]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/nvme/host/core.c
Merge tag 'pci-v5.5-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[mirror_ubuntu-hirsute-kernel.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
68 *
69 * nvme_wq will host works such are scan, aen handling, fw activation,
70 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
74 */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 unsigned nsid);
96
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 /*
100 * Revalidating a dead namespace sets capacity to 0. This will end
101 * buffered writers dirtying pages that can't be synced.
102 */
103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 return;
105 blk_set_queue_dying(ns->queue);
106 /* Forcibly unquiesce queues to avoid blocking dispatch */
107 blk_mq_unquiesce_queue(ns->queue);
108 /*
109 * Revalidate after unblocking dispatchers that may be holding bd_butex
110 */
111 revalidate_disk(ns->disk);
112 }
113
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116 /*
117 * Only new queue scan work when admin and IO queues are both alive
118 */
119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 /*
124 * Use this function to proceed with scheduling reset_work for a controller
125 * that had previously been set to the resetting state. This is intended for
126 * code paths that can't be interrupted by other reset attempts. A hot removal
127 * may prevent this from succeeding.
128 */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131 if (ctrl->state != NVME_CTRL_RESETTING)
132 return -EBUSY;
133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 return -EBUSY;
135 return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 return -EBUSY;
143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 return -EBUSY;
145 return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151 int ret;
152
153 ret = nvme_reset_ctrl(ctrl);
154 if (!ret) {
155 flush_work(&ctrl->reset_work);
156 if (ctrl->state != NVME_CTRL_LIVE)
157 ret = -ENETRESET;
158 }
159
160 return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166 dev_info(ctrl->device,
167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168
169 flush_work(&ctrl->reset_work);
170 nvme_stop_ctrl(ctrl);
171 nvme_remove_namespaces(ctrl);
172 ctrl->ops->delete_ctrl(ctrl);
173 nvme_uninit_ctrl(ctrl);
174 nvme_put_ctrl(ctrl);
175 }
176
177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179 struct nvme_ctrl *ctrl =
180 container_of(work, struct nvme_ctrl, delete_work);
181
182 nvme_do_delete_ctrl(ctrl);
183 }
184
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188 return -EBUSY;
189 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190 return -EBUSY;
191 return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194
195 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197 int ret = 0;
198
199 /*
200 * Keep a reference until nvme_do_delete_ctrl() complete,
201 * since ->delete_ctrl can free the controller.
202 */
203 nvme_get_ctrl(ctrl);
204 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
205 ret = -EBUSY;
206 if (!ret)
207 nvme_do_delete_ctrl(ctrl);
208 nvme_put_ctrl(ctrl);
209 return ret;
210 }
211
212 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
213 {
214 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
215 }
216
217 static blk_status_t nvme_error_status(u16 status)
218 {
219 switch (status & 0x7ff) {
220 case NVME_SC_SUCCESS:
221 return BLK_STS_OK;
222 case NVME_SC_CAP_EXCEEDED:
223 return BLK_STS_NOSPC;
224 case NVME_SC_LBA_RANGE:
225 return BLK_STS_TARGET;
226 case NVME_SC_BAD_ATTRIBUTES:
227 case NVME_SC_ONCS_NOT_SUPPORTED:
228 case NVME_SC_INVALID_OPCODE:
229 case NVME_SC_INVALID_FIELD:
230 case NVME_SC_INVALID_NS:
231 return BLK_STS_NOTSUPP;
232 case NVME_SC_WRITE_FAULT:
233 case NVME_SC_READ_ERROR:
234 case NVME_SC_UNWRITTEN_BLOCK:
235 case NVME_SC_ACCESS_DENIED:
236 case NVME_SC_READ_ONLY:
237 case NVME_SC_COMPARE_FAILED:
238 return BLK_STS_MEDIUM;
239 case NVME_SC_GUARD_CHECK:
240 case NVME_SC_APPTAG_CHECK:
241 case NVME_SC_REFTAG_CHECK:
242 case NVME_SC_INVALID_PI:
243 return BLK_STS_PROTECTION;
244 case NVME_SC_RESERVATION_CONFLICT:
245 return BLK_STS_NEXUS;
246 case NVME_SC_HOST_PATH_ERROR:
247 return BLK_STS_TRANSPORT;
248 default:
249 return BLK_STS_IOERR;
250 }
251 }
252
253 static inline bool nvme_req_needs_retry(struct request *req)
254 {
255 if (blk_noretry_request(req))
256 return false;
257 if (nvme_req(req)->status & NVME_SC_DNR)
258 return false;
259 if (nvme_req(req)->retries >= nvme_max_retries)
260 return false;
261 return true;
262 }
263
264 static void nvme_retry_req(struct request *req)
265 {
266 struct nvme_ns *ns = req->q->queuedata;
267 unsigned long delay = 0;
268 u16 crd;
269
270 /* The mask and shift result must be <= 3 */
271 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
272 if (ns && crd)
273 delay = ns->ctrl->crdt[crd - 1] * 100;
274
275 nvme_req(req)->retries++;
276 blk_mq_requeue_request(req, false);
277 blk_mq_delay_kick_requeue_list(req->q, delay);
278 }
279
280 void nvme_complete_rq(struct request *req)
281 {
282 blk_status_t status = nvme_error_status(nvme_req(req)->status);
283
284 trace_nvme_complete_rq(req);
285
286 nvme_cleanup_cmd(req);
287
288 if (nvme_req(req)->ctrl->kas)
289 nvme_req(req)->ctrl->comp_seen = true;
290
291 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
292 if ((req->cmd_flags & REQ_NVME_MPATH) &&
293 blk_path_error(status)) {
294 nvme_failover_req(req);
295 return;
296 }
297
298 if (!blk_queue_dying(req->q)) {
299 nvme_retry_req(req);
300 return;
301 }
302 }
303
304 nvme_trace_bio_complete(req, status);
305 blk_mq_end_request(req, status);
306 }
307 EXPORT_SYMBOL_GPL(nvme_complete_rq);
308
309 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
310 {
311 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
312 "Cancelling I/O %d", req->tag);
313
314 /* don't abort one completed request */
315 if (blk_mq_request_completed(req))
316 return true;
317
318 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
319 blk_mq_complete_request(req);
320 return true;
321 }
322 EXPORT_SYMBOL_GPL(nvme_cancel_request);
323
324 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
325 enum nvme_ctrl_state new_state)
326 {
327 enum nvme_ctrl_state old_state;
328 unsigned long flags;
329 bool changed = false;
330
331 spin_lock_irqsave(&ctrl->lock, flags);
332
333 old_state = ctrl->state;
334 switch (new_state) {
335 case NVME_CTRL_LIVE:
336 switch (old_state) {
337 case NVME_CTRL_NEW:
338 case NVME_CTRL_RESETTING:
339 case NVME_CTRL_CONNECTING:
340 changed = true;
341 /* FALLTHRU */
342 default:
343 break;
344 }
345 break;
346 case NVME_CTRL_RESETTING:
347 switch (old_state) {
348 case NVME_CTRL_NEW:
349 case NVME_CTRL_LIVE:
350 changed = true;
351 /* FALLTHRU */
352 default:
353 break;
354 }
355 break;
356 case NVME_CTRL_CONNECTING:
357 switch (old_state) {
358 case NVME_CTRL_NEW:
359 case NVME_CTRL_RESETTING:
360 changed = true;
361 /* FALLTHRU */
362 default:
363 break;
364 }
365 break;
366 case NVME_CTRL_DELETING:
367 switch (old_state) {
368 case NVME_CTRL_LIVE:
369 case NVME_CTRL_RESETTING:
370 case NVME_CTRL_CONNECTING:
371 changed = true;
372 /* FALLTHRU */
373 default:
374 break;
375 }
376 break;
377 case NVME_CTRL_DEAD:
378 switch (old_state) {
379 case NVME_CTRL_DELETING:
380 changed = true;
381 /* FALLTHRU */
382 default:
383 break;
384 }
385 break;
386 default:
387 break;
388 }
389
390 if (changed) {
391 ctrl->state = new_state;
392 wake_up_all(&ctrl->state_wq);
393 }
394
395 spin_unlock_irqrestore(&ctrl->lock, flags);
396 if (changed && ctrl->state == NVME_CTRL_LIVE)
397 nvme_kick_requeue_lists(ctrl);
398 return changed;
399 }
400 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
401
402 /*
403 * Returns true for sink states that can't ever transition back to live.
404 */
405 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
406 {
407 switch (ctrl->state) {
408 case NVME_CTRL_NEW:
409 case NVME_CTRL_LIVE:
410 case NVME_CTRL_RESETTING:
411 case NVME_CTRL_CONNECTING:
412 return false;
413 case NVME_CTRL_DELETING:
414 case NVME_CTRL_DEAD:
415 return true;
416 default:
417 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
418 return true;
419 }
420 }
421
422 /*
423 * Waits for the controller state to be resetting, or returns false if it is
424 * not possible to ever transition to that state.
425 */
426 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
427 {
428 wait_event(ctrl->state_wq,
429 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
430 nvme_state_terminal(ctrl));
431 return ctrl->state == NVME_CTRL_RESETTING;
432 }
433 EXPORT_SYMBOL_GPL(nvme_wait_reset);
434
435 static void nvme_free_ns_head(struct kref *ref)
436 {
437 struct nvme_ns_head *head =
438 container_of(ref, struct nvme_ns_head, ref);
439
440 nvme_mpath_remove_disk(head);
441 ida_simple_remove(&head->subsys->ns_ida, head->instance);
442 list_del_init(&head->entry);
443 cleanup_srcu_struct(&head->srcu);
444 nvme_put_subsystem(head->subsys);
445 kfree(head);
446 }
447
448 static void nvme_put_ns_head(struct nvme_ns_head *head)
449 {
450 kref_put(&head->ref, nvme_free_ns_head);
451 }
452
453 static void nvme_free_ns(struct kref *kref)
454 {
455 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
456
457 if (ns->ndev)
458 nvme_nvm_unregister(ns);
459
460 put_disk(ns->disk);
461 nvme_put_ns_head(ns->head);
462 nvme_put_ctrl(ns->ctrl);
463 kfree(ns);
464 }
465
466 static void nvme_put_ns(struct nvme_ns *ns)
467 {
468 kref_put(&ns->kref, nvme_free_ns);
469 }
470
471 static inline void nvme_clear_nvme_request(struct request *req)
472 {
473 if (!(req->rq_flags & RQF_DONTPREP)) {
474 nvme_req(req)->retries = 0;
475 nvme_req(req)->flags = 0;
476 req->rq_flags |= RQF_DONTPREP;
477 }
478 }
479
480 struct request *nvme_alloc_request(struct request_queue *q,
481 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
482 {
483 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
484 struct request *req;
485
486 if (qid == NVME_QID_ANY) {
487 req = blk_mq_alloc_request(q, op, flags);
488 } else {
489 req = blk_mq_alloc_request_hctx(q, op, flags,
490 qid ? qid - 1 : 0);
491 }
492 if (IS_ERR(req))
493 return req;
494
495 req->cmd_flags |= REQ_FAILFAST_DRIVER;
496 nvme_clear_nvme_request(req);
497 nvme_req(req)->cmd = cmd;
498
499 return req;
500 }
501 EXPORT_SYMBOL_GPL(nvme_alloc_request);
502
503 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
504 {
505 struct nvme_command c;
506
507 memset(&c, 0, sizeof(c));
508
509 c.directive.opcode = nvme_admin_directive_send;
510 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
511 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
512 c.directive.dtype = NVME_DIR_IDENTIFY;
513 c.directive.tdtype = NVME_DIR_STREAMS;
514 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
515
516 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
517 }
518
519 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
520 {
521 return nvme_toggle_streams(ctrl, false);
522 }
523
524 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
525 {
526 return nvme_toggle_streams(ctrl, true);
527 }
528
529 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
530 struct streams_directive_params *s, u32 nsid)
531 {
532 struct nvme_command c;
533
534 memset(&c, 0, sizeof(c));
535 memset(s, 0, sizeof(*s));
536
537 c.directive.opcode = nvme_admin_directive_recv;
538 c.directive.nsid = cpu_to_le32(nsid);
539 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
540 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
541 c.directive.dtype = NVME_DIR_STREAMS;
542
543 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
544 }
545
546 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
547 {
548 struct streams_directive_params s;
549 int ret;
550
551 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
552 return 0;
553 if (!streams)
554 return 0;
555
556 ret = nvme_enable_streams(ctrl);
557 if (ret)
558 return ret;
559
560 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
561 if (ret)
562 return ret;
563
564 ctrl->nssa = le16_to_cpu(s.nssa);
565 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
566 dev_info(ctrl->device, "too few streams (%u) available\n",
567 ctrl->nssa);
568 nvme_disable_streams(ctrl);
569 return 0;
570 }
571
572 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
573 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
574 return 0;
575 }
576
577 /*
578 * Check if 'req' has a write hint associated with it. If it does, assign
579 * a valid namespace stream to the write.
580 */
581 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
582 struct request *req, u16 *control,
583 u32 *dsmgmt)
584 {
585 enum rw_hint streamid = req->write_hint;
586
587 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
588 streamid = 0;
589 else {
590 streamid--;
591 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
592 return;
593
594 *control |= NVME_RW_DTYPE_STREAMS;
595 *dsmgmt |= streamid << 16;
596 }
597
598 if (streamid < ARRAY_SIZE(req->q->write_hints))
599 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
600 }
601
602 static inline void nvme_setup_flush(struct nvme_ns *ns,
603 struct nvme_command *cmnd)
604 {
605 cmnd->common.opcode = nvme_cmd_flush;
606 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
607 }
608
609 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
610 struct nvme_command *cmnd)
611 {
612 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
613 struct nvme_dsm_range *range;
614 struct bio *bio;
615
616 /*
617 * Some devices do not consider the DSM 'Number of Ranges' field when
618 * determining how much data to DMA. Always allocate memory for maximum
619 * number of segments to prevent device reading beyond end of buffer.
620 */
621 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
622
623 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
624 if (!range) {
625 /*
626 * If we fail allocation our range, fallback to the controller
627 * discard page. If that's also busy, it's safe to return
628 * busy, as we know we can make progress once that's freed.
