]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/core.c
c07d8d4e18c919b8451287e73fafd21024388594
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <scsi/sg.h>
31 #include <asm/unaligned.h>
32
33 #include "nvme.h"
34 #include "fabrics.h"
35
36 #define NVME_MINORS (1U << MINORBITS)
37
38 unsigned char admin_timeout = 60;
39 module_param(admin_timeout, byte, 0644);
40 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41 EXPORT_SYMBOL_GPL(admin_timeout);
42
43 unsigned char nvme_io_timeout = 30;
44 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
45 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46 EXPORT_SYMBOL_GPL(nvme_io_timeout);
47
48 unsigned char shutdown_timeout = 5;
49 module_param(shutdown_timeout, byte, 0644);
50 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
51
52 static u8 nvme_max_retries = 5;
53 module_param_named(max_retries, nvme_max_retries, byte, 0644);
54 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58
59 static unsigned long default_ps_max_latency_us = 25000;
60 module_param(default_ps_max_latency_us, ulong, 0644);
61 MODULE_PARM_DESC(default_ps_max_latency_us,
62 "max power saving latency for new devices; use PM QOS to change per device");
63
64 static bool force_apst;
65 module_param(force_apst, bool, 0644);
66 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
67
68 static LIST_HEAD(nvme_ctrl_list);
69 static DEFINE_SPINLOCK(dev_list_lock);
70
71 static struct class *nvme_class;
72
73 static int nvme_error_status(struct request *req)
74 {
75 switch (nvme_req(req)->status & 0x7ff) {
76 case NVME_SC_SUCCESS:
77 return 0;
78 case NVME_SC_CAP_EXCEEDED:
79 return -ENOSPC;
80 default:
81 return -EIO;
82
83 /*
84 * XXX: these errors are a nasty side-band protocol to
85 * drivers/md/dm-mpath.c:noretry_error() that aren't documented
86 * anywhere..
87 */
88 case NVME_SC_CMD_SEQ_ERROR:
89 return -EILSEQ;
90 case NVME_SC_ONCS_NOT_SUPPORTED:
91 return -EOPNOTSUPP;
92 case NVME_SC_WRITE_FAULT:
93 case NVME_SC_READ_ERROR:
94 case NVME_SC_UNWRITTEN_BLOCK:
95 return -ENODATA;
96 }
97 }
98
99 static inline bool nvme_req_needs_retry(struct request *req)
100 {
101 if (blk_noretry_request(req))
102 return false;
103 if (nvme_req(req)->status & NVME_SC_DNR)
104 return false;
105 if (jiffies - req->start_time >= req->timeout)
106 return false;
107 if (nvme_req(req)->retries >= nvme_max_retries)
108 return false;
109 return true;
110 }
111
112 void nvme_complete_rq(struct request *req)
113 {
114 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
115 nvme_req(req)->retries++;
116 blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
117 return;
118 }
119
120 blk_mq_end_request(req, nvme_error_status(req));
121 }
122 EXPORT_SYMBOL_GPL(nvme_complete_rq);
123
124 void nvme_cancel_request(struct request *req, void *data, bool reserved)
125 {
126 int status;
127
128 if (!blk_mq_request_started(req))
129 return;
130
131 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
132 "Cancelling I/O %d", req->tag);
133
134 status = NVME_SC_ABORT_REQ;
135 if (blk_queue_dying(req->q))
136 status |= NVME_SC_DNR;
137 nvme_req(req)->status = status;
138 blk_mq_complete_request(req);
139
140 }
141 EXPORT_SYMBOL_GPL(nvme_cancel_request);
142
143 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
144 enum nvme_ctrl_state new_state)
145 {
146 enum nvme_ctrl_state old_state;
147 bool changed = false;
148
149 spin_lock_irq(&ctrl->lock);
150
151 old_state = ctrl->state;
152 switch (new_state) {
153 case NVME_CTRL_LIVE:
154 switch (old_state) {
155 case NVME_CTRL_NEW:
156 case NVME_CTRL_RESETTING:
157 case NVME_CTRL_RECONNECTING:
158 changed = true;
159 /* FALLTHRU */
160 default:
161 break;
162 }
163 break;
164 case NVME_CTRL_RESETTING:
165 switch (old_state) {
166 case NVME_CTRL_NEW:
167 case NVME_CTRL_LIVE:
168 case NVME_CTRL_RECONNECTING:
169 changed = true;
170 /* FALLTHRU */
171 default:
172 break;
173 }
174 break;
175 case NVME_CTRL_RECONNECTING:
176 switch (old_state) {
177 case NVME_CTRL_LIVE:
178 changed = true;
179 /* FALLTHRU */
180 default:
181 break;
182 }
183 break;
184 case NVME_CTRL_DELETING:
185 switch (old_state) {
186 case NVME_CTRL_LIVE:
187 case NVME_CTRL_RESETTING:
188 case NVME_CTRL_RECONNECTING:
189 changed = true;
190 /* FALLTHRU */
191 default:
192 break;
193 }
194 break;
195 case NVME_CTRL_DEAD:
196 switch (old_state) {
197 case NVME_CTRL_DELETING:
198 changed = true;
199 /* FALLTHRU */
200 default:
201 break;
202 }
203 break;
204 default:
205 break;
206 }
207
208 if (changed)
209 ctrl->state = new_state;
210
211 spin_unlock_irq(&ctrl->lock);
212
213 return changed;
214 }
215 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
216
217 static void nvme_free_ns(struct kref *kref)
218 {
219 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
220
221 if (ns->ndev)
222 nvme_nvm_unregister(ns);
223
224 if (ns->disk) {
225 spin_lock(&dev_list_lock);
226 ns->disk->private_data = NULL;
227 spin_unlock(&dev_list_lock);
228 }
229
230 put_disk(ns->disk);
231 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
232 nvme_put_ctrl(ns->ctrl);
233 kfree(ns);
234 }
235
236 static void nvme_put_ns(struct nvme_ns *ns)
237 {
238 kref_put(&ns->kref, nvme_free_ns);
239 }
240
241 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
242 {
243 struct nvme_ns *ns;
244
245 spin_lock(&dev_list_lock);
246 ns = disk->private_data;
247 if (ns) {
248 if (!kref_get_unless_zero(&ns->kref))
249 goto fail;
250 if (!try_module_get(ns->ctrl->ops->module))
251 goto fail_put_ns;
252 }
253 spin_unlock(&dev_list_lock);
254
255 return ns;
256
257 fail_put_ns:
258 kref_put(&ns->kref, nvme_free_ns);
259 fail:
260 spin_unlock(&dev_list_lock);
261 return NULL;
262 }
263
264 struct request *nvme_alloc_request(struct request_queue *q,
265 struct nvme_command *cmd, unsigned int flags, int qid)
266 {
267 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
268 struct request *req;
269
270 if (qid == NVME_QID_ANY) {
271 req = blk_mq_alloc_request(q, op, flags);
272 } else {
273 req = blk_mq_alloc_request_hctx(q, op, flags,
274 qid ? qid - 1 : 0);
275 }
276 if (IS_ERR(req))
277 return req;
278
279 req->cmd_flags |= REQ_FAILFAST_DRIVER;
280 nvme_req(req)->cmd = cmd;
281
282 return req;
283 }
284 EXPORT_SYMBOL_GPL(nvme_alloc_request);
285
286 static inline void nvme_setup_flush(struct nvme_ns *ns,
287 struct nvme_command *cmnd)
288 {
289 memset(cmnd, 0, sizeof(*cmnd));
290 cmnd->common.opcode = nvme_cmd_flush;
291 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
292 }
293
294 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
295 struct nvme_command *cmnd)
296 {
297 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
298 struct nvme_dsm_range *range;
299 struct bio *bio;
300
301 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
302 if (!range)
303 return BLK_MQ_RQ_QUEUE_BUSY;
304
305 __rq_for_each_bio(bio, req) {
306 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
307 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
308
309 range[n].cattr = cpu_to_le32(0);
310 range[n].nlb = cpu_to_le32(nlb);
311 range[n].slba = cpu_to_le64(slba);
312 n++;
313 }
314
315 if (WARN_ON_ONCE(n != segments)) {
316 kfree(range);
317 return BLK_MQ_RQ_QUEUE_ERROR;
318 }
319
320 memset(cmnd, 0, sizeof(*cmnd));
321 cmnd->dsm.opcode = nvme_cmd_dsm;
322 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
323 cmnd->dsm.nr = cpu_to_le32(segments - 1);
324 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
325
326 req->special_vec.bv_page = virt_to_page(range);
327 req->special_vec.bv_offset = offset_in_page(range);
328 req->special_vec.bv_len = sizeof(*range) * segments;
329 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
330
331 return BLK_MQ_RQ_QUEUE_OK;
332 }
333
334 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
335 struct nvme_command *cmnd)
336 {
337 u16 control = 0;
338 u32 dsmgmt = 0;
339
340 if (req->cmd_flags & REQ_FUA)
341 control |= NVME_RW_FUA;
342 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
343 control |= NVME_RW_LR;
344
345 if (req->cmd_flags & REQ_RAHEAD)
346 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
347
348 memset(cmnd, 0, sizeof(*cmnd));
349 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
350 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
351 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
352 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
353
354 if (ns->ms) {
355 switch (ns->pi_type) {
356 case NVME_NS_DPS_PI_TYPE3:
357 control |= NVME_RW_PRINFO_PRCHK_GUARD;
358 break;
359 case NVME_NS_DPS_PI_TYPE1:
360 case NVME_NS_DPS_PI_TYPE2:
361 control |= NVME_RW_PRINFO_PRCHK_GUARD |
362 NVME_RW_PRINFO_PRCHK_REF;
363 cmnd->rw.reftag = cpu_to_le32(
364 nvme_block_nr(ns, blk_rq_pos(req)));
365 break;
366 }
367 if (!blk_integrity_rq(req))
368 control |= NVME_RW_PRINFO_PRACT;
369 }
370
371 cmnd->rw.control = cpu_to_le16(control);
372 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
373 }
374
375 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
376 struct nvme_command *cmd)
377 {
378 int ret = BLK_MQ_RQ_QUEUE_OK;
379
380 if (!(req->rq_flags & RQF_DONTPREP)) {
381 nvme_req(req)->retries = 0;
382 nvme_req(req)->flags = 0;
383 req->rq_flags |= RQF_DONTPREP;
384 }
385
386 switch (req_op(req)) {
387 case REQ_OP_DRV_IN:
388 case REQ_OP_DRV_OUT:
389 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
390 break;
391 case REQ_OP_FLUSH:
392 nvme_setup_flush(ns, cmd);
393 break;
