]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/nvme/host/core.c
d393d64955cb324bb0f391af64bb47ed101aa2ce
[mirror_ubuntu-zesty-kernel.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 unsigned int nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, uint, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 EXPORT_SYMBOL_GPL(nvme_max_retries);
55
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58
59 static LIST_HEAD(nvme_ctrl_list);
60 static DEFINE_SPINLOCK(dev_list_lock);
61
62 static struct class *nvme_class;
63
64 void nvme_cancel_request(struct request *req, void *data, bool reserved)
65 {
66 int status;
67
68 if (!blk_mq_request_started(req))
69 return;
70
71 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
72 "Cancelling I/O %d", req->tag);
73
74 status = NVME_SC_ABORT_REQ;
75 if (blk_queue_dying(req->q))
76 status |= NVME_SC_DNR;
77 blk_mq_complete_request(req, status);
78 }
79 EXPORT_SYMBOL_GPL(nvme_cancel_request);
80
81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
82 enum nvme_ctrl_state new_state)
83 {
84 enum nvme_ctrl_state old_state;
85 bool changed = false;
86
87 spin_lock_irq(&ctrl->lock);
88
89 old_state = ctrl->state;
90 switch (new_state) {
91 case NVME_CTRL_LIVE:
92 switch (old_state) {
93 case NVME_CTRL_NEW:
94 case NVME_CTRL_RESETTING:
95 case NVME_CTRL_RECONNECTING:
96 changed = true;
97 /* FALLTHRU */
98 default:
99 break;
100 }
101 break;
102 case NVME_CTRL_RESETTING:
103 switch (old_state) {
104 case NVME_CTRL_NEW:
105 case NVME_CTRL_LIVE:
106 case NVME_CTRL_RECONNECTING:
107 changed = true;
108 /* FALLTHRU */
109 default:
110 break;
111 }
112 break;
113 case NVME_CTRL_RECONNECTING:
114 switch (old_state) {
115 case NVME_CTRL_LIVE:
116 changed = true;
117 /* FALLTHRU */
118 default:
119 break;
120 }
121 break;
122 case NVME_CTRL_DELETING:
123 switch (old_state) {
124 case NVME_CTRL_LIVE:
125 case NVME_CTRL_RESETTING:
126 case NVME_CTRL_RECONNECTING:
127 changed = true;
128 /* FALLTHRU */
129 default:
130 break;
131 }
132 break;
133 case NVME_CTRL_DEAD:
134 switch (old_state) {
135 case NVME_CTRL_DELETING:
136 changed = true;
137 /* FALLTHRU */
138 default:
139 break;
140 }
141 break;
142 default:
143 break;
144 }
145
146 if (changed)
147 ctrl->state = new_state;
148
149 spin_unlock_irq(&ctrl->lock);
150
151 return changed;
152 }
153 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
154
155 static void nvme_free_ns(struct kref *kref)
156 {
157 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
158
159 if (ns->ndev)
160 nvme_nvm_unregister(ns);
161
162 if (ns->disk) {
163 spin_lock(&dev_list_lock);
164 ns->disk->private_data = NULL;
165 spin_unlock(&dev_list_lock);
166 }
167
168 put_disk(ns->disk);
169 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
170 nvme_put_ctrl(ns->ctrl);
171 kfree(ns);
172 }
173
174 static void nvme_put_ns(struct nvme_ns *ns)
175 {
176 kref_put(&ns->kref, nvme_free_ns);
177 }
178
179 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
180 {
181 struct nvme_ns *ns;
182
183 spin_lock(&dev_list_lock);
184 ns = disk->private_data;
185 if (ns) {
186 if (!kref_get_unless_zero(&ns->kref))
187 goto fail;
188 if (!try_module_get(ns->ctrl->ops->module))
189 goto fail_put_ns;
190 }
191 spin_unlock(&dev_list_lock);
192
193 return ns;
194
195 fail_put_ns:
196 kref_put(&ns->kref, nvme_free_ns);
197 fail:
198 spin_unlock(&dev_list_lock);
199 return NULL;
200 }
201
202 void nvme_requeue_req(struct request *req)
203 {
204 blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
205 }
206 EXPORT_SYMBOL_GPL(nvme_requeue_req);
207
208 struct request *nvme_alloc_request(struct request_queue *q,
209 struct nvme_command *cmd, unsigned int flags, int qid)
210 {
211 struct request *req;
212
213 if (qid == NVME_QID_ANY) {
214 req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
215 } else {
216 req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
217 qid ? qid - 1 : 0);
218 }
219 if (IS_ERR(req))
220 return req;
221
222 req->cmd_type = REQ_TYPE_DRV_PRIV;
223 req->cmd_flags |= REQ_FAILFAST_DRIVER;
224 nvme_req(req)->cmd = cmd;
225
226 return req;
227 }
228 EXPORT_SYMBOL_GPL(nvme_alloc_request);
229
230 static inline void nvme_setup_flush(struct nvme_ns *ns,
231 struct nvme_command *cmnd)
232 {
233 memset(cmnd, 0, sizeof(*cmnd));
234 cmnd->common.opcode = nvme_cmd_flush;
235 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
236 }
237
238 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
239 struct nvme_command *cmnd)
240 {
241 struct nvme_dsm_range *range;
242 unsigned int nr_bytes = blk_rq_bytes(req);
243
244 range = kmalloc(sizeof(*range), GFP_ATOMIC);
245 if (!range)
246 return BLK_MQ_RQ_QUEUE_BUSY;
247
248 range->cattr = cpu_to_le32(0);
249 range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
250 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
251
252 memset(cmnd, 0, sizeof(*cmnd));
253 cmnd->dsm.opcode = nvme_cmd_dsm;
254 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
255 cmnd->dsm.nr = 0;
256 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
257
258 req->special_vec.bv_page = virt_to_page(range);
259 req->special_vec.bv_offset = offset_in_page(range);
260 req->special_vec.bv_len = sizeof(*range);
261 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
262
263 return BLK_MQ_RQ_QUEUE_OK;
264 }
265
266 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
267 struct nvme_command *cmnd)
268 {
269 u16 control = 0;
270 u32 dsmgmt = 0;
271
272 if (req->cmd_flags & REQ_FUA)
273 control |= NVME_RW_FUA;
274 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
275 control |= NVME_RW_LR;
276
277 if (req->cmd_flags & REQ_RAHEAD)
278 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
279
280 memset(cmnd, 0, sizeof(*cmnd));
281 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
282 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
283 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
284 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
285
286 if (ns->ms) {
287 switch (ns->pi_type) {
288 case NVME_NS_DPS_PI_TYPE3:
289 control |= NVME_RW_PRINFO_PRCHK_GUARD;
290 break;
291 case NVME_NS_DPS_PI_TYPE1:
292 case NVME_NS_DPS_PI_TYPE2:
293 control |= NVME_RW_PRINFO_PRCHK_GUARD |
294 NVME_RW_PRINFO_PRCHK_REF;
295 cmnd->rw.reftag = cpu_to_le32(
296 nvme_block_nr(ns, blk_rq_pos(req)));
297 break;
298 }
299 if (!blk_integrity_rq(req))
300 control |= NVME_RW_PRINFO_PRACT;
301 }
302
303 cmnd->rw.control = cpu_to_le16(control);
304 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
305 }
306
307 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
308 struct nvme_command *cmd)
309 {
310 int ret = BLK_MQ_RQ_QUEUE_OK;
311
312 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
313 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
314 else if (req_op(req) == REQ_OP_FLUSH)
315 nvme_setup_flush(ns, cmd);
316 else if (req_op(req) == REQ_OP_DISCARD)
317 ret = nvme_setup_discard(ns, req, cmd);
318 else
319 nvme_setup_rw(ns, req, cmd);
320
321 cmd->common.command_id = req->tag;
322
323 return ret;
324 }
325 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
326
327 /*
328 * Returns 0 on success. If the result is negative, it's a Linux error code;
329 * if the result is positive, it's an NVM Express status code
330 */
331 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
332 union nvme_result *result, void *buffer, unsigned bufflen,
333 unsigned timeout, int qid, int at_head, int flags)
334 {
335 struct request *req;
336 int ret;
337
338 req = nvme_alloc_request(q, cmd, flags, qid);
339 if (IS_ERR(req))
340 return PTR_ERR(req);
341
342 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
343
344 if (buffer && bufflen) {
345 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
346 if (ret)
347 goto out;
348 }
349
350 blk_execute_rq(req->q, NULL, req, at_head);
351 if (result)
352 *result = nvme_req(req)->result;
353 ret = req->errors;
354 out:
355 blk_mq_free_request(req);