629 */
630 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
631 return BLK_STS_RESOURCE;
632
633 range = page_address(ns->ctrl->discard_page);
634 }
635
636 __rq_for_each_bio(bio, req) {
637 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
638 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
639
640 if (n < segments) {
641 range[n].cattr = cpu_to_le32(0);
642 range[n].nlb = cpu_to_le32(nlb);
643 range[n].slba = cpu_to_le64(slba);
644 }
645 n++;
646 }
647
648 if (WARN_ON_ONCE(n != segments)) {
649 if (virt_to_page(range) == ns->ctrl->discard_page)
650 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
651 else
652 kfree(range);
653 return BLK_STS_IOERR;
654 }
655
656 cmnd->dsm.opcode = nvme_cmd_dsm;
657 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
658 cmnd->dsm.nr = cpu_to_le32(segments - 1);
659 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
660
661 req->special_vec.bv_page = virt_to_page(range);
662 req->special_vec.bv_offset = offset_in_page(range);
663 req->special_vec.bv_len = alloc_size;
664 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
665
666 return BLK_STS_OK;
667 }
668
669 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
670 struct request *req, struct nvme_command *cmnd)
671 {
672 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
673 return nvme_setup_discard(ns, req, cmnd);
674
675 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
676 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
677 cmnd->write_zeroes.slba =
678 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
679 cmnd->write_zeroes.length =
680 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
681 cmnd->write_zeroes.control = 0;
682 return BLK_STS_OK;
683 }
684
685 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
686 struct request *req, struct nvme_command *cmnd)
687 {
688 struct nvme_ctrl *ctrl = ns->ctrl;
689 u16 control = 0;
690 u32 dsmgmt = 0;
691
692 if (req->cmd_flags & REQ_FUA)
693 control |= NVME_RW_FUA;
694 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
695 control |= NVME_RW_LR;
696
697 if (req->cmd_flags & REQ_RAHEAD)
698 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699
700 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
701 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
702 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
703 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
704
705 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
706 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
707
708 if (ns->ms) {
709 /*
710 * If formated with metadata, the block layer always provides a
711 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
712 * we enable the PRACT bit for protection information or set the
713 * namespace capacity to zero to prevent any I/O.
714 */
715 if (!blk_integrity_rq(req)) {
716 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
717 return BLK_STS_NOTSUPP;
718 control |= NVME_RW_PRINFO_PRACT;
719 }
720
721 switch (ns->pi_type) {
722 case NVME_NS_DPS_PI_TYPE3:
723 control |= NVME_RW_PRINFO_PRCHK_GUARD;
724 break;
725 case NVME_NS_DPS_PI_TYPE1:
726 case NVME_NS_DPS_PI_TYPE2:
727 control |= NVME_RW_PRINFO_PRCHK_GUARD |
728 NVME_RW_PRINFO_PRCHK_REF;
729 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
730 break;
731 }
732 }
733
734 cmnd->rw.control = cpu_to_le16(control);
735 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
736 return 0;
737 }
738
739 void nvme_cleanup_cmd(struct request *req)
740 {
741 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
742 struct nvme_ns *ns = req->rq_disk->private_data;
743 struct page *page = req->special_vec.bv_page;
744
745 if (page == ns->ctrl->discard_page)
746 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
747 else
748 kfree(page_address(page) + req->special_vec.bv_offset);
749 }
750 }
751 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
752
753 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
754 struct nvme_command *cmd)
755 {
756 blk_status_t ret = BLK_STS_OK;
757
758 nvme_clear_nvme_request(req);
759
760 memset(cmd, 0, sizeof(*cmd));
761 switch (req_op(req)) {
762 case REQ_OP_DRV_IN:
763 case REQ_OP_DRV_OUT:
764 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
765 break;
766 case REQ_OP_FLUSH:
767 nvme_setup_flush(ns, cmd);
768 break;
769 case REQ_OP_WRITE_ZEROES:
770 ret = nvme_setup_write_zeroes(ns, req, cmd);
771 break;
772 case REQ_OP_DISCARD:
773 ret = nvme_setup_discard(ns, req, cmd);
774 break;
775 case REQ_OP_READ:
776 case REQ_OP_WRITE:
777 ret = nvme_setup_rw(ns, req, cmd);
778 break;
779 default:
780 WARN_ON_ONCE(1);
781 return BLK_STS_IOERR;
782 }
783
784 cmd->common.command_id = req->tag;
785 trace_nvme_setup_cmd(req, cmd);
786 return ret;
787 }
788 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
789
790 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
791 {
792 struct completion *waiting = rq->end_io_data;
793
794 rq->end_io_data = NULL;
795 complete(waiting);
796 }
797
798 static void nvme_execute_rq_polled(struct request_queue *q,
799 struct gendisk *bd_disk, struct request *rq, int at_head)
800 {
801 DECLARE_COMPLETION_ONSTACK(wait);
802
803 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
804
805 rq->cmd_flags |= REQ_HIPRI;
806 rq->end_io_data = &wait;
807 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
808
809 while (!completion_done(&wait)) {
810 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
811 cond_resched();
812 }
813 }
814
815 /*
816 * Returns 0 on success. If the result is negative, it's a Linux error code;
817 * if the result is positive, it's an NVM Express status code
818 */
819 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
820 union nvme_result *result, void *buffer, unsigned bufflen,
821 unsigned timeout, int qid, int at_head,
822 blk_mq_req_flags_t flags, bool poll)
823 {
824 struct request *req;
825 int ret;
826
827 req = nvme_alloc_request(q, cmd, flags, qid);
828 if (IS_ERR(req))
829 return PTR_ERR(req);
830
831 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
832
833 if (buffer && bufflen) {
834 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
835 if (ret)
836 goto out;
837 }
838
839 if (poll)
840 nvme_execute_rq_polled(req->q, NULL, req, at_head);
841 else
842 blk_execute_rq(req->q, NULL, req, at_head);
843 if (result)
844 *result = nvme_req(req)->result;
845 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
846 ret = -EINTR;
847 else
848 ret = nvme_req(req)->status;
849 out:
850 blk_mq_free_request(req);
851 return ret;
852 }
853 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
854
855 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
856 void *buffer, unsigned bufflen)
857 {
858 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
859 NVME_QID_ANY, 0, 0, false);
860 }
861 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
862
863 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
864 unsigned len, u32 seed, bool write)
865 {
866 struct bio_integrity_payload *bip;
867 int ret = -ENOMEM;
868 void *buf;
869
870 buf = kmalloc(len, GFP_KERNEL);
871 if (!buf)
872 goto out;
873
874 ret = -EFAULT;
875 if (write && copy_from_user(buf, ubuf, len))
876 goto out_free_meta;
877
878 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
879 if (IS_ERR(bip)) {
880 ret = PTR_ERR(bip);
881 goto out_free_meta;
882 }
883
884 bip->bip_iter.bi_size = len;
885 bip->bip_iter.bi_sector = seed;
886 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
887 offset_in_page(buf));
888 if (ret == len)
889 return buf;
890 ret = -ENOMEM;
891 out_free_meta:
892 kfree(buf);
893 out:
894 return ERR_PTR(ret);
895 }
896
897 static int nvme_submit_user_cmd(struct request_queue *q,
898 struct nvme_command *cmd, void __user *ubuffer,
899 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
900 u32 meta_seed, u64 *result, unsigned timeout)
901 {
902 bool write = nvme_is_write(cmd);
903 struct nvme_ns *ns = q->queuedata;
904 struct gendisk *disk = ns ? ns->disk : NULL;
905 struct request *req;
906 struct bio *bio = NULL;
907 void *meta = NULL;
908 int ret;
909
910 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
911 if (IS_ERR(req))
912 return PTR_ERR(req);
913
914 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
915 nvme_req(req)->flags |= NVME_REQ_USERCMD;
916
917 if (ubuffer && bufflen) {
918 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
919 GFP_KERNEL);
920 if (ret)
921 goto out;
922 bio = req->bio;
923 bio->bi_disk = disk;
924 if (disk && meta_buffer && meta_len) {
925 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
926 meta_seed, write);
927 if (IS_ERR(meta)) {
928 ret = PTR_ERR(meta);
929 goto out_unmap;
930 }
931 req->cmd_flags |= REQ_INTEGRITY;
932 }
933 }
934
935 blk_execute_rq(req->q, disk, req, 0);
936 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
937 ret = -EINTR;
938 else
939 ret = nvme_req(req)->status;
940 if (result)
941 *result = le64_to_cpu(nvme_req(req)->result.u64);
942 if (meta && !ret && !write) {
943 if (copy_to_user(meta_buffer, meta, meta_len))
944 ret = -EFAULT;
945 }
946 kfree(meta);
947 out_unmap:
948 if (bio)
949 blk_rq_unmap_user(bio);
950 out:
951 blk_mq_free_request(req);
952 return ret;
953 }
954
955 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
956 {
957 struct nvme_ctrl *ctrl = rq->end_io_data;
958 unsigned long flags;
959 bool startka = false;
960
961 blk_mq_free_request(rq);
962
963 if (status) {
964 dev_err(ctrl->device,
965 "failed nvme_keep_alive_end_io error=%d\n",
966 status);
967 return;
968 }
969
970 ctrl->comp_seen = false;
971 spin_lock_irqsave(&ctrl->lock, flags);
972 if (ctrl->state == NVME_CTRL_LIVE ||
973 ctrl->state == NVME_CTRL_CONNECTING)
974 startka = true;
975 spin_unlock_irqrestore(&ctrl->lock, flags);
976 if (startka)
977 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
978 }
979
980 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
981 {
982 struct request *rq;
983
984 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
985 NVME_QID_ANY);
986 if (IS_ERR(rq))
987 return PTR_ERR(rq);
988
989 rq->timeout = ctrl->kato * HZ;
990 rq->end_io_data = ctrl;
991
992 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
993
994 return 0;
995 }
996
997 static void nvme_keep_alive_work(struct work_struct *work)
998 {
999 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1000 struct nvme_ctrl, ka_work);
1001 bool comp_seen = ctrl->comp_seen;
1002
1003 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1004 dev_dbg(ctrl->device,
1005 "reschedule traffic based keep-alive timer\n");
1006 ctrl->comp_seen = false;
1007 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1008 return;
1009 }
1010
1011 if (nvme_keep_alive(ctrl)) {
1012 /* allocation failure, reset the controller */
1013 dev_err(ctrl->device, "keep-alive failed\n");
1014 nvme_reset_ctrl(ctrl);
1015 return;
1016 }
1017 }
1018
1019 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1020 {
1021 if (unlikely(ctrl->kato == 0))
1022 return;
1023
1024 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1025 }
1026
1027 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1028 {
1029 if (unlikely(ctrl->kato == 0))
1030 return;
1031
1032 cancel_delayed_work_sync(&ctrl->ka_work);
1033 }
1034 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1035
1036 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1037 {
1038 struct nvme_command c = { };
1039 int error;
1040
1041 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1042 c.identify.opcode = nvme_admin_identify;
1043 c.identify.cns = NVME_ID_CNS_CTRL;
1044
1045 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1046 if (!*id)
1047 return -ENOMEM;
1048
1049 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1050 sizeof(struct nvme_id_ctrl));
1051 if (error)
1052 kfree(*id);
1053 return error;
1054 }
1055
1056 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1057 struct nvme_ns_ids *ids)
1058 {
1059 struct nvme_command c = { };
1060 int status;
1061 void *data;
1062 int pos;
1063 int len;
1064
1065 c.identify.opcode = nvme_admin_identify;
1066 c.identify.nsid = cpu_to_le32(nsid);
1067 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1068
1069 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1070 if (!data)
1071 return -ENOMEM;
1072
1073 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1074 NVME_IDENTIFY_DATA_SIZE);
1075 if (status)
1076 goto free_data;
1077
1078 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1079 struct nvme_ns_id_desc *cur = data + pos;
1080
1081 if (cur->nidl == 0)
1082 break;
1083
1084 switch (cur->nidt) {
1085 case NVME_NIDT_EUI64:
1086 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1087 dev_warn(ctrl->device,
1088 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1089 cur->nidl);
1090 goto free_data;
1091 }
1092 len = NVME_NIDT_EUI64_LEN;
1093 memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1094 break;
1095 case NVME_NIDT_NGUID:
1096 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1097 dev_warn(ctrl->device,
1098 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1099 cur->nidl);
1100 goto free_data;
1101 }
1102 len = NVME_NIDT_NGUID_LEN;
1103 memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1104 break;
1105 case NVME_NIDT_UUID:
1106 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1107 dev_warn(ctrl->device,
1108 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1109 cur->nidl);
1110 goto free_data;
1111 }
1112 len = NVME_NIDT_UUID_LEN;
1113 uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1114 break;
1115 default:
1116 /* Skip unknown types */
1117 len = cur->nidl;
1118 break;
1119 }
1120
1121 len += sizeof(*cur);
1122 }
1123 free_data:
1124 kfree(data);
1125 return status;
1126 }
1127
1128 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1129 {
1130 struct nvme_command c = { };
1131
1132 c.identify.opcode = nvme_admin_identify;
1133 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1134 c.identify.nsid = cpu_to_le32(nsid);
1135 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1136 NVME_IDENTIFY_DATA_SIZE);
1137 }
1138
1139 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1140 unsigned nsid, struct nvme_id_ns **id)
1141 {
1142 struct nvme_command c = { };
1143 int error;
1144
1145 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1146 c.identify.opcode = nvme_admin_identify;
1147 c.identify.nsid = cpu_to_le32(nsid);
1148 c.identify.cns = NVME_ID_CNS_NS;
1149
1150 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1151 if (!*id)
1152 return -ENOMEM;
1153
1154 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1155 if (error) {
1156 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1157 kfree(*id);
1158 }
1159
1160 return error;
1161 }
1162
1163 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1164 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1165 {
1166 struct nvme_command c;
1167 union nvme_result res;
1168 int ret;
1169
1170 memset(&c, 0, sizeof(c));
1171 c.features.opcode = op;
1172 c.features.fid = cpu_to_le32(fid);
1173 c.features.dword11 = cpu_to_le32(dword11);
1174
1175 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1176 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1177 if (ret >= 0 && result)
1178 *result = le32_to_cpu(res.u32);
1179 return ret;
1180 }
1181
1182 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1183 unsigned int dword11, void *buffer, size_t buflen,
1184 u32 *result)
1185 {
1186 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1187 buflen, result);
1188 }
1189 EXPORT_SYMBOL_GPL(nvme_set_features);
1190
1191 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1192 unsigned int dword11, void *buffer, size_t buflen,
1193 u32 *result)
1194 {
1195 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1196 buflen, result);
1197 }
1198 EXPORT_SYMBOL_GPL(nvme_get_features);
1199
1200 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1201 {
1202 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1203 u32 result;
1204 int status, nr_io_queues;
1205
1206 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1207 &result);
1208 if (status < 0)
1209 return status;
1210
1211 /*
1212 * Degraded controllers might return an error when setting the queue
1213 * count. We still want to be able to bring them online and offer
1214 * access to the admin queue, as that might be only way to fix them up.