394 case REQ_OP_WRITE_ZEROES:
395 /* currently only aliased to deallocate for a few ctrls: */
396 case REQ_OP_DISCARD:
397 ret = nvme_setup_discard(ns, req, cmd);
398 break;
399 case REQ_OP_READ:
400 case REQ_OP_WRITE:
401 nvme_setup_rw(ns, req, cmd);
402 break;
403 default:
404 WARN_ON_ONCE(1);
405 return BLK_MQ_RQ_QUEUE_ERROR;
406 }
407
408 cmd->common.command_id = req->tag;
409 return ret;
410 }
411 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
412
413 /*
414 * Returns 0 on success. If the result is negative, it's a Linux error code;
415 * if the result is positive, it's an NVM Express status code
416 */
417 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
418 union nvme_result *result, void *buffer, unsigned bufflen,
419 unsigned timeout, int qid, int at_head, int flags)
420 {
421 struct request *req;
422 int ret;
423
424 req = nvme_alloc_request(q, cmd, flags, qid);
425 if (IS_ERR(req))
426 return PTR_ERR(req);
427
428 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
429
430 if (buffer && bufflen) {
431 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
432 if (ret)
433 goto out;
434 }
435
436 blk_execute_rq(req->q, NULL, req, at_head);
437 if (result)
438 *result = nvme_req(req)->result;
439 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
440 ret = -EINTR;
441 else
442 ret = nvme_req(req)->status;
443 out:
444 blk_mq_free_request(req);
445 return ret;
446 }
447 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
448
449 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
450 void *buffer, unsigned bufflen)
451 {
452 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
453 NVME_QID_ANY, 0, 0);
454 }
455 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
456
457 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
458 void __user *ubuffer, unsigned bufflen,
459 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
460 u32 *result, unsigned timeout)
461 {
462 bool write = nvme_is_write(cmd);
463 struct nvme_ns *ns = q->queuedata;
464 struct gendisk *disk = ns ? ns->disk : NULL;
465 struct request *req;
466 struct bio *bio = NULL;
467 void *meta = NULL;
468 int ret;
469
470 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
471 if (IS_ERR(req))
472 return PTR_ERR(req);
473
474 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
475
476 if (ubuffer && bufflen) {
477 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
478 GFP_KERNEL);
479 if (ret)
480 goto out;
481 bio = req->bio;
482
483 if (!disk)
484 goto submit;
485 bio->bi_bdev = bdget_disk(disk, 0);
486 if (!bio->bi_bdev) {
487 ret = -ENODEV;
488 goto out_unmap;
489 }
490
491 if (meta_buffer && meta_len) {
492 struct bio_integrity_payload *bip;
493
494 meta = kmalloc(meta_len, GFP_KERNEL);
495 if (!meta) {
496 ret = -ENOMEM;
497 goto out_unmap;
498 }
499
500 if (write) {
501 if (copy_from_user(meta, meta_buffer,
502 meta_len)) {
503 ret = -EFAULT;
504 goto out_free_meta;
505 }
506 }
507
508 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
509 if (IS_ERR(bip)) {
510 ret = PTR_ERR(bip);
511 goto out_free_meta;
512 }
513
514 bip->bip_iter.bi_size = meta_len;
515 bip->bip_iter.bi_sector = meta_seed;
516
517 ret = bio_integrity_add_page(bio, virt_to_page(meta),
518 meta_len, offset_in_page(meta));
519 if (ret != meta_len) {
520 ret = -ENOMEM;
521 goto out_free_meta;
522 }
523 }
524 }
525 submit:
526 blk_execute_rq(req->q, disk, req, 0);
527 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
528 ret = -EINTR;
529 else
530 ret = nvme_req(req)->status;
531 if (result)
532 *result = le32_to_cpu(nvme_req(req)->result.u32);
533 if (meta && !ret && !write) {
534 if (copy_to_user(meta_buffer, meta, meta_len))
535 ret = -EFAULT;
536 }
537 out_free_meta:
538 kfree(meta);
539 out_unmap:
540 if (bio) {
541 if (disk && bio->bi_bdev)
542 bdput(bio->bi_bdev);
543 blk_rq_unmap_user(bio);
544 }
545 out:
546 blk_mq_free_request(req);
547 return ret;
548 }
549
550 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
551 void __user *ubuffer, unsigned bufflen, u32 *result,
552 unsigned timeout)
553 {
554 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
555 result, timeout);
556 }
557
558 static void nvme_keep_alive_end_io(struct request *rq, int error)
559 {
560 struct nvme_ctrl *ctrl = rq->end_io_data;
561
562 blk_mq_free_request(rq);
563
564 if (error) {
565 dev_err(ctrl->device,
566 "failed nvme_keep_alive_end_io error=%d\n", error);
567 return;
568 }
569
570 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
571 }
572
573 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
574 {
575 struct nvme_command c;
576 struct request *rq;
577
578 memset(&c, 0, sizeof(c));
579 c.common.opcode = nvme_admin_keep_alive;
580
581 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
582 NVME_QID_ANY);
583 if (IS_ERR(rq))
584 return PTR_ERR(rq);
585
586 rq->timeout = ctrl->kato * HZ;
587 rq->end_io_data = ctrl;
588
589 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
590
591 return 0;
592 }
593
594 static void nvme_keep_alive_work(struct work_struct *work)
595 {
596 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
597 struct nvme_ctrl, ka_work);
598
599 if (nvme_keep_alive(ctrl)) {
600 /* allocation failure, reset the controller */
601 dev_err(ctrl->device, "keep-alive failed\n");
602 ctrl->ops->reset_ctrl(ctrl);
603 return;
604 }
605 }
606
607 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
608 {
609 if (unlikely(ctrl->kato == 0))
610 return;
611
612 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
613 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
614 }
615 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
616
617 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
618 {
619 if (unlikely(ctrl->kato == 0))
620 return;
621
622 cancel_delayed_work_sync(&ctrl->ka_work);
623 }
624 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
625
626 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
627 {
628 struct nvme_command c = { };
629 int error;
630
631 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
632 c.identify.opcode = nvme_admin_identify;
633 c.identify.cns = NVME_ID_CNS_CTRL;
634
635 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
636 if (!*id)
637 return -ENOMEM;
638
639 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
640 sizeof(struct nvme_id_ctrl));
641 if (error)
642 kfree(*id);
643 return error;
644 }
645
646 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
647 {
648 struct nvme_command c = { };
649
650 c.identify.opcode = nvme_admin_identify;
651 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
652 c.identify.nsid = cpu_to_le32(nsid);
653 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
654 }
655
656 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
657 struct nvme_id_ns **id)
658 {
659 struct nvme_command c = { };
660 int error;
661
662 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
663 c.identify.opcode = nvme_admin_identify;
664 c.identify.nsid = cpu_to_le32(nsid);
665 c.identify.cns = NVME_ID_CNS_NS;
666
667 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
668 if (!*id)
669 return -ENOMEM;
670
671 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
672 sizeof(struct nvme_id_ns));
673 if (error)
674 kfree(*id);
675 return error;
676 }
677
678 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
679 void *buffer, size_t buflen, u32 *result)
680 {
681 struct nvme_command c;
682 union nvme_result res;
683 int ret;
684
685 memset(&c, 0, sizeof(c));
686 c.features.opcode = nvme_admin_get_features;
687 c.features.nsid = cpu_to_le32(nsid);
688 c.features.fid = cpu_to_le32(fid);
689
690 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
691 NVME_QID_ANY, 0, 0);
692 if (ret >= 0 && result)
693 *result = le32_to_cpu(res.u32);
694 return ret;
695 }
696
697 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
698 void *buffer, size_t buflen, u32 *result)
699 {
700 struct nvme_command c;
701 union nvme_result res;
702 int ret;
703
704 memset(&c, 0, sizeof(c));
705 c.features.opcode = nvme_admin_set_features;
706 c.features.fid = cpu_to_le32(fid);
707 c.features.dword11 = cpu_to_le32(dword11);
708
709 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
710 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
711 if (ret >= 0 && result)
712 *result = le32_to_cpu(res.u32);
713 return ret;
714 }
715
716 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
717 {
718 struct nvme_command c = { };
719 int error;
720
721 c.common.opcode = nvme_admin_get_log_page,
722 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
723 c.common.cdw10[0] = cpu_to_le32(
724 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
725 NVME_LOG_SMART),
726
727 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
728 if (!*log)
729 return -ENOMEM;
730
731 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
732 sizeof(struct nvme_smart_log));
733 if (error)
734 kfree(*log);
735 return error;
736 }
737
738 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
739 {
740 u32 q_count = (*count - 1) | ((*count - 1) << 16);
741 u32 result;
742 int status, nr_io_queues;
743
744 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
745 &result);
746 if (status < 0)
747 return status;
748
749 /*
750 * Degraded controllers might return an error when setting the queue
751 * count. We still want to be able to bring them online and offer
752 * access to the admin queue, as that might be only way to fix them up.
