]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/core.c
Merge branch 'v4.13/sps' into v4.13/drivers
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <scsi/sg.h>
31 #include <asm/unaligned.h>
32
33 #include "nvme.h"
34 #include "fabrics.h"
35
36 #define NVME_MINORS (1U << MINORBITS)
37
38 unsigned char admin_timeout = 60;
39 module_param(admin_timeout, byte, 0644);
40 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41 EXPORT_SYMBOL_GPL(admin_timeout);
42
43 unsigned char nvme_io_timeout = 30;
44 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
45 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46 EXPORT_SYMBOL_GPL(nvme_io_timeout);
47
48 unsigned char shutdown_timeout = 5;
49 module_param(shutdown_timeout, byte, 0644);
50 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
51
52 static u8 nvme_max_retries = 5;
53 module_param_named(max_retries, nvme_max_retries, byte, 0644);
54 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58
59 static unsigned long default_ps_max_latency_us = 25000;
60 module_param(default_ps_max_latency_us, ulong, 0644);
61 MODULE_PARM_DESC(default_ps_max_latency_us,
62 "max power saving latency for new devices; use PM QOS to change per device");
63
64 static bool force_apst;
65 module_param(force_apst, bool, 0644);
66 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
67
68 static LIST_HEAD(nvme_ctrl_list);
69 static DEFINE_SPINLOCK(dev_list_lock);
70
71 static struct class *nvme_class;
72
73 static int nvme_error_status(struct request *req)
74 {
75 switch (nvme_req(req)->status & 0x7ff) {
76 case NVME_SC_SUCCESS:
77 return 0;
78 case NVME_SC_CAP_EXCEEDED:
79 return -ENOSPC;
80 default:
81 return -EIO;
82
83 /*
84 * XXX: these errors are a nasty side-band protocol to
85 * drivers/md/dm-mpath.c:noretry_error() that aren't documented
86 * anywhere..
87 */
88 case NVME_SC_CMD_SEQ_ERROR:
89 return -EILSEQ;
90 case NVME_SC_ONCS_NOT_SUPPORTED:
91 return -EOPNOTSUPP;
92 case NVME_SC_WRITE_FAULT:
93 case NVME_SC_READ_ERROR:
94 case NVME_SC_UNWRITTEN_BLOCK:
95 return -ENODATA;
96 }
97 }
98
99 static inline bool nvme_req_needs_retry(struct request *req)
100 {
101 if (blk_noretry_request(req))
102 return false;
103 if (nvme_req(req)->status & NVME_SC_DNR)
104 return false;
105 if (jiffies - req->start_time >= req->timeout)
106 return false;
107 if (nvme_req(req)->retries >= nvme_max_retries)
108 return false;
109 return true;
110 }
111
112 void nvme_complete_rq(struct request *req)
113 {
114 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
115 nvme_req(req)->retries++;
116 blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
117 return;
118 }
119
120 blk_mq_end_request(req, nvme_error_status(req));
121 }
122 EXPORT_SYMBOL_GPL(nvme_complete_rq);
123
124 void nvme_cancel_request(struct request *req, void *data, bool reserved)
125 {
126 int status;
127
128 if (!blk_mq_request_started(req))
129 return;
130
131 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
132 "Cancelling I/O %d", req->tag);
133
134 status = NVME_SC_ABORT_REQ;
135 if (blk_queue_dying(req->q))
136 status |= NVME_SC_DNR;
137 nvme_req(req)->status = status;
138 blk_mq_complete_request(req);
139
140 }
141 EXPORT_SYMBOL_GPL(nvme_cancel_request);
142
143 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
144 enum nvme_ctrl_state new_state)
145 {
146 enum nvme_ctrl_state old_state;
147 bool changed = false;
148
149 spin_lock_irq(&ctrl->lock);
150
151 old_state = ctrl->state;
152 switch (new_state) {
153 case NVME_CTRL_LIVE:
154 switch (old_state) {
155 case NVME_CTRL_NEW:
156 case NVME_CTRL_RESETTING:
157 case NVME_CTRL_RECONNECTING:
158 changed = true;
159 /* FALLTHRU */
160 default:
161 break;
162 }
163 break;
164 case NVME_CTRL_RESETTING:
165 switch (old_state) {
166 case NVME_CTRL_NEW:
167 case NVME_CTRL_LIVE:
168 case NVME_CTRL_RECONNECTING:
169 changed = true;
170 /* FALLTHRU */
171 default:
172 break;
173 }
174 break;
175 case NVME_CTRL_RECONNECTING:
176 switch (old_state) {
177 case NVME_CTRL_LIVE:
178 changed = true;
179 /* FALLTHRU */
180 default:
181 break;
182 }
183 break;
184 case NVME_CTRL_DELETING:
185 switch (old_state) {
186 case NVME_CTRL_LIVE:
187 case NVME_CTRL_RESETTING:
188 case NVME_CTRL_RECONNECTING:
189 changed = true;
190 /* FALLTHRU */
191 default:
192 break;
193 }
194 break;
195 case NVME_CTRL_DEAD:
196 switch (old_state) {
197 case NVME_CTRL_DELETING:
198 changed = true;
199 /* FALLTHRU */
200 default:
201 break;
202 }
203 break;
204 default:
205 break;
206 }
207
208 if (changed)
209 ctrl->state = new_state;
210
211 spin_unlock_irq(&ctrl->lock);
212
213 return changed;
214 }
215 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
216
217 static void nvme_free_ns(struct kref *kref)
218 {
219 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
220
221 if (ns->ndev)
222 nvme_nvm_unregister(ns);
223
224 if (ns->disk) {
225 spin_lock(&dev_list_lock);
226 ns->disk->private_data = NULL;
227 spin_unlock(&dev_list_lock);
228 }
229
230 put_disk(ns->disk);
231 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
232 nvme_put_ctrl(ns->ctrl);
233 kfree(ns);
234 }
235
236 static void nvme_put_ns(struct nvme_ns *ns)
237 {
238 kref_put(&ns->kref, nvme_free_ns);
239 }
240
241 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
242 {
243 struct nvme_ns *ns;
244
245 spin_lock(&dev_list_lock);
246 ns = disk->private_data;
247 if (ns) {
248 if (!kref_get_unless_zero(&ns->kref))
249 goto fail;
250 if (!try_module_get(ns->ctrl->ops->module))
251 goto fail_put_ns;
252 }
253 spin_unlock(&dev_list_lock);
254
255 return ns;
256
257 fail_put_ns:
258 kref_put(&ns->kref, nvme_free_ns);
259 fail:
260 spin_unlock(&dev_list_lock);
261 return NULL;
262 }
263
264 struct request *nvme_alloc_request(struct request_queue *q,
265 struct nvme_command *cmd, unsigned int flags, int qid)
266 {
267 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
268 struct request *req;
269
270 if (qid == NVME_QID_ANY) {
271 req = blk_mq_alloc_request(q, op, flags);
272 } else {
273 req = blk_mq_alloc_request_hctx(q, op, flags,
274 qid ? qid - 1 : 0);
275 }
276 if (IS_ERR(req))
277 return req;
278
279 req->cmd_flags |= REQ_FAILFAST_DRIVER;
280 nvme_req(req)->cmd = cmd;
281
282 return req;
283 }
284 EXPORT_SYMBOL_GPL(nvme_alloc_request);
285
286 static inline void nvme_setup_flush(struct nvme_ns *ns,
287 struct nvme_command *cmnd)
288 {
289 memset(cmnd, 0, sizeof(*cmnd));
290 cmnd->common.opcode = nvme_cmd_flush;
291 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
292 }
293
294 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
295 struct nvme_command *cmnd)
296 {
297 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
298 struct nvme_dsm_range *range;
299 struct bio *bio;
300
301 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
302 if (!range)
303 return BLK_MQ_RQ_QUEUE_BUSY;
304
305 __rq_for_each_bio(bio, req) {
306 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
307 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
308
309 range[n].cattr = cpu_to_le32(0);
310 range[n].nlb = cpu_to_le32(nlb);
311 range[n].slba = cpu_to_le64(slba);
312 n++;
313 }
314
315 if (WARN_ON_ONCE(n != segments)) {
316 kfree(range);
317 return BLK_MQ_RQ_QUEUE_ERROR;
318 }
319
320 memset(cmnd, 0, sizeof(*cmnd));
321 cmnd->dsm.opcode = nvme_cmd_dsm;
322 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
323 cmnd->dsm.nr = cpu_to_le32(segments - 1);
324 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
325
326 req->special_vec.bv_page = virt_to_page(range);
327 req->special_vec.bv_offset = offset_in_page(range);
328 req->special_vec.bv_len = sizeof(*range) * segments;
329 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
330
331 return BLK_MQ_RQ_QUEUE_OK;
332 }
333
334 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
335 struct nvme_command *cmnd)
336 {
337 u16 control = 0;
338 u32 dsmgmt = 0;
339
340 if (req->cmd_flags & REQ_FUA)
341 control |= NVME_RW_FUA;
342 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
343 control |= NVME_RW_LR;
344
345 if (req->cmd_flags & REQ_RAHEAD)
346 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
347
348 memset(cmnd, 0, sizeof(*cmnd));
349 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
350 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
351 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
352 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
353
354 if (ns->ms) {
355 switch (ns->pi_type) {
356 case NVME_NS_DPS_PI_TYPE3:
357 control |= NVME_RW_PRINFO_PRCHK_GUARD;
358 break;
359 case NVME_NS_DPS_PI_TYPE1:
360 case NVME_NS_DPS_PI_TYPE2:
361 control |= NVME_RW_PRINFO_PRCHK_GUARD |
362 NVME_RW_PRINFO_PRCHK_REF;
363 cmnd->rw.reftag = cpu_to_le32(
364 nvme_block_nr(ns, blk_rq_pos(req)));
365 break;
366 }
367 if (!blk_integrity_rq(req))
368 control |= NVME_RW_PRINFO_PRACT;
369 }
370
371 cmnd->rw.control = cpu_to_le16(control);
372 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
373 }
374
375 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
376 struct nvme_command *cmd)
377 {
378 int ret = BLK_MQ_RQ_QUEUE_OK;
379
380 if (!(req->rq_flags & RQF_DONTPREP)) {
381 nvme_req(req)->retries = 0;
382 nvme_req(req)->flags = 0;
383 req->rq_flags |= RQF_DONTPREP;
384 }
385
386 switch (req_op(req)) {
387 case REQ_OP_DRV_IN:
388 case REQ_OP_DRV_OUT:
389 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
390 break;
391 case REQ_OP_FLUSH:
392 nvme_setup_flush(ns, cmd);
393 break;