1215 */
1216 if (status > 0) {
1217 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1218 *count = 0;
1219 } else {
1220 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1221 *count = min(*count, nr_io_queues);
1222 }
1223
1224 return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1227
1228 #define NVME_AEN_SUPPORTED \
1229 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1230 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1231
1232 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1233 {
1234 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1235 int status;
1236
1237 if (!supported_aens)
1238 return;
1239
1240 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1241 NULL, 0, &result);
1242 if (status)
1243 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1244 supported_aens);
1245
1246 queue_work(nvme_wq, &ctrl->async_event_work);
1247 }
1248
1249 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1250 {
1251 struct nvme_user_io io;
1252 struct nvme_command c;
1253 unsigned length, meta_len;
1254 void __user *metadata;
1255
1256 if (copy_from_user(&io, uio, sizeof(io)))
1257 return -EFAULT;
1258 if (io.flags)
1259 return -EINVAL;
1260
1261 switch (io.opcode) {
1262 case nvme_cmd_write:
1263 case nvme_cmd_read:
1264 case nvme_cmd_compare:
1265 break;
1266 default:
1267 return -EINVAL;
1268 }
1269
1270 length = (io.nblocks + 1) << ns->lba_shift;
1271 meta_len = (io.nblocks + 1) * ns->ms;
1272 metadata = (void __user *)(uintptr_t)io.metadata;
1273
1274 if (ns->ext) {
1275 length += meta_len;
1276 meta_len = 0;
1277 } else if (meta_len) {
1278 if ((io.metadata & 3) || !io.metadata)
1279 return -EINVAL;
1280 }
1281
1282 memset(&c, 0, sizeof(c));
1283 c.rw.opcode = io.opcode;
1284 c.rw.flags = io.flags;
1285 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1286 c.rw.slba = cpu_to_le64(io.slba);
1287 c.rw.length = cpu_to_le16(io.nblocks);
1288 c.rw.control = cpu_to_le16(io.control);
1289 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1290 c.rw.reftag = cpu_to_le32(io.reftag);
1291 c.rw.apptag = cpu_to_le16(io.apptag);
1292 c.rw.appmask = cpu_to_le16(io.appmask);
1293
1294 return nvme_submit_user_cmd(ns->queue, &c,
1295 (void __user *)(uintptr_t)io.addr, length,
1296 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1297 }
1298
1299 static u32 nvme_known_admin_effects(u8 opcode)
1300 {
1301 switch (opcode) {
1302 case nvme_admin_format_nvm:
1303 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1304 NVME_CMD_EFFECTS_CSE_MASK;
1305 case nvme_admin_sanitize_nvm:
1306 return NVME_CMD_EFFECTS_CSE_MASK;
1307 default:
1308 break;
1309 }
1310 return 0;
1311 }
1312
1313 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1314 u8 opcode)
1315 {
1316 u32 effects = 0;
1317
1318 if (ns) {
1319 if (ctrl->effects)
1320 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1321 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1322 dev_warn(ctrl->device,
1323 "IO command:%02x has unhandled effects:%08x\n",
1324 opcode, effects);
1325 return 0;
1326 }
1327
1328 if (ctrl->effects)
1329 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1330 effects |= nvme_known_admin_effects(opcode);
1331
1332 /*
1333 * For simplicity, IO to all namespaces is quiesced even if the command
1334 * effects say only one namespace is affected.
1335 */
1336 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1337 mutex_lock(&ctrl->scan_lock);
1338 mutex_lock(&ctrl->subsys->lock);
1339 nvme_mpath_start_freeze(ctrl->subsys);
1340 nvme_mpath_wait_freeze(ctrl->subsys);
1341 nvme_start_freeze(ctrl);
1342 nvme_wait_freeze(ctrl);
1343 }
1344 return effects;
1345 }
1346
1347 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1348 {
1349 struct nvme_ns *ns;
1350
1351 down_read(&ctrl->namespaces_rwsem);
1352 list_for_each_entry(ns, &ctrl->namespaces, list)
1353 if (ns->disk && nvme_revalidate_disk(ns->disk))
1354 nvme_set_queue_dying(ns);
1355 up_read(&ctrl->namespaces_rwsem);
1356 }
1357
1358 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1359 {
1360 /*
1361 * Revalidate LBA changes prior to unfreezing. This is necessary to
1362 * prevent memory corruption if a logical block size was changed by
1363 * this command.
1364 */
1365 if (effects & NVME_CMD_EFFECTS_LBCC)
1366 nvme_update_formats(ctrl);
1367 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1368 nvme_unfreeze(ctrl);
1369 nvme_mpath_unfreeze(ctrl->subsys);
1370 mutex_unlock(&ctrl->subsys->lock);
1371 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1372 mutex_unlock(&ctrl->scan_lock);
1373 }
1374 if (effects & NVME_CMD_EFFECTS_CCC)
1375 nvme_init_identify(ctrl);
1376 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1377 nvme_queue_scan(ctrl);
1378 }
1379
1380 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1381 struct nvme_passthru_cmd __user *ucmd)
1382 {
1383 struct nvme_passthru_cmd cmd;
1384 struct nvme_command c;
1385 unsigned timeout = 0;
1386 u32 effects;
1387 u64 result;
1388 int status;
1389
1390 if (!capable(CAP_SYS_ADMIN))
1391 return -EACCES;
1392 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1393 return -EFAULT;
1394 if (cmd.flags)
1395 return -EINVAL;
1396
1397 memset(&c, 0, sizeof(c));
1398 c.common.opcode = cmd.opcode;
1399 c.common.flags = cmd.flags;
1400 c.common.nsid = cpu_to_le32(cmd.nsid);
1401 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1402 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1403 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1404 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1405 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1406 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1407 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1408 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1409
1410 if (cmd.timeout_ms)
1411 timeout = msecs_to_jiffies(cmd.timeout_ms);
1412
1413 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1414 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1415 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1416 (void __user *)(uintptr_t)cmd.metadata,
1417 cmd.metadata_len, 0, &result, timeout);
1418 nvme_passthru_end(ctrl, effects);
1419
1420 if (status >= 0) {
1421 if (put_user(result, &ucmd->result))
1422 return -EFAULT;
1423 }
1424
1425 return status;
1426 }
1427
1428 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1429 struct nvme_passthru_cmd64 __user *ucmd)
1430 {
1431 struct nvme_passthru_cmd64 cmd;
1432 struct nvme_command c;
1433 unsigned timeout = 0;
1434 u32 effects;
1435 int status;
1436
1437 if (!capable(CAP_SYS_ADMIN))
1438 return -EACCES;
1439 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1440 return -EFAULT;
1441 if (cmd.flags)
1442 return -EINVAL;
1443
1444 memset(&c, 0, sizeof(c));
1445 c.common.opcode = cmd.opcode;
1446 c.common.flags = cmd.flags;
1447 c.common.nsid = cpu_to_le32(cmd.nsid);
1448 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1449 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1450 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1451 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1452 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1453 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1454 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1455 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1456
1457 if (cmd.timeout_ms)
1458 timeout = msecs_to_jiffies(cmd.timeout_ms);
1459
1460 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1461 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1462 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1463 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1464 0, &cmd.result, timeout);
1465 nvme_passthru_end(ctrl, effects);
1466
1467 if (status >= 0) {
1468 if (put_user(cmd.result, &ucmd->result))
1469 return -EFAULT;
1470 }
1471
1472 return status;
1473 }
1474
1475 /*
1476 * Issue ioctl requests on the first available path. Note that unlike normal
1477 * block layer requests we will not retry failed request on another controller.
1478 */
1479 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1480 struct nvme_ns_head **head, int *srcu_idx)
1481 {
1482 #ifdef CONFIG_NVME_MULTIPATH
1483 if (disk->fops == &nvme_ns_head_ops) {
1484 struct nvme_ns *ns;
1485
1486 *head = disk->private_data;
1487 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1488 ns = nvme_find_path(*head);
1489 if (!ns)
1490 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1491 return ns;
1492 }
1493 #endif
1494 *head = NULL;
1495 *srcu_idx = -1;
1496 return disk->private_data;
1497 }
1498
1499 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1500 {
1501 if (head)
1502 srcu_read_unlock(&head->srcu, idx);
1503 }
1504
1505 static bool is_ctrl_ioctl(unsigned int cmd)
1506 {
1507 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1508 return true;
1509 if (is_sed_ioctl(cmd))
1510 return true;
1511 return false;
1512 }
1513
1514 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1515 void __user *argp,
1516 struct nvme_ns_head *head,
1517 int srcu_idx)
1518 {
1519 struct nvme_ctrl *ctrl = ns->ctrl;
1520 int ret;
1521
1522 nvme_get_ctrl(ns->ctrl);
1523 nvme_put_ns_from_disk(head, srcu_idx);
1524
1525 switch (cmd) {
1526 case NVME_IOCTL_ADMIN_CMD:
1527 ret = nvme_user_cmd(ctrl, NULL, argp);
1528 break;
1529 case NVME_IOCTL_ADMIN64_CMD:
1530 ret = nvme_user_cmd64(ctrl, NULL, argp);
1531 break;
1532 default:
1533 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1534 break;
1535 }
1536 nvme_put_ctrl(ctrl);
1537 return ret;
1538 }
1539
1540 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1541 unsigned int cmd, unsigned long arg)
1542 {
1543 struct nvme_ns_head *head = NULL;
1544 void __user *argp = (void __user *)arg;
1545 struct nvme_ns *ns;
1546 int srcu_idx, ret;
1547
1548 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1549 if (unlikely(!ns))
1550 return -EWOULDBLOCK;
1551
1552 /*
1553 * Handle ioctls that apply to the controller instead of the namespace
1554 * seperately and drop the ns SRCU reference early. This avoids a
1555 * deadlock when deleting namespaces using the passthrough interface.
1556 */
1557 if (is_ctrl_ioctl(cmd))
1558 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1559
1560 switch (cmd) {
1561 case NVME_IOCTL_ID:
1562 force_successful_syscall_return();
1563 ret = ns->head->ns_id;
1564 break;
1565 case NVME_IOCTL_IO_CMD:
1566 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1567 break;
1568 case NVME_IOCTL_SUBMIT_IO:
1569 ret = nvme_submit_io(ns, argp);
1570 break;
1571 case NVME_IOCTL_IO64_CMD:
1572 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1573 break;
1574 default:
1575 if (ns->ndev)
1576 ret = nvme_nvm_ioctl(ns, cmd, arg);
1577 else
1578 ret = -ENOTTY;
1579 }
1580
1581 nvme_put_ns_from_disk(head, srcu_idx);
1582 return ret;
1583 }
1584
1585 static int nvme_open(struct block_device *bdev, fmode_t mode)
1586 {
1587 struct nvme_ns *ns = bdev->bd_disk->private_data;
1588
1589 #ifdef CONFIG_NVME_MULTIPATH
1590 /* should never be called due to GENHD_FL_HIDDEN */
1591 if (WARN_ON_ONCE(ns->head->disk))
1592 goto fail;
1593 #endif
1594 if (!kref_get_unless_zero(&ns->kref))
1595 goto fail;
1596 if (!try_module_get(ns->ctrl->ops->module))
1597 goto fail_put_ns;
1598
1599 return 0;
1600
1601 fail_put_ns:
1602 nvme_put_ns(ns);
1603 fail:
1604 return -ENXIO;
1605 }
1606
1607 static void nvme_release(struct gendisk *disk, fmode_t mode)
1608 {
1609 struct nvme_ns *ns = disk->private_data;
1610
1611 module_put(ns->ctrl->ops->module);
1612 nvme_put_ns(ns);
1613 }
1614
1615 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1616 {
1617 /* some standard values */
1618 geo->heads = 1 << 6;
1619 geo->sectors = 1 << 5;
1620 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1621 return 0;
1622 }
1623
1624 #ifdef CONFIG_BLK_DEV_INTEGRITY
1625 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1626 {
1627 struct blk_integrity integrity;
1628
1629 memset(&integrity, 0, sizeof(integrity));
1630 switch (pi_type) {
1631 case NVME_NS_DPS_PI_TYPE3:
1632 integrity.profile = &t10_pi_type3_crc;
1633 integrity.tag_size = sizeof(u16) + sizeof(u32);
1634 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1635 break;
1636 case NVME_NS_DPS_PI_TYPE1:
1637 case NVME_NS_DPS_PI_TYPE2:
1638 integrity.profile = &t10_pi_type1_crc;
1639 integrity.tag_size = sizeof(u16);
1640 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1641 break;
1642 default:
1643 integrity.profile = NULL;
1644 break;
1645 }
1646 integrity.tuple_size = ms;
1647 blk_integrity_register(disk, &integrity);
1648 blk_queue_max_integrity_segments(disk->queue, 1);
1649 }
1650 #else
1651 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1652 {
1653 }
1654 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1655
1656 static void nvme_set_chunk_size(struct nvme_ns *ns)
1657 {
1658 u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1659 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1660 }
1661
1662 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1663 {
1664 struct nvme_ctrl *ctrl = ns->ctrl;
1665 struct request_queue *queue = disk->queue;
1666 u32 size = queue_logical_block_size(queue);
1667
1668 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1669 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1670 return;
1671 }
1672
1673 if (ctrl->nr_streams && ns->sws && ns->sgs)
1674 size *= ns->sws * ns->sgs;
1675
1676 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1677 NVME_DSM_MAX_RANGES);
1678
1679 queue->limits.discard_alignment = 0;
1680 queue->limits.discard_granularity = size;
1681
1682 /* If discard is already enabled, don't reset queue limits */
1683 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1684 return;
1685
1686 blk_queue_max_discard_sectors(queue, UINT_MAX);
1687 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1688
1689 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1690 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1691 }
1692
1693 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1694 {
1695 u64 max_blocks;
1696
1697 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1698 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1699 return;
1700 /*
1701 * Even though NVMe spec explicitly states that MDTS is not
1702 * applicable to the write-zeroes:- "The restriction does not apply to
1703 * commands that do not transfer data between the host and the
1704 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1705 * In order to be more cautious use controller's max_hw_sectors value
1706 * to configure the maximum sectors for the write-zeroes which is
1707 * configured based on the controller's MDTS field in the
1708 * nvme_init_identify() if available.