356 return ret;
357 }
358 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
359
360 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
361 void *buffer, unsigned bufflen)
362 {
363 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
364 NVME_QID_ANY, 0, 0);
365 }
366 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
367
368 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
369 void __user *ubuffer, unsigned bufflen,
370 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
371 u32 *result, unsigned timeout)
372 {
373 bool write = nvme_is_write(cmd);
374 struct nvme_ns *ns = q->queuedata;
375 struct gendisk *disk = ns ? ns->disk : NULL;
376 struct request *req;
377 struct bio *bio = NULL;
378 void *meta = NULL;
379 int ret;
380
381 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
382 if (IS_ERR(req))
383 return PTR_ERR(req);
384
385 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
386
387 if (ubuffer && bufflen) {
388 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
389 GFP_KERNEL);
390 if (ret)
391 goto out;
392 bio = req->bio;
393
394 if (!disk)
395 goto submit;
396 bio->bi_bdev = bdget_disk(disk, 0);
397 if (!bio->bi_bdev) {
398 ret = -ENODEV;
399 goto out_unmap;
400 }
401
402 if (meta_buffer && meta_len) {
403 struct bio_integrity_payload *bip;
404
405 meta = kmalloc(meta_len, GFP_KERNEL);
406 if (!meta) {
407 ret = -ENOMEM;
408 goto out_unmap;
409 }
410
411 if (write) {
412 if (copy_from_user(meta, meta_buffer,
413 meta_len)) {
414 ret = -EFAULT;
415 goto out_free_meta;
416 }
417 }
418
419 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
420 if (IS_ERR(bip)) {
421 ret = PTR_ERR(bip);
422 goto out_free_meta;
423 }
424
425 bip->bip_iter.bi_size = meta_len;
426 bip->bip_iter.bi_sector = meta_seed;
427
428 ret = bio_integrity_add_page(bio, virt_to_page(meta),
429 meta_len, offset_in_page(meta));
430 if (ret != meta_len) {
431 ret = -ENOMEM;
432 goto out_free_meta;
433 }
434 }
435 }
436 submit:
437 blk_execute_rq(req->q, disk, req, 0);
438 ret = req->errors;
439 if (result)
440 *result = le32_to_cpu(nvme_req(req)->result.u32);
441 if (meta && !ret && !write) {
442 if (copy_to_user(meta_buffer, meta, meta_len))
443 ret = -EFAULT;
444 }
445 out_free_meta:
446 kfree(meta);
447 out_unmap:
448 if (bio) {
449 if (disk && bio->bi_bdev)
450 bdput(bio->bi_bdev);
451 blk_rq_unmap_user(bio);
452 }
453 out:
454 blk_mq_free_request(req);
455 return ret;
456 }
457
458 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
459 void __user *ubuffer, unsigned bufflen, u32 *result,
460 unsigned timeout)
461 {
462 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
463 result, timeout);
464 }
465
466 static void nvme_keep_alive_end_io(struct request *rq, int error)
467 {
468 struct nvme_ctrl *ctrl = rq->end_io_data;
469
470 blk_mq_free_request(rq);
471
472 if (error) {
473 dev_err(ctrl->device,
474 "failed nvme_keep_alive_end_io error=%d\n", error);
475 return;
476 }
477
478 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
479 }
480
481 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
482 {
483 struct nvme_command c;
484 struct request *rq;
485
486 memset(&c, 0, sizeof(c));
487 c.common.opcode = nvme_admin_keep_alive;
488
489 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
490 NVME_QID_ANY);
491 if (IS_ERR(rq))
492 return PTR_ERR(rq);
493
494 rq->timeout = ctrl->kato * HZ;
495 rq->end_io_data = ctrl;
496
497 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
498
499 return 0;
500 }
501
502 static void nvme_keep_alive_work(struct work_struct *work)
503 {
504 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
505 struct nvme_ctrl, ka_work);
506
507 if (nvme_keep_alive(ctrl)) {
508 /* allocation failure, reset the controller */
509 dev_err(ctrl->device, "keep-alive failed\n");
510 ctrl->ops->reset_ctrl(ctrl);
511 return;
512 }
513 }
514
515 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
516 {
517 if (unlikely(ctrl->kato == 0))
518 return;
519
520 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
521 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
522 }
523 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
524
525 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
526 {
527 if (unlikely(ctrl->kato == 0))
528 return;
529
530 cancel_delayed_work_sync(&ctrl->ka_work);
531 }
532 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
533
534 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
535 {
536 struct nvme_command c = { };
537 int error;
538
539 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
540 c.identify.opcode = nvme_admin_identify;
541 c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);
542
543 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
544 if (!*id)
545 return -ENOMEM;
546
547 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
548 sizeof(struct nvme_id_ctrl));
549 if (error)
550 kfree(*id);
551 return error;
552 }
553
554 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
555 {
556 struct nvme_command c = { };
557
558 c.identify.opcode = nvme_admin_identify;
559 c.identify.cns = cpu_to_le32(NVME_ID_CNS_NS_ACTIVE_LIST);
560 c.identify.nsid = cpu_to_le32(nsid);
561 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
562 }
563
564 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
565 struct nvme_id_ns **id)
566 {
567 struct nvme_command c = { };
568 int error;
569
570 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
571 c.identify.opcode = nvme_admin_identify,
572 c.identify.nsid = cpu_to_le32(nsid),
573
574 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
575 if (!*id)
576 return -ENOMEM;
577
578 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
579 sizeof(struct nvme_id_ns));
580 if (error)
581 kfree(*id);
582 return error;
583 }
584
585 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
586 void *buffer, size_t buflen, u32 *result)
587 {
588 struct nvme_command c;
589 union nvme_result res;
590 int ret;
591
592 memset(&c, 0, sizeof(c));
593 c.features.opcode = nvme_admin_get_features;
594 c.features.nsid = cpu_to_le32(nsid);
595 c.features.fid = cpu_to_le32(fid);
596
597 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
598 NVME_QID_ANY, 0, 0);
599 if (ret >= 0 && result)
600 *result = le32_to_cpu(res.u32);
601 return ret;
602 }
603
604 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
605 void *buffer, size_t buflen, u32 *result)
606 {
607 struct nvme_command c;
608 union nvme_result res;
609 int ret;
610
611 memset(&c, 0, sizeof(c));
612 c.features.opcode = nvme_admin_set_features;
613 c.features.fid = cpu_to_le32(fid);
614 c.features.dword11 = cpu_to_le32(dword11);
615
616 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
617 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
618 if (ret >= 0 && result)
619 *result = le32_to_cpu(res.u32);
620 return ret;
621 }
622
623 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
624 {
625 struct nvme_command c = { };
626 int error;
627
628 c.common.opcode = nvme_admin_get_log_page,
629 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
630 c.common.cdw10[0] = cpu_to_le32(
631 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
632 NVME_LOG_SMART),
633
634 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
635 if (!*log)
636 return -ENOMEM;
637
638 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
639 sizeof(struct nvme_smart_log));
640 if (error)
641 kfree(*log);
642 return error;
643 }
644
645 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
646 {
647 u32 q_count = (*count - 1) | ((*count - 1) << 16);
648 u32 result;
649 int status, nr_io_queues;
650
651 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
652 &result);
653 if (status < 0)
654 return status;
655
656 /*
657 * Degraded controllers might return an error when setting the queue
658 * count. We still want to be able to bring them online and offer
659 * access to the admin queue, as that might be only way to fix them up.