394 case REQ_OP_WRITE_ZEROES:
395 /* currently only aliased to deallocate for a few ctrls: */
396 case REQ_OP_DISCARD:
397 ret = nvme_setup_discard(ns, req, cmd);
398 break;
399 case REQ_OP_READ:
400 case REQ_OP_WRITE:
401 nvme_setup_rw(ns, req, cmd);
402 break;
403 default:
404 WARN_ON_ONCE(1);
405 return BLK_MQ_RQ_QUEUE_ERROR;
406 }
407
408 cmd->common.command_id = req->tag;
409 return ret;
410 }
411 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
412
413 /*
414 * Returns 0 on success. If the result is negative, it's a Linux error code;
415 * if the result is positive, it's an NVM Express status code
416 */
417 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
418 union nvme_result *result, void *buffer, unsigned bufflen,
419 unsigned timeout, int qid, int at_head, int flags)
420 {
421 struct request *req;
422 int ret;
423
424 req = nvme_alloc_request(q, cmd, flags, qid);
425 if (IS_ERR(req))
426 return PTR_ERR(req);
427
428 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
429
430 if (buffer && bufflen) {
431 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
432 if (ret)
433 goto out;
434 }
435
436 blk_execute_rq(req->q, NULL, req, at_head);
437 if (result)
438 *result = nvme_req(req)->result;
439 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
440 ret = -EINTR;
441 else
442 ret = nvme_req(req)->status;
443 out:
444 blk_mq_free_request(req);
445 return ret;
446 }
447 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
448
449 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
450 void *buffer, unsigned bufflen)
451 {
452 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
453 NVME_QID_ANY, 0, 0);
454 }
455 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
456
457 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
458 void __user *ubuffer, unsigned bufflen,
459 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
460 u32 *result, unsigned timeout)
461 {
462 bool write = nvme_is_write(cmd);
463 struct nvme_ns *ns = q->queuedata;
464 struct gendisk *disk = ns ? ns->disk : NULL;
465 struct request *req;
466 struct bio *bio = NULL;
467 void *meta = NULL;
468 int ret;
469
470 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
471 if (IS_ERR(req))
472 return PTR_ERR(req);
473
474 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
475
476 if (ubuffer && bufflen) {
477 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
478 GFP_KERNEL);
479 if (ret)
480 goto out;
481 bio = req->bio;
482
483 if (!disk)
484 goto submit;
485 bio->bi_bdev = bdget_disk(disk, 0);
486 if (!bio->bi_bdev) {
487 ret = -ENODEV;
488 goto out_unmap;
489 }
490
491 if (meta_buffer && meta_len) {
492 struct bio_integrity_payload *bip;
493
494 meta = kmalloc(meta_len, GFP_KERNEL);
495 if (!meta) {
496 ret = -ENOMEM;
497 goto out_unmap;
498 }
499
500 if (write) {
501 if (copy_from_user(meta, meta_buffer,
502 meta_len)) {
503 ret = -EFAULT;
504 goto out_free_meta;
505 }
506 }
507
508 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
509 if (IS_ERR(bip)) {
510 ret = PTR_ERR(bip);
511 goto out_free_meta;
512 }
513
514 bip->bip_iter.bi_size = meta_len;
515 bip->bip_iter.bi_sector = meta_seed;
516
517 ret = bio_integrity_add_page(bio, virt_to_page(meta),
518 meta_len, offset_in_page(meta));
519 if (ret != meta_len) {
520 ret = -ENOMEM;
521 goto out_free_meta;
522 }
523 }
524 }
525 submit:
526 blk_execute_rq(req->q, disk, req, 0);
527 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
528 ret = -EINTR;
529 else
530 ret = nvme_req(req)->status;
531 if (result)
532 *result = le32_to_cpu(nvme_req(req)->result.u32);
533 if (meta && !ret && !write) {
534 if (copy_to_user(meta_buffer, meta, meta_len))
535 ret = -EFAULT;
536 }
537 out_free_meta:
538 kfree(meta);
539 out_unmap:
540 if (bio) {
541 if (disk && bio->bi_bdev)
542 bdput(bio->bi_bdev);
543 blk_rq_unmap_user(bio);
544 }
545 out:
546 blk_mq_free_request(req);
547 return ret;
548 }
549
550 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
551 void __user *ubuffer, unsigned bufflen, u32 *result,
552 unsigned timeout)
553 {
554 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
555 result, timeout);
556 }
557
558 static void nvme_keep_alive_end_io(struct request *rq, int error)
559 {
560 struct nvme_ctrl *ctrl = rq->end_io_data;
561
562 blk_mq_free_request(rq);
563
564 if (error) {
565 dev_err(ctrl->device,
566 "failed nvme_keep_alive_end_io error=%d\n", error);
567 return;
568 }
569
570 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
571 }
572
573 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
574 {
575 struct nvme_command c;
576 struct request *rq;
577
578 memset(&c, 0, sizeof(c));
579 c.common.opcode = nvme_admin_keep_alive;
580
581 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
582 NVME_QID_ANY);
583 if (IS_ERR(rq))
584 return PTR_ERR(rq);
585
586 rq->timeout = ctrl->kato * HZ;
587 rq->end_io_data = ctrl;
588
589 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
590
591 return 0;
592 }
593
594 static void nvme_keep_alive_work(struct work_struct *work)
595 {
596 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
597 struct nvme_ctrl, ka_work);
598
599 if (nvme_keep_alive(ctrl)) {
600 /* allocation failure, reset the controller */
601 dev_err(ctrl->device, "keep-alive failed\n");
602 ctrl->ops->reset_ctrl(ctrl);
603 return;
604 }
605 }
606
607 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
608 {
609 if (unlikely(ctrl->kato == 0))
610 return;
611
612 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
613 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
614 }
615 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
616
617 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
618 {
619 if (unlikely(ctrl->kato == 0))
620 return;
621
622 cancel_delayed_work_sync(&ctrl->ka_work);
623 }
624 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
625
626 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
627 {
628 struct nvme_command c = { };
629 int error;
630
631 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
632 c.identify.opcode = nvme_admin_identify;
633 c.identify.cns = NVME_ID_CNS_CTRL;
634
635 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
636 if (!*id)
637 return -ENOMEM;
638
639 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
640 sizeof(struct nvme_id_ctrl));
641 if (error)
642 kfree(*id);
643 return error;
644 }
645
646 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
647 {
648 struct nvme_command c = { };
649
650 c.identify.opcode = nvme_admin_identify;
651 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
652 c.identify.nsid = cpu_to_le32(nsid);
653 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
654 }
655
656 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
657 struct nvme_id_ns **id)
658 {
659 struct nvme_command c = { };
660 int error;
661
662 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
663 c.identify.opcode = nvme_admin_identify;
664 c.identify.nsid = cpu_to_le32(nsid);
665 c.identify.cns = NVME_ID_CNS_NS;
666
667 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
668 if (!*id)
669 return -ENOMEM;
670
671 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
672 sizeof(struct nvme_id_ns));
673 if (error)
674 kfree(*id);
675 return error;
676 }
677
678 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
679 void *buffer, size_t buflen, u32 *result)
680 {
681 struct nvme_command c;
682 union nvme_result res;
683 int ret;
684
685 memset(&c, 0, sizeof(c));
686 c.features.opcode = nvme_admin_get_features;
687 c.features.nsid = cpu_to_le32(nsid);
688 c.features.fid = cpu_to_le32(fid);
689
690 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
691 NVME_QID_ANY, 0, 0);
692 if (ret >= 0 && result)
693 *result = le32_to_cpu(res.u32);
694 return ret;
695 }
696
697 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
698 void *buffer, size_t buflen, u32 *result)
699 {
700 struct nvme_command c;
701 union nvme_result res;
702 int ret;
703
704 memset(&c, 0, sizeof(c));
705 c.features.opcode = nvme_admin_set_features;
706 c.features.fid = cpu_to_le32(fid);
707 c.features.dword11 = cpu_to_le32(dword11);
708
709 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
710 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
711 if (ret >= 0 && result)
712 *result = le32_to_cpu(res.u32);
713 return ret;
714 }
715
716 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
717 {
718 struct nvme_command c = { };
719 int error;
720
721 c.common.opcode = nvme_admin_get_log_page,
722 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
723 c.common.cdw10[0] = cpu_to_le32(
724 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
725 NVME_LOG_SMART),
726
727 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
728 if (!*log)
729 return -ENOMEM;
730
731 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
732 sizeof(struct nvme_smart_log));
733 if (error)
734 kfree(*log);
735 return error;
736 }
737
738 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
739 {
740 u32 q_count = (*count - 1) | ((*count - 1) << 16);
741 u32 result;
742 int status, nr_io_queues;
743
744 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
745 &result);
746 if (status < 0)
747 return status;
748
749 /*
750 * Degraded controllers might return an error when setting the queue
751 * count. We still want to be able to bring them online and offer
752 * access to the admin queue, as that might be only way to fix them up.