1709 */
1710 if (ns->ctrl->max_hw_sectors == UINT_MAX)
1711 max_blocks = (u64)USHRT_MAX + 1;
1712 else
1713 max_blocks = ns->ctrl->max_hw_sectors + 1;
1714
1715 blk_queue_max_write_zeroes_sectors(disk->queue,
1716 nvme_lba_to_sect(ns, max_blocks));
1717 }
1718
1719 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1720 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1721 {
1722 int ret = 0;
1723
1724 memset(ids, 0, sizeof(*ids));
1725
1726 if (ctrl->vs >= NVME_VS(1, 1, 0))
1727 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1728 if (ctrl->vs >= NVME_VS(1, 2, 0))
1729 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1730 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1731 /* Don't treat error as fatal we potentially
1732 * already have a NGUID or EUI-64
1733 */
1734 ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1735 if (ret)
1736 dev_warn(ctrl->device,
1737 "Identify Descriptors failed (%d)\n", ret);
1738 }
1739 return ret;
1740 }
1741
1742 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1743 {
1744 return !uuid_is_null(&ids->uuid) ||
1745 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1746 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1747 }
1748
1749 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1750 {
1751 return uuid_equal(&a->uuid, &b->uuid) &&
1752 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1753 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1754 }
1755
1756 static void nvme_update_disk_info(struct gendisk *disk,
1757 struct nvme_ns *ns, struct nvme_id_ns *id)
1758 {
1759 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1760 unsigned short bs = 1 << ns->lba_shift;
1761 u32 atomic_bs, phys_bs, io_opt;
1762
1763 if (ns->lba_shift > PAGE_SHIFT) {
1764 /* unsupported block size, set capacity to 0 later */
1765 bs = (1 << 9);
1766 }
1767 blk_mq_freeze_queue(disk->queue);
1768 blk_integrity_unregister(disk);
1769
1770 if (id->nabo == 0) {
1771 /*
1772 * Bit 1 indicates whether NAWUPF is defined for this namespace
1773 * and whether it should be used instead of AWUPF. If NAWUPF ==
1774 * 0 then AWUPF must be used instead.
1775 */
1776 if (id->nsfeat & (1 << 1) && id->nawupf)
1777 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1778 else
1779 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1780 } else {
1781 atomic_bs = bs;
1782 }
1783 phys_bs = bs;
1784 io_opt = bs;
1785 if (id->nsfeat & (1 << 4)) {
1786 /* NPWG = Namespace Preferred Write Granularity */
1787 phys_bs *= 1 + le16_to_cpu(id->npwg);
1788 /* NOWS = Namespace Optimal Write Size */
1789 io_opt *= 1 + le16_to_cpu(id->nows);
1790 }
1791
1792 blk_queue_logical_block_size(disk->queue, bs);
1793 /*
1794 * Linux filesystems assume writing a single physical block is
1795 * an atomic operation. Hence limit the physical block size to the
1796 * value of the Atomic Write Unit Power Fail parameter.
1797 */
1798 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1799 blk_queue_io_min(disk->queue, phys_bs);
1800 blk_queue_io_opt(disk->queue, io_opt);
1801
1802 if (ns->ms && !ns->ext &&
1803 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1804 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1805 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1806 ns->lba_shift > PAGE_SHIFT)
1807 capacity = 0;
1808
1809 set_capacity(disk, capacity);
1810
1811 nvme_config_discard(disk, ns);
1812 nvme_config_write_zeroes(disk, ns);
1813
1814 if (id->nsattr & (1 << 0))
1815 set_disk_ro(disk, true);
1816 else
1817 set_disk_ro(disk, false);
1818
1819 blk_mq_unfreeze_queue(disk->queue);
1820 }
1821
1822 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1823 {
1824 struct nvme_ns *ns = disk->private_data;
1825
1826 /*
1827 * If identify namespace failed, use default 512 byte block size so
1828 * block layer can use before failing read/write for 0 capacity.
1829 */
1830 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1831 if (ns->lba_shift == 0)
1832 ns->lba_shift = 9;
1833 ns->noiob = le16_to_cpu(id->noiob);
1834 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1835 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1836 /* the PI implementation requires metadata equal t10 pi tuple size */
1837 if (ns->ms == sizeof(struct t10_pi_tuple))
1838 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1839 else
1840 ns->pi_type = 0;
1841
1842 if (ns->noiob)
1843 nvme_set_chunk_size(ns);
1844 nvme_update_disk_info(disk, ns, id);
1845 #ifdef CONFIG_NVME_MULTIPATH
1846 if (ns->head->disk) {
1847 nvme_update_disk_info(ns->head->disk, ns, id);
1848 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1849 revalidate_disk(ns->head->disk);
1850 }
1851 #endif
1852 }
1853
1854 static int nvme_revalidate_disk(struct gendisk *disk)
1855 {
1856 struct nvme_ns *ns = disk->private_data;
1857 struct nvme_ctrl *ctrl = ns->ctrl;
1858 struct nvme_id_ns *id;
1859 struct nvme_ns_ids ids;
1860 int ret = 0;
1861
1862 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1863 set_capacity(disk, 0);
1864 return -ENODEV;
1865 }
1866
1867 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1868 if (ret)
1869 goto out;
1870
1871 if (id->ncap == 0) {
1872 ret = -ENODEV;
1873 goto free_id;
1874 }
1875
1876 __nvme_revalidate_disk(disk, id);
1877 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1878 if (ret)
1879 goto free_id;
1880
1881 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1882 dev_err(ctrl->device,
1883 "identifiers changed for nsid %d\n", ns->head->ns_id);
1884 ret = -ENODEV;
1885 }
1886
1887 free_id:
1888 kfree(id);
1889 out:
1890 /*
1891 * Only fail the function if we got a fatal error back from the
1892 * device, otherwise ignore the error and just move on.
1893 */
1894 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1895 ret = 0;
1896 else if (ret > 0)
1897 ret = blk_status_to_errno(nvme_error_status(ret));
1898 return ret;
1899 }
1900
1901 static char nvme_pr_type(enum pr_type type)
1902 {
1903 switch (type) {
1904 case PR_WRITE_EXCLUSIVE:
1905 return 1;
1906 case PR_EXCLUSIVE_ACCESS:
1907 return 2;
1908 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1909 return 3;
1910 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1911 return 4;
1912 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1913 return 5;
1914 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1915 return 6;
1916 default:
1917 return 0;
1918 }
1919 };
1920
1921 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1922 u64 key, u64 sa_key, u8 op)
1923 {
1924 struct nvme_ns_head *head = NULL;
1925 struct nvme_ns *ns;
1926 struct nvme_command c;
1927 int srcu_idx, ret;
1928 u8 data[16] = { 0, };
1929
1930 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1931 if (unlikely(!ns))
1932 return -EWOULDBLOCK;
1933
1934 put_unaligned_le64(key, &data[0]);
1935 put_unaligned_le64(sa_key, &data[8]);
1936
1937 memset(&c, 0, sizeof(c));
1938 c.common.opcode = op;
1939 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1940 c.common.cdw10 = cpu_to_le32(cdw10);
1941
1942 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1943 nvme_put_ns_from_disk(head, srcu_idx);
1944 return ret;
1945 }
1946
1947 static int nvme_pr_register(struct block_device *bdev, u64 old,
1948 u64 new, unsigned flags)
1949 {
1950 u32 cdw10;
1951
1952 if (flags & ~PR_FL_IGNORE_KEY)
1953 return -EOPNOTSUPP;
1954
1955 cdw10 = old ? 2 : 0;
1956 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1957 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1958 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1959 }
1960
1961 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1962 enum pr_type type, unsigned flags)
1963 {
1964 u32 cdw10;
1965
1966 if (flags & ~PR_FL_IGNORE_KEY)
1967 return -EOPNOTSUPP;
1968
1969 cdw10 = nvme_pr_type(type) << 8;
1970 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1971 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1972 }
1973
1974 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1975 enum pr_type type, bool abort)
1976 {
1977 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1978 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1979 }
1980
1981 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1982 {
1983 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1984 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1985 }
1986
1987 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1988 {
1989 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1990 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1991 }
1992
1993 static const struct pr_ops nvme_pr_ops = {
1994 .pr_register = nvme_pr_register,
1995 .pr_reserve = nvme_pr_reserve,
1996 .pr_release = nvme_pr_release,
1997 .pr_preempt = nvme_pr_preempt,
1998 .pr_clear = nvme_pr_clear,
1999 };
2000
2001 #ifdef CONFIG_BLK_SED_OPAL
2002 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2003 bool send)
2004 {
2005 struct nvme_ctrl *ctrl = data;
2006 struct nvme_command cmd;
2007
2008 memset(&cmd, 0, sizeof(cmd));
2009 if (send)
2010 cmd.common.opcode = nvme_admin_security_send;
2011 else
2012 cmd.common.opcode = nvme_admin_security_recv;
2013 cmd.common.nsid = 0;
2014 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2015 cmd.common.cdw11 = cpu_to_le32(len);
2016
2017 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2018 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2019 }
2020 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2021 #endif /* CONFIG_BLK_SED_OPAL */
2022
2023 static const struct block_device_operations nvme_fops = {
2024 .owner = THIS_MODULE,
2025 .ioctl = nvme_ioctl,
2026 .compat_ioctl = nvme_ioctl,
2027 .open = nvme_open,
2028 .release = nvme_release,
2029 .getgeo = nvme_getgeo,
2030 .revalidate_disk= nvme_revalidate_disk,
2031 .pr_ops = &nvme_pr_ops,
2032 };
2033
2034 #ifdef CONFIG_NVME_MULTIPATH
2035 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2036 {
2037 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2038
2039 if (!kref_get_unless_zero(&head->ref))
2040 return -ENXIO;
2041 return 0;
2042 }
2043
2044 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2045 {
2046 nvme_put_ns_head(disk->private_data);
2047 }
2048
2049 const struct block_device_operations nvme_ns_head_ops = {
2050 .owner = THIS_MODULE,
2051 .open = nvme_ns_head_open,
2052 .release = nvme_ns_head_release,
2053 .ioctl = nvme_ioctl,
2054 .compat_ioctl = nvme_ioctl,
2055 .getgeo = nvme_getgeo,
2056 .pr_ops = &nvme_pr_ops,
2057 };
2058 #endif /* CONFIG_NVME_MULTIPATH */
2059
2060 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2061 {
2062 unsigned long timeout =
2063 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2064 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2065 int ret;
2066
2067 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2068 if (csts == ~0)
2069 return -ENODEV;
2070 if ((csts & NVME_CSTS_RDY) == bit)
2071 break;
2072
2073 msleep(100);
2074 if (fatal_signal_pending(current))
2075 return -EINTR;
2076 if (time_after(jiffies, timeout)) {
2077 dev_err(ctrl->device,
2078 "Device not ready; aborting %s\n", enabled ?
2079 "initialisation" : "reset");
2080 return -ENODEV;
2081 }
2082 }
2083
2084 return ret;
2085 }
2086
2087 /*
2088 * If the device has been passed off to us in an enabled state, just clear
2089 * the enabled bit. The spec says we should set the 'shutdown notification
2090 * bits', but doing so may cause the device to complete commands to the
2091 * admin queue ... and we don't know what memory that might be pointing at!
2092 */
2093 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2094 {
2095 int ret;
2096
2097 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2098 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2099
2100 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2101 if (ret)
2102 return ret;
2103
2104 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2105 msleep(NVME_QUIRK_DELAY_AMOUNT);
2106
2107 return nvme_wait_ready(ctrl, ctrl->cap, false);
2108 }
2109 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2110
2111 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2112 {
2113 /*
2114 * Default to a 4K page size, with the intention to update this
2115 * path in the future to accomodate architectures with differing
2116 * kernel and IO page sizes.
2117 */
2118 unsigned dev_page_min, page_shift = 12;
2119 int ret;
2120
2121 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2122 if (ret) {
2123 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2124 return ret;
2125 }
2126 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2127
2128 if (page_shift < dev_page_min) {
2129 dev_err(ctrl->device,
2130 "Minimum device page size %u too large for host (%u)\n",
2131 1 << dev_page_min, 1 << page_shift);
2132 return -ENODEV;
2133 }
2134
2135 ctrl->page_size = 1 << page_shift;
2136
2137 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2138 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2139 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2140 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2141 ctrl->ctrl_config |= NVME_CC_ENABLE;
2142
2143 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2144 if (ret)
2145 return ret;
2146 return nvme_wait_ready(ctrl, ctrl->cap, true);
2147 }
2148 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2149
2150 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2151 {
2152 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2153 u32 csts;
2154 int ret;
2155
2156 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2157 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2158
2159 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2160 if (ret)
2161 return ret;
2162
2163 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2164 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2165 break;
2166
2167 msleep(100);
2168 if (fatal_signal_pending(current))
2169 return -EINTR;
2170 if (time_after(jiffies, timeout)) {
2171 dev_err(ctrl->device,
2172 "Device shutdown incomplete; abort shutdown\n");
2173 return -ENODEV;
2174 }
2175 }
2176
2177 return ret;
2178 }
2179 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2180
2181 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2182 struct request_queue *q)
2183 {
2184 bool vwc = false;
2185
2186 if (ctrl->max_hw_sectors) {
2187 u32 max_segments =
2188 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2189
2190 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2191 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2192 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2193 }
2194 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2195 is_power_of_2(ctrl->max_hw_sectors))
2196 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2197 blk_queue_virt_boundary(q, ctrl->page_size - 1);
2198 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2199 vwc = true;
2200 blk_queue_write_cache(q, vwc, vwc);
2201 }
2202
2203 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2204 {
2205 __le64 ts;
2206 int ret;
2207
2208 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2209 return 0;
2210
2211 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2212 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2213 NULL);
2214 if (ret)
2215 dev_warn_once(ctrl->device,
2216 "could not set timestamp (%d)\n", ret);
2217 return ret;
2218 }
2219
2220 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2221 {
2222 struct nvme_feat_host_behavior *host;
2223 int ret;
2224
2225 /* Don't bother enabling the feature if retry delay is not reported */
2226 if (!ctrl->crdt[0])
2227 return 0;
2228
2229 host = kzalloc(sizeof(*host), GFP_KERNEL);
2230 if (!host)
2231 return 0;
2232
2233 host->acre = NVME_ENABLE_ACRE;
2234 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2235 host, sizeof(*host), NULL);
2236 kfree(host);
2237 return ret;
2238 }
2239
2240 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2241 {
2242 /*
2243 * APST (Autonomous Power State Transition) lets us program a
2244 * table of power state transitions that the controller will
2245 * perform automatically. We configure it with a simple
2246 * heuristic: we are willing to spend at most 2% of the time
2247 * transitioning between power states. Therefore, when running
2248 * in any given state, we will enter the next lower-power
2249 * non-operational state after waiting 50 * (enlat + exlat)
2250 * microseconds, as long as that state's exit latency is under
2251 * the requested maximum latency.
