needs to be called during
1627 * earliest initialization so that we have the initialized structured around
1628 * during probing.
1629 */
1630 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1631 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1632 {
1633 int ret;
1634
1635 ctrl->state = NVME_CTRL_NEW;
1636 spin_lock_init(&ctrl->lock);
1637 INIT_LIST_HEAD(&ctrl->namespaces);
1638 mutex_init(&ctrl->namespaces_mutex);
1639 kref_init(&ctrl->kref);
1640 ctrl->dev = dev;
1641 ctrl->ops = ops;
1642 ctrl->quirks = quirks;
1643
1644 ret = nvme_set_instance(ctrl);
1645 if (ret)
1646 goto out;
1647
1648 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1649 MKDEV(nvme_char_major, ctrl->instance),
1650 ctrl, nvme_dev_attr_groups,
1651 "nvme%d", ctrl->instance);
1652 if (IS_ERR(ctrl->device)) {
1653 ret = PTR_ERR(ctrl->device);
1654 goto out_release_instance;
1655 }
1656 get_device(ctrl->device);
1657 ida_init(&ctrl->ns_ida);
1658
1659 spin_lock(&dev_list_lock);
1660 list_add_tail(&ctrl->node, &nvme_ctrl_list);
1661 spin_unlock(&dev_list_lock);
1662
1663 return 0;
1664 out_release_instance:
1665 nvme_release_instance(ctrl);
1666 out:
1667 return ret;
1668 }
1669 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1670
1671 /**
1672 * nvme_kill_queues(): Ends all namespace queues
1673 * @ctrl: the dead controller that needs to end
1674 *
1675 * Call this function when the driver determines it is unable to get the
1676 * controller in a state capable of servicing IO.
1677 */
1678 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1679 {
1680 struct nvme_ns *ns;
1681
1682 mutex_lock(&ctrl->namespaces_mutex);
1683 list_for_each_entry(ns, &ctrl->namespaces, list) {
1684 if (!kref_get_unless_zero(&ns->kref))
1685 continue;
1686
1687 /*
1688 * Revalidating a dead namespace sets capacity to 0. This will
1689 * end buffered writers dirtying pages that can't be synced.
1690 */
1691 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1692 revalidate_disk(ns->disk);
1693
1694 blk_set_queue_dying(ns->queue);
1695 blk_mq_abort_requeue_list(ns->queue);
1696 blk_mq_start_stopped_hw_queues(ns->queue, true);
1697
1698 nvme_put_ns(ns);
1699 }
1700 mutex_unlock(&ctrl->namespaces_mutex);
1701 }
1702 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1703
1704 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1705 {
1706 struct nvme_ns *ns;
1707
1708 mutex_lock(&ctrl->namespaces_mutex);
1709 list_for_each_entry(ns, &ctrl->namespaces, list) {
1710 spin_lock_irq(ns->queue->queue_lock);
1711 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1712 spin_unlock_irq(ns->queue->queue_lock);
1713
1714 blk_mq_cancel_requeue_work(ns->queue);
1715 blk_mq_stop_hw_queues(ns->queue);
1716 }
1717 mutex_unlock(&ctrl->namespaces_mutex);
1718 }
1719 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1720
1721 void nvme_start_queues(struct nvme_ctrl *ctrl)
1722 {
1723 struct nvme_ns *ns;
1724
1725 mutex_lock(&ctrl->namespaces_mutex);
1726 list_for_each_entry(ns, &ctrl->namespaces, list) {
1727 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1728 blk_mq_start_stopped_hw_queues(ns->queue, true);
1729 blk_mq_kick_requeue_list(ns->queue);
1730 }
1731 mutex_unlock(&ctrl->namespaces_mutex);
1732 }
1733 EXPORT_SYMBOL_GPL(nvme_start_queues);
1734
1735 int __init nvme_core_init(void)
1736 {
1737 int result;
1738
1739 result = register_blkdev(nvme_major, "nvme");
1740 if (result < 0)
1741 return result;
1742 else if (result > 0)
1743 nvme_major = result;
1744
1745 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1746 &nvme_dev_fops);
1747 if (result < 0)
1748 goto unregister_blkdev;
1749 else if (result > 0)
1750 nvme_char_major = result;
1751
1752 nvme_class = class_create(THIS_MODULE, "nvme");
1753 if (IS_ERR(nvme_class)) {
1754 result = PTR_ERR(nvme_class);
1755 goto unregister_chrdev;
1756 }
1757
1758 return 0;
1759
1760 unregister_chrdev:
1761 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1762 unregister_blkdev:
1763 unregister_blkdev(nvme_major, "nvme");
1764 return result;
1765 }
1766
1767 void nvme_core_exit(void)
1768 {
1769 class_destroy(nvme_class);
1770 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1771 unregister_blkdev(nvme_major, "nvme");
1772 }
1773
1774 MODULE_LICENSE("GPL");
1775 MODULE_VERSION("1.0");
1776 module_init(nvme_core_init);
1777 module_exit(nvme_core_exit);