753 */
754 if (status > 0) {
755 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
756 *count = 0;
757 } else {
758 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
759 *count = min(*count, nr_io_queues);
760 }
761
762 return 0;
763 }
764 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
765
766 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
767 {
768 struct nvme_user_io io;
769 struct nvme_command c;
770 unsigned length, meta_len;
771 void __user *metadata;
772
773 if (copy_from_user(&io, uio, sizeof(io)))
774 return -EFAULT;
775 if (io.flags)
776 return -EINVAL;
777
778 switch (io.opcode) {
779 case nvme_cmd_write:
780 case nvme_cmd_read:
781 case nvme_cmd_compare:
782 break;
783 default:
784 return -EINVAL;
785 }
786
787 length = (io.nblocks + 1) << ns->lba_shift;
788 meta_len = (io.nblocks + 1) * ns->ms;
789 metadata = (void __user *)(uintptr_t)io.metadata;
790
791 if (ns->ext) {
792 length += meta_len;
793 meta_len = 0;
794 } else if (meta_len) {
795 if ((io.metadata & 3) || !io.metadata)
796 return -EINVAL;
797 }
798
799 memset(&c, 0, sizeof(c));
800 c.rw.opcode = io.opcode;
801 c.rw.flags = io.flags;
802 c.rw.nsid = cpu_to_le32(ns->ns_id);
803 c.rw.slba = cpu_to_le64(io.slba);
804 c.rw.length = cpu_to_le16(io.nblocks);
805 c.rw.control = cpu_to_le16(io.control);
806 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
807 c.rw.reftag = cpu_to_le32(io.reftag);
808 c.rw.apptag = cpu_to_le16(io.apptag);
809 c.rw.appmask = cpu_to_le16(io.appmask);
810
811 return __nvme_submit_user_cmd(ns->queue, &c,
812 (void __user *)(uintptr_t)io.addr, length,
813 metadata, meta_len, io.slba, NULL, 0);
814 }
815
816 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
817 struct nvme_passthru_cmd __user *ucmd)
818 {
819 struct nvme_passthru_cmd cmd;
820 struct nvme_command c;
821 unsigned timeout = 0;
822 int status;
823
824 if (!capable(CAP_SYS_ADMIN))
825 return -EACCES;
826 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
827 return -EFAULT;
828 if (cmd.flags)
829 return -EINVAL;
830
831 memset(&c, 0, sizeof(c));
832 c.common.opcode = cmd.opcode;
833 c.common.flags = cmd.flags;
834 c.common.nsid = cpu_to_le32(cmd.nsid);
835 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
836 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
837 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
838 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
839 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
840 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
841 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
842 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
843
844 if (cmd.timeout_ms)
845 timeout = msecs_to_jiffies(cmd.timeout_ms);
846
847 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
848 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
849 &cmd.result, timeout);
850 if (status >= 0) {
851 if (put_user(cmd.result, &ucmd->result))
852 return -EFAULT;
853 }
854
855 return status;
856 }
857
858 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
859 unsigned int cmd, unsigned long arg)
860 {
861 struct nvme_ns *ns = bdev->bd_disk->private_data;
862
863 switch (cmd) {
864 case NVME_IOCTL_ID:
865 force_successful_syscall_return();
866 return ns->ns_id;
867 case NVME_IOCTL_ADMIN_CMD:
868 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
869 case NVME_IOCTL_IO_CMD:
870 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
871 case NVME_IOCTL_SUBMIT_IO:
872 return nvme_submit_io(ns, (void __user *)arg);
873 #ifdef CONFIG_BLK_DEV_NVME_SCSI
874 case SG_GET_VERSION_NUM:
875 return nvme_sg_get_version_num((void __user *)arg);
876 case SG_IO:
877 return nvme_sg_io(ns, (void __user *)arg);
878 #endif
879 default:
880 #ifdef CONFIG_NVM
881 if (ns->ndev)
882 return nvme_nvm_ioctl(ns, cmd, arg);
883 #endif
884 if (is_sed_ioctl(cmd))
885 return sed_ioctl(ns->ctrl->opal_dev, cmd,
886 (void __user *) arg);
887 return -ENOTTY;
888 }
889 }
890
891 #ifdef CONFIG_COMPAT
892 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
893 unsigned int cmd, unsigned long arg)
894 {
895 switch (cmd) {
896 case SG_IO:
897 return -ENOIOCTLCMD;
898 }
899 return nvme_ioctl(bdev, mode, cmd, arg);
900 }
901 #else
902 #define nvme_compat_ioctl NULL
903 #endif
904
905 static int nvme_open(struct block_device *bdev, fmode_t mode)
906 {
907 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
908 }
909
910 static void nvme_release(struct gendisk *disk, fmode_t mode)
911 {
912 struct nvme_ns *ns = disk->private_data;
913
914 module_put(ns->ctrl->ops->module);
915 nvme_put_ns(ns);
916 }
917
918 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
919 {
920 /* some standard values */
921 geo->heads = 1 << 6;
922 geo->sectors = 1 << 5;
923 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
924 return 0;
925 }
926
927 #ifdef CONFIG_BLK_DEV_INTEGRITY
928 static void nvme_init_integrity(struct nvme_ns *ns)
929 {
930 struct blk_integrity integrity;
931
932 memset(&integrity, 0, sizeof(integrity));
933 switch (ns->pi_type) {
934 case NVME_NS_DPS_PI_TYPE3:
935 integrity.profile = &t10_pi_type3_crc;
936 integrity.tag_size = sizeof(u16) + sizeof(u32);
937 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
938 break;
939 case NVME_NS_DPS_PI_TYPE1:
940 case NVME_NS_DPS_PI_TYPE2:
941 integrity.profile = &t10_pi_type1_crc;
942 integrity.tag_size = sizeof(u16);
943 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
944 break;
945 default:
946 integrity.profile = NULL;
947 break;
948 }
949 integrity.tuple_size = ns->ms;
950 blk_integrity_register(ns->disk, &integrity);
951 blk_queue_max_integrity_segments(ns->queue, 1);
952 }
953 #else
954 static void nvme_init_integrity(struct nvme_ns *ns)
955 {
956 }
957 #endif /* CONFIG_BLK_DEV_INTEGRITY */
958
959 static void nvme_config_discard(struct nvme_ns *ns)
960 {
961 struct nvme_ctrl *ctrl = ns->ctrl;
962 u32 logical_block_size = queue_logical_block_size(ns->queue);
963
964 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
965 NVME_DSM_MAX_RANGES);
966
967 ns->queue->limits.discard_alignment = logical_block_size;
968 ns->queue->limits.discard_granularity = logical_block_size;
969 blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
970 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
971 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
972
973 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
974 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
975 }
976
977 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
978 {
979 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
980 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
981 return -ENODEV;
982 }
983
984 if ((*id)->ncap == 0) {
985 kfree(*id);
986 return -ENODEV;
987 }
988
989 if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
990 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
991 if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
992 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
993
994 return 0;
995 }
996
997 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
998 {
999 struct nvme_ns *ns = disk->private_data;
1000 u8 lbaf, pi_type;
1001 u16 old_ms;
1002 unsigned short bs;
1003
1004 old_ms = ns->ms;
1005 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1006 ns->lba_shift = id->lbaf[lbaf].ds;
1007 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1008 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1009
1010 /*
1011 * If identify namespace failed, use default 512 byte block size so
1012 * block layer can use before failing read/write for 0 capacity.