660 */
661 if (status > 0) {
662 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
663 *count = 0;
664 } else {
665 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
666 *count = min(*count, nr_io_queues);
667 }
668
669 return 0;
670 }
671 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
672
673 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
674 {
675 struct nvme_user_io io;
676 struct nvme_command c;
677 unsigned length, meta_len;
678 void __user *metadata;
679
680 if (copy_from_user(&io, uio, sizeof(io)))
681 return -EFAULT;
682 if (io.flags)
683 return -EINVAL;
684
685 switch (io.opcode) {
686 case nvme_cmd_write:
687 case nvme_cmd_read:
688 case nvme_cmd_compare:
689 break;
690 default:
691 return -EINVAL;
692 }
693
694 length = (io.nblocks + 1) << ns->lba_shift;
695 meta_len = (io.nblocks + 1) * ns->ms;
696 metadata = (void __user *)(uintptr_t)io.metadata;
697
698 if (ns->ext) {
699 length += meta_len;
700 meta_len = 0;
701 } else if (meta_len) {
702 if ((io.metadata & 3) || !io.metadata)
703 return -EINVAL;
704 }
705
706 memset(&c, 0, sizeof(c));
707 c.rw.opcode = io.opcode;
708 c.rw.flags = io.flags;
709 c.rw.nsid = cpu_to_le32(ns->ns_id);
710 c.rw.slba = cpu_to_le64(io.slba);
711 c.rw.length = cpu_to_le16(io.nblocks);
712 c.rw.control = cpu_to_le16(io.control);
713 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
714 c.rw.reftag = cpu_to_le32(io.reftag);
715 c.rw.apptag = cpu_to_le16(io.apptag);
716 c.rw.appmask = cpu_to_le16(io.appmask);
717
718 return __nvme_submit_user_cmd(ns->queue, &c,
719 (void __user *)(uintptr_t)io.addr, length,
720 metadata, meta_len, io.slba, NULL, 0);
721 }
722
723 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
724 struct nvme_passthru_cmd __user *ucmd)
725 {
726 struct nvme_passthru_cmd cmd;
727 struct nvme_command c;
728 unsigned timeout = 0;
729 int status;
730
731 if (!capable(CAP_SYS_ADMIN))
732 return -EACCES;
733 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
734 return -EFAULT;
735 if (cmd.flags)
736 return -EINVAL;
737
738 memset(&c, 0, sizeof(c));
739 c.common.opcode = cmd.opcode;
740 c.common.flags = cmd.flags;
741 c.common.nsid = cpu_to_le32(cmd.nsid);
742 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
743 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
744 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
745 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
746 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
747 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
748 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
749 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
750
751 if (cmd.timeout_ms)
752 timeout = msecs_to_jiffies(cmd.timeout_ms);
753
754 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
755 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
756 &cmd.result, timeout);
757 if (status >= 0) {
758 if (put_user(cmd.result, &ucmd->result))
759 return -EFAULT;
760 }
761
762 return status;
763 }
764
765 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
766 unsigned int cmd, unsigned long arg)
767 {
768 struct nvme_ns *ns = bdev->bd_disk->private_data;
769
770 switch (cmd) {
771 case NVME_IOCTL_ID:
772 force_successful_syscall_return();
773 return ns->ns_id;
774 case NVME_IOCTL_ADMIN_CMD:
775 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
776 case NVME_IOCTL_IO_CMD:
777 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
778 case NVME_IOCTL_SUBMIT_IO:
779 return nvme_submit_io(ns, (void __user *)arg);
780 #ifdef CONFIG_BLK_DEV_NVME_SCSI
781 case SG_GET_VERSION_NUM:
782 return nvme_sg_get_version_num((void __user *)arg);
783 case SG_IO:
784 return nvme_sg_io(ns, (void __user *)arg);
785 #endif
786 default:
787 return -ENOTTY;
788 }
789 }
790
791 #ifdef CONFIG_COMPAT
792 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
793 unsigned int cmd, unsigned long arg)
794 {
795 switch (cmd) {
796 case SG_IO:
797 return -ENOIOCTLCMD;
798 }
799 return nvme_ioctl(bdev, mode, cmd, arg);
800 }
801 #else
802 #define nvme_compat_ioctl NULL
803 #endif
804
805 static int nvme_open(struct block_device *bdev, fmode_t mode)
806 {
807 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
808 }
809
810 static void nvme_release(struct gendisk *disk, fmode_t mode)
811 {
812 struct nvme_ns *ns = disk->private_data;
813
814 module_put(ns->ctrl->ops->module);
815 nvme_put_ns(ns);
816 }
817
818 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
819 {
820 /* some standard values */
821 geo->heads = 1 << 6;
822 geo->sectors = 1 << 5;
823 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
824 return 0;
825 }
826
827 #ifdef CONFIG_BLK_DEV_INTEGRITY
828 static void nvme_init_integrity(struct nvme_ns *ns)
829 {
830 struct blk_integrity integrity;
831
832 memset(&integrity, 0, sizeof(integrity));
833 switch (ns->pi_type) {
834 case NVME_NS_DPS_PI_TYPE3:
835 integrity.profile = &t10_pi_type3_crc;
836 integrity.tag_size = sizeof(u16) + sizeof(u32);
837 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
838 break;
839 case NVME_NS_DPS_PI_TYPE1:
840 case NVME_NS_DPS_PI_TYPE2:
841 integrity.profile = &t10_pi_type1_crc;
842 integrity.tag_size = sizeof(u16);
843 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
844 break;
845 default:
846 integrity.profile = NULL;
847 break;
848 }
849 integrity.tuple_size = ns->ms;
850 blk_integrity_register(ns->disk, &integrity);
851 blk_queue_max_integrity_segments(ns->queue, 1);
852 }
853 #else
854 static void nvme_init_integrity(struct nvme_ns *ns)
855 {
856 }
857 #endif /* CONFIG_BLK_DEV_INTEGRITY */
858
859 static void nvme_config_discard(struct nvme_ns *ns)
860 {
861 struct nvme_ctrl *ctrl = ns->ctrl;
862 u32 logical_block_size = queue_logical_block_size(ns->queue);
863
864 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
865 ns->queue->limits.discard_zeroes_data = 1;
866 else
867 ns->queue->limits.discard_zeroes_data = 0;
868
869 ns->queue->limits.discard_alignment = logical_block_size;
870 ns->queue->limits.discard_granularity = logical_block_size;
871 blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
872 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
873 }
874
875 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
876 {
877 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
878 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
879 return -ENODEV;
880 }
881
882 if ((*id)->ncap == 0) {
883 kfree(*id);
884 return -ENODEV;
885 }
886
887 if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
888 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
889 if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
890 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
891
892 return 0;
893 }
894
895 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
896 {
897 struct nvme_ns *ns = disk->private_data;
898 u8 lbaf, pi_type;
899 u16 old_ms;
900 unsigned short bs;
901
902 old_ms = ns->ms;
903 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
904 ns->lba_shift = id->lbaf[lbaf].ds;
905 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
906 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
907
908 /*
909 * If identify namespace failed, use default 512 byte block size so
910 * block layer can use before failing read/write for 0 capacity.