2252 *
2253 * We will not autonomously enter any non-operational state for
2254 * which the total latency exceeds ps_max_latency_us. Users
2255 * can set ps_max_latency_us to zero to turn off APST.
2256 */
2257
2258 unsigned apste;
2259 struct nvme_feat_auto_pst *table;
2260 u64 max_lat_us = 0;
2261 int max_ps = -1;
2262 int ret;
2263
2264 /*
2265 * If APST isn't supported or if we haven't been initialized yet,
2266 * then don't do anything.
2267 */
2268 if (!ctrl->apsta)
2269 return 0;
2270
2271 if (ctrl->npss > 31) {
2272 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2273 return 0;
2274 }
2275
2276 table = kzalloc(sizeof(*table), GFP_KERNEL);
2277 if (!table)
2278 return 0;
2279
2280 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2281 /* Turn off APST. */
2282 apste = 0;
2283 dev_dbg(ctrl->device, "APST disabled\n");
2284 } else {
2285 __le64 target = cpu_to_le64(0);
2286 int state;
2287
2288 /*
2289 * Walk through all states from lowest- to highest-power.
2290 * According to the spec, lower-numbered states use more
2291 * power. NPSS, despite the name, is the index of the
2292 * lowest-power state, not the number of states.
2293 */
2294 for (state = (int)ctrl->npss; state >= 0; state--) {
2295 u64 total_latency_us, exit_latency_us, transition_ms;
2296
2297 if (target)
2298 table->entries[state] = target;
2299
2300 /*
2301 * Don't allow transitions to the deepest state
2302 * if it's quirked off.
2303 */
2304 if (state == ctrl->npss &&
2305 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2306 continue;
2307
2308 /*
2309 * Is this state a useful non-operational state for
2310 * higher-power states to autonomously transition to?
2311 */
2312 if (!(ctrl->psd[state].flags &
2313 NVME_PS_FLAGS_NON_OP_STATE))
2314 continue;
2315
2316 exit_latency_us =
2317 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2318 if (exit_latency_us > ctrl->ps_max_latency_us)
2319 continue;
2320
2321 total_latency_us =
2322 exit_latency_us +
2323 le32_to_cpu(ctrl->psd[state].entry_lat);
2324
2325 /*
2326 * This state is good. Use it as the APST idle
2327 * target for higher power states.
2328 */
2329 transition_ms = total_latency_us + 19;
2330 do_div(transition_ms, 20);
2331 if (transition_ms > (1 << 24) - 1)
2332 transition_ms = (1 << 24) - 1;
2333
2334 target = cpu_to_le64((state << 3) |
2335 (transition_ms << 8));
2336
2337 if (max_ps == -1)
2338 max_ps = state;
2339
2340 if (total_latency_us > max_lat_us)
2341 max_lat_us = total_latency_us;
2342 }
2343
2344 apste = 1;
2345
2346 if (max_ps == -1) {
2347 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2348 } else {
2349 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2350 max_ps, max_lat_us, (int)sizeof(*table), table);
2351 }
2352 }
2353
2354 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2355 table, sizeof(*table), NULL);
2356 if (ret)
2357 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2358
2359 kfree(table);
2360 return ret;
2361 }
2362
2363 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2364 {
2365 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2366 u64 latency;
2367
2368 switch (val) {
2369 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2370 case PM_QOS_LATENCY_ANY:
2371 latency = U64_MAX;
2372 break;
2373
2374 default:
2375 latency = val;
2376 }
2377
2378 if (ctrl->ps_max_latency_us != latency) {
2379 ctrl->ps_max_latency_us = latency;
2380 nvme_configure_apst(ctrl);
2381 }
2382 }
2383
2384 struct nvme_core_quirk_entry {
2385 /*
2386 * NVMe model and firmware strings are padded with spaces. For
2387 * simplicity, strings in the quirk table are padded with NULLs
2388 * instead.
2389 */
2390 u16 vid;
2391 const char *mn;
2392 const char *fr;
2393 unsigned long quirks;
2394 };
2395
2396 static const struct nvme_core_quirk_entry core_quirks[] = {
2397 {
2398 /*
2399 * This Toshiba device seems to die using any APST states. See:
2400 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2401 */
2402 .vid = 0x1179,
2403 .mn = "THNSF5256GPUK TOSHIBA",
2404 .quirks = NVME_QUIRK_NO_APST,
2405 },
2406 {
2407 /*
2408 * This LiteON CL1-3D*-Q11 firmware version has a race
2409 * condition associated with actions related to suspend to idle
2410 * LiteON has resolved the problem in future firmware
2411 */
2412 .vid = 0x14a4,
2413 .fr = "22301111",
2414 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2415 }
2416 };
2417
2418 /* match is null-terminated but idstr is space-padded. */
2419 static bool string_matches(const char *idstr, const char *match, size_t len)
2420 {
2421 size_t matchlen;
2422
2423 if (!match)
2424 return true;
2425
2426 matchlen = strlen(match);
2427 WARN_ON_ONCE(matchlen > len);
2428
2429 if (memcmp(idstr, match, matchlen))
2430 return false;
2431
2432 for (; matchlen < len; matchlen++)
2433 if (idstr[matchlen] != ' ')
2434 return false;
2435
2436 return true;
2437 }
2438
2439 static bool quirk_matches(const struct nvme_id_ctrl *id,
2440 const struct nvme_core_quirk_entry *q)
2441 {
2442 return q->vid == le16_to_cpu(id->vid) &&
2443 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2444 string_matches(id->fr, q->fr, sizeof(id->fr));
2445 }
2446
2447 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2448 struct nvme_id_ctrl *id)
2449 {
2450 size_t nqnlen;
2451 int off;
2452
2453 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2454 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2455 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2456 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2457 return;
2458 }
2459
2460 if (ctrl->vs >= NVME_VS(1, 2, 1))
2461 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2462 }
2463
2464 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2465 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2466 "nqn.2014.08.org.nvmexpress:%04x%04x",
2467 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2468 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2469 off += sizeof(id->sn);
2470 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2471 off += sizeof(id->mn);
2472 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2473 }
2474
2475 static void nvme_release_subsystem(struct device *dev)
2476 {
2477 struct nvme_subsystem *subsys =
2478 container_of(dev, struct nvme_subsystem, dev);
2479
2480 if (subsys->instance >= 0)
2481 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2482 kfree(subsys);
2483 }
2484
2485 static void nvme_destroy_subsystem(struct kref *ref)
2486 {
2487 struct nvme_subsystem *subsys =
2488 container_of(ref, struct nvme_subsystem, ref);
2489
2490 mutex_lock(&nvme_subsystems_lock);
2491 list_del(&subsys->entry);
2492 mutex_unlock(&nvme_subsystems_lock);
2493
2494 ida_destroy(&subsys->ns_ida);
2495 device_del(&subsys->dev);
2496 put_device(&subsys->dev);
2497 }
2498
2499 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2500 {
2501 kref_put(&subsys->ref, nvme_destroy_subsystem);
2502 }
2503
2504 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2505 {
2506 struct nvme_subsystem *subsys;
2507
2508 lockdep_assert_held(&nvme_subsystems_lock);
2509
2510 /*
2511 * Fail matches for discovery subsystems. This results
2512 * in each discovery controller bound to a unique subsystem.
2513 * This avoids issues with validating controller values
2514 * that can only be true when there is a single unique subsystem.
2515 * There may be multiple and completely independent entities
2516 * that provide discovery controllers.
2517 */
2518 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2519 return NULL;
2520
2521 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2522 if (strcmp(subsys->subnqn, subsysnqn))
2523 continue;
2524 if (!kref_get_unless_zero(&subsys->ref))
2525 continue;
2526 return subsys;
2527 }
2528
2529 return NULL;
2530 }
2531
2532 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2533 struct device_attribute subsys_attr_##_name = \
2534 __ATTR(_name, _mode, _show, NULL)
2535
2536 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2537 struct device_attribute *attr,
2538 char *buf)
2539 {
2540 struct nvme_subsystem *subsys =
2541 container_of(dev, struct nvme_subsystem, dev);
2542
2543 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2544 }
2545 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2546
2547 #define nvme_subsys_show_str_function(field) \
2548 static ssize_t subsys_##field##_show(struct device *dev, \
2549 struct device_attribute *attr, char *buf) \
2550 { \
2551 struct nvme_subsystem *subsys = \
2552 container_of(dev, struct nvme_subsystem, dev); \
2553 return sprintf(buf, "%.*s\n", \
2554 (int)sizeof(subsys->field), subsys->field); \
2555 } \
2556 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2557
2558 nvme_subsys_show_str_function(model);
2559 nvme_subsys_show_str_function(serial);
2560 nvme_subsys_show_str_function(firmware_rev);
2561
2562 static struct attribute *nvme_subsys_attrs[] = {
2563 &subsys_attr_model.attr,
2564 &subsys_attr_serial.attr,
2565 &subsys_attr_firmware_rev.attr,
2566 &subsys_attr_subsysnqn.attr,
2567 #ifdef CONFIG_NVME_MULTIPATH
2568 &subsys_attr_iopolicy.attr,
2569 #endif
2570 NULL,
2571 };
2572
2573 static struct attribute_group nvme_subsys_attrs_group = {
2574 .attrs = nvme_subsys_attrs,
2575 };
2576
2577 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2578 &nvme_subsys_attrs_group,
2579 NULL,
2580 };
2581
2582 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2583 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2584 {
2585 struct nvme_ctrl *tmp;
2586
2587 lockdep_assert_held(&nvme_subsystems_lock);
2588
2589 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2590 if (tmp->state == NVME_CTRL_DELETING ||
2591 tmp->state == NVME_CTRL_DEAD)
2592 continue;
2593
2594 if (tmp->cntlid == ctrl->cntlid) {
2595 dev_err(ctrl->device,
2596 "Duplicate cntlid %u with %s, rejecting\n",
2597 ctrl->cntlid, dev_name(tmp->device));
2598 return false;
2599 }
2600
2601 if ((id->cmic & (1 << 1)) ||
2602 (ctrl->opts && ctrl->opts->discovery_nqn))
2603 continue;
2604
2605 dev_err(ctrl->device,
2606 "Subsystem does not support multiple controllers\n");
2607 return false;
2608 }
2609
2610 return true;
2611 }
2612
2613 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2614 {
2615 struct nvme_subsystem *subsys, *found;
2616 int ret;
2617
2618 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2619 if (!subsys)
2620 return -ENOMEM;
2621
2622 subsys->instance = -1;
2623 mutex_init(&subsys->lock);
2624 kref_init(&subsys->ref);
2625 INIT_LIST_HEAD(&subsys->ctrls);
2626 INIT_LIST_HEAD(&subsys->nsheads);
2627 nvme_init_subnqn(subsys, ctrl, id);
2628 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2629 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2630 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2631 subsys->vendor_id = le16_to_cpu(id->vid);
2632 subsys->cmic = id->cmic;
2633 subsys->awupf = le16_to_cpu(id->awupf);
2634 #ifdef CONFIG_NVME_MULTIPATH
2635 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2636 #endif
2637
2638 subsys->dev.class = nvme_subsys_class;
2639 subsys->dev.release = nvme_release_subsystem;
2640 subsys->dev.groups = nvme_subsys_attrs_groups;
2641 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2642 device_initialize(&subsys->dev);
2643
2644 mutex_lock(&nvme_subsystems_lock);
2645 found = __nvme_find_get_subsystem(subsys->subnqn);
2646 if (found) {
2647 put_device(&subsys->dev);
2648 subsys = found;
2649
2650 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2651 ret = -EINVAL;
2652 goto out_put_subsystem;
2653 }
2654 } else {
2655 ret = device_add(&subsys->dev);
2656 if (ret) {
2657 dev_err(ctrl->device,
2658 "failed to register subsystem device.\n");
2659 put_device(&subsys->dev);
2660 goto out_unlock;
2661 }
2662 ida_init(&subsys->ns_ida);
2663 list_add_tail(&subsys->entry, &nvme_subsystems);
2664 }
2665
2666 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2667 dev_name(ctrl->device));
2668 if (ret) {
2669 dev_err(ctrl->device,
2670 "failed to create sysfs link from subsystem.\n");
2671 goto out_put_subsystem;
2672 }
2673
2674 if (!found)
2675 subsys->instance = ctrl->instance;
2676 ctrl->subsys = subsys;
2677 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2678 mutex_unlock(&nvme_subsystems_lock);
2679 return 0;
2680
2681 out_put_subsystem:
2682 nvme_put_subsystem(subsys);
2683 out_unlock:
2684 mutex_unlock(&nvme_subsystems_lock);
2685 return ret;
2686 }
2687
2688 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2689 void *log, size_t size, u64 offset)
2690 {
2691 struct nvme_command c = { };
2692 unsigned long dwlen = size / 4 - 1;
2693
2694 c.get_log_page.opcode = nvme_admin_get_log_page;
2695 c.get_log_page.nsid = cpu_to_le32(nsid);
2696 c.get_log_page.lid = log_page;
2697 c.get_log_page.lsp = lsp;
2698 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2699 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2700 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2701 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2702
2703 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2704 }
2705
2706 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2707 {
2708 int ret;
2709
2710 if (!ctrl->effects)
2711 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2712
2713 if (!ctrl->effects)
2714 return 0;
2715
2716 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2717 ctrl->effects, sizeof(*ctrl->effects), 0);
2718 if (ret) {
2719 kfree(ctrl->effects);
2720 ctrl->effects = NULL;
2721 }
2722 return ret;
2723 }
2724
2725 /*
2726 * Initialize the cached copies of the Identify data and various controller
2727 * register in our nvme_ctrl structure. This should be called as soon as
2728 * the admin queue is fully up and running.
2729 */
2730 int nvme_init_identify(struct nvme_ctrl *ctrl)
2731 {
2732 struct nvme_id_ctrl *id;
2733 int ret, page_shift;
2734 u32 max_hw_sectors;
2735 bool prev_apst_enabled;
2736
2737 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2738 if (ret) {
2739 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2740 return ret;
2741 }
2742 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2743 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2744
2745 if (ctrl->vs >= NVME_VS(1, 1, 0))
2746 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2747
2748 ret = nvme_identify_ctrl(ctrl, &id);
2749 if (ret) {
2750 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2751 return -EIO;
2752 }
2753
2754 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2755 ret = nvme_get_effects_log(ctrl);
2756 if (ret < 0)
2757 goto out_free;
2758 }
2759
2760 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2761 ctrl->cntlid = le16_to_cpu(id->cntlid);
2762
2763 if (!ctrl->identified) {
2764 int i;
2765
2766 ret = nvme_init_subsystem(ctrl, id);
2767 if (ret)
2768 goto out_free;
2769
2770 /*
2771 * Check for quirks. Quirk can depend on firmware version,
2772 * so, in principle, the set of quirks present can change
2773 * across a reset. As a possible future enhancement, we
2774 * could re-scan for quirks every time we reinitialize
2775 * the device, but we'd have to make sure that the driver
2776 * behaves intelligently if the quirks change.