1013 */
1014 if (ns->lba_shift == 0)
1015 ns->lba_shift = 9;
1016 bs = 1 << ns->lba_shift;
1017 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1018 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1019 id->dps & NVME_NS_DPS_PI_MASK : 0;
1020
1021 blk_mq_freeze_queue(disk->queue);
1022 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1023 ns->ms != old_ms ||
1024 bs != queue_logical_block_size(disk->queue) ||
1025 (ns->ms && ns->ext)))
1026 blk_integrity_unregister(disk);
1027
1028 ns->pi_type = pi_type;
1029 blk_queue_logical_block_size(ns->queue, bs);
1030
1031 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1032 nvme_init_integrity(ns);
1033 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1034 set_capacity(disk, 0);
1035 else
1036 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1037
1038 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1039 nvme_config_discard(ns);
1040 blk_mq_unfreeze_queue(disk->queue);
1041 }
1042
1043 static int nvme_revalidate_disk(struct gendisk *disk)
1044 {
1045 struct nvme_ns *ns = disk->private_data;
1046 struct nvme_id_ns *id = NULL;
1047 int ret;
1048
1049 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1050 set_capacity(disk, 0);
1051 return -ENODEV;
1052 }
1053
1054 ret = nvme_revalidate_ns(ns, &id);
1055 if (ret)
1056 return ret;
1057
1058 __nvme_revalidate_disk(disk, id);
1059 kfree(id);
1060
1061 return 0;
1062 }
1063
1064 static char nvme_pr_type(enum pr_type type)
1065 {
1066 switch (type) {
1067 case PR_WRITE_EXCLUSIVE:
1068 return 1;
1069 case PR_EXCLUSIVE_ACCESS:
1070 return 2;
1071 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1072 return 3;
1073 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1074 return 4;
1075 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1076 return 5;
1077 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1078 return 6;
1079 default:
1080 return 0;
1081 }
1082 };
1083
1084 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1085 u64 key, u64 sa_key, u8 op)
1086 {
1087 struct nvme_ns *ns = bdev->bd_disk->private_data;
1088 struct nvme_command c;
1089 u8 data[16] = { 0, };
1090
1091 put_unaligned_le64(key, &data[0]);
1092 put_unaligned_le64(sa_key, &data[8]);
1093
1094 memset(&c, 0, sizeof(c));
1095 c.common.opcode = op;
1096 c.common.nsid = cpu_to_le32(ns->ns_id);
1097 c.common.cdw10[0] = cpu_to_le32(cdw10);
1098
1099 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1100 }
1101
1102 static int nvme_pr_register(struct block_device *bdev, u64 old,
1103 u64 new, unsigned flags)
1104 {
1105 u32 cdw10;
1106
1107 if (flags & ~PR_FL_IGNORE_KEY)
1108 return -EOPNOTSUPP;
1109
1110 cdw10 = old ? 2 : 0;
1111 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1112 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1113 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1114 }
1115
1116 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1117 enum pr_type type, unsigned flags)
1118 {
1119 u32 cdw10;
1120
1121 if (flags & ~PR_FL_IGNORE_KEY)
1122 return -EOPNOTSUPP;
1123
1124 cdw10 = nvme_pr_type(type) << 8;
1125 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1126 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1127 }
1128
1129 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1130 enum pr_type type, bool abort)
1131 {
1132 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1133 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1134 }
1135
1136 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1137 {
1138 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1139 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1140 }
1141
1142 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1143 {
1144 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1145 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1146 }
1147
1148 static const struct pr_ops nvme_pr_ops = {
1149 .pr_register = nvme_pr_register,
1150 .pr_reserve = nvme_pr_reserve,
1151 .pr_release = nvme_pr_release,
1152 .pr_preempt = nvme_pr_preempt,
1153 .pr_clear = nvme_pr_clear,
1154 };
1155
1156 #ifdef CONFIG_BLK_SED_OPAL
1157 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1158 bool send)
1159 {
1160 struct nvme_ctrl *ctrl = data;
1161 struct nvme_command cmd;
1162
1163 memset(&cmd, 0, sizeof(cmd));
1164 if (send)
1165 cmd.common.opcode = nvme_admin_security_send;
1166 else
1167 cmd.common.opcode = nvme_admin_security_recv;
1168 cmd.common.nsid = 0;
1169 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1170 cmd.common.cdw10[1] = cpu_to_le32(len);
1171
1172 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1173 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1174 }
1175 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1176 #endif /* CONFIG_BLK_SED_OPAL */
1177
1178 static const struct block_device_operations nvme_fops = {
1179 .owner = THIS_MODULE,
1180 .ioctl = nvme_ioctl,
1181 .compat_ioctl = nvme_compat_ioctl,
1182 .open = nvme_open,
1183 .release = nvme_release,
1184 .getgeo = nvme_getgeo,
1185 .revalidate_disk= nvme_revalidate_disk,
1186 .pr_ops = &nvme_pr_ops,
1187 };
1188
1189 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1190 {
1191 unsigned long timeout =
1192 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1193 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1194 int ret;
1195
1196 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1197 if (csts == ~0)
1198 return -ENODEV;
1199 if ((csts & NVME_CSTS_RDY) == bit)
1200 break;
1201
1202 msleep(100);
1203 if (fatal_signal_pending(current))
1204 return -EINTR;
1205 if (time_after(jiffies, timeout)) {
1206 dev_err(ctrl->device,
1207 "Device not ready; aborting %s\n", enabled ?
1208 "initialisation" : "reset");
1209 return -ENODEV;
1210 }
1211 }
1212
1213 return ret;
1214 }
1215
1216 /*
1217 * If the device has been passed off to us in an enabled state, just clear
1218 * the enabled bit. The spec says we should set the 'shutdown notification
1219 * bits', but doing so may cause the device to complete commands to the
1220 * admin queue ... and we don't know what memory that might be pointing at!
1221 */
1222 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1223 {
1224 int ret;
1225
1226 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1227 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1228
1229 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1230 if (ret)
1231 return ret;
1232
1233 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1234 msleep(NVME_QUIRK_DELAY_AMOUNT);
1235
1236 return nvme_wait_ready(ctrl, cap, false);
1237 }
1238 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1239
1240 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1241 {
1242 /*
1243 * Default to a 4K page size, with the intention to update this
1244 * path in the future to accomodate architectures with differing
1245 * kernel and IO page sizes.
1246 */
1247 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1248 int ret;
1249
1250 if (page_shift < dev_page_min) {
1251 dev_err(ctrl->device,
1252 "Minimum device page size %u too large for host (%u)\n",
1253 1 << dev_page_min, 1 << page_shift);
1254 return -ENODEV;
1255 }
1256
1257 ctrl->page_size = 1 << page_shift;
1258
1259 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1260 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1261 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1262 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1263 ctrl->ctrl_config |= NVME_CC_ENABLE;
1264
1265 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1266 if (ret)
1267 return ret;
1268 return nvme_wait_ready(ctrl, cap, true);
1269 }
1270 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1271
1272 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1273 {
1274 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1275 u32 csts;
1276 int ret;
1277
1278 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1279 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1280
1281 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1282 if (ret)
1283 return ret;
1284
1285 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1286 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1287 break;
1288
1289 msleep(100);
1290 if (fatal_signal_pending(current))
1291 return -EINTR;
1292 if (time_after(jiffies, timeout)) {
1293 dev_err(ctrl->device,
1294 "Device shutdown incomplete; abort shutdown\n");
1295 return -ENODEV;
1296 }
1297 }
1298
1299 return ret;
1300 }
1301 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1302
1303 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1304 struct request_queue *q)
1305 {
1306 bool vwc = false;
1307
1308 if (ctrl->max_hw_sectors) {
1309 u32 max_segments =
1310 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1311
1312 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1313 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1314 }
1315 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1316 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1317 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1318 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1319 vwc = true;
1320 blk_queue_write_cache(q, vwc, vwc);
1321 }
1322
1323 static void nvme_configure_apst(struct nvme_ctrl *ctrl)
1324 {
1325 /*
1326 * APST (Autonomous Power State Transition) lets us program a
1327 * table of power state transitions that the controller will
1328 * perform automatically. We configure it with a simple
1329 * heuristic: we are willing to spend at most 2% of the time
1330 * transitioning between power states. Therefore, when running
1331 * in any given state, we will enter the next lower-power
1332 * non-operational state after waiting 50 * (enlat + exlat)
1333 * microseconds, as long as that state's total latency is under
1334 * the requested maximum latency.