911 */
912 if (ns->lba_shift == 0)
913 ns->lba_shift = 9;
914 bs = 1 << ns->lba_shift;
915 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
916 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
917 id->dps & NVME_NS_DPS_PI_MASK : 0;
918
919 blk_mq_freeze_queue(disk->queue);
920 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
921 ns->ms != old_ms ||
922 bs != queue_logical_block_size(disk->queue) ||
923 (ns->ms && ns->ext)))
924 blk_integrity_unregister(disk);
925
926 ns->pi_type = pi_type;
927 blk_queue_logical_block_size(ns->queue, bs);
928
929 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
930 nvme_init_integrity(ns);
931 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
932 set_capacity(disk, 0);
933 else
934 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
935
936 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
937 nvme_config_discard(ns);
938 blk_mq_unfreeze_queue(disk->queue);
939 }
940
941 static int nvme_revalidate_disk(struct gendisk *disk)
942 {
943 struct nvme_ns *ns = disk->private_data;
944 struct nvme_id_ns *id = NULL;
945 int ret;
946
947 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
948 set_capacity(disk, 0);
949 return -ENODEV;
950 }
951
952 ret = nvme_revalidate_ns(ns, &id);
953 if (ret)
954 return ret;
955
956 __nvme_revalidate_disk(disk, id);
957 kfree(id);
958
959 return 0;
960 }
961
962 static char nvme_pr_type(enum pr_type type)
963 {
964 switch (type) {
965 case PR_WRITE_EXCLUSIVE:
966 return 1;
967 case PR_EXCLUSIVE_ACCESS:
968 return 2;
969 case PR_WRITE_EXCLUSIVE_REG_ONLY:
970 return 3;
971 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
972 return 4;
973 case PR_WRITE_EXCLUSIVE_ALL_REGS:
974 return 5;
975 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
976 return 6;
977 default:
978 return 0;
979 }
980 };
981
982 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
983 u64 key, u64 sa_key, u8 op)
984 {
985 struct nvme_ns *ns = bdev->bd_disk->private_data;
986 struct nvme_command c;
987 u8 data[16] = { 0, };
988
989 put_unaligned_le64(key, &data[0]);
990 put_unaligned_le64(sa_key, &data[8]);
991
992 memset(&c, 0, sizeof(c));
993 c.common.opcode = op;
994 c.common.nsid = cpu_to_le32(ns->ns_id);
995 c.common.cdw10[0] = cpu_to_le32(cdw10);
996
997 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
998 }
999
1000 static int nvme_pr_register(struct block_device *bdev, u64 old,
1001 u64 new, unsigned flags)
1002 {
1003 u32 cdw10;
1004
1005 if (flags & ~PR_FL_IGNORE_KEY)
1006 return -EOPNOTSUPP;
1007
1008 cdw10 = old ? 2 : 0;
1009 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1010 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1011 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1012 }
1013
1014 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1015 enum pr_type type, unsigned flags)
1016 {
1017 u32 cdw10;
1018
1019 if (flags & ~PR_FL_IGNORE_KEY)
1020 return -EOPNOTSUPP;
1021
1022 cdw10 = nvme_pr_type(type) << 8;
1023 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1024 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1025 }
1026
1027 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1028 enum pr_type type, bool abort)
1029 {
1030 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1031 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1032 }
1033
1034 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1035 {
1036 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1037 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1038 }
1039
1040 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1041 {
1042 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1043 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1044 }
1045
1046 static const struct pr_ops nvme_pr_ops = {
1047 .pr_register = nvme_pr_register,
1048 .pr_reserve = nvme_pr_reserve,
1049 .pr_release = nvme_pr_release,
1050 .pr_preempt = nvme_pr_preempt,
1051 .pr_clear = nvme_pr_clear,
1052 };
1053
1054 static const struct block_device_operations nvme_fops = {
1055 .owner = THIS_MODULE,
1056 .ioctl = nvme_ioctl,
1057 .compat_ioctl = nvme_compat_ioctl,
1058 .open = nvme_open,
1059 .release = nvme_release,
1060 .getgeo = nvme_getgeo,
1061 .revalidate_disk= nvme_revalidate_disk,
1062 .pr_ops = &nvme_pr_ops,
1063 };
1064
1065 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1066 {
1067 unsigned long timeout =
1068 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1069 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1070 int ret;
1071
1072 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1073 if (csts == ~0)
1074 return -ENODEV;
1075 if ((csts & NVME_CSTS_RDY) == bit)
1076 break;
1077
1078 msleep(100);
1079 if (fatal_signal_pending(current))
1080 return -EINTR;
1081 if (time_after(jiffies, timeout)) {
1082 dev_err(ctrl->device,
1083 "Device not ready; aborting %s\n", enabled ?
1084 "initialisation" : "reset");
1085 return -ENODEV;
1086 }
1087 }
1088
1089 return ret;
1090 }
1091
1092 /*
1093 * If the device has been passed off to us in an enabled state, just clear
1094 * the enabled bit. The spec says we should set the 'shutdown notification
1095 * bits', but doing so may cause the device to complete commands to the
1096 * admin queue ... and we don't know what memory that might be pointing at!
1097 */
1098 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1099 {
1100 int ret;
1101
1102 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1103 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1104
1105 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1106 if (ret)
1107 return ret;
1108
1109 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1110 msleep(NVME_QUIRK_DELAY_AMOUNT);
1111
1112 return nvme_wait_ready(ctrl, cap, false);
1113 }
1114 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1115
1116 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1117 {
1118 /*
1119 * Default to a 4K page size, with the intention to update this
1120 * path in the future to accomodate architectures with differing
1121 * kernel and IO page sizes.