2777 */
2778 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2779 if (quirk_matches(id, &core_quirks[i]))
2780 ctrl->quirks |= core_quirks[i].quirks;
2781 }
2782 }
2783
2784 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2785 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2786 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2787 }
2788
2789 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2790 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2791 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2792
2793 ctrl->oacs = le16_to_cpu(id->oacs);
2794 ctrl->oncs = le16_to_cpu(id->oncs);
2795 ctrl->mtfa = le16_to_cpu(id->mtfa);
2796 ctrl->oaes = le32_to_cpu(id->oaes);
2797 ctrl->wctemp = le16_to_cpu(id->wctemp);
2798 ctrl->cctemp = le16_to_cpu(id->cctemp);
2799
2800 atomic_set(&ctrl->abort_limit, id->acl + 1);
2801 ctrl->vwc = id->vwc;
2802 if (id->mdts)
2803 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2804 else
2805 max_hw_sectors = UINT_MAX;
2806 ctrl->max_hw_sectors =
2807 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2808
2809 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2810 ctrl->sgls = le32_to_cpu(id->sgls);
2811 ctrl->kas = le16_to_cpu(id->kas);
2812 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2813 ctrl->ctratt = le32_to_cpu(id->ctratt);
2814
2815 if (id->rtd3e) {
2816 /* us -> s */
2817 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2818
2819 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2820 shutdown_timeout, 60);
2821
2822 if (ctrl->shutdown_timeout != shutdown_timeout)
2823 dev_info(ctrl->device,
2824 "Shutdown timeout set to %u seconds\n",
2825 ctrl->shutdown_timeout);
2826 } else
2827 ctrl->shutdown_timeout = shutdown_timeout;
2828
2829 ctrl->npss = id->npss;
2830 ctrl->apsta = id->apsta;
2831 prev_apst_enabled = ctrl->apst_enabled;
2832 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2833 if (force_apst && id->apsta) {
2834 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2835 ctrl->apst_enabled = true;
2836 } else {
2837 ctrl->apst_enabled = false;
2838 }
2839 } else {
2840 ctrl->apst_enabled = id->apsta;
2841 }
2842 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2843
2844 if (ctrl->ops->flags & NVME_F_FABRICS) {
2845 ctrl->icdoff = le16_to_cpu(id->icdoff);
2846 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2847 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2848 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2849
2850 /*
2851 * In fabrics we need to verify the cntlid matches the
2852 * admin connect
2853 */
2854 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2855 ret = -EINVAL;
2856 goto out_free;
2857 }
2858
2859 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2860 dev_err(ctrl->device,
2861 "keep-alive support is mandatory for fabrics\n");
2862 ret = -EINVAL;
2863 goto out_free;
2864 }
2865 } else {
2866 ctrl->hmpre = le32_to_cpu(id->hmpre);
2867 ctrl->hmmin = le32_to_cpu(id->hmmin);
2868 ctrl->hmminds = le32_to_cpu(id->hmminds);
2869 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2870 }
2871
2872 ret = nvme_mpath_init(ctrl, id);
2873 kfree(id);
2874
2875 if (ret < 0)
2876 return ret;
2877
2878 if (ctrl->apst_enabled && !prev_apst_enabled)
2879 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2880 else if (!ctrl->apst_enabled && prev_apst_enabled)
2881 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2882
2883 ret = nvme_configure_apst(ctrl);
2884 if (ret < 0)
2885 return ret;
2886
2887 ret = nvme_configure_timestamp(ctrl);
2888 if (ret < 0)
2889 return ret;
2890
2891 ret = nvme_configure_directives(ctrl);
2892 if (ret < 0)
2893 return ret;
2894
2895 ret = nvme_configure_acre(ctrl);
2896 if (ret < 0)
2897 return ret;
2898
2899 if (!ctrl->identified)
2900 nvme_hwmon_init(ctrl);
2901
2902 ctrl->identified = true;
2903
2904 return 0;
2905
2906 out_free:
2907 kfree(id);
2908 return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(nvme_init_identify);
2911
2912 static int nvme_dev_open(struct inode *inode, struct file *file)
2913 {
2914 struct nvme_ctrl *ctrl =
2915 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2916
2917 switch (ctrl->state) {
2918 case NVME_CTRL_LIVE:
2919 break;
2920 default:
2921 return -EWOULDBLOCK;
2922 }
2923
2924 file->private_data = ctrl;
2925 return 0;
2926 }
2927
2928 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2929 {
2930 struct nvme_ns *ns;
2931 int ret;
2932
2933 down_read(&ctrl->namespaces_rwsem);
2934 if (list_empty(&ctrl->namespaces)) {
2935 ret = -ENOTTY;
2936 goto out_unlock;
2937 }
2938
2939 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2940 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2941 dev_warn(ctrl->device,
2942 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2943 ret = -EINVAL;
2944 goto out_unlock;
2945 }
2946
2947 dev_warn(ctrl->device,
2948 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2949 kref_get(&ns->kref);
2950 up_read(&ctrl->namespaces_rwsem);
2951
2952 ret = nvme_user_cmd(ctrl, ns, argp);
2953 nvme_put_ns(ns);
2954 return ret;
2955
2956 out_unlock:
2957 up_read(&ctrl->namespaces_rwsem);
2958 return ret;
2959 }
2960
2961 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2962 unsigned long arg)
2963 {
2964 struct nvme_ctrl *ctrl = file->private_data;
2965 void __user *argp = (void __user *)arg;
2966
2967 switch (cmd) {
2968 case NVME_IOCTL_ADMIN_CMD:
2969 return nvme_user_cmd(ctrl, NULL, argp);
2970 case NVME_IOCTL_ADMIN64_CMD:
2971 return nvme_user_cmd64(ctrl, NULL, argp);
2972 case NVME_IOCTL_IO_CMD:
2973 return nvme_dev_user_cmd(ctrl, argp);
2974 case NVME_IOCTL_RESET:
2975 dev_warn(ctrl->device, "resetting controller\n");
2976 return nvme_reset_ctrl_sync(ctrl);
2977 case NVME_IOCTL_SUBSYS_RESET:
2978 return nvme_reset_subsystem(ctrl);
2979 case NVME_IOCTL_RESCAN:
2980 nvme_queue_scan(ctrl);
2981 return 0;
2982 default:
2983 return -ENOTTY;
2984 }
2985 }
2986
2987 static const struct file_operations nvme_dev_fops = {
2988 .owner = THIS_MODULE,
2989 .open = nvme_dev_open,
2990 .unlocked_ioctl = nvme_dev_ioctl,
2991 .compat_ioctl = compat_ptr_ioctl,
2992 };
2993
2994 static ssize_t nvme_sysfs_reset(struct device *dev,
2995 struct device_attribute *attr, const char *buf,
2996 size_t count)
2997 {
2998 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2999 int ret;
3000
3001 ret = nvme_reset_ctrl_sync(ctrl);
3002 if (ret < 0)
3003 return ret;
3004 return count;
3005 }
3006 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3007
3008 static ssize_t nvme_sysfs_rescan(struct device *dev,
3009 struct device_attribute *attr, const char *buf,
3010 size_t count)
3011 {
3012 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3013
3014 nvme_queue_scan(ctrl);
3015 return count;
3016 }
3017 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3018
3019 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3020 {
3021 struct gendisk *disk = dev_to_disk(dev);
3022
3023 if (disk->fops == &nvme_fops)
3024 return nvme_get_ns_from_dev(dev)->head;
3025 else
3026 return disk->private_data;
3027 }
3028
3029 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3030 char *buf)
3031 {
3032 struct nvme_ns_head *head = dev_to_ns_head(dev);
3033 struct nvme_ns_ids *ids = &head->ids;
3034 struct nvme_subsystem *subsys = head->subsys;
3035 int serial_len = sizeof(subsys->serial);
3036 int model_len = sizeof(subsys->model);
3037
3038 if (!uuid_is_null(&ids->uuid))
3039 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3040
3041 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3042 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3043
3044 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3045 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3046
3047 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3048 subsys->serial[serial_len - 1] == '\0'))
3049 serial_len--;
3050 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3051 subsys->model[model_len - 1] == '\0'))
3052 model_len--;
3053
3054 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3055 serial_len, subsys->serial, model_len, subsys->model,
3056 head->ns_id);
3057 }
3058 static DEVICE_ATTR_RO(wwid);
3059
3060 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3061 char *buf)
3062 {
3063 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3064 }
3065 static DEVICE_ATTR_RO(nguid);
3066
3067 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3068 char *buf)
3069 {
3070 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3071
3072 /* For backward compatibility expose the NGUID to userspace if
3073 * we have no UUID set
3074 */
3075 if (uuid_is_null(&ids->uuid)) {
3076 printk_ratelimited(KERN_WARNING
3077 "No UUID available providing old NGUID\n");
3078 return sprintf(buf, "%pU\n", ids->nguid);
3079 }
3080 return sprintf(buf, "%pU\n", &ids->uuid);
3081 }
3082 static DEVICE_ATTR_RO(uuid);
3083
3084 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3085 char *buf)
3086 {
3087 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3088 }
3089 static DEVICE_ATTR_RO(eui);
3090
3091 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3092 char *buf)
3093 {
3094 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3095 }
3096 static DEVICE_ATTR_RO(nsid);
3097
3098 static struct attribute *nvme_ns_id_attrs[] = {
3099 &dev_attr_wwid.attr,
3100 &dev_attr_uuid.attr,
3101 &dev_attr_nguid.attr,
3102 &dev_attr_eui.attr,
3103 &dev_attr_nsid.attr,
3104 #ifdef CONFIG_NVME_MULTIPATH
3105 &dev_attr_ana_grpid.attr,
3106 &dev_attr_ana_state.attr,
3107 #endif
3108 NULL,
3109 };
3110
3111 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3112 struct attribute *a, int n)
3113 {
3114 struct device *dev = container_of(kobj, struct device, kobj);
3115 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3116
3117 if (a == &dev_attr_uuid.attr) {
3118 if (uuid_is_null(&ids->uuid) &&
3119 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3120 return 0;
3121 }
3122 if (a == &dev_attr_nguid.attr) {
3123 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3124 return 0;
3125 }
3126 if (a == &dev_attr_eui.attr) {
3127 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3128 return 0;
3129 }
3130 #ifdef CONFIG_NVME_MULTIPATH
3131 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3132 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3133 return 0;
3134 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3135 return 0;
3136 }
3137 #endif
3138 return a->mode;
3139 }
3140
3141 static const struct attribute_group nvme_ns_id_attr_group = {
3142 .attrs = nvme_ns_id_attrs,
3143 .is_visible = nvme_ns_id_attrs_are_visible,
3144 };
3145
3146 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3147 &nvme_ns_id_attr_group,
3148 #ifdef CONFIG_NVM
3149 &nvme_nvm_attr_group,
3150 #endif
3151 NULL,
3152 };
3153
3154 #define nvme_show_str_function(field) \
3155 static ssize_t field##_show(struct device *dev, \
3156 struct device_attribute *attr, char *buf) \
3157 { \
3158 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3159 return sprintf(buf, "%.*s\n", \
3160 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3161 } \
3162 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3163
3164 nvme_show_str_function(model);
3165 nvme_show_str_function(serial);
3166 nvme_show_str_function(firmware_rev);
3167
3168 #define nvme_show_int_function(field) \
3169 static ssize_t field##_show(struct device *dev, \
3170 struct device_attribute *attr, char *buf) \
3171 { \
3172 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3173 return sprintf(buf, "%d\n", ctrl->field); \
3174 } \
3175 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3176
3177 nvme_show_int_function(cntlid);
3178 nvme_show_int_function(numa_node);
3179 nvme_show_int_function(queue_count);
3180 nvme_show_int_function(sqsize);
3181
3182 static ssize_t nvme_sysfs_delete(struct device *dev,
3183 struct device_attribute *attr, const char *buf,
3184 size_t count)
3185 {
3186 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3187
3188 if (device_remove_file_self(dev, attr))
3189 nvme_delete_ctrl_sync(ctrl);
3190 return count;
3191 }
3192 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3193
3194 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3195 struct device_attribute *attr,
3196 char *buf)
3197 {
3198 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3199
3200 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3201 }
3202 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3203
3204 static ssize_t nvme_sysfs_show_state(struct device *dev,
3205 struct device_attribute *attr,
3206 char *buf)
3207 {
3208 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3209 static const char *const state_name[] = {
3210 [NVME_CTRL_NEW] = "new",
3211 [NVME_CTRL_LIVE] = "live",
3212 [NVME_CTRL_RESETTING] = "resetting",
3213 [NVME_CTRL_CONNECTING] = "connecting",
3214 [NVME_CTRL_DELETING] = "deleting",
3215 [NVME_CTRL_DEAD] = "dead",
3216 };
3217
3218 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3219 state_name[ctrl->state])
3220 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3221
3222 return sprintf(buf, "unknown state\n");
3223 }
3224
3225 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3226
3227 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3228 struct device_attribute *attr,
3229 char *buf)
3230 {
3231 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3232
3233 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3234 }
3235 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3236
3237 static ssize_t nvme_sysfs_show_address(struct device *dev,
3238 struct device_attribute *attr,
3239 char *buf)
3240 {
3241 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3242
3243 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3244 }
3245 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3246
3247 static struct attribute *nvme_dev_attrs[] = {
3248 &dev_attr_reset_controller.attr,
3249 &dev_attr_rescan_controller.attr,
3250 &dev_attr_model.attr,
3251 &dev_attr_serial.attr,