1335 *
1336 * We will not autonomously enter any non-operational state for
1337 * which the total latency exceeds ps_max_latency_us. Users
1338 * can set ps_max_latency_us to zero to turn off APST.
1339 */
1340
1341 unsigned apste;
1342 struct nvme_feat_auto_pst *table;
1343 u64 max_lat_us = 0;
1344 int max_ps = -1;
1345 int ret;
1346
1347 /*
1348 * If APST isn't supported or if we haven't been initialized yet,
1349 * then don't do anything.
1350 */
1351 if (!ctrl->apsta)
1352 return;
1353
1354 if (ctrl->npss > 31) {
1355 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1356 return;
1357 }
1358
1359 table = kzalloc(sizeof(*table), GFP_KERNEL);
1360 if (!table)
1361 return;
1362
1363 if (ctrl->ps_max_latency_us == 0) {
1364 /* Turn off APST. */
1365 apste = 0;
1366 dev_dbg(ctrl->device, "APST disabled\n");
1367 } else {
1368 __le64 target = cpu_to_le64(0);
1369 int state;
1370
1371 /*
1372 * Walk through all states from lowest- to highest-power.
1373 * According to the spec, lower-numbered states use more
1374 * power. NPSS, despite the name, is the index of the
1375 * lowest-power state, not the number of states.
1376 */
1377 for (state = (int)ctrl->npss; state >= 0; state--) {
1378 u64 total_latency_us, transition_ms;
1379
1380 if (target)
1381 table->entries[state] = target;
1382
1383 /*
1384 * Don't allow transitions to the deepest state
1385 * if it's quirked off.
1386 */
1387 if (state == ctrl->npss &&
1388 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1389 continue;
1390
1391 /*
1392 * Is this state a useful non-operational state for
1393 * higher-power states to autonomously transition to?
1394 */
1395 if (!(ctrl->psd[state].flags &
1396 NVME_PS_FLAGS_NON_OP_STATE))
1397 continue;
1398
1399 total_latency_us =
1400 (u64)le32_to_cpu(ctrl->psd[state].entry_lat) +
1401 + le32_to_cpu(ctrl->psd[state].exit_lat);
1402 if (total_latency_us > ctrl->ps_max_latency_us)
1403 continue;
1404
1405 /*
1406 * This state is good. Use it as the APST idle
1407 * target for higher power states.
1408 */
1409 transition_ms = total_latency_us + 19;
1410 do_div(transition_ms, 20);
1411 if (transition_ms > (1 << 24) - 1)
1412 transition_ms = (1 << 24) - 1;
1413
1414 target = cpu_to_le64((state << 3) |
1415 (transition_ms << 8));
1416
1417 if (max_ps == -1)
1418 max_ps = state;
1419
1420 if (total_latency_us > max_lat_us)
1421 max_lat_us = total_latency_us;
1422 }
1423
1424 apste = 1;
1425
1426 if (max_ps == -1) {
1427 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1428 } else {
1429 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1430 max_ps, max_lat_us, (int)sizeof(*table), table);
1431 }
1432 }
1433
1434 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1435 table, sizeof(*table), NULL);
1436 if (ret)
1437 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1438
1439 kfree(table);
1440 }
1441
1442 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1443 {
1444 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1445 u64 latency;
1446
1447 switch (val) {
1448 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1449 case PM_QOS_LATENCY_ANY:
1450 latency = U64_MAX;
1451 break;
1452
1453 default:
1454 latency = val;
1455 }
1456
1457 if (ctrl->ps_max_latency_us != latency) {
1458 ctrl->ps_max_latency_us = latency;
1459 nvme_configure_apst(ctrl);
1460 }
1461 }
1462
1463 struct nvme_core_quirk_entry {
1464 /*
1465 * NVMe model and firmware strings are padded with spaces. For
1466 * simplicity, strings in the quirk table are padded with NULLs
1467 * instead.
1468 */
1469 u16 vid;
1470 const char *mn;
1471 const char *fr;
1472 unsigned long quirks;
1473 };
1474
1475 static const struct nvme_core_quirk_entry core_quirks[] = {
1476 {
1477 /*
1478 * This Toshiba device seems to die using any APST states. See:
1479 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1480 */
1481 .vid = 0x1179,
1482 .mn = "THNSF5256GPUK TOSHIBA",
1483 .quirks = NVME_QUIRK_NO_APST,
1484 }
1485 };
1486
1487 /* match is null-terminated but idstr is space-padded. */
1488 static bool string_matches(const char *idstr, const char *match, size_t len)
1489 {
1490 size_t matchlen;
1491
1492 if (!match)
1493 return true;
1494
1495 matchlen = strlen(match);
1496 WARN_ON_ONCE(matchlen > len);
1497
1498 if (memcmp(idstr, match, matchlen))
1499 return false;
1500
1501 for (; matchlen < len; matchlen++)
1502 if (idstr[matchlen] != ' ')
1503 return false;
1504
1505 return true;
1506 }
1507
1508 static bool quirk_matches(const struct nvme_id_ctrl *id,
1509 const struct nvme_core_quirk_entry *q)
1510 {
1511 return q->vid == le16_to_cpu(id->vid) &&
1512 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1513 string_matches(id->fr, q->fr, sizeof(id->fr));
1514 }
1515
1516 /*
1517 * Initialize the cached copies of the Identify data and various controller
1518 * register in our nvme_ctrl structure. This should be called as soon as
1519 * the admin queue is fully up and running.
1520 */
1521 int nvme_init_identify(struct nvme_ctrl *ctrl)
1522 {
1523 struct nvme_id_ctrl *id;
1524 u64 cap;
1525 int ret, page_shift;
1526 u32 max_hw_sectors;
1527 u8 prev_apsta;
1528
1529 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1530 if (ret) {
1531 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1532 return ret;
1533 }
1534
1535 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1536 if (ret) {
1537 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1538 return ret;
1539 }
1540 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1541
1542 if (ctrl->vs >= NVME_VS(1, 1, 0))
1543 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1544
1545 ret = nvme_identify_ctrl(ctrl, &id);
1546 if (ret) {
1547 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1548 return -EIO;
1549 }
1550
1551 if (!ctrl->identified) {
1552 /*
1553 * Check for quirks. Quirk can depend on firmware version,
1554 * so, in principle, the set of quirks present can change
1555 * across a reset. As a possible future enhancement, we
1556 * could re-scan for quirks every time we reinitialize
1557 * the device, but we'd have to make sure that the driver
1558 * behaves intelligently if the quirks change.