1122 */
1123 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1124 int ret;
1125
1126 if (page_shift < dev_page_min) {
1127 dev_err(ctrl->device,
1128 "Minimum device page size %u too large for host (%u)\n",
1129 1 << dev_page_min, 1 << page_shift);
1130 return -ENODEV;
1131 }
1132
1133 ctrl->page_size = 1 << page_shift;
1134
1135 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1136 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1137 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1138 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1139 ctrl->ctrl_config |= NVME_CC_ENABLE;
1140
1141 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1142 if (ret)
1143 return ret;
1144 return nvme_wait_ready(ctrl, cap, true);
1145 }
1146 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1147
1148 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1149 {
1150 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1151 u32 csts;
1152 int ret;
1153
1154 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1155 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1156
1157 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1158 if (ret)
1159 return ret;
1160
1161 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1162 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1163 break;
1164
1165 msleep(100);
1166 if (fatal_signal_pending(current))
1167 return -EINTR;
1168 if (time_after(jiffies, timeout)) {
1169 dev_err(ctrl->device,
1170 "Device shutdown incomplete; abort shutdown\n");
1171 return -ENODEV;
1172 }
1173 }
1174
1175 return ret;
1176 }
1177 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1178
1179 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1180 struct request_queue *q)
1181 {
1182 bool vwc = false;
1183
1184 if (ctrl->max_hw_sectors) {
1185 u32 max_segments =
1186 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1187
1188 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1189 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1190 }
1191 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1192 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1193 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1194 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1195 vwc = true;
1196 blk_queue_write_cache(q, vwc, vwc);
1197 }
1198
1199 struct nvme_core_quirk_entry {
1200 /*
1201 * NVMe model and firmware strings are padded with spaces. For
1202 * simplicity, strings in the quirk table are padded with NULLs
1203 * instead.
1204 */
1205 u16 vid;
1206 const char *mn;
1207 const char *fr;
1208 unsigned long quirks;
1209 };
1210
1211 static const struct nvme_core_quirk_entry core_quirks[] = {
1212 };
1213
1214 /* match is null-terminated but idstr is space-padded. */
1215 static bool string_matches(const char *idstr, const char *match, size_t len)
1216 {
1217 size_t matchlen;
1218
1219 if (!match)
1220 return true;
1221
1222 matchlen = strlen(match);
1223 WARN_ON_ONCE(matchlen > len);
1224
1225 if (memcmp(idstr, match, matchlen))
1226 return false;
1227
1228 for (; matchlen < len; matchlen++)
1229 if (idstr[matchlen] != ' ')
1230 return false;
1231
1232 return true;
1233 }
1234
1235 static bool quirk_matches(const struct nvme_id_ctrl *id,
1236 const struct nvme_core_quirk_entry *q)
1237 {
1238 return q->vid == le16_to_cpu(id->vid) &&
1239 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1240 string_matches(id->fr, q->fr, sizeof(id->fr));
1241 }
1242
1243 /*
1244 * Initialize the cached copies of the Identify data and various controller
1245 * register in our nvme_ctrl structure. This should be called as soon as
1246 * the admin queue is fully up and running.
1247 */
1248 int nvme_init_identify(struct nvme_ctrl *ctrl)
1249 {
1250 struct nvme_id_ctrl *id;
1251 u64 cap;
1252 int ret, page_shift;
1253 u32 max_hw_sectors;
1254
1255 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1256 if (ret) {
1257 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1258 return ret;
1259 }
1260
1261 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1262 if (ret) {
1263 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1264 return ret;
1265 }
1266 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1267
1268 if (ctrl->vs >= NVME_VS(1, 1, 0))
1269 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1270
1271 ret = nvme_identify_ctrl(ctrl, &id);
1272 if (ret) {
1273 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1274 return -EIO;
1275 }
1276
1277 if (!ctrl->identified) {
1278 /*
1279 * Check for quirks. Quirk can depend on firmware version,
1280 * so, in principle, the set of quirks present can change
1281 * across a reset. As a possible future enhancement, we
1282 * could re-scan for quirks every time we reinitialize
1283 * the device, but we'd have to make sure that the driver
1284 * behaves intelligently if the quirks change.
1285 */
1286
1287 int i;
1288
1289 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1290 if (quirk_matches(id, &core_quirks[i]))
1291 ctrl->quirks |= core_quirks[i].quirks;
1292 }
1293 }
1294
1295 ctrl->vid = le16_to_cpu(id->vid);
1296 ctrl->oncs = le16_to_cpup(&id->oncs);
1297 atomic_set(&ctrl->abort_limit, id->acl + 1);
1298 ctrl->vwc = id->vwc;
1299 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1300 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1301 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1302 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1303 if (id->mdts)
1304 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1305 else
1306 max_hw_sectors = UINT_MAX;
1307 ctrl->max_hw_sectors =
1308 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1309
1310 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1311 ctrl->sgls = le32_to_cpu(id->sgls);
1312 ctrl->kas = le16_to_cpu(id->kas);
1313
1314 if (ctrl->ops->is_fabrics) {
1315 ctrl->icdoff = le16_to_cpu(id->icdoff);
1316 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1317 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1318 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1319
1320 /*
1321 * In fabrics we need to verify the cntlid matches the
1322 * admin connect
1323 */
1324 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1325 ret = -EINVAL;
1326
1327 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1328 dev_err(ctrl->dev,
1329 "keep-alive support is mandatory for fabrics\n");
1330 ret = -EINVAL;
1331 }
1332 } else {
1333 ctrl->cntlid = le16_to_cpu(id->cntlid);
1334 }
1335
1336 kfree(id);
1337
1338 ctrl->identified = true;
1339 return ret;
1340 }
1341 EXPORT_SYMBOL_GPL(nvme_init_identify);
1342
1343 static int nvme_dev_open(struct inode *inode, struct file *file)
1344 {
1345 struct nvme_ctrl *ctrl;
1346 int instance = iminor(inode);
1347 int ret = -ENODEV;
1348
1349 spin_lock(&dev_list_lock);
1350 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1351 if (ctrl->instance != instance)
1352 continue;
1353
1354 if (!ctrl->admin_q) {
1355 ret = -EWOULDBLOCK;
1356 break;
1357 }
1358 if (!kref_get_unless_zero(&ctrl->kref))
1359 break;
1360 file->private_data = ctrl;
1361 ret = 0;
1362 break;
1363 }
1364 spin_unlock(&dev_list_lock);
1365
1366 return ret;
1367 }
1368
1369 static int nvme_dev_release(struct inode *inode, struct file *file)
1370 {
1371 nvme_put_ctrl(file->private_data);
1372 return 0;
1373 }
1374
1375 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1376 {
1377 struct nvme_ns *ns;
1378 int ret;
1379
1380 mutex_lock(&ctrl->namespaces_mutex);
1381 if (list_empty(&ctrl->namespaces)) {
1382 ret = -ENOTTY;