3252 &dev_attr_firmware_rev.attr,
3253 &dev_attr_cntlid.attr,
3254 &dev_attr_delete_controller.attr,
3255 &dev_attr_transport.attr,
3256 &dev_attr_subsysnqn.attr,
3257 &dev_attr_address.attr,
3258 &dev_attr_state.attr,
3259 &dev_attr_numa_node.attr,
3260 &dev_attr_queue_count.attr,
3261 &dev_attr_sqsize.attr,
3262 NULL
3263 };
3264
3265 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3266 struct attribute *a, int n)
3267 {
3268 struct device *dev = container_of(kobj, struct device, kobj);
3269 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3270
3271 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3272 return 0;
3273 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3274 return 0;
3275
3276 return a->mode;
3277 }
3278
3279 static struct attribute_group nvme_dev_attrs_group = {
3280 .attrs = nvme_dev_attrs,
3281 .is_visible = nvme_dev_attrs_are_visible,
3282 };
3283
3284 static const struct attribute_group *nvme_dev_attr_groups[] = {
3285 &nvme_dev_attrs_group,
3286 NULL,
3287 };
3288
3289 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3290 unsigned nsid)
3291 {
3292 struct nvme_ns_head *h;
3293
3294 lockdep_assert_held(&subsys->lock);
3295
3296 list_for_each_entry(h, &subsys->nsheads, entry) {
3297 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3298 return h;
3299 }
3300
3301 return NULL;
3302 }
3303
3304 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3305 struct nvme_ns_head *new)
3306 {
3307 struct nvme_ns_head *h;
3308
3309 lockdep_assert_held(&subsys->lock);
3310
3311 list_for_each_entry(h, &subsys->nsheads, entry) {
3312 if (nvme_ns_ids_valid(&new->ids) &&
3313 !list_empty(&h->list) &&
3314 nvme_ns_ids_equal(&new->ids, &h->ids))
3315 return -EINVAL;
3316 }
3317
3318 return 0;
3319 }
3320
3321 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3322 unsigned nsid, struct nvme_id_ns *id)
3323 {
3324 struct nvme_ns_head *head;
3325 size_t size = sizeof(*head);
3326 int ret = -ENOMEM;
3327
3328 #ifdef CONFIG_NVME_MULTIPATH
3329 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3330 #endif
3331
3332 head = kzalloc(size, GFP_KERNEL);
3333 if (!head)
3334 goto out;
3335 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3336 if (ret < 0)
3337 goto out_free_head;
3338 head->instance = ret;
3339 INIT_LIST_HEAD(&head->list);
3340 ret = init_srcu_struct(&head->srcu);
3341 if (ret)
3342 goto out_ida_remove;
3343 head->subsys = ctrl->subsys;
3344 head->ns_id = nsid;
3345 kref_init(&head->ref);
3346
3347 ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3348 if (ret)
3349 goto out_cleanup_srcu;
3350
3351 ret = __nvme_check_ids(ctrl->subsys, head);
3352 if (ret) {
3353 dev_err(ctrl->device,
3354 "duplicate IDs for nsid %d\n", nsid);
3355 goto out_cleanup_srcu;
3356 }
3357
3358 ret = nvme_mpath_alloc_disk(ctrl, head);
3359 if (ret)
3360 goto out_cleanup_srcu;
3361
3362 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3363
3364 kref_get(&ctrl->subsys->ref);
3365
3366 return head;
3367 out_cleanup_srcu:
3368 cleanup_srcu_struct(&head->srcu);
3369 out_ida_remove:
3370 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3371 out_free_head:
3372 kfree(head);
3373 out:
3374 if (ret > 0)
3375 ret = blk_status_to_errno(nvme_error_status(ret));
3376 return ERR_PTR(ret);
3377 }
3378
3379 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3380 struct nvme_id_ns *id)
3381 {
3382 struct nvme_ctrl *ctrl = ns->ctrl;
3383 bool is_shared = id->nmic & (1 << 0);
3384 struct nvme_ns_head *head = NULL;
3385 int ret = 0;
3386
3387 mutex_lock(&ctrl->subsys->lock);
3388 if (is_shared)
3389 head = __nvme_find_ns_head(ctrl->subsys, nsid);
3390 if (!head) {
3391 head = nvme_alloc_ns_head(ctrl, nsid, id);
3392 if (IS_ERR(head)) {
3393 ret = PTR_ERR(head);
3394 goto out_unlock;
3395 }
3396 } else {
3397 struct nvme_ns_ids ids;
3398
3399 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3400 if (ret)
3401 goto out_unlock;
3402
3403 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3404 dev_err(ctrl->device,
3405 "IDs don't match for shared namespace %d\n",
3406 nsid);
3407 ret = -EINVAL;
3408 goto out_unlock;
3409 }
3410 }
3411
3412 list_add_tail(&ns->siblings, &head->list);
3413 ns->head = head;
3414
3415 out_unlock:
3416 mutex_unlock(&ctrl->subsys->lock);
3417 if (ret > 0)
3418 ret = blk_status_to_errno(nvme_error_status(ret));
3419 return ret;
3420 }
3421
3422 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3423 {
3424 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3425 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3426
3427 return nsa->head->ns_id - nsb->head->ns_id;
3428 }
3429
3430 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3431 {
3432 struct nvme_ns *ns, *ret = NULL;
3433
3434 down_read(&ctrl->namespaces_rwsem);
3435 list_for_each_entry(ns, &ctrl->namespaces, list) {
3436 if (ns->head->ns_id == nsid) {
3437 if (!kref_get_unless_zero(&ns->kref))
3438 continue;
3439 ret = ns;
3440 break;
3441 }
3442 if (ns->head->ns_id > nsid)
3443 break;
3444 }
3445 up_read(&ctrl->namespaces_rwsem);
3446 return ret;
3447 }
3448
3449 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3450 {
3451 struct streams_directive_params s;
3452 int ret;
3453
3454 if (!ctrl->nr_streams)
3455 return 0;
3456
3457 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3458 if (ret)
3459 return ret;
3460
3461 ns->sws = le32_to_cpu(s.sws);
3462 ns->sgs = le16_to_cpu(s.sgs);
3463
3464 if (ns->sws) {
3465 unsigned int bs = 1 << ns->lba_shift;
3466
3467 blk_queue_io_min(ns->queue, bs * ns->sws);
3468 if (ns->sgs)
3469 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3470 }
3471
3472 return 0;
3473 }
3474
3475 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3476 {
3477 struct nvme_ns *ns;
3478 struct gendisk *disk;
3479 struct nvme_id_ns *id;
3480 char disk_name[DISK_NAME_LEN];
3481 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3482
3483 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3484 if (!ns)
3485 return -ENOMEM;
3486
3487 ns->queue = blk_mq_init_queue(ctrl->tagset);
3488 if (IS_ERR(ns->queue)) {
3489 ret = PTR_ERR(ns->queue);
3490 goto out_free_ns;
3491 }
3492
3493 if (ctrl->opts && ctrl->opts->data_digest)
3494 ns->queue->backing_dev_info->capabilities
3495 |= BDI_CAP_STABLE_WRITES;
3496
3497 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3498 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3499 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3500
3501 ns->queue->queuedata = ns;
3502 ns->ctrl = ctrl;
3503
3504 kref_init(&ns->kref);
3505 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3506
3507 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3508 nvme_set_queue_limits(ctrl, ns->queue);
3509
3510 ret = nvme_identify_ns(ctrl, nsid, &id);
3511 if (ret)
3512 goto out_free_queue;
3513
3514 if (id->ncap == 0) {
3515 ret = -EINVAL;
3516 goto out_free_id;
3517 }
3518
3519 ret = nvme_init_ns_head(ns, nsid, id);
3520 if (ret)
3521 goto out_free_id;
3522 nvme_setup_streams_ns(ctrl, ns);
3523 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3524
3525 disk = alloc_disk_node(0, node);
3526 if (!disk) {
3527 ret = -ENOMEM;
3528 goto out_unlink_ns;
3529 }
3530
3531 disk->fops = &nvme_fops;
3532 disk->private_data = ns;
3533 disk->queue = ns->queue;
3534 disk->flags = flags;
3535 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3536 ns->disk = disk;
3537
3538 __nvme_revalidate_disk(disk, id);
3539
3540 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3541 ret = nvme_nvm_register(ns, disk_name, node);
3542 if (ret) {
3543 dev_warn(ctrl->device, "LightNVM init failure\n");
3544 goto out_put_disk;
3545 }
3546 }
3547
3548 down_write(&ctrl->namespaces_rwsem);
3549 list_add_tail(&ns->list, &ctrl->namespaces);
3550 up_write(&ctrl->namespaces_rwsem);
3551
3552 nvme_get_ctrl(ctrl);
3553
3554 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3555
3556 nvme_mpath_add_disk(ns, id);
3557 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3558 kfree(id);
3559
3560 return 0;
3561 out_put_disk:
3562 put_disk(ns->disk);
3563 out_unlink_ns:
3564 mutex_lock(&ctrl->subsys->lock);
3565 list_del_rcu(&ns->siblings);
3566 mutex_unlock(&ctrl->subsys->lock);
3567 nvme_put_ns_head(ns->head);
3568 out_free_id:
3569 kfree(id);
3570 out_free_queue:
3571 blk_cleanup_queue(ns->queue);
3572 out_free_ns:
3573 kfree(ns);
3574 if (ret > 0)
3575 ret = blk_status_to_errno(nvme_error_status(ret));
3576 return ret;
3577 }
3578
3579 static void nvme_ns_remove(struct nvme_ns *ns)
3580 {
3581 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3582 return;
3583
3584 nvme_fault_inject_fini(&ns->fault_inject);
3585
3586 mutex_lock(&ns->ctrl->subsys->lock);
3587 list_del_rcu(&ns->siblings);
3588 mutex_unlock(&ns->ctrl->subsys->lock);
3589 synchronize_rcu(); /* guarantee not available in head->list */
3590 nvme_mpath_clear_current_path(ns);
3591 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3592
3593 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3594 del_gendisk(ns->disk);
3595 blk_cleanup_queue(ns->queue);
3596 if (blk_get_integrity(ns->disk))
3597 blk_integrity_unregister(ns->disk);
3598 }
3599
3600 down_write(&ns->ctrl->namespaces_rwsem);
3601 list_del_init(&ns->list);
3602 up_write(&ns->ctrl->namespaces_rwsem);
3603
3604 nvme_mpath_check_last_path(ns);
3605 nvme_put_ns(ns);
3606 }
3607
3608 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3609 {
3610 struct nvme_ns *ns;
3611
3612 ns = nvme_find_get_ns(ctrl, nsid);
3613 if (ns) {
3614 if (ns->disk && revalidate_disk(ns->disk))
3615 nvme_ns_remove(ns);
3616 nvme_put_ns(ns);
3617 } else
3618 nvme_alloc_ns(ctrl, nsid);
3619 }
3620
3621 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3622 unsigned nsid)
3623 {
3624 struct nvme_ns *ns, *next;
3625 LIST_HEAD(rm_list);
3626
3627 down_write(&ctrl->namespaces_rwsem);
3628 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3629 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3630 list_move_tail(&ns->list, &rm_list);
3631 }
3632 up_write(&ctrl->namespaces_rwsem);
3633
3634 list_for_each_entry_safe(ns, next, &rm_list, list)
3635 nvme_ns_remove(ns);
3636
3637 }
3638
3639 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3640 {
3641 struct nvme_ns *ns;
3642 __le32 *ns_list;
3643 unsigned i, j, nsid, prev = 0;
3644 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3645 int ret = 0;
3646
3647 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3648 if (!ns_list)
3649 return -ENOMEM;
3650
3651 for (i = 0; i < num_lists; i++) {
3652 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3653 if (ret)
3654 goto free;
3655
3656 for (j = 0; j < min(nn, 1024U); j++) {
3657 nsid = le32_to_cpu(ns_list[j]);
3658 if (!nsid)
3659 goto out;
3660
3661 nvme_validate_ns(ctrl, nsid);
3662
3663 while (++prev < nsid) {
3664 ns = nvme_find_get_ns(ctrl, prev);
3665 if (ns) {
3666 nvme_ns_remove(ns);
3667 nvme_put_ns(ns);
3668 }
3669 }
3670 }
3671 nn -= j;
3672 }
3673 out:
3674 nvme_remove_invalid_namespaces(ctrl, prev);
3675 free:
3676 kfree(ns_list);
3677 return ret;
3678 }
3679
3680 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3681 {
3682 unsigned i;
3683
3684 for (i = 1; i <= nn; i++)
3685 nvme_validate_ns(ctrl, i);
3686
3687 nvme_remove_invalid_namespaces(ctrl, nn);
3688 }
3689
3690 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3691 {
3692 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3693 __le32 *log;
3694 int error;
3695
3696 log = kzalloc(log_size, GFP_KERNEL);
3697 if (!log)
3698 return;
3699
3700 /*
3701 * We need to read the log to clear the AEN, but we don't want to rely
3702 * on it for the changed namespace information as userspace could have
3703 * raced with us in reading the log page, which could cause us to miss
3704 * updates.
3705 */
3706 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3707 log_size, 0);
3708 if (error)
3709 dev_warn(ctrl->device,
3710 "reading changed ns log failed: %d\n", error);
3711
3712 kfree(log);
3713 }
3714
3715 static void nvme_scan_work(struct work_struct *work)
3716 {
3717 struct nvme_ctrl *ctrl =
3718 container_of(work, struct nvme_ctrl, scan_work);
3719 struct nvme_id_ctrl *id;
3720 unsigned nn;
3721
3722 /* No tagset on a live ctrl means IO queues could not created */
3723 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3724 return;
3725
3726 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3727 dev_info(ctrl->device, "rescanning namespaces.\n");
3728 nvme_clear_changed_ns_log(ctrl);
3729 }
3730
3731 if (nvme_identify_ctrl(ctrl, &id))
3732 return;
3733
3734 mutex_lock(&ctrl->scan_lock);
3735 nn = le32_to_cpu(id->nn);
3736 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3737 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3738 if (!nvme_scan_ns_list(ctrl, nn))
3739 goto out_free_id;
3740 }
3741 nvme_scan_ns_sequential(ctrl, nn);
3742 out_free_id:
3743 mutex_unlock(&ctrl->scan_lock);
3744 kfree(id);
3745 down_write(&ctrl->namespaces_rwsem);
3746 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3747 up_write(&ctrl->namespaces_rwsem);
3748 }
3749
3750 /*
3751 * This function iterates the namespace list unlocked to allow recovery from
3752 * controller failure. It is up to the caller to ensure the namespace list is
3753 * not modified by scan work while this function is executing.
3754 */
3755 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3756 {
3757 struct nvme_ns *ns, *next;
3758 LIST_HEAD(ns_list);
3759
3760 /*
3761 * make sure to requeue I/O to all namespaces as these
3762 * might result from the scan itself and must complete
3763 * for the scan_work to make progress
3764 */
3765 nvme_mpath_clear_ctrl_paths(ctrl);
3766
3767 /* prevent racing with ns scanning */
3768 flush_work(&ctrl->scan_work);
3769
3770 /*
3771 * The dead states indicates the controller was not gracefully
3772 * disconnected. In that case, we won't be able to flush any data while
3773 * removing the namespaces' disks; fail all the queues now to avoid
3774 * potentially having to clean up the failed sync later.