1559 */
1560
1561 int i;
1562
1563 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1564 if (quirk_matches(id, &core_quirks[i]))
1565 ctrl->quirks |= core_quirks[i].quirks;
1566 }
1567 }
1568
1569 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1570 dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1571 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1572 }
1573
1574 ctrl->oacs = le16_to_cpu(id->oacs);
1575 ctrl->vid = le16_to_cpu(id->vid);
1576 ctrl->oncs = le16_to_cpup(&id->oncs);
1577 atomic_set(&ctrl->abort_limit, id->acl + 1);
1578 ctrl->vwc = id->vwc;
1579 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1580 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1581 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1582 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1583 if (id->mdts)
1584 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1585 else
1586 max_hw_sectors = UINT_MAX;
1587 ctrl->max_hw_sectors =
1588 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1589
1590 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1591 ctrl->sgls = le32_to_cpu(id->sgls);
1592 ctrl->kas = le16_to_cpu(id->kas);
1593
1594 ctrl->npss = id->npss;
1595 prev_apsta = ctrl->apsta;
1596 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1597 if (force_apst && id->apsta) {
1598 dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1599 ctrl->apsta = 1;
1600 } else {
1601 ctrl->apsta = 0;
1602 }
1603 } else {
1604 ctrl->apsta = id->apsta;
1605 }
1606 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1607
1608 if (ctrl->ops->is_fabrics) {
1609 ctrl->icdoff = le16_to_cpu(id->icdoff);
1610 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1611 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1612 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1613
1614 /*
1615 * In fabrics we need to verify the cntlid matches the
1616 * admin connect
1617 */
1618 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1619 ret = -EINVAL;
1620
1621 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1622 dev_err(ctrl->dev,
1623 "keep-alive support is mandatory for fabrics\n");
1624 ret = -EINVAL;
1625 }
1626 } else {
1627 ctrl->cntlid = le16_to_cpu(id->cntlid);
1628 }
1629
1630 kfree(id);
1631
1632 if (ctrl->apsta && !prev_apsta)
1633 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1634 else if (!ctrl->apsta && prev_apsta)
1635 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1636
1637 nvme_configure_apst(ctrl);
1638
1639 ctrl->identified = true;
1640
1641 return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(nvme_init_identify);
1644
1645 static int nvme_dev_open(struct inode *inode, struct file *file)
1646 {
1647 struct nvme_ctrl *ctrl;
1648 int instance = iminor(inode);
1649 int ret = -ENODEV;
1650
1651 spin_lock(&dev_list_lock);
1652 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1653 if (ctrl->instance != instance)
1654 continue;
1655
1656 if (!ctrl->admin_q) {
1657 ret = -EWOULDBLOCK;
1658 break;
1659 }
1660 if (!kref_get_unless_zero(&ctrl->kref))
1661 break;
1662 file->private_data = ctrl;
1663 ret = 0;
1664 break;
1665 }
1666 spin_unlock(&dev_list_lock);
1667
1668 return ret;
1669 }
1670
1671 static int nvme_dev_release(struct inode *inode, struct file *file)
1672 {
1673 nvme_put_ctrl(file->private_data);
1674 return 0;
1675 }
1676
1677 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1678 {
1679 struct nvme_ns *ns;
1680 int ret;
1681
1682 mutex_lock(&ctrl->namespaces_mutex);
1683 if (list_empty(&ctrl->namespaces)) {
1684 ret = -ENOTTY;
1685 goto out_unlock;
1686 }
1687
1688 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1689 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1690 dev_warn(ctrl->device,
1691 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1692 ret = -EINVAL;
1693 goto out_unlock;
1694 }
1695
1696 dev_warn(ctrl->device,
1697 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1698 kref_get(&ns->kref);
1699 mutex_unlock(&ctrl->namespaces_mutex);
1700
1701 ret = nvme_user_cmd(ctrl, ns, argp);
1702 nvme_put_ns(ns);
1703 return ret;
1704
1705 out_unlock:
1706 mutex_unlock(&ctrl->namespaces_mutex);
1707 return ret;
1708 }
1709
1710 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1711 unsigned long arg)
1712 {
1713 struct nvme_ctrl *ctrl = file->private_data;
1714 void __user *argp = (void __user *)arg;
1715
1716 switch (cmd) {
1717 case NVME_IOCTL_ADMIN_CMD:
1718 return nvme_user_cmd(ctrl, NULL, argp);
1719 case NVME_IOCTL_IO_CMD:
1720 return nvme_dev_user_cmd(ctrl, argp);
1721 case NVME_IOCTL_RESET:
1722 dev_warn(ctrl->device, "resetting controller\n");
1723 return ctrl->ops->reset_ctrl(ctrl);
1724 case NVME_IOCTL_SUBSYS_RESET:
1725 return nvme_reset_subsystem(ctrl);
1726 case NVME_IOCTL_RESCAN:
1727 nvme_queue_scan(ctrl);
1728 return 0;
1729 default:
1730 return -ENOTTY;
1731 }
1732 }
1733
1734 static const struct file_operations nvme_dev_fops = {
1735 .owner = THIS_MODULE,
1736 .open = nvme_dev_open,
1737 .release = nvme_dev_release,
1738 .unlocked_ioctl = nvme_dev_ioctl,
1739 .compat_ioctl = nvme_dev_ioctl,
1740 };
1741
1742 static ssize_t nvme_sysfs_reset(struct device *dev,
1743 struct device_attribute *attr, const char *buf,
1744 size_t count)
1745 {
1746 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1747 int ret;
1748
1749 ret = ctrl->ops->reset_ctrl(ctrl);
1750 if (ret < 0)
1751 return ret;
1752 return count;
1753 }
1754 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1755
1756 static ssize_t nvme_sysfs_rescan(struct device *dev,
1757 struct device_attribute *attr, const char *buf,
1758 size_t count)
1759 {
1760 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1761
1762 nvme_queue_scan(ctrl);
1763 return count;
1764 }
1765 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1766
1767 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1768 char *buf)
1769 {
1770 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1771 struct nvme_ctrl *ctrl = ns->ctrl;
1772 int serial_len = sizeof(ctrl->serial);
1773 int model_len = sizeof(ctrl->model);
1774
1775 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1776 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1777
1778 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1779 return sprintf(buf, "eui.%8phN\n", ns->eui);
1780
1781 while (ctrl->serial[serial_len - 1] == ' ')
1782 serial_len--;
1783 while (ctrl->model[model_len - 1] == ' ')
1784 model_len--;
1785
1786 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1787 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1788 }
1789 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1790
1791 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1792 char *buf)
1793 {
1794 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1795 return sprintf(buf, "%pU\n", ns->uuid);
1796 }
1797 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1798
1799 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1800 char *buf)
1801 {
1802 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1803 return sprintf(buf, "%8phd\n", ns->eui);
1804 }
1805 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1806
1807 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1808 char *buf)
1809 {
1810 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1811 return sprintf(buf, "%d\n", ns->ns_id);
1812 }
1813 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1814
1815 static struct attribute *nvme_ns_attrs[] = {
1816 &dev_attr_wwid.attr,
1817 &dev_attr_uuid.attr,
1818 &dev_attr_eui.attr,
1819 &dev_attr_nsid.attr,
1820 NULL,
1821 };
1822
1823 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1824 struct attribute *a, int n)
1825 {
1826 struct device *dev = container_of(kobj, struct device, kobj);
1827 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1828
1829 if (a == &dev_attr_uuid.attr) {
1830 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1831 return 0;
1832 }
1833 if (a == &dev_attr_eui.attr) {
1834 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1835 return 0;
1836 }
1837 return a->mode;
1838 }
1839
1840 static const struct attribute_group nvme_ns_attr_group = {
1841 .attrs = nvme_ns_attrs,
1842 .is_visible = nvme_ns_attrs_are_visible,
1843 };
1844
1845 #define nvme_show_str_function(field) \
1846 static ssize_t field##_show(struct device *dev, \
1847 struct device_attribute *attr, char *buf) \
1848 { \
1849 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1850 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1851 } \
1852 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1853
1854 #define nvme_show_int_function(field) \
1855 static ssize_t field##_show(struct device *dev, \
1856 struct device_attribute *attr, char *buf) \
1857 { \
1858 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1859 return sprintf(buf, "%d\n", ctrl->field); \
1860 } \
1861 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1862
1863 nvme_show_str_function(model);
1864 nvme_show_str_function(serial);
1865 nvme_show_str_function(firmware_rev);
1866 nvme_show_int_function(cntlid);
1867
1868 static ssize_t nvme_sysfs_delete(struct device *dev,
1869 struct device_attribute *attr, const char *buf,
1870 size_t count)
1871 {
1872 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1873
1874 if (device_remove_file_self(dev, attr))
1875 ctrl->ops->delete_ctrl(ctrl);
1876 return count;
1877 }
1878 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1879
1880 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1881 struct device_attribute *attr,
1882 char *buf)
1883 {
1884 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1885
1886 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1887 }