1383 goto out_unlock;
1384 }
1385
1386 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1387 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1388 dev_warn(ctrl->device,
1389 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1390 ret = -EINVAL;
1391 goto out_unlock;
1392 }
1393
1394 dev_warn(ctrl->device,
1395 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1396 kref_get(&ns->kref);
1397 mutex_unlock(&ctrl->namespaces_mutex);
1398
1399 ret = nvme_user_cmd(ctrl, ns, argp);
1400 nvme_put_ns(ns);
1401 return ret;
1402
1403 out_unlock:
1404 mutex_unlock(&ctrl->namespaces_mutex);
1405 return ret;
1406 }
1407
1408 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1409 unsigned long arg)
1410 {
1411 struct nvme_ctrl *ctrl = file->private_data;
1412 void __user *argp = (void __user *)arg;
1413
1414 switch (cmd) {
1415 case NVME_IOCTL_ADMIN_CMD:
1416 return nvme_user_cmd(ctrl, NULL, argp);
1417 case NVME_IOCTL_IO_CMD:
1418 return nvme_dev_user_cmd(ctrl, argp);
1419 case NVME_IOCTL_RESET:
1420 dev_warn(ctrl->device, "resetting controller\n");
1421 return ctrl->ops->reset_ctrl(ctrl);
1422 case NVME_IOCTL_SUBSYS_RESET:
1423 return nvme_reset_subsystem(ctrl);
1424 case NVME_IOCTL_RESCAN:
1425 nvme_queue_scan(ctrl);
1426 return 0;
1427 default:
1428 return -ENOTTY;
1429 }
1430 }
1431
1432 static const struct file_operations nvme_dev_fops = {
1433 .owner = THIS_MODULE,
1434 .open = nvme_dev_open,
1435 .release = nvme_dev_release,
1436 .unlocked_ioctl = nvme_dev_ioctl,
1437 .compat_ioctl = nvme_dev_ioctl,
1438 };
1439
1440 static ssize_t nvme_sysfs_reset(struct device *dev,
1441 struct device_attribute *attr, const char *buf,
1442 size_t count)
1443 {
1444 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1445 int ret;
1446
1447 ret = ctrl->ops->reset_ctrl(ctrl);
1448 if (ret < 0)
1449 return ret;
1450 return count;
1451 }
1452 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1453
1454 static ssize_t nvme_sysfs_rescan(struct device *dev,
1455 struct device_attribute *attr, const char *buf,
1456 size_t count)
1457 {
1458 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1459
1460 nvme_queue_scan(ctrl);
1461 return count;
1462 }
1463 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1464
1465 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1466 char *buf)
1467 {
1468 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1469 struct nvme_ctrl *ctrl = ns->ctrl;
1470 int serial_len = sizeof(ctrl->serial);
1471 int model_len = sizeof(ctrl->model);
1472
1473 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1474 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1475
1476 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1477 return sprintf(buf, "eui.%8phN\n", ns->eui);
1478
1479 while (ctrl->serial[serial_len - 1] == ' ')
1480 serial_len--;
1481 while (ctrl->model[model_len - 1] == ' ')
1482 model_len--;
1483
1484 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1485 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1486 }
1487 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1488
1489 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1490 char *buf)
1491 {
1492 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1493 return sprintf(buf, "%pU\n", ns->uuid);
1494 }
1495 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1496
1497 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1498 char *buf)
1499 {
1500 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1501 return sprintf(buf, "%8phd\n", ns->eui);
1502 }
1503 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1504
1505 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1506 char *buf)
1507 {
1508 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1509 return sprintf(buf, "%d\n", ns->ns_id);
1510 }
1511 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1512
1513 static struct attribute *nvme_ns_attrs[] = {
1514 &dev_attr_wwid.attr,
1515 &dev_attr_uuid.attr,
1516 &dev_attr_eui.attr,
1517 &dev_attr_nsid.attr,
1518 NULL,
1519 };
1520
1521 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1522 struct attribute *a, int n)
1523 {
1524 struct device *dev = container_of(kobj, struct device, kobj);
1525 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1526
1527 if (a == &dev_attr_uuid.attr) {
1528 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1529 return 0;
1530 }
1531 if (a == &dev_attr_eui.attr) {
1532 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1533 return 0;
1534 }
1535 return a->mode;
1536 }
1537
1538 static const struct attribute_group nvme_ns_attr_group = {
1539 .attrs = nvme_ns_attrs,
1540 .is_visible = nvme_ns_attrs_are_visible,
1541 };
1542
1543 #define nvme_show_str_function(field) \
1544 static ssize_t field##_show(struct device *dev, \
1545 struct device_attribute *attr, char *buf) \
1546 { \
1547 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1548 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1549 } \
1550 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1551
1552 #define nvme_show_int_function(field) \
1553 static ssize_t field##_show(struct device *dev, \
1554 struct device_attribute *attr, char *buf) \
1555 { \
1556 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1557 return sprintf(buf, "%d\n", ctrl->field); \
1558 } \
1559 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1560
1561 nvme_show_str_function(model);
1562 nvme_show_str_function(serial);
1563 nvme_show_str_function(firmware_rev);
1564 nvme_show_int_function(cntlid);
1565
1566 static ssize_t nvme_sysfs_delete(struct device *dev,
1567 struct device_attribute *attr, const char *buf,
1568 size_t count)
1569 {
1570 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1571
1572 if (device_remove_file_self(dev, attr))
1573 ctrl->ops->delete_ctrl(ctrl);
1574 return count;
1575 }
1576 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1577
1578 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1579 struct device_attribute *attr,
1580 char *buf)
1581 {
1582 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1583
1584 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1585 }
1586 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1587
1588 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1589 struct device_attribute *attr,
1590 char *buf)
1591 {
1592 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1593
1594 return snprintf(buf, PAGE_SIZE, "%s\n",
1595 ctrl->ops->get_subsysnqn(ctrl));
1596 }
1597 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1598
1599 static ssize_t nvme_sysfs_show_address(struct device *dev,
1600 struct device_attribute *attr,
1601 char *buf)
1602 {
1603 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1604
1605 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1606 }
1607 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1608
1609 static struct attribute *nvme_dev_attrs[] = {
1610 &dev_attr_reset_controller.attr,
1611 &dev_attr_rescan_controller.attr,
1612 &dev_attr_model.attr,
1613 &dev_attr_serial.attr,
1614 &dev_attr_firmware_rev.attr,
1615 &dev_attr_cntlid.attr,
1616 &dev_attr_delete_controller.attr,
1617 &dev_attr_transport.attr,
1618 &dev_attr_subsysnqn.attr,
1619 &dev_attr_address.attr,
1620 NULL
1621 };
1622
1623 #define CHECK_ATTR(ctrl, a, name) \
1624 if ((a) == &dev_attr_##name.attr && \
1625 !(ctrl)->ops->get_##name) \
1626 return 0
1627
1628 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1629 struct attribute *a, int n)
1630 {
1631 struct device *dev = container_of(kobj, struct device, kobj);