753 */
754 if (status > 0) {
755 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
756 *count = 0;
757 } else {
758 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
759 *count = min(*count, nr_io_queues);
760 }
761
762 return 0;
763 }
764 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
765
766 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
767 {
768 struct nvme_user_io io;
769 struct nvme_command c;
770 unsigned length, meta_len;
771 void __user *metadata;
772
773 if (copy_from_user(&io, uio, sizeof(io)))
774 return -EFAULT;
775 if (io.flags)
776 return -EINVAL;
777
778 switch (io.opcode) {
779 case nvme_cmd_write:
780 case nvme_cmd_read:
781 case nvme_cmd_compare:
782 break;
783 default:
784 return -EINVAL;
785 }
786
787 length = (io.nblocks + 1) << ns->lba_shift;
788 meta_len = (io.nblocks + 1) * ns->ms;
789 metadata = (void __user *)(uintptr_t)io.metadata;
790
791 if (ns->ext) {
792 length += meta_len;
793 meta_len = 0;
794 } else if (meta_len) {
795 if ((io.metadata & 3) || !io.metadata)
796 return -EINVAL;
797 }
798
799 memset(&c, 0, sizeof(c));
800 c.rw.opcode = io.opcode;
801 c.rw.flags = io.flags;
802 c.rw.nsid = cpu_to_le32(ns->ns_id);
803 c.rw.slba = cpu_to_le64(io.slba);
804 c.rw.length = cpu_to_le16(io.nblocks);
805 c.rw.control = cpu_to_le16(io.control);
806 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
807 c.rw.reftag = cpu_to_le32(io.reftag);
808 c.rw.apptag = cpu_to_le16(io.apptag);
809 c.rw.appmask = cpu_to_le16(io.appmask);
810
811 return __nvme_submit_user_cmd(ns->queue, &c,
812 (void __user *)(uintptr_t)io.addr, length,
813 metadata, meta_len, io.slba, NULL, 0);
814 }
815
816 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
817 struct nvme_passthru_cmd __user *ucmd)
818 {
819 struct nvme_passthru_cmd cmd;
820 struct nvme_command c;
821 unsigned timeout = 0;
822 int status;
823
824 if (!capable(CAP_SYS_ADMIN))
825 return -EACCES;
826 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
827 return -EFAULT;
828 if (cmd.flags)
829 return -EINVAL;
830
831 memset(&c, 0, sizeof(c));
832 c.common.opcode = cmd.opcode;
833 c.common.flags = cmd.flags;
834 c.common.nsid = cpu_to_le32(cmd.nsid);
835 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
836 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
837 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
838 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
839 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
840 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
841 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
842 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
843
844 if (cmd.timeout_ms)
845 timeout = msecs_to_jiffies(cmd.timeout_ms);
846
847 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
848 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
849 &cmd.result, timeout);
850 if (status >= 0) {
851 if (put_user(cmd.result, &ucmd->result))
852 return -EFAULT;
853 }
854
855 return status;
856 }
857
858 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
859 unsigned int cmd, unsigned long arg)
860 {
861 struct nvme_ns *ns = bdev->bd_disk->private_data;
862
863 switch (cmd) {
864 case NVME_IOCTL_ID:
865 force_successful_syscall_return();
866 return ns->ns_id;
867 case NVME_IOCTL_ADMIN_CMD:
868 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
869 case NVME_IOCTL_IO_CMD:
870 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
871 case NVME_IOCTL_SUBMIT_IO:
872 return nvme_submit_io(ns, (void __user *)arg);
873 #ifdef CONFIG_BLK_DEV_NVME_SCSI
874 case SG_GET_VERSION_NUM:
875 return nvme_sg_get_version_num((void __user *)arg);
876 case SG_IO:
877 return nvme_sg_io(ns, (void __user *)arg);
878 #endif
879 default:
880 #ifdef CONFIG_NVM
881 if (ns->ndev)
882 return nvme_nvm_ioctl(ns, cmd, arg);
883 #endif
884 if (is_sed_ioctl(cmd))
885 return sed_ioctl(ns->ctrl->opal_dev, cmd,
886 (void __user *) arg);
887 return -ENOTTY;
888 }
889 }
890
891 #ifdef CONFIG_COMPAT
892 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
893 unsigned int cmd, unsigned long arg)
894 {
895 switch (cmd) {
896 case SG_IO:
897 return -ENOIOCTLCMD;
898 }
899 return nvme_ioctl(bdev, mode, cmd, arg);
900 }
901 #else
902 #define nvme_compat_ioctl NULL
903 #endif
904
905 static int nvme_open(struct block_device *bdev, fmode_t mode)
906 {
907 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
908 }
909
910 static void nvme_release(struct gendisk *disk, fmode_t mode)
911 {
912 struct nvme_ns *ns = disk->private_data;
913
914 module_put(ns->ctrl->ops->module);
915 nvme_put_ns(ns);
916 }
917
918 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
919 {
920 /* some standard values */
921 geo->heads = 1 << 6;
922 geo->sectors = 1 << 5;
923 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
924 return 0;
925 }
926
927 #ifdef CONFIG_BLK_DEV_INTEGRITY
928 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
929 u16 bs)
930 {
931 struct nvme_ns *ns = disk->private_data;
932 u16 old_ms = ns->ms;
933 u8 pi_type = 0;
934
935 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
936 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
937
938 /* PI implementation requires metadata equal t10 pi tuple size */
939 if (ns->ms == sizeof(struct t10_pi_tuple))
940 pi_type = id->dps & NVME_NS_DPS_PI_MASK;
941
942 if (blk_get_integrity(disk) &&
943 (ns->pi_type != pi_type || ns->ms != old_ms ||
944 bs != queue_logical_block_size(disk->queue) ||
945 (ns->ms && ns->ext)))
946 blk_integrity_unregister(disk);
947
948 ns->pi_type = pi_type;
949 }
950
951 static void nvme_init_integrity(struct nvme_ns *ns)
952 {
953 struct blk_integrity integrity;
954
955 memset(&integrity, 0, sizeof(integrity));
956 switch (ns->pi_type) {
957 case NVME_NS_DPS_PI_TYPE3:
958 integrity.profile = &t10_pi_type3_crc;
959 integrity.tag_size = sizeof(u16) + sizeof(u32);
960 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
961 break;
962 case NVME_NS_DPS_PI_TYPE1:
963 case NVME_NS_DPS_PI_TYPE2:
964 integrity.profile = &t10_pi_type1_crc;
965 integrity.tag_size = sizeof(u16);
966 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
967 break;
968 default:
969 integrity.profile = NULL;
970 break;
971 }
972 integrity.tuple_size = ns->ms;
973 blk_integrity_register(ns->disk, &integrity);
974 blk_queue_max_integrity_segments(ns->queue, 1);
975 }
976 #else
977 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
978 u16 bs)
979 {
980 }
981 static void nvme_init_integrity(struct nvme_ns *ns)
982 {
983 }
984 #endif /* CONFIG_BLK_DEV_INTEGRITY */
985
986 static void nvme_config_discard(struct nvme_ns *ns)
987 {
988 struct nvme_ctrl *ctrl = ns->ctrl;
989 u32 logical_block_size = queue_logical_block_size(ns->queue);
990
991 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
992 NVME_DSM_MAX_RANGES);
993
994 ns->queue->limits.discard_alignment = logical_block_size;
995 ns->queue->limits.discard_granularity = logical_block_size;
996 blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
997 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
998 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
999
1000 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1001 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1002 }
1003
1004 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1005 {
1006 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1007 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1008 return -ENODEV;
1009 }
1010
1011 if ((*id)->ncap == 0) {
1012 kfree(*id);
1013 return -ENODEV;
1014 }
1015
1016 if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1017 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1018 if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1019 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
1020
1021 return 0;
1022 }
1023
1024 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1025 {
1026 struct nvme_ns *ns = disk->private_data;
1027 u16 bs;
1028
1029 /*
1030 * If identify namespace failed, use default 512 byte block size so
1031 * block layer can use before failing read/write for 0 capacity.