1888 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1889
1890 static ssize_t nvme_sysfs_show_state(struct device *dev,
1891 struct device_attribute *attr,
1892 char *buf)
1893 {
1894 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1895 static const char *const state_name[] = {
1896 [NVME_CTRL_NEW] = "new",
1897 [NVME_CTRL_LIVE] = "live",
1898 [NVME_CTRL_RESETTING] = "resetting",
1899 [NVME_CTRL_RECONNECTING]= "reconnecting",
1900 [NVME_CTRL_DELETING] = "deleting",
1901 [NVME_CTRL_DEAD] = "dead",
1902 };
1903
1904 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
1905 state_name[ctrl->state])
1906 return sprintf(buf, "%s\n", state_name[ctrl->state]);
1907
1908 return sprintf(buf, "unknown state\n");
1909 }
1910
1911 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
1912
1913 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1914 struct device_attribute *attr,
1915 char *buf)
1916 {
1917 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1918
1919 return snprintf(buf, PAGE_SIZE, "%s\n",
1920 ctrl->ops->get_subsysnqn(ctrl));
1921 }
1922 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1923
1924 static ssize_t nvme_sysfs_show_address(struct device *dev,
1925 struct device_attribute *attr,
1926 char *buf)
1927 {
1928 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1929
1930 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1931 }
1932 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1933
1934 static struct attribute *nvme_dev_attrs[] = {
1935 &dev_attr_reset_controller.attr,
1936 &dev_attr_rescan_controller.attr,
1937 &dev_attr_model.attr,
1938 &dev_attr_serial.attr,
1939 &dev_attr_firmware_rev.attr,
1940 &dev_attr_cntlid.attr,
1941 &dev_attr_delete_controller.attr,
1942 &dev_attr_transport.attr,
1943 &dev_attr_subsysnqn.attr,
1944 &dev_attr_address.attr,
1945 &dev_attr_state.attr,
1946 NULL
1947 };
1948
1949 #define CHECK_ATTR(ctrl, a, name) \
1950 if ((a) == &dev_attr_##name.attr && \
1951 !(ctrl)->ops->get_##name) \
1952 return 0
1953
1954 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1955 struct attribute *a, int n)
1956 {
1957 struct device *dev = container_of(kobj, struct device, kobj);
1958 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1959
1960 if (a == &dev_attr_delete_controller.attr) {
1961 if (!ctrl->ops->delete_ctrl)
1962 return 0;
1963 }
1964
1965 CHECK_ATTR(ctrl, a, subsysnqn);
1966 CHECK_ATTR(ctrl, a, address);
1967
1968 return a->mode;
1969 }
1970
1971 static struct attribute_group nvme_dev_attrs_group = {
1972 .attrs = nvme_dev_attrs,
1973 .is_visible = nvme_dev_attrs_are_visible,
1974 };
1975
1976 static const struct attribute_group *nvme_dev_attr_groups[] = {
1977 &nvme_dev_attrs_group,
1978 NULL,
1979 };
1980
1981 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1982 {
1983 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1984 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1985
1986 return nsa->ns_id - nsb->ns_id;
1987 }
1988
1989 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1990 {
1991 struct nvme_ns *ns, *ret = NULL;
1992
1993 mutex_lock(&ctrl->namespaces_mutex);
1994 list_for_each_entry(ns, &ctrl->namespaces, list) {
1995 if (ns->ns_id == nsid) {
1996 kref_get(&ns->kref);
1997 ret = ns;
1998 break;
1999 }
2000 if (ns->ns_id > nsid)
2001 break;
2002 }
2003 mutex_unlock(&ctrl->namespaces_mutex);
2004 return ret;
2005 }
2006
2007 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2008 {
2009 struct nvme_ns *ns;
2010 struct gendisk *disk;
2011 struct nvme_id_ns *id;
2012 char disk_name[DISK_NAME_LEN];
2013 int node = dev_to_node(ctrl->dev);
2014
2015 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2016 if (!ns)
2017 return;
2018
2019 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2020 if (ns->instance < 0)
2021 goto out_free_ns;
2022
2023 ns->queue = blk_mq_init_queue(ctrl->tagset);
2024 if (IS_ERR(ns->queue))
2025 goto out_release_instance;
2026 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2027 ns->queue->queuedata = ns;
2028 ns->ctrl = ctrl;
2029
2030 kref_init(&ns->kref);
2031 ns->ns_id = nsid;
2032 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2033
2034 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2035 nvme_set_queue_limits(ctrl, ns->queue);
2036
2037 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2038
2039 if (nvme_revalidate_ns(ns, &id))
2040 goto out_free_queue;
2041
2042 if (nvme_nvm_ns_supported(ns, id) &&
2043 nvme_nvm_register(ns, disk_name, node)) {
2044 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
2045 goto out_free_id;
2046 }
2047
2048 disk = alloc_disk_node(0, node);
2049 if (!disk)
2050 goto out_free_id;
2051
2052 disk->fops = &nvme_fops;
2053 disk->private_data = ns;
2054 disk->queue = ns->queue;
2055 disk->flags = GENHD_FL_EXT_DEVT;
2056 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2057 ns->disk = disk;
2058
2059 __nvme_revalidate_disk(disk, id);
2060
2061 mutex_lock(&ctrl->namespaces_mutex);
2062 list_add_tail(&ns->list, &ctrl->namespaces);
2063 mutex_unlock(&ctrl->namespaces_mutex);
2064
2065 kref_get(&ctrl->kref);
2066
2067 kfree(id);
2068
2069 device_add_disk(ctrl->device, ns->disk);
2070 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2071 &nvme_ns_attr_group))
2072 pr_warn("%s: failed to create sysfs group for identification\n",
2073 ns->disk->disk_name);
2074 if (ns->ndev && nvme_nvm_register_sysfs(ns))
2075 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2076 ns->disk->disk_name);
2077 return;
2078 out_free_id:
2079 kfree(id);
2080 out_free_queue:
2081 blk_cleanup_queue(ns->queue);
2082 out_release_instance:
2083 ida_simple_remove(&ctrl->ns_ida, ns->instance);
2084 out_free_ns:
2085 kfree(ns);
2086 }
2087
2088 static void nvme_ns_remove(struct nvme_ns *ns)
2089 {
2090 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2091 return;
2092
2093 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2094 if (blk_get_integrity(ns->disk))
2095 blk_integrity_unregister(ns->disk);
2096 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2097 &nvme_ns_attr_group);
2098 if (ns->ndev)
2099 nvme_nvm_unregister_sysfs(ns);
2100 del_gendisk(ns->disk);
2101 blk_mq_abort_requeue_list(ns->queue);
2102 blk_cleanup_queue(ns->queue);
2103 }
2104
2105 mutex_lock(&ns->ctrl->namespaces_mutex);
2106 list_del_init(&ns->list);
2107 mutex_unlock(&ns->ctrl->namespaces_mutex);
2108
2109 nvme_put_ns(ns);
2110 }
2111
2112 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2113 {
2114 struct nvme_ns *ns;
2115
2116 ns = nvme_find_get_ns(ctrl, nsid);
2117 if (ns) {
2118 if (ns->disk && revalidate_disk(ns->disk))
2119 nvme_ns_remove(ns);
2120 nvme_put_ns(ns);
2121 } else
2122 nvme_alloc_ns(ctrl, nsid);
2123 }
2124
2125 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2126 unsigned nsid)
2127 {
2128 struct nvme_ns *ns, *next;
2129
2130 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2131 if (ns->ns_id > nsid)
2132 nvme_ns_remove(ns);
2133 }
2134 }
2135
2136 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2137 {
2138 struct nvme_ns *ns;
2139 __le32 *ns_list;
2140 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2141 int ret = 0;
2142
2143 ns_list = kzalloc(0x1000, GFP_KERNEL);
2144 if (!ns_list)
2145 return -ENOMEM;
2146
2147 for (i = 0; i < num_lists; i++) {
2148 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2149 if (ret)
2150 goto free;
2151
2152 for (j = 0; j < min(nn, 1024U); j++) {
2153 nsid = le32_to_cpu(ns_list[j]);
2154 if (!nsid)
2155 goto out;
2156
2157 nvme_validate_ns(ctrl, nsid);
2158
2159 while (++prev < nsid) {
2160 ns = nvme_find_get_ns(ctrl, prev);
2161 if (ns) {
2162 nvme_ns_remove(ns);
2163 nvme_put_ns(ns);
2164 }
2165 }
2166 }
2167 nn -= j;
2168 }
2169 out:
2170 nvme_remove_invalid_namespaces(ctrl, prev);
2171 free:
2172 kfree(ns_list);
2173 return ret;
2174 }
2175
2176 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2177 {
2178 unsigned i;
2179
2180 for (i = 1; i <= nn; i++)
2181 nvme_validate_ns(ctrl, i);
2182
2183 nvme_remove_invalid_namespaces(ctrl, nn);
2184 }
2185
2186 static void nvme_scan_work(struct work_struct *work)
2187 {
2188 struct nvme_ctrl *ctrl =
2189 container_of(work, struct nvme_ctrl, scan_work);
2190 struct nvme_id_ctrl *id;
2191 unsigned nn;
2192
2193 if (ctrl->state != NVME_CTRL_LIVE)
2194 return;
2195
2196 if (nvme_identify_ctrl(ctrl, &id))
2197 return;
2198
2199 nn = le32_to_cpu(id->nn);
2200 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2201 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2202 if (!nvme_scan_ns_list(ctrl, nn))
2203 goto done;
2204 }
2205 nvme_scan_ns_sequential(ctrl, nn);
2206 done:
2207 mutex_lock(&ctrl->namespaces_mutex);
2208 list_sort(NULL, &ctrl->namespaces, ns_cmp);
2209 mutex_unlock(&ctrl->namespaces_mutex);
2210 kfree(id);
2211 }
2212
2213 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2214 {
2215 /*
2216 * Do not queue new scan work when a controller is reset during
2217 * removal.
2218 */
2219 if (ctrl->state == NVME_CTRL_LIVE)
2220 schedule_work(&ctrl->scan_work);
2221 }
2222 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2223
2224 /*
2225 * This function iterates the namespace list unlocked to allow recovery from
2226 * controller failure. It is up to the caller to ensure the namespace list is
2227 * not modified by scan work while this function is executing.
2228 */
2229 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2230 {
2231 struct nvme_ns *ns, *next;
2232
2233 /*
2234 * The dead states indicates the controller was not gracefully
2235 * disconnected. In that case, we won't be able to flush any data while
2236 * removing the namespaces' disks; fail all the queues now to avoid
2237 * potentially having to clean up the failed sync later.