1632 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1633
1634 if (a == &dev_attr_delete_controller.attr) {
1635 if (!ctrl->ops->delete_ctrl)
1636 return 0;
1637 }
1638
1639 CHECK_ATTR(ctrl, a, subsysnqn);
1640 CHECK_ATTR(ctrl, a, address);
1641
1642 return a->mode;
1643 }
1644
1645 static struct attribute_group nvme_dev_attrs_group = {
1646 .attrs = nvme_dev_attrs,
1647 .is_visible = nvme_dev_attrs_are_visible,
1648 };
1649
1650 static const struct attribute_group *nvme_dev_attr_groups[] = {
1651 &nvme_dev_attrs_group,
1652 NULL,
1653 };
1654
1655 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1656 {
1657 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1658 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1659
1660 return nsa->ns_id - nsb->ns_id;
1661 }
1662
1663 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1664 {
1665 struct nvme_ns *ns, *ret = NULL;
1666
1667 mutex_lock(&ctrl->namespaces_mutex);
1668 list_for_each_entry(ns, &ctrl->namespaces, list) {
1669 if (ns->ns_id == nsid) {
1670 kref_get(&ns->kref);
1671 ret = ns;
1672 break;
1673 }
1674 if (ns->ns_id > nsid)
1675 break;
1676 }
1677 mutex_unlock(&ctrl->namespaces_mutex);
1678 return ret;
1679 }
1680
1681 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1682 {
1683 struct nvme_ns *ns;
1684 struct gendisk *disk;
1685 struct nvme_id_ns *id;
1686 char disk_name[DISK_NAME_LEN];
1687 int node = dev_to_node(ctrl->dev);
1688
1689 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1690 if (!ns)
1691 return;
1692
1693 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1694 if (ns->instance < 0)
1695 goto out_free_ns;
1696
1697 ns->queue = blk_mq_init_queue(ctrl->tagset);
1698 if (IS_ERR(ns->queue))
1699 goto out_release_instance;
1700 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1701 ns->queue->queuedata = ns;
1702 ns->ctrl = ctrl;
1703
1704 kref_init(&ns->kref);
1705 ns->ns_id = nsid;
1706 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1707
1708 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1709 nvme_set_queue_limits(ctrl, ns->queue);
1710
1711 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1712
1713 if (nvme_revalidate_ns(ns, &id))
1714 goto out_free_queue;
1715
1716 if (nvme_nvm_ns_supported(ns, id) &&
1717 nvme_nvm_register(ns, disk_name, node)) {
1718 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
1719 goto out_free_id;
1720 }
1721
1722 disk = alloc_disk_node(0, node);
1723 if (!disk)
1724 goto out_free_id;
1725
1726 disk->fops = &nvme_fops;
1727 disk->private_data = ns;
1728 disk->queue = ns->queue;
1729 disk->flags = GENHD_FL_EXT_DEVT;
1730 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
1731 ns->disk = disk;
1732
1733 __nvme_revalidate_disk(disk, id);
1734
1735 mutex_lock(&ctrl->namespaces_mutex);
1736 list_add_tail(&ns->list, &ctrl->namespaces);
1737 mutex_unlock(&ctrl->namespaces_mutex);
1738
1739 kref_get(&ctrl->kref);
1740
1741 kfree(id);
1742
1743 device_add_disk(ctrl->device, ns->disk);
1744 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1745 &nvme_ns_attr_group))
1746 pr_warn("%s: failed to create sysfs group for identification\n",
1747 ns->disk->disk_name);
1748 if (ns->ndev && nvme_nvm_register_sysfs(ns))
1749 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
1750 ns->disk->disk_name);
1751 return;
1752 out_free_id:
1753 kfree(id);
1754 out_free_queue:
1755 blk_cleanup_queue(ns->queue);
1756 out_release_instance:
1757 ida_simple_remove(&ctrl->ns_ida, ns->instance);
1758 out_free_ns:
1759 kfree(ns);
1760 }
1761
1762 static void nvme_ns_remove(struct nvme_ns *ns)
1763 {
1764 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1765 return;
1766
1767 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1768 if (blk_get_integrity(ns->disk))
1769 blk_integrity_unregister(ns->disk);
1770 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1771 &nvme_ns_attr_group);
1772 if (ns->ndev)
1773 nvme_nvm_unregister_sysfs(ns);
1774 del_gendisk(ns->disk);
1775 blk_mq_abort_requeue_list(ns->queue);
1776 blk_cleanup_queue(ns->queue);
1777 }
1778
1779 mutex_lock(&ns->ctrl->namespaces_mutex);
1780 list_del_init(&ns->list);
1781 mutex_unlock(&ns->ctrl->namespaces_mutex);
1782
1783 nvme_put_ns(ns);
1784 }
1785
1786 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1787 {
1788 struct nvme_ns *ns;
1789
1790 ns = nvme_find_get_ns(ctrl, nsid);
1791 if (ns) {
1792 if (ns->disk && revalidate_disk(ns->disk))
1793 nvme_ns_remove(ns);
1794 nvme_put_ns(ns);
1795 } else
1796 nvme_alloc_ns(ctrl, nsid);
1797 }
1798
1799 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1800 unsigned nsid)
1801 {
1802 struct nvme_ns *ns, *next;
1803
1804 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1805 if (ns->ns_id > nsid)
1806 nvme_ns_remove(ns);
1807 }
1808 }
1809
1810 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1811 {
1812 struct nvme_ns *ns;
1813 __le32 *ns_list;
1814 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1815 int ret = 0;
1816
1817 ns_list = kzalloc(0x1000, GFP_KERNEL);
1818 if (!ns_list)
1819 return -ENOMEM;
1820
1821 for (i = 0; i < num_lists; i++) {
1822 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1823 if (ret)
1824 goto free;
1825
1826 for (j = 0; j < min(nn, 1024U); j++) {
1827 nsid = le32_to_cpu(ns_list[j]);
1828 if (!nsid)
1829 goto out;
1830
1831 nvme_validate_ns(ctrl, nsid);
1832
1833 while (++prev < nsid) {
1834 ns = nvme_find_get_ns(ctrl, prev);
1835 if (ns) {
1836 nvme_ns_remove(ns);
1837 nvme_put_ns(ns);
1838 }
1839 }
1840 }
1841 nn -= j;
1842 }
1843 out:
1844 nvme_remove_invalid_namespaces(ctrl, prev);
1845 free:
1846 kfree(ns_list);
1847 return ret;
1848 }
1849
1850 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1851 {
1852 unsigned i;
1853
1854 for (i = 1; i <= nn; i++)
1855 nvme_validate_ns(ctrl, i);
1856
1857 nvme_remove_invalid_namespaces(ctrl, nn);
1858 }
1859
1860 static void nvme_scan_work(struct work_struct *work)
1861 {
1862 struct nvme_ctrl *ctrl =
1863 container_of(work, struct nvme_ctrl, scan_work);
1864 struct nvme_id_ctrl *id;
1865 unsigned nn;
1866
1867 if (ctrl->state != NVME_CTRL_LIVE)
1868 return;
1869
1870 if (nvme_identify_ctrl(ctrl, &id))
1871 return;
1872
1873 nn = le32_to_cpu(id->nn);
1874 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1875 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1876 if (!nvme_scan_ns_list(ctrl, nn))
1877 goto done;
1878 }
1879 nvme_scan_ns_sequential(ctrl, nn);
1880 done:
1881 mutex_lock(&ctrl->namespaces_mutex);
1882 list_sort(NULL, &ctrl->namespaces, ns_cmp);
1883 mutex_unlock(&ctrl->namespaces_mutex);
1884 kfree(id);
1885 }
1886
1887 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1888 {
1889 /*
1890 * Do not queue new scan work when a controller is reset during
1891 * removal.
1892 */
1893 if (ctrl->state == NVME_CTRL_LIVE)
1894 schedule_work(&ctrl->scan_work);
1895 }
1896 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1897
1898 /*
1899 * This function iterates the namespace list unlocked to allow recovery from
1900 * controller failure. It is up to the caller to ensure the namespace list is
1901 * not modified by scan work while this function is executing.
1902 */
1903 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1904 {
1905 struct nvme_ns *ns, *next;
1906
1907 /*
1908 * The dead states indicates the controller was not gracefully
1909 * disconnected. In that case, we won't be able to flush any data while
1910 * removing the namespaces' disks; fail all the queues now to avoid
1911 * potentially having to clean up the failed sync later.