1032 */
1033 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1034 if (ns->lba_shift == 0)
1035 ns->lba_shift = 9;
1036 bs = 1 << ns->lba_shift;
1037
1038 blk_mq_freeze_queue(disk->queue);
1039
1040 if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1041 nvme_prep_integrity(disk, id, bs);
1042 blk_queue_logical_block_size(ns->queue, bs);
1043 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1044 nvme_init_integrity(ns);
1045 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1046 set_capacity(disk, 0);
1047 else
1048 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1049
1050 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1051 nvme_config_discard(ns);
1052 blk_mq_unfreeze_queue(disk->queue);
1053 }
1054
1055 static int nvme_revalidate_disk(struct gendisk *disk)
1056 {
1057 struct nvme_ns *ns = disk->private_data;
1058 struct nvme_id_ns *id = NULL;
1059 int ret;
1060
1061 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1062 set_capacity(disk, 0);
1063 return -ENODEV;
1064 }
1065
1066 ret = nvme_revalidate_ns(ns, &id);
1067 if (ret)
1068 return ret;
1069
1070 __nvme_revalidate_disk(disk, id);
1071 kfree(id);
1072
1073 return 0;
1074 }
1075
1076 static char nvme_pr_type(enum pr_type type)
1077 {
1078 switch (type) {
1079 case PR_WRITE_EXCLUSIVE:
1080 return 1;
1081 case PR_EXCLUSIVE_ACCESS:
1082 return 2;
1083 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1084 return 3;
1085 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1086 return 4;
1087 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1088 return 5;
1089 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1090 return 6;
1091 default:
1092 return 0;
1093 }
1094 };
1095
1096 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1097 u64 key, u64 sa_key, u8 op)
1098 {
1099 struct nvme_ns *ns = bdev->bd_disk->private_data;
1100 struct nvme_command c;
1101 u8 data[16] = { 0, };
1102
1103 put_unaligned_le64(key, &data[0]);
1104 put_unaligned_le64(sa_key, &data[8]);
1105
1106 memset(&c, 0, sizeof(c));
1107 c.common.opcode = op;
1108 c.common.nsid = cpu_to_le32(ns->ns_id);
1109 c.common.cdw10[0] = cpu_to_le32(cdw10);
1110
1111 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1112 }
1113
1114 static int nvme_pr_register(struct block_device *bdev, u64 old,
1115 u64 new, unsigned flags)
1116 {
1117 u32 cdw10;
1118
1119 if (flags & ~PR_FL_IGNORE_KEY)
1120 return -EOPNOTSUPP;
1121
1122 cdw10 = old ? 2 : 0;
1123 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1124 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1125 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1126 }
1127
1128 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1129 enum pr_type type, unsigned flags)
1130 {
1131 u32 cdw10;
1132
1133 if (flags & ~PR_FL_IGNORE_KEY)
1134 return -EOPNOTSUPP;
1135
1136 cdw10 = nvme_pr_type(type) << 8;
1137 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1138 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1139 }
1140
1141 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1142 enum pr_type type, bool abort)
1143 {
1144 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1145 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1146 }
1147
1148 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1149 {
1150 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1151 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1152 }
1153
1154 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1155 {
1156 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1157 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1158 }
1159
1160 static const struct pr_ops nvme_pr_ops = {
1161 .pr_register = nvme_pr_register,
1162 .pr_reserve = nvme_pr_reserve,
1163 .pr_release = nvme_pr_release,
1164 .pr_preempt = nvme_pr_preempt,
1165 .pr_clear = nvme_pr_clear,
1166 };
1167
1168 #ifdef CONFIG_BLK_SED_OPAL
1169 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1170 bool send)
1171 {
1172 struct nvme_ctrl *ctrl = data;
1173 struct nvme_command cmd;
1174
1175 memset(&cmd, 0, sizeof(cmd));
1176 if (send)
1177 cmd.common.opcode = nvme_admin_security_send;
1178 else
1179 cmd.common.opcode = nvme_admin_security_recv;
1180 cmd.common.nsid = 0;
1181 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1182 cmd.common.cdw10[1] = cpu_to_le32(len);
1183
1184 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1185 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1186 }
1187 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1188 #endif /* CONFIG_BLK_SED_OPAL */
1189
1190 static const struct block_device_operations nvme_fops = {
1191 .owner = THIS_MODULE,
1192 .ioctl = nvme_ioctl,
1193 .compat_ioctl = nvme_compat_ioctl,
1194 .open = nvme_open,
1195 .release = nvme_release,
1196 .getgeo = nvme_getgeo,
1197 .revalidate_disk= nvme_revalidate_disk,
1198 .pr_ops = &nvme_pr_ops,
1199 };
1200
1201 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1202 {
1203 unsigned long timeout =
1204 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1205 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1206 int ret;
1207
1208 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1209 if (csts == ~0)
1210 return -ENODEV;
1211 if ((csts & NVME_CSTS_RDY) == bit)
1212 break;
1213
1214 msleep(100);
1215 if (fatal_signal_pending(current))
1216 return -EINTR;
1217 if (time_after(jiffies, timeout)) {
1218 dev_err(ctrl->device,
1219 "Device not ready; aborting %s\n", enabled ?
1220 "initialisation" : "reset");
1221 return -ENODEV;
1222 }
1223 }
1224
1225 return ret;
1226 }
1227
1228 /*
1229 * If the device has been passed off to us in an enabled state, just clear
1230 * the enabled bit. The spec says we should set the 'shutdown notification
1231 * bits', but doing so may cause the device to complete commands to the
1232 * admin queue ... and we don't know what memory that might be pointing at!
1233 */
1234 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1235 {
1236 int ret;
1237
1238 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1239 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1240
1241 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1242 if (ret)
1243 return ret;
1244
1245 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1246 msleep(NVME_QUIRK_DELAY_AMOUNT);
1247
1248 return nvme_wait_ready(ctrl, cap, false);
1249 }
1250 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1251
1252 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1253 {
1254 /*
1255 * Default to a 4K page size, with the intention to update this
1256 * path in the future to accomodate architectures with differing
1257 * kernel and IO page sizes.
1258 */
1259 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1260 int ret;
1261
1262 if (page_shift < dev_page_min) {
1263 dev_err(ctrl->device,
1264 "Minimum device page size %u too large for host (%u)\n",
1265 1 << dev_page_min, 1 << page_shift);
1266 return -ENODEV;
1267 }
1268
1269 ctrl->page_size = 1 << page_shift;
1270
1271 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1272 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1273 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1274 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1275 ctrl->ctrl_config |= NVME_CC_ENABLE;
1276
1277 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1278 if (ret)
1279 return ret;
1280 return nvme_wait_ready(ctrl, cap, true);
1281 }
1282 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1283
1284 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1285 {
1286 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1287 u32 csts;
1288 int ret;
1289
1290 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1291 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1292
1293 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1294 if (ret)
1295 return ret;
1296
1297 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1298 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1299 break;
1300
1301 msleep(100);
1302 if (fatal_signal_pending(current))
1303 return -EINTR;
1304 if (time_after(jiffies, timeout)) {
1305 dev_err(ctrl->device,
1306 "Device shutdown incomplete; abort shutdown\n");
1307 return -ENODEV;
1308 }
1309 }
1310
1311 return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1314
1315 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1316 struct request_queue *q)
1317 {
1318 bool vwc = false;
1319
1320 if (ctrl->max_hw_sectors) {
1321 u32 max_segments =
1322 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1323
1324 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1325 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1326 }
1327 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1328 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1329 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1330 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1331 vwc = true;
1332 blk_queue_write_cache(q, vwc, vwc);
1333 }
1334
1335 static void nvme_configure_apst(struct nvme_ctrl *ctrl)
1336 {
1337 /*
1338 * APST (Autonomous Power State Transition) lets us program a
1339 * table of power state transitions that the controller will
1340 * perform automatically. We configure it with a simple
1341 * heuristic: we are willing to spend at most 2% of the time
1342 * transitioning between power states. Therefore, when running
1343 * in any given state, we will enter the next lower-power
1344 * non-operational state after waiting 50 * (enlat + exlat)
1345 * microseconds, as long as that state's exit latency is under
1346 * the requested maximum latency.