2238 */
2239 if (ctrl->state == NVME_CTRL_DEAD)
2240 nvme_kill_queues(ctrl);
2241
2242 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2243 nvme_ns_remove(ns);
2244 }
2245 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2246
2247 static void nvme_async_event_work(struct work_struct *work)
2248 {
2249 struct nvme_ctrl *ctrl =
2250 container_of(work, struct nvme_ctrl, async_event_work);
2251
2252 spin_lock_irq(&ctrl->lock);
2253 while (ctrl->event_limit > 0) {
2254 int aer_idx = --ctrl->event_limit;
2255
2256 spin_unlock_irq(&ctrl->lock);
2257 ctrl->ops->submit_async_event(ctrl, aer_idx);
2258 spin_lock_irq(&ctrl->lock);
2259 }
2260 spin_unlock_irq(&ctrl->lock);
2261 }
2262
2263 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2264 union nvme_result *res)
2265 {
2266 u32 result = le32_to_cpu(res->u32);
2267 bool done = true;
2268
2269 switch (le16_to_cpu(status) >> 1) {
2270 case NVME_SC_SUCCESS:
2271 done = false;
2272 /*FALLTHRU*/
2273 case NVME_SC_ABORT_REQ:
2274 ++ctrl->event_limit;
2275 schedule_work(&ctrl->async_event_work);
2276 break;
2277 default:
2278 break;
2279 }
2280
2281 if (done)
2282 return;
2283
2284 switch (result & 0xff07) {
2285 case NVME_AER_NOTICE_NS_CHANGED:
2286 dev_info(ctrl->device, "rescanning\n");
2287 nvme_queue_scan(ctrl);
2288 break;
2289 default:
2290 dev_warn(ctrl->device, "async event result %08x\n", result);
2291 }
2292 }
2293 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2294
2295 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2296 {
2297 ctrl->event_limit = NVME_NR_AERS;
2298 schedule_work(&ctrl->async_event_work);
2299 }
2300 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2301
2302 static DEFINE_IDA(nvme_instance_ida);
2303
2304 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2305 {
2306 int instance, error;
2307
2308 do {
2309 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2310 return -ENODEV;
2311
2312 spin_lock(&dev_list_lock);
2313 error = ida_get_new(&nvme_instance_ida, &instance);
2314 spin_unlock(&dev_list_lock);
2315 } while (error == -EAGAIN);
2316
2317 if (error)
2318 return -ENODEV;
2319
2320 ctrl->instance = instance;
2321 return 0;
2322 }
2323
2324 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2325 {
2326 spin_lock(&dev_list_lock);
2327 ida_remove(&nvme_instance_ida, ctrl->instance);
2328 spin_unlock(&dev_list_lock);
2329 }
2330
2331 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2332 {
2333 flush_work(&ctrl->async_event_work);
2334 flush_work(&ctrl->scan_work);
2335 nvme_remove_namespaces(ctrl);
2336
2337 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2338
2339 spin_lock(&dev_list_lock);
2340 list_del(&ctrl->node);
2341 spin_unlock(&dev_list_lock);
2342 }
2343 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2344
2345 static void nvme_free_ctrl(struct kref *kref)
2346 {
2347 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2348
2349 put_device(ctrl->device);
2350 nvme_release_instance(ctrl);
2351 ida_destroy(&ctrl->ns_ida);
2352
2353 ctrl->ops->free_ctrl(ctrl);
2354 }
2355
2356 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2357 {
2358 kref_put(&ctrl->kref, nvme_free_ctrl);
2359 }
2360 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2361
2362 /*
2363 * Initialize a NVMe controller structures. This needs to be called during
2364 * earliest initialization so that we have the initialized structured around
2365 * during probing.
2366 */
2367 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2368 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2369 {
2370 int ret;
2371
2372 ctrl->state = NVME_CTRL_NEW;
2373 spin_lock_init(&ctrl->lock);
2374 INIT_LIST_HEAD(&ctrl->namespaces);
2375 mutex_init(&ctrl->namespaces_mutex);
2376 kref_init(&ctrl->kref);
2377 ctrl->dev = dev;
2378 ctrl->ops = ops;
2379 ctrl->quirks = quirks;
2380 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2381 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2382
2383 ret = nvme_set_instance(ctrl);
2384 if (ret)
2385 goto out;
2386
2387 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2388 MKDEV(nvme_char_major, ctrl->instance),
2389 ctrl, nvme_dev_attr_groups,
2390 "nvme%d", ctrl->instance);
2391 if (IS_ERR(ctrl->device)) {
2392 ret = PTR_ERR(ctrl->device);
2393 goto out_release_instance;
2394 }
2395 get_device(ctrl->device);
2396 ida_init(&ctrl->ns_ida);
2397
2398 spin_lock(&dev_list_lock);
2399 list_add_tail(&ctrl->node, &nvme_ctrl_list);
2400 spin_unlock(&dev_list_lock);
2401
2402 /*
2403 * Initialize latency tolerance controls. The sysfs files won't
2404 * be visible to userspace unless the device actually supports APST.
2405 */
2406 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2407 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2408 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2409
2410 return 0;
2411 out_release_instance:
2412 nvme_release_instance(ctrl);
2413 out:
2414 return ret;
2415 }
2416 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2417
2418 /**
2419 * nvme_kill_queues(): Ends all namespace queues
2420 * @ctrl: the dead controller that needs to end
2421 *
2422 * Call this function when the driver determines it is unable to get the
2423 * controller in a state capable of servicing IO.
2424 */
2425 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2426 {
2427 struct nvme_ns *ns;
2428
2429 mutex_lock(&ctrl->namespaces_mutex);
2430 list_for_each_entry(ns, &ctrl->namespaces, list) {
2431 /*
2432 * Revalidating a dead namespace sets capacity to 0. This will
2433 * end buffered writers dirtying pages that can't be synced.
2434 */
2435 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2436 continue;
2437 revalidate_disk(ns->disk);
2438 blk_set_queue_dying(ns->queue);
2439 blk_mq_abort_requeue_list(ns->queue);
2440 blk_mq_start_stopped_hw_queues(ns->queue, true);
2441 }
2442 mutex_unlock(&ctrl->namespaces_mutex);
2443 }
2444 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2445
2446 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2447 {
2448 struct nvme_ns *ns;
2449
2450 mutex_lock(&ctrl->namespaces_mutex);
2451 list_for_each_entry(ns, &ctrl->namespaces, list)
2452 blk_mq_unfreeze_queue(ns->queue);
2453 mutex_unlock(&ctrl->namespaces_mutex);
2454 }
2455 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2456
2457 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2458 {
2459 struct nvme_ns *ns;
2460
2461 mutex_lock(&ctrl->namespaces_mutex);
2462 list_for_each_entry(ns, &ctrl->namespaces, list) {
2463 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2464 if (timeout <= 0)
2465 break;
2466 }
2467 mutex_unlock(&ctrl->namespaces_mutex);
2468 }
2469 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2470
2471 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2472 {
2473 struct nvme_ns *ns;
2474
2475 mutex_lock(&ctrl->namespaces_mutex);
2476 list_for_each_entry(ns, &ctrl->namespaces, list)
2477 blk_mq_freeze_queue_wait(ns->queue);
2478 mutex_unlock(&ctrl->namespaces_mutex);
2479 }
2480 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2481
2482 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2483 {
2484 struct nvme_ns *ns;
2485
2486 mutex_lock(&ctrl->namespaces_mutex);
2487 list_for_each_entry(ns, &ctrl->namespaces, list)
2488 blk_freeze_queue_start(ns->queue);
2489 mutex_unlock(&ctrl->namespaces_mutex);
2490 }
2491 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2492
2493 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2494 {
2495 struct nvme_ns *ns;
2496
2497 mutex_lock(&ctrl->namespaces_mutex);
2498 list_for_each_entry(ns, &ctrl->namespaces, list)
2499 blk_mq_quiesce_queue(ns->queue);
2500 mutex_unlock(&ctrl->namespaces_mutex);
2501 }
2502 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2503
2504 void nvme_start_queues(struct nvme_ctrl *ctrl)
2505 {
2506 struct nvme_ns *ns;
2507
2508 mutex_lock(&ctrl->namespaces_mutex);
2509 list_for_each_entry(ns, &ctrl->namespaces, list) {
2510 blk_mq_start_stopped_hw_queues(ns->queue, true);
2511 blk_mq_kick_requeue_list(ns->queue);
2512 }
2513 mutex_unlock(&ctrl->namespaces_mutex);
2514 }
2515 EXPORT_SYMBOL_GPL(nvme_start_queues);
2516
2517 int __init nvme_core_init(void)
2518 {
2519 int result;
2520
2521 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2522 &nvme_dev_fops);
2523 if (result < 0)
2524 return result;
2525 else if (result > 0)
2526 nvme_char_major = result;
2527
2528 nvme_class = class_create(THIS_MODULE, "nvme");
2529 if (IS_ERR(nvme_class)) {
2530 result = PTR_ERR(nvme_class);
2531 goto unregister_chrdev;
2532 }
2533
2534 return 0;
2535
2536 unregister_chrdev:
2537 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2538 return result;
2539 }
2540
2541 void nvme_core_exit(void)
2542 {
2543 class_destroy(nvme_class);
2544 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2545 }
2546
2547 MODULE_LICENSE("GPL");
2548 MODULE_VERSION("1.0");
2549 module_init(nvme_core_init);
2550 module_exit(nvme_core_exit);