1912 */
1913 if (ctrl->state == NVME_CTRL_DEAD)
1914 nvme_kill_queues(ctrl);
1915
1916 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1917 nvme_ns_remove(ns);
1918 }
1919 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1920
1921 static void nvme_async_event_work(struct work_struct *work)
1922 {
1923 struct nvme_ctrl *ctrl =
1924 container_of(work, struct nvme_ctrl, async_event_work);
1925
1926 spin_lock_irq(&ctrl->lock);
1927 while (ctrl->event_limit > 0) {
1928 int aer_idx = --ctrl->event_limit;
1929
1930 spin_unlock_irq(&ctrl->lock);
1931 ctrl->ops->submit_async_event(ctrl, aer_idx);
1932 spin_lock_irq(&ctrl->lock);
1933 }
1934 spin_unlock_irq(&ctrl->lock);
1935 }
1936
1937 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
1938 union nvme_result *res)
1939 {
1940 u32 result = le32_to_cpu(res->u32);
1941 bool done = true;
1942
1943 switch (le16_to_cpu(status) >> 1) {
1944 case NVME_SC_SUCCESS:
1945 done = false;
1946 /*FALLTHRU*/
1947 case NVME_SC_ABORT_REQ:
1948 ++ctrl->event_limit;
1949 schedule_work(&ctrl->async_event_work);
1950 break;
1951 default:
1952 break;
1953 }
1954
1955 if (done)
1956 return;
1957
1958 switch (result & 0xff07) {
1959 case NVME_AER_NOTICE_NS_CHANGED:
1960 dev_info(ctrl->device, "rescanning\n");
1961 nvme_queue_scan(ctrl);
1962 break;
1963 default:
1964 dev_warn(ctrl->device, "async event result %08x\n", result);
1965 }
1966 }
1967 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1968
1969 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1970 {
1971 ctrl->event_limit = NVME_NR_AERS;
1972 schedule_work(&ctrl->async_event_work);
1973 }
1974 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1975
1976 static DEFINE_IDA(nvme_instance_ida);
1977
1978 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1979 {
1980 int instance, error;
1981
1982 do {
1983 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1984 return -ENODEV;
1985
1986 spin_lock(&dev_list_lock);
1987 error = ida_get_new(&nvme_instance_ida, &instance);
1988 spin_unlock(&dev_list_lock);
1989 } while (error == -EAGAIN);
1990
1991 if (error)
1992 return -ENODEV;
1993
1994 ctrl->instance = instance;
1995 return 0;
1996 }
1997
1998 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1999 {
2000 spin_lock(&dev_list_lock);
2001 ida_remove(&nvme_instance_ida, ctrl->instance);
2002 spin_unlock(&dev_list_lock);
2003 }
2004
2005 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2006 {
2007 flush_work(&ctrl->async_event_work);
2008 flush_work(&ctrl->scan_work);
2009 nvme_remove_namespaces(ctrl);
2010
2011 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2012
2013 spin_lock(&dev_list_lock);
2014 list_del(&ctrl->node);
2015 spin_unlock(&dev_list_lock);
2016 }
2017 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2018
2019 static void nvme_free_ctrl(struct kref *kref)
2020 {
2021 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2022
2023 put_device(ctrl->device);
2024 nvme_release_instance(ctrl);
2025 ida_destroy(&ctrl->ns_ida);
2026
2027 ctrl->ops->free_ctrl(ctrl);
2028 }
2029
2030 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2031 {
2032 kref_put(&ctrl->kref, nvme_free_ctrl);
2033 }
2034 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2035
2036 /*
2037 * Initialize a NVMe controller structures. This needs to be called during
2038 * earliest initialization so that we have the initialized structured around
2039 * during probing.
2040 */
2041 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2042 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2043 {
2044 int ret;
2045
2046 ctrl->state = NVME_CTRL_NEW;
2047 spin_lock_init(&ctrl->lock);
2048 INIT_LIST_HEAD(&ctrl->namespaces);
2049 mutex_init(&ctrl->namespaces_mutex);
2050 kref_init(&ctrl->kref);
2051 ctrl->dev = dev;
2052 ctrl->ops = ops;
2053 ctrl->quirks = quirks;
2054 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2055 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2056
2057 ret = nvme_set_instance(ctrl);
2058 if (ret)
2059 goto out;
2060
2061 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2062 MKDEV(nvme_char_major, ctrl->instance),
2063 ctrl, nvme_dev_attr_groups,
2064 "nvme%d", ctrl->instance);
2065 if (IS_ERR(ctrl->device)) {
2066 ret = PTR_ERR(ctrl->device);
2067 goto out_release_instance;
2068 }
2069 get_device(ctrl->device);
2070 ida_init(&ctrl->ns_ida);
2071
2072 spin_lock(&dev_list_lock);
2073 list_add_tail(&ctrl->node, &nvme_ctrl_list);
2074 spin_unlock(&dev_list_lock);
2075
2076 return 0;
2077 out_release_instance:
2078 nvme_release_instance(ctrl);
2079 out:
2080 return ret;
2081 }
2082 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2083
2084 /**
2085 * nvme_kill_queues(): Ends all namespace queues
2086 * @ctrl: the dead controller that needs to end
2087 *
2088 * Call this function when the driver determines it is unable to get the
2089 * controller in a state capable of servicing IO.
2090 */
2091 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2092 {
2093 struct nvme_ns *ns;
2094
2095 mutex_lock(&ctrl->namespaces_mutex);
2096 list_for_each_entry(ns, &ctrl->namespaces, list) {
2097 /*
2098 * Revalidating a dead namespace sets capacity to 0. This will
2099 * end buffered writers dirtying pages that can't be synced.
2100 */
2101 if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2102 revalidate_disk(ns->disk);
2103
2104 blk_set_queue_dying(ns->queue);
2105 blk_mq_abort_requeue_list(ns->queue);
2106 blk_mq_start_stopped_hw_queues(ns->queue, true);
2107 }
2108 mutex_unlock(&ctrl->namespaces_mutex);
2109 }
2110 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2111
2112 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2113 {
2114 struct nvme_ns *ns;
2115
2116 mutex_lock(&ctrl->namespaces_mutex);
2117 list_for_each_entry(ns, &ctrl->namespaces, list)
2118 blk_mq_quiesce_queue(ns->queue);
2119 mutex_unlock(&ctrl->namespaces_mutex);
2120 }
2121 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2122
2123 void nvme_start_queues(struct nvme_ctrl *ctrl)
2124 {
2125 struct nvme_ns *ns;
2126
2127 mutex_lock(&ctrl->namespaces_mutex);
2128 list_for_each_entry(ns, &ctrl->namespaces, list) {
2129 blk_mq_start_stopped_hw_queues(ns->queue, true);
2130 blk_mq_kick_requeue_list(ns->queue);
2131 }
2132 mutex_unlock(&ctrl->namespaces_mutex);
2133 }
2134 EXPORT_SYMBOL_GPL(nvme_start_queues);
2135
2136 int __init nvme_core_init(void)
2137 {
2138 int result;
2139
2140 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2141 &nvme_dev_fops);
2142 if (result < 0)
2143 return result;
2144 else if (result > 0)
2145 nvme_char_major = result;
2146
2147 nvme_class = class_create(THIS_MODULE, "nvme");
2148 if (IS_ERR(nvme_class)) {
2149 result = PTR_ERR(nvme_class);
2150 goto unregister_chrdev;
2151 }
2152
2153 return 0;
2154
2155 unregister_chrdev:
2156 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2157 return result;
2158 }
2159
2160 void nvme_core_exit(void)
2161 {
2162 class_destroy(nvme_class);
2163 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2164 }
2165
2166 MODULE_LICENSE("GPL");
2167 MODULE_VERSION("1.0");
2168 module_init(nvme_core_init);
2169 module_exit(nvme_core_exit);