1347 *
1348 * We will not autonomously enter any non-operational state for
1349 * which the total latency exceeds ps_max_latency_us. Users
1350 * can set ps_max_latency_us to zero to turn off APST.
1351 */
1352
1353 unsigned apste;
1354 struct nvme_feat_auto_pst *table;
1355 u64 max_lat_us = 0;
1356 int max_ps = -1;
1357 int ret;
1358
1359 /*
1360 * If APST isn't supported or if we haven't been initialized yet,
1361 * then don't do anything.
1362 */
1363 if (!ctrl->apsta)
1364 return;
1365
1366 if (ctrl->npss > 31) {
1367 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1368 return;
1369 }
1370
1371 table = kzalloc(sizeof(*table), GFP_KERNEL);
1372 if (!table)
1373 return;
1374
1375 if (ctrl->ps_max_latency_us == 0) {
1376 /* Turn off APST. */
1377 apste = 0;
1378 dev_dbg(ctrl->device, "APST disabled\n");
1379 } else {
1380 __le64 target = cpu_to_le64(0);
1381 int state;
1382
1383 /*
1384 * Walk through all states from lowest- to highest-power.
1385 * According to the spec, lower-numbered states use more
1386 * power. NPSS, despite the name, is the index of the
1387 * lowest-power state, not the number of states.
1388 */
1389 for (state = (int)ctrl->npss; state >= 0; state--) {
1390 u64 total_latency_us, exit_latency_us, transition_ms;
1391
1392 if (target)
1393 table->entries[state] = target;
1394
1395 /*
1396 * Don't allow transitions to the deepest state
1397 * if it's quirked off.
1398 */
1399 if (state == ctrl->npss &&
1400 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1401 continue;
1402
1403 /*
1404 * Is this state a useful non-operational state for
1405 * higher-power states to autonomously transition to?
1406 */
1407 if (!(ctrl->psd[state].flags &
1408 NVME_PS_FLAGS_NON_OP_STATE))
1409 continue;
1410
1411 exit_latency_us =
1412 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1413 if (exit_latency_us > ctrl->ps_max_latency_us)
1414 continue;
1415
1416 total_latency_us =
1417 exit_latency_us +
1418 le32_to_cpu(ctrl->psd[state].entry_lat);
1419
1420 /*
1421 * This state is good. Use it as the APST idle
1422 * target for higher power states.
1423 */
1424 transition_ms = total_latency_us + 19;
1425 do_div(transition_ms, 20);
1426 if (transition_ms > (1 << 24) - 1)
1427 transition_ms = (1 << 24) - 1;
1428
1429 target = cpu_to_le64((state << 3) |
1430 (transition_ms << 8));
1431
1432 if (max_ps == -1)
1433 max_ps = state;
1434
1435 if (total_latency_us > max_lat_us)
1436 max_lat_us = total_latency_us;
1437 }
1438
1439 apste = 1;
1440
1441 if (max_ps == -1) {
1442 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1443 } else {
1444 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1445 max_ps, max_lat_us, (int)sizeof(*table), table);
1446 }
1447 }
1448
1449 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1450 table, sizeof(*table), NULL);
1451 if (ret)
1452 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1453
1454 kfree(table);
1455 }
1456
1457 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1458 {
1459 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1460 u64 latency;
1461
1462 switch (val) {
1463 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1464 case PM_QOS_LATENCY_ANY:
1465 latency = U64_MAX;
1466 break;
1467
1468 default:
1469 latency = val;
1470 }
1471
1472 if (ctrl->ps_max_latency_us != latency) {
1473 ctrl->ps_max_latency_us = latency;
1474 nvme_configure_apst(ctrl);
1475 }
1476 }
1477
1478 struct nvme_core_quirk_entry {
1479 /*
1480 * NVMe model and firmware strings are padded with spaces. For
1481 * simplicity, strings in the quirk table are padded with NULLs
1482 * instead.
1483 */
1484 u16 vid;
1485 const char *mn;
1486 const char *fr;
1487 unsigned long quirks;
1488 };
1489
1490 static const struct nvme_core_quirk_entry core_quirks[] = {
1491 {
1492 /*
1493 * This Toshiba device seems to die using any APST states. See:
1494 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1495 */
1496 .vid = 0x1179,
1497 .mn = "THNSF5256GPUK TOSHIBA",
1498 .quirks = NVME_QUIRK_NO_APST,
1499 }
1500 };
1501
1502 /* match is null-terminated but idstr is space-padded. */
1503 static bool string_matches(const char *idstr, const char *match, size_t len)
1504 {
1505 size_t matchlen;
1506
1507 if (!match)
1508 return true;
1509
1510 matchlen = strlen(match);
1511 WARN_ON_ONCE(matchlen > len);
1512
1513 if (memcmp(idstr, match, matchlen))
1514 return false;
1515
1516 for (; matchlen < len; matchlen++)
1517 if (idstr[matchlen] != ' ')
1518 return false;
1519
1520 return true;
1521 }
1522
1523 static bool quirk_matches(const struct nvme_id_ctrl *id,
1524 const struct nvme_core_quirk_entry *q)
1525 {
1526 return q->vid == le16_to_cpu(id->vid) &&
1527 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1528 string_matches(id->fr, q->fr, sizeof(id->fr));
1529 }
1530
1531 /*
1532 * Initialize the cached copies of the Identify data and various controller
1533 * register in our nvme_ctrl structure. This should be called as soon as
1534 * the admin queue is fully up and running.
1535 */
1536 int nvme_init_identify(struct nvme_ctrl *ctrl)
1537 {
1538 struct nvme_id_ctrl *id;
1539 u64 cap;
1540 int ret, page_shift;
1541 u32 max_hw_sectors;
1542 u8 prev_apsta;
1543
1544 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1545 if (ret) {
1546 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1547 return ret;
1548 }
1549
1550 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1551 if (ret) {
1552 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1553 return ret;
1554 }
1555 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1556
1557 if (ctrl->vs >= NVME_VS(1, 1, 0))
1558 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1559
1560 ret = nvme_identify_ctrl(ctrl, &id);
1561 if (ret) {
1562 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1563 return -EIO;
1564 }
1565
1566 if (!ctrl->identified) {
1567 /*
1568 * Check for quirks. Quirk can depend on firmware version,
1569 * so, in principle, the set of quirks present can change
1570 * across a reset. As a possible future enhancement, we
1571 * could re-scan for quirks every time we reinitialize
1572 * the device, but we'd have to make sure that the driver
1573 * behaves intelligently if the quirks change.
1574 */
1575
1576 int i;
1577
1578 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1579 if (quirk_matches(id, &core_quirks[i]))
1580 ctrl->quirks |= core_quirks[i].quirks;
1581 }
1582 }
1583
1584 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1585 dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1586 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1587 }
1588
1589 ctrl->oacs = le16_to_cpu(id->oacs);
1590 ctrl->vid = le16_to_cpu(id->vid);
1591 ctrl->oncs = le16_to_cpup(&id->oncs);
1592 atomic_set(&ctrl->abort_limit, id->acl + 1);
1593 ctrl->vwc = id->vwc;
1594 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1595 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1596 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1597 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1598 if (id->mdts)
1599 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1600 else
1601 max_hw_sectors = UINT_MAX;
1602 ctrl->max_hw_sectors =
1603 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1604
1605 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1606 ctrl->sgls = le32_to_cpu(id->sgls);
1607 ctrl->kas = le16_to_cpu(id->kas);
1608
1609 ctrl->npss = id->npss;
1610 prev_apsta = ctrl->apsta;
1611 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1612 if (force_apst && id->apsta) {
1613 dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1614 ctrl->apsta = 1;
1615 } else {
1616 ctrl->apsta = 0;
1617 }
1618 } else {
1619 ctrl->apsta = id->apsta;
1620 }
1621 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1622
1623 if (ctrl->ops->flags & NVME_F_FABRICS) {
1624 ctrl->icdoff = le16_to_cpu(id->icdoff);
1625 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1626 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1627 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1628
1629 /*
1630 * In fabrics we need to verify the cntlid matches the
1631 * admin connect
1632 */
1633 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1634 ret = -EINVAL;
1635
1636 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1637 dev_err(ctrl->dev,
1638 "keep-alive support is mandatory for fabrics\n");
1639 ret = -EINVAL;
1640 }
1641 } else {
1642 ctrl->cntlid = le16_to_cpu(id->cntlid);
1643 }
1644
1645 kfree(id);
1646
1647 if (ctrl->apsta && !prev_apsta)
1648 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1649 else if (!ctrl->apsta && prev_apsta)
1650 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1651
1652 nvme_configure_apst(ctrl);
1653
1654 ctrl->identified = true;
1655
1656 return ret;
1657 }
1658 EXPORT_SYMBOL_GPL(nvme_init_identify);
1659
1660 static int nvme_dev_open(struct inode *inode, struct file *file)
1661 {
1662 struct nvme_ctrl *ctrl;
1663 int instance = iminor(inode);
1664 int ret = -ENODEV;
1665
1666 spin_lock(&dev_list_lock);
1667 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1668 if (ctrl->instance != instance)
1669 continue;
1670
1671 if (!ctrl->admin_q) {
1672 ret = -EWOULDBLOCK;
1673 break;
1674 }
1675 if (!kref_get_unless_zero(&ctrl->kref))
1676 break;
1677 file->private_data = ctrl;
1678 ret = 0;
1679 break;
1680 }
1681 spin_unlock(&dev_list_lock);
1682
1683 return ret;
1684 }
1685
1686 static int nvme_dev_release(struct inode *inode, struct file *file)
1687 {
1688 nvme_put_ctrl(file->private_data);
1689 return 0;
1690 }
1691
1692 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1693 {
1694 struct nvme_ns *ns;
1695 int ret;
1696
1697 mutex_lock(&ctrl->namespaces_mutex);
1698 if (list_empty(&ctrl->namespaces)) {
1699 ret = -ENOTTY;
1700 goto out_unlock;
1701 }
1702
1703 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1704 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1705 dev_warn(ctrl->device,
1706 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1707 ret = -EINVAL;
1708 goto out_unlock;
1709 }
1710
1711 dev_warn(ctrl->device,
1712 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1713 kref_get(&ns->kref);
1714 mutex_unlock(&ctrl->namespaces_mutex);
1715
1716 ret = nvme_user_cmd(ctrl, ns, argp);
1717 nvme_put_ns(ns);
1718 return ret;
1719
1720 out_unlock:
1721 mutex_unlock(&ctrl->namespaces_mutex);
1722 return ret;
1723 }
1724
1725 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1726 unsigned long arg)
1727 {
1728 struct nvme_ctrl *ctrl = file->private_data;
1729 void __user *argp = (void __user *)arg;
1730
1731 switch (cmd) {
1732 case NVME_IOCTL_ADMIN_CMD:
1733 return nvme_user_cmd(ctrl, NULL, argp);
1734 case NVME_IOCTL_IO_CMD:
1735 return nvme_dev_user_cmd(ctrl, argp);
1736 case NVME_IOCTL_RESET:
1737 dev_warn(ctrl->device, "resetting controller\n");
1738 return ctrl->ops->reset_ctrl(ctrl);
1739 case NVME_IOCTL_SUBSYS_RESET:
1740 return nvme_reset_subsystem(ctrl);
1741 case NVME_IOCTL_RESCAN:
1742 nvme_queue_scan(ctrl);
1743 return 0;
1744 default:
1745 return -ENOTTY;
1746 }
1747 }
1748
1749 static const struct file_operations nvme_dev_fops = {
1750 .owner = THIS_MODULE,
1751 .open = nvme_dev_open,
1752 .release = nvme_dev_release,
1753 .unlocked_ioctl = nvme_dev_ioctl,
1754 .compat_ioctl = nvme_dev_ioctl,
1755 };
1756
1757 static ssize_t nvme_sysfs_reset(struct device *dev,
1758 struct device_attribute *attr, const char *buf,
1759 size_t count)
1760 {
1761 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1762 int ret;
1763
1764 ret = ctrl->ops->reset_ctrl(ctrl);
1765 if (ret < 0)
1766 return ret;
1767 return count;
1768 }
1769 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1770
1771 static ssize_t nvme_sysfs_rescan(struct device *dev,
1772 struct device_attribute *attr, const char *buf,
1773 size_t count)
1774 {
1775 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1776
1777 nvme_queue_scan(ctrl);
1778 return count;
1779 }
1780 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1781
1782 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1783 char *buf)
1784 {
1785 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1786 struct nvme_ctrl *ctrl = ns->ctrl;
1787 int serial_len = sizeof(ctrl->serial);
1788 int model_len = sizeof(ctrl->model);
1789
1790 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1791 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1792
1793 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1794 return sprintf(buf, "eui.%8phN\n", ns->eui);
1795
1796 while (ctrl->serial[serial_len - 1] == ' ')
1797 serial_len--;
1798 while (ctrl->model[model_len - 1] == ' ')
1799 model_len--;
1800
1801 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1802 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1803 }
1804 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1805
1806 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1807 char *buf)
1808 {
1809 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1810 return sprintf(buf, "%pU\n", ns->uuid);
1811 }
1812 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1813
1814 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1815 char *buf)
1816 {
1817 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1818 return sprintf(buf, "%8phd\n", ns->eui);
1819 }
1820 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1821
1822 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1823 char *buf)
1824 {
1825 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1826 return sprintf(buf, "%d\n", ns->ns_id);
1827 }
1828 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1829
1830 static struct attribute *nvme_ns_attrs[] = {
1831 &dev_attr_wwid.attr,
1832 &dev_attr_uuid.attr,
1833 &dev_attr_eui.attr,
1834 &dev_attr_nsid.attr,
1835 NULL,
1836 };
1837
1838 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1839 struct attribute *a, int n)
1840 {
1841 struct device *dev = container_of(kobj, struct device, kobj);
1842 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1843
1844 if (a == &dev_attr_uuid.attr) {
1845 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1846 return 0;
1847 }
1848 if (a == &dev_attr_eui.attr) {
1849 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1850 return 0;
1851 }
1852 return a->mode;
1853 }
1854
1855 static const struct attribute_group nvme_ns_attr_group = {
1856 .attrs = nvme_ns_attrs,
1857 .is_visible = nvme_ns_attrs_are_visible,
1858 };
1859
1860 #define nvme_show_str_function(field) \
1861 static ssize_t field##_show(struct device *dev, \
1862 struct device_attribute *attr, char *buf) \
1863 { \
1864 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1865 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1866 } \
1867 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1868
1869 #define nvme_show_int_function(field) \
1870 static ssize_t field##_show(struct device *dev, \
1871 struct device_attribute *attr, char *buf) \
1872 { \
1873 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1874 return sprintf(buf, "%d\n", ctrl->field); \
1875 } \
1876 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1877
1878 nvme_show_str_function(model);
1879 nvme_show_str_function(serial);
1880 nvme_show_str_function(firmware_rev);
1881 nvme_show_int_function(cntlid);
1882
1883 static ssize_t nvme_sysfs_delete(struct device *dev,
1884 struct device_attribute *attr, const char *buf,
1885 size_t count)
1886 {
1887 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1888
1889 if (device_remove_file_self(dev, attr))
1890 ctrl->ops->delete_ctrl(ctrl);
1891 return count;
1892 }
1893 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1894
1895 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1896 struct device_attribute *attr,
1897 char *buf)
1898 {
1899 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1900
1901 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1902 }
1903 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1904
1905 static ssize_t nvme_sysfs_show_state(struct device *dev,
1906 struct device_attribute *attr,
1907 char *buf)
1908 {
1909 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1910 static const char *const state_name[] = {
1911 [NVME_CTRL_NEW] = "new",
1912 [NVME_CTRL_LIVE] = "live",
1913 [NVME_CTRL_RESETTING] = "resetting",
1914 [NVME_CTRL_RECONNECTING]= "reconnecting",
1915 [NVME_CTRL_DELETING] = "deleting",
1916 [NVME_CTRL_DEAD] = "dead",
1917 };
1918
1919 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
1920 state_name[ctrl->state])
1921 return sprintf(buf, "%s\n", state_name[ctrl->state]);
1922
1923 return sprintf(buf, "unknown state\n");
1924 }
1925
1926 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
1927
1928 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1929 struct device_attribute *attr,
1930 char *buf)
1931 {
1932 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1933
1934 return snprintf(buf, PAGE_SIZE, "%s\n",
1935 ctrl->ops->get_subsysnqn(ctrl));
1936 }
1937 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1938
1939 static ssize_t nvme_sysfs_show_address(struct device *dev,
1940 struct device_attribute *attr,
1941 char *buf)
1942 {
1943 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1944
1945 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1946 }
1947 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1948
1949 static struct attribute *nvme_dev_attrs[] = {
1950 &dev_attr_reset_controller.attr,
1951 &dev_attr_rescan_controller.attr,
1952 &dev_attr_model.attr,
1953 &dev_attr_serial.attr,
1954 &dev_attr_firmware_rev.attr,
1955 &dev_attr_cntlid.attr,
1956 &dev_attr_delete_controller.attr,
1957 &dev_attr_transport.attr,
1958 &dev_attr_subsysnqn.attr,
1959 &dev_attr_address.attr,
1960 &dev_attr_state.attr,
1961 NULL
1962 };
1963
1964 #define CHECK_ATTR(ctrl, a, name) \
1965 if ((a) == &dev_attr_##name.attr && \
1966 !(ctrl)->ops->get_##name) \
1967 return 0
1968
1969 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1970 struct attribute *a, int n)
1971 {
1972 struct device *dev = container_of(kobj, struct device, kobj);
1973 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1974
1975 if (a == &dev_attr_delete_controller.attr) {
1976 if (!ctrl->ops->delete_ctrl)
1977 return 0;
1978 }
1979
1980 CHECK_ATTR(ctrl, a, subsysnqn);
1981 CHECK_ATTR(ctrl, a, address);
1982
1983 return a->mode;
1984 }
1985
1986 static struct attribute_group nvme_dev_attrs_group = {
1987 .attrs = nvme_dev_attrs,
1988 .is_visible = nvme_dev_attrs_are_visible,
1989 };
1990
1991 static const struct attribute_group *nvme_dev_attr_groups[] = {
1992 &nvme_dev_attrs_group,
1993 NULL,
1994 };
1995
1996 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1997 {
1998 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1999 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2000
2001 return nsa->ns_id - nsb->ns_id;
2002 }
2003
2004 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2005 {
2006 struct nvme_ns *ns, *ret = NULL;
2007
2008 mutex_lock(&ctrl->namespaces_mutex);
2009 list_for_each_entry(ns, &ctrl->namespaces, list) {
2010 if (ns->ns_id == nsid) {
2011 kref_get(&ns->kref);
2012 ret = ns;
2013 break;
2014 }
2015 if (ns->ns_id > nsid)
2016 break;
2017 }
2018 mutex_unlock(&ctrl->namespaces_mutex);
2019 return ret;
2020 }
2021
2022 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2023 {
2024 struct nvme_ns *ns;
2025 struct gendisk *disk;
2026 struct nvme_id_ns *id;
2027 char disk_name[DISK_NAME_LEN];
2028 int node = dev_to_node(ctrl->dev);
2029
2030 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2031 if (!ns)
2032 return;
2033
2034 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2035 if (ns->instance < 0)
2036 goto out_free_ns;
2037
2038 ns->queue = blk_mq_init_queue(ctrl->tagset);
2039 if (IS_ERR(ns->queue))
2040 goto out_release_instance;
2041 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2042 ns->queue->queuedata = ns;
2043 ns->ctrl = ctrl;
2044
2045 kref_init(&ns->kref);
2046 ns->ns_id = nsid;
2047 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2048
2049 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2050 nvme_set_queue_limits(ctrl, ns->queue);
2051
2052 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2053
2054 if (nvme_revalidate_ns(ns, &id))
2055 goto out_free_queue;
2056
2057 if (nvme_nvm_ns_supported(ns, id) &&
2058 nvme_nvm_register(ns, disk_name, node)) {
2059 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
2060 goto out_free_id;
2061 }
2062
2063 disk = alloc_disk_node(0, node);
2064 if (!disk)
2065 goto out_free_id;
2066
2067 disk->fops = &nvme_fops;
2068 disk->private_data = ns;
2069 disk->queue = ns->queue;
2070 disk->flags = GENHD_FL_EXT_DEVT;
2071 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2072 ns->disk = disk;
2073
2074 __nvme_revalidate_disk(disk, id);
2075
2076 mutex_lock(&ctrl->namespaces_mutex);
2077 list_add_tail(&ns->list, &ctrl->namespaces);
2078 mutex_unlock(&ctrl->namespaces_mutex);
2079
2080 kref_get(&ctrl->kref);
2081
2082 kfree(id);
2083
2084 device_add_disk(ctrl->device, ns->disk);
2085 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2086 &nvme_ns_attr_group))
2087 pr_warn("%s: failed to create sysfs group for identification\n",
2088 ns->disk->disk_name);
2089 if (ns->ndev && nvme_nvm_register_sysfs(ns))
2090 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2091 ns->disk->disk_name);
2092 return;
2093 out_free_id:
2094 kfree(id);
2095 out_free_queue:
2096 blk_cleanup_queue(ns->queue);
2097 out_release_instance:
2098 ida_simple_remove(&ctrl->ns_ida, ns->instance);
2099 out_free_ns:
2100 kfree(ns);
2101 }
2102
2103 static void nvme_ns_remove(struct nvme_ns *ns)
2104 {
2105 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2106 return;
2107
2108 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2109 if (blk_get_integrity(ns->disk))
2110 blk_integrity_unregister(ns->disk);
2111 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2112 &nvme_ns_attr_group);
2113 if (ns->ndev)
2114 nvme_nvm_unregister_sysfs(ns);
2115 del_gendisk(ns->disk);
2116 blk_cleanup_queue(ns->queue);
2117 }
2118
2119 mutex_lock(&ns->ctrl->namespaces_mutex);
2120 list_del_init(&ns->list);
2121 mutex_unlock(&ns->ctrl->namespaces_mutex);
2122
2123 nvme_put_ns(ns);
2124 }
2125
2126 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2127 {
2128 struct nvme_ns *ns;
2129
2130 ns = nvme_find_get_ns(ctrl, nsid);
2131 if (ns) {
2132 if (ns->disk && revalidate_disk(ns->disk))
2133 nvme_ns_remove(ns);
2134 nvme_put_ns(ns);
2135 } else
2136 nvme_alloc_ns(ctrl, nsid);
2137 }
2138
2139 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2140 unsigned nsid)
2141 {
2142 struct nvme_ns *ns, *next;
2143
2144 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2145 if (ns->ns_id > nsid)
2146 nvme_ns_remove(ns);
2147 }
2148 }
2149
2150 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2151 {
2152 struct nvme_ns *ns;
2153 __le32 *ns_list;
2154 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2155 int ret = 0;
2156
2157 ns_list = kzalloc(0x1000, GFP_KERNEL);
2158 if (!ns_list)
2159 return -ENOMEM;
2160
2161 for (i = 0; i < num_lists; i++) {
2162 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2163 if (ret)
2164 goto free;
2165
2166 for (j = 0; j < min(nn, 1024U); j++) {
2167 nsid = le32_to_cpu(ns_list[j]);
2168 if (!nsid)
2169 goto out;
2170
2171 nvme_validate_ns(ctrl, nsid);
2172
2173 while (++prev < nsid) {
2174 ns = nvme_find_get_ns(ctrl, prev);
2175 if (ns) {
2176 nvme_ns_remove(ns);
2177 nvme_put_ns(ns);
2178 }
2179 }
2180 }
2181 nn -= j;
2182 }
2183 out:
2184 nvme_remove_invalid_namespaces(ctrl, prev);
2185 free:
2186 kfree(ns_list);
2187 return ret;
2188 }
2189
2190 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2191 {
2192 unsigned i;
2193
2194 for (i = 1; i <= nn; i++)
2195 nvme_validate_ns(ctrl, i);
2196
2197 nvme_remove_invalid_namespaces(ctrl, nn);
2198 }
2199
2200 static void nvme_scan_work(struct work_struct *work)
2201 {
2202 struct nvme_ctrl *ctrl =
2203 container_of(work, struct nvme_ctrl, scan_work);
2204 struct nvme_id_ctrl *id;
2205 unsigned nn;
2206
2207 if (ctrl->state != NVME_CTRL_LIVE)
2208 return;
2209
2210 if (nvme_identify_ctrl(ctrl, &id))
2211 return;
2212
2213 nn = le32_to_cpu(id->nn);
2214 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2215 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2216 if (!nvme_scan_ns_list(ctrl, nn))
2217 goto done;
2218 }
2219 nvme_scan_ns_sequential(ctrl, nn);
2220 done:
2221 mutex_lock(&ctrl->namespaces_mutex);
2222 list_sort(NULL, &ctrl->namespaces, ns_cmp);
2223 mutex_unlock(&ctrl->namespaces_mutex);
2224 kfree(id);
2225 }
2226
2227 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2228 {
2229 /*
2230 * Do not queue new scan work when a controller is reset during
2231 * removal.
2232 */
2233 if (ctrl->state == NVME_CTRL_LIVE)
2234 schedule_work(&ctrl->scan_work);
2235 }
2236 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2237
2238 /*
2239 * This function iterates the namespace list unlocked to allow recovery from
2240 * controller failure. It is up to the caller to ensure the namespace list is
2241 * not modified by scan work while this function is executing.
2242 */
2243 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2244 {
2245 struct nvme_ns *ns, *next;
2246
2247 /*
2248 * The dead states indicates the controller was not gracefully
2249 * disconnected. In that case, we won't be able to flush any data while
2250 * removing the namespaces' disks; fail all the queues now to avoid
2251 * potentially having to clean up the failed sync later.
2252 */
2253 if (ctrl->state == NVME_CTRL_DEAD)
2254 nvme_kill_queues(ctrl);
2255
2256 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2257 nvme_ns_remove(ns);
2258 }
2259 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2260
2261 static void nvme_async_event_work(struct work_struct *work)
2262 {
2263 struct nvme_ctrl *ctrl =
2264 container_of(work, struct nvme_ctrl, async_event_work);
2265
2266 spin_lock_irq(&ctrl->lock);
2267 while (ctrl->event_limit > 0) {
2268 int aer_idx = --ctrl->event_limit;
2269
2270 spin_unlock_irq(&ctrl->lock);
2271 ctrl->ops->submit_async_event(ctrl, aer_idx);
2272 spin_lock_irq(&ctrl->lock);
2273 }
2274 spin_unlock_irq(&ctrl->lock);
2275 }
2276
2277 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2278 union nvme_result *res)
2279 {
2280 u32 result = le32_to_cpu(res->u32);
2281 bool done = true;
2282
2283 switch (le16_to_cpu(status) >> 1) {
2284 case NVME_SC_SUCCESS:
2285 done = false;
2286 /*FALLTHRU*/
2287 case NVME_SC_ABORT_REQ:
2288 ++ctrl->event_limit;
2289 schedule_work(&ctrl->async_event_work);
2290 break;
2291 default:
2292 break;
2293 }
2294
2295 if (done)
2296 return;
2297
2298 switch (result & 0xff07) {
2299 case NVME_AER_NOTICE_NS_CHANGED:
2300 dev_info(ctrl->device, "rescanning\n");
2301 nvme_queue_scan(ctrl);
2302 break;
2303 default:
2304 dev_warn(ctrl->device, "async event result %08x\n", result);
2305 }
2306 }
2307 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2308
2309 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2310 {
2311 ctrl->event_limit = NVME_NR_AERS;
2312 schedule_work(&ctrl->async_event_work);
2313 }
2314 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2315
2316 static DEFINE_IDA(nvme_instance_ida);
2317
2318 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2319 {
2320 int instance, error;
2321
2322 do {
2323 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2324 return -ENODEV;
2325
2326 spin_lock(&dev_list_lock);
2327 error = ida_get_new(&nvme_instance_ida, &instance);
2328 spin_unlock(&dev_list_lock);
2329 } while (error == -EAGAIN);
2330
2331 if (error)
2332 return -ENODEV;
2333
2334 ctrl->instance = instance;
2335 return 0;
2336 }
2337
2338 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2339 {
2340 spin_lock(&dev_list_lock);
2341 ida_remove(&nvme_instance_ida, ctrl->instance);
2342 spin_unlock(&dev_list_lock);
2343 }
2344
2345 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2346 {
2347 flush_work(&ctrl->async_event_work);
2348 flush_work(&ctrl->scan_work);
2349 nvme_remove_namespaces(ctrl);
2350
2351 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2352
2353 spin_lock(&dev_list_lock);
2354 list_del(&ctrl->node);
2355 spin_unlock(&dev_list_lock);
2356 }
2357 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2358
2359 static void nvme_free_ctrl(struct kref *kref)
2360 {
2361 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2362
2363 put_device(ctrl->device);
2364 nvme_release_instance(ctrl);
2365 ida_destroy(&ctrl->ns_ida);
2366
2367 ctrl->ops->free_ctrl(ctrl);
2368 }
2369
2370 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2371 {
2372 kref_put(&ctrl->kref, nvme_free_ctrl);
2373 }
2374 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2375
2376 /*
2377 * Initialize a NVMe controller structures. This needs to be called during
2378 * earliest initialization so that we have the initialized structured around
2379 * during probing.
2380 */
2381 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2382 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2383 {
2384 int ret;
2385
2386 ctrl->state = NVME_CTRL_NEW;
2387 spin_lock_init(&ctrl->lock);
2388 INIT_LIST_HEAD(&ctrl->namespaces);
2389 mutex_init(&ctrl->namespaces_mutex);
2390 kref_init(&ctrl->kref);
2391 ctrl->dev = dev;
2392 ctrl->ops = ops;
2393 ctrl->quirks = quirks;
2394 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2395 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2396
2397 ret = nvme_set_instance(ctrl);
2398 if (ret)
2399 goto out;
2400
2401 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2402 MKDEV(nvme_char_major, ctrl->instance),
2403 ctrl, nvme_dev_attr_groups,
2404 "nvme%d", ctrl->instance);
2405 if (IS_ERR(ctrl->device)) {
2406 ret = PTR_ERR(ctrl->device);
2407 goto out_release_instance;
2408 }
2409 get_device(ctrl->device);
2410 ida_init(&ctrl->ns_ida);
2411
2412 spin_lock(&dev_list_lock);
2413 list_add_tail(&ctrl->node, &nvme_ctrl_list);
2414 spin_unlock(&dev_list_lock);
2415
2416 /*
2417 * Initialize latency tolerance controls. The sysfs files won't
2418 * be visible to userspace unless the device actually supports APST.
2419 */
2420 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2421 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2422 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2423
2424 return 0;
2425 out_release_instance:
2426 nvme_release_instance(ctrl);
2427 out:
2428 return ret;
2429 }
2430 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2431
2432 /**
2433 * nvme_kill_queues(): Ends all namespace queues
2434 * @ctrl: the dead controller that needs to end
2435 *
2436 * Call this function when the driver determines it is unable to get the
2437 * controller in a state capable of servicing IO.
2438 */
2439 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2440 {
2441 struct nvme_ns *ns;
2442
2443 mutex_lock(&ctrl->namespaces_mutex);
2444
2445 /* Forcibly start all queues to avoid having stuck requests */
2446 blk_mq_start_hw_queues(ctrl->admin_q);
2447
2448 list_for_each_entry(ns, &ctrl->namespaces, list) {
2449 /*
2450 * Revalidating a dead namespace sets capacity to 0. This will
2451 * end buffered writers dirtying pages that can't be synced.
2452 */
2453 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2454 continue;
2455 revalidate_disk(ns->disk);
2456 blk_set_queue_dying(ns->queue);
2457
2458 /*
2459 * Forcibly start all queues to avoid having stuck requests.
2460 * Note that we must ensure the queues are not stopped
2461 * when the final removal happens.
2462 */
2463 blk_mq_start_hw_queues(ns->queue);
2464
2465 /* draining requests in requeue list */
2466 blk_mq_kick_requeue_list(ns->queue);
2467 }
2468 mutex_unlock(&ctrl->namespaces_mutex);
2469 }
2470 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2471
2472 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2473 {
2474 struct nvme_ns *ns;
2475
2476 mutex_lock(&ctrl->namespaces_mutex);
2477 list_for_each_entry(ns, &ctrl->namespaces, list)
2478 blk_mq_unfreeze_queue(ns->queue);
2479 mutex_unlock(&ctrl->namespaces_mutex);
2480 }
2481 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2482
2483 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2484 {
2485 struct nvme_ns *ns;
2486
2487 mutex_lock(&ctrl->namespaces_mutex);
2488 list_for_each_entry(ns, &ctrl->namespaces, list) {
2489 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2490 if (timeout <= 0)
2491 break;
2492 }
2493 mutex_unlock(&ctrl->namespaces_mutex);
2494 }
2495 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2496
2497 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2498 {
2499 struct nvme_ns *ns;
2500
2501 mutex_lock(&ctrl->namespaces_mutex);
2502 list_for_each_entry(ns, &ctrl->namespaces, list)
2503 blk_mq_freeze_queue_wait(ns->queue);
2504 mutex_unlock(&ctrl->namespaces_mutex);
2505 }
2506 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2507
2508 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2509 {
2510 struct nvme_ns *ns;
2511
2512 mutex_lock(&ctrl->namespaces_mutex);
2513 list_for_each_entry(ns, &ctrl->namespaces, list)
2514 blk_freeze_queue_start(ns->queue);
2515 mutex_unlock(&ctrl->namespaces_mutex);
2516 }
2517 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2518
2519 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2520 {
2521 struct nvme_ns *ns;
2522
2523 mutex_lock(&ctrl->namespaces_mutex);
2524 list_for_each_entry(ns, &ctrl->namespaces, list)
2525 blk_mq_quiesce_queue(ns->queue);
2526 mutex_unlock(&ctrl->namespaces_mutex);
2527 }
2528 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2529
2530 void nvme_start_queues(struct nvme_ctrl *ctrl)
2531 {
2532 struct nvme_ns *ns;
2533
2534 mutex_lock(&ctrl->namespaces_mutex);
2535 list_for_each_entry(ns, &ctrl->namespaces, list) {
2536 blk_mq_start_stopped_hw_queues(ns->queue, true);
2537 blk_mq_kick_requeue_list(ns->queue);
2538 }
2539 mutex_unlock(&ctrl->namespaces_mutex);
2540 }
2541 EXPORT_SYMBOL_GPL(nvme_start_queues);
2542
2543 int __init nvme_core_init(void)
2544 {
2545 int result;
2546
2547 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2548 &nvme_dev_fops);
2549 if (result < 0)
2550 return result;
2551 else if (result > 0)
2552 nvme_char_major = result;
2553
2554 nvme_class = class_create(THIS_MODULE, "nvme");
2555 if (IS_ERR(nvme_class)) {
2556 result = PTR_ERR(nvme_class);
2557 goto unregister_chrdev;
2558 }
2559
2560 return 0;
2561
2562 unregister_chrdev:
2563 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2564 return result;
2565 }
2566
2567 void nvme_core_exit(void)
2568 {
2569 class_destroy(nvme_class);
2570 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2571 }
2572
2573 MODULE_LICENSE("GPL");
2574 MODULE_VERSION("1.0");
2575 module_init(nvme_core_init);
2576 module_exit(nvme_core_exit);