3775 */
3776 if (ctrl->state == NVME_CTRL_DEAD)
3777 nvme_kill_queues(ctrl);
3778
3779 down_write(&ctrl->namespaces_rwsem);
3780 list_splice_init(&ctrl->namespaces, &ns_list);
3781 up_write(&ctrl->namespaces_rwsem);
3782
3783 list_for_each_entry_safe(ns, next, &ns_list, list)
3784 nvme_ns_remove(ns);
3785 }
3786 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3787
3788 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3789 {
3790 struct nvme_ctrl *ctrl =
3791 container_of(dev, struct nvme_ctrl, ctrl_device);
3792 struct nvmf_ctrl_options *opts = ctrl->opts;
3793 int ret;
3794
3795 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3796 if (ret)
3797 return ret;
3798
3799 if (opts) {
3800 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3801 if (ret)
3802 return ret;
3803
3804 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3805 opts->trsvcid ?: "none");
3806 if (ret)
3807 return ret;
3808
3809 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3810 opts->host_traddr ?: "none");
3811 }
3812 return ret;
3813 }
3814
3815 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3816 {
3817 char *envp[2] = { NULL, NULL };
3818 u32 aen_result = ctrl->aen_result;
3819
3820 ctrl->aen_result = 0;
3821 if (!aen_result)
3822 return;
3823
3824 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3825 if (!envp[0])
3826 return;
3827 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3828 kfree(envp[0]);
3829 }
3830
3831 static void nvme_async_event_work(struct work_struct *work)
3832 {
3833 struct nvme_ctrl *ctrl =
3834 container_of(work, struct nvme_ctrl, async_event_work);
3835
3836 nvme_aen_uevent(ctrl);
3837 ctrl->ops->submit_async_event(ctrl);
3838 }
3839
3840 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3841 {
3842
3843 u32 csts;
3844
3845 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3846 return false;
3847
3848 if (csts == ~0)
3849 return false;
3850
3851 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3852 }
3853
3854 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3855 {
3856 struct nvme_fw_slot_info_log *log;
3857
3858 log = kmalloc(sizeof(*log), GFP_KERNEL);
3859 if (!log)
3860 return;
3861
3862 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3863 sizeof(*log), 0))
3864 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3865 kfree(log);
3866 }
3867
3868 static void nvme_fw_act_work(struct work_struct *work)
3869 {
3870 struct nvme_ctrl *ctrl = container_of(work,
3871 struct nvme_ctrl, fw_act_work);
3872 unsigned long fw_act_timeout;
3873
3874 if (ctrl->mtfa)
3875 fw_act_timeout = jiffies +
3876 msecs_to_jiffies(ctrl->mtfa * 100);
3877 else
3878 fw_act_timeout = jiffies +
3879 msecs_to_jiffies(admin_timeout * 1000);
3880
3881 nvme_stop_queues(ctrl);
3882 while (nvme_ctrl_pp_status(ctrl)) {
3883 if (time_after(jiffies, fw_act_timeout)) {
3884 dev_warn(ctrl->device,
3885 "Fw activation timeout, reset controller\n");
3886 nvme_try_sched_reset(ctrl);
3887 return;
3888 }
3889 msleep(100);
3890 }
3891
3892 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3893 return;
3894
3895 nvme_start_queues(ctrl);
3896 /* read FW slot information to clear the AER */
3897 nvme_get_fw_slot_info(ctrl);
3898 }
3899
3900 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3901 {
3902 u32 aer_notice_type = (result & 0xff00) >> 8;
3903
3904 trace_nvme_async_event(ctrl, aer_notice_type);
3905
3906 switch (aer_notice_type) {
3907 case NVME_AER_NOTICE_NS_CHANGED:
3908 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3909 nvme_queue_scan(ctrl);
3910 break;
3911 case NVME_AER_NOTICE_FW_ACT_STARTING:
3912 /*
3913 * We are (ab)using the RESETTING state to prevent subsequent
3914 * recovery actions from interfering with the controller's
3915 * firmware activation.
3916 */
3917 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
3918 queue_work(nvme_wq, &ctrl->fw_act_work);
3919 break;
3920 #ifdef CONFIG_NVME_MULTIPATH
3921 case NVME_AER_NOTICE_ANA:
3922 if (!ctrl->ana_log_buf)
3923 break;
3924 queue_work(nvme_wq, &ctrl->ana_work);
3925 break;
3926 #endif
3927 case NVME_AER_NOTICE_DISC_CHANGED:
3928 ctrl->aen_result = result;
3929 break;
3930 default:
3931 dev_warn(ctrl->device, "async event result %08x\n", result);
3932 }
3933 }
3934
3935 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3936 volatile union nvme_result *res)
3937 {
3938 u32 result = le32_to_cpu(res->u32);
3939 u32 aer_type = result & 0x07;
3940
3941 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3942 return;
3943
3944 switch (aer_type) {
3945 case NVME_AER_NOTICE:
3946 nvme_handle_aen_notice(ctrl, result);
3947 break;
3948 case NVME_AER_ERROR:
3949 case NVME_AER_SMART:
3950 case NVME_AER_CSS:
3951 case NVME_AER_VS:
3952 trace_nvme_async_event(ctrl, aer_type);
3953 ctrl->aen_result = result;
3954 break;
3955 default:
3956 break;
3957 }
3958 queue_work(nvme_wq, &ctrl->async_event_work);
3959 }
3960 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3961
3962 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3963 {
3964 nvme_mpath_stop(ctrl);
3965 nvme_stop_keep_alive(ctrl);
3966 flush_work(&ctrl->async_event_work);
3967 cancel_work_sync(&ctrl->fw_act_work);
3968 }
3969 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3970
3971 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3972 {
3973 if (ctrl->kato)
3974 nvme_start_keep_alive(ctrl);
3975
3976 nvme_enable_aen(ctrl);
3977
3978 if (ctrl->queue_count > 1) {
3979 nvme_queue_scan(ctrl);
3980 nvme_start_queues(ctrl);
3981 }
3982 }
3983 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3984
3985 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3986 {
3987 nvme_fault_inject_fini(&ctrl->fault_inject);
3988 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3989 cdev_device_del(&ctrl->cdev, ctrl->device);
3990 }
3991 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3992
3993 static void nvme_free_ctrl(struct device *dev)
3994 {
3995 struct nvme_ctrl *ctrl =
3996 container_of(dev, struct nvme_ctrl, ctrl_device);
3997 struct nvme_subsystem *subsys = ctrl->subsys;
3998
3999 if (subsys && ctrl->instance != subsys->instance)
4000 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4001
4002 kfree(ctrl->effects);
4003 nvme_mpath_uninit(ctrl);
4004 __free_page(ctrl->discard_page);
4005
4006 if (subsys) {
4007 mutex_lock(&nvme_subsystems_lock);
4008 list_del(&ctrl->subsys_entry);
4009 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4010 mutex_unlock(&nvme_subsystems_lock);
4011 }
4012
4013 ctrl->ops->free_ctrl(ctrl);
4014
4015 if (subsys)
4016 nvme_put_subsystem(subsys);
4017 }
4018
4019 /*
4020 * Initialize a NVMe controller structures. This needs to be called during
4021 * earliest initialization so that we have the initialized structured around
4022 * during probing.
4023 */
4024 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4025 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4026 {
4027 int ret;
4028
4029 ctrl->state = NVME_CTRL_NEW;
4030 spin_lock_init(&ctrl->lock);
4031 mutex_init(&ctrl->scan_lock);
4032 INIT_LIST_HEAD(&ctrl->namespaces);
4033 init_rwsem(&ctrl->namespaces_rwsem);
4034 ctrl->dev = dev;
4035 ctrl->ops = ops;
4036 ctrl->quirks = quirks;
4037 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4038 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4039 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4040 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4041 init_waitqueue_head(&ctrl->state_wq);
4042
4043 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4044 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4045 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4046
4047 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4048 PAGE_SIZE);
4049 ctrl->discard_page = alloc_page(GFP_KERNEL);
4050 if (!ctrl->discard_page) {
4051 ret = -ENOMEM;
4052 goto out;
4053 }
4054
4055 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4056 if (ret < 0)
4057 goto out;
4058 ctrl->instance = ret;
4059
4060 device_initialize(&ctrl->ctrl_device);
4061 ctrl->device = &ctrl->ctrl_device;
4062 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4063 ctrl->device->class = nvme_class;
4064 ctrl->device->parent = ctrl->dev;
4065 ctrl->device->groups = nvme_dev_attr_groups;
4066 ctrl->device->release = nvme_free_ctrl;
4067 dev_set_drvdata(ctrl->device, ctrl);
4068 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4069 if (ret)
4070 goto out_release_instance;
4071
4072 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4073 ctrl->cdev.owner = ops->module;
4074 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4075 if (ret)
4076 goto out_free_name;
4077
4078 /*
4079 * Initialize latency tolerance controls. The sysfs files won't
4080 * be visible to userspace unless the device actually supports APST.
4081 */
4082 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4083 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4084 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4085
4086 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4087
4088 return 0;
4089 out_free_name:
4090 kfree_const(ctrl->device->kobj.name);
4091 out_release_instance:
4092 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4093 out:
4094 if (ctrl->discard_page)
4095 __free_page(ctrl->discard_page);
4096 return ret;
4097 }
4098 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4099
4100 /**
4101 * nvme_kill_queues(): Ends all namespace queues
4102 * @ctrl: the dead controller that needs to end
4103 *
4104 * Call this function when the driver determines it is unable to get the
4105 * controller in a state capable of servicing IO.
4106 */
4107 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4108 {
4109 struct nvme_ns *ns;
4110
4111 down_read(&ctrl->namespaces_rwsem);
4112
4113 /* Forcibly unquiesce queues to avoid blocking dispatch */
4114 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4115 blk_mq_unquiesce_queue(ctrl->admin_q);
4116
4117 list_for_each_entry(ns, &ctrl->namespaces, list)
4118 nvme_set_queue_dying(ns);
4119
4120 up_read(&ctrl->namespaces_rwsem);
4121 }
4122 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4123
4124 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4125 {
4126 struct nvme_ns *ns;
4127
4128 down_read(&ctrl->namespaces_rwsem);
4129 list_for_each_entry(ns, &ctrl->namespaces, list)
4130 blk_mq_unfreeze_queue(ns->queue);
4131 up_read(&ctrl->namespaces_rwsem);
4132 }
4133 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4134
4135 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4136 {
4137 struct nvme_ns *ns;
4138
4139 down_read(&ctrl->namespaces_rwsem);
4140 list_for_each_entry(ns, &ctrl->namespaces, list) {
4141 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4142 if (timeout <= 0)
4143 break;
4144 }
4145 up_read(&ctrl->namespaces_rwsem);
4146 }
4147 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4148
4149 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4150 {
4151 struct nvme_ns *ns;
4152
4153 down_read(&ctrl->namespaces_rwsem);
4154 list_for_each_entry(ns, &ctrl->namespaces, list)
4155 blk_mq_freeze_queue_wait(ns->queue);
4156 up_read(&ctrl->namespaces_rwsem);
4157 }
4158 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4159
4160 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4161 {
4162 struct nvme_ns *ns;
4163
4164 down_read(&ctrl->namespaces_rwsem);
4165 list_for_each_entry(ns, &ctrl->namespaces, list)
4166 blk_freeze_queue_start(ns->queue);
4167 up_read(&ctrl->namespaces_rwsem);
4168 }
4169 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4170
4171 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4172 {
4173 struct nvme_ns *ns;
4174
4175 down_read(&ctrl->namespaces_rwsem);
4176 list_for_each_entry(ns, &ctrl->namespaces, list)
4177 blk_mq_quiesce_queue(ns->queue);
4178 up_read(&ctrl->namespaces_rwsem);
4179 }
4180 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4181
4182 void nvme_start_queues(struct nvme_ctrl *ctrl)
4183 {
4184 struct nvme_ns *ns;
4185
4186 down_read(&ctrl->namespaces_rwsem);
4187 list_for_each_entry(ns, &ctrl->namespaces, list)
4188 blk_mq_unquiesce_queue(ns->queue);
4189 up_read(&ctrl->namespaces_rwsem);
4190 }
4191 EXPORT_SYMBOL_GPL(nvme_start_queues);
4192
4193
4194 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4195 {
4196 struct nvme_ns *ns;
4197
4198 down_read(&ctrl->namespaces_rwsem);
4199 list_for_each_entry(ns, &ctrl->namespaces, list)
4200 blk_sync_queue(ns->queue);
4201 up_read(&ctrl->namespaces_rwsem);
4202
4203 if (ctrl->admin_q)
4204 blk_sync_queue(ctrl->admin_q);
4205 }
4206 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4207
4208 /*
4209 * Check we didn't inadvertently grow the command structure sizes:
4210 */
4211 static inline void _nvme_check_size(void)
4212 {
4213 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4214 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4215 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4216 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4217 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4218 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4219 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4220 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4221 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4222 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4223 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4224 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4225 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4226 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4227 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4228 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4229 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4230 }
4231
4232
4233 static int __init nvme_core_init(void)
4234 {
4235 int result = -ENOMEM;
4236
4237 _nvme_check_size();
4238
4239 nvme_wq = alloc_workqueue("nvme-wq",
4240 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4241 if (!nvme_wq)
4242 goto out;
4243
4244 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4245 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4246 if (!nvme_reset_wq)
4247 goto destroy_wq;
4248
4249 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4250 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4251 if (!nvme_delete_wq)
4252 goto destroy_reset_wq;
4253
4254 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4255 if (result < 0)
4256 goto destroy_delete_wq;
4257
4258 nvme_class = class_create(THIS_MODULE, "nvme");
4259 if (IS_ERR(nvme_class)) {
4260 result = PTR_ERR(nvme_class);
4261 goto unregister_chrdev;
4262 }
4263 nvme_class->dev_uevent = nvme_class_uevent;
4264
4265 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4266 if (IS_ERR(nvme_subsys_class)) {
4267 result = PTR_ERR(nvme_subsys_class);
4268 goto destroy_class;
4269 }
4270 return 0;
4271
4272 destroy_class:
4273 class_destroy(nvme_class);
4274 unregister_chrdev:
4275 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4276 destroy_delete_wq:
4277 destroy_workqueue(nvme_delete_wq);
4278 destroy_reset_wq:
4279 destroy_workqueue(nvme_reset_wq);
4280 destroy_wq:
4281 destroy_workqueue(nvme_wq);
4282 out:
4283 return result;
4284 }
4285
4286 static void __exit nvme_core_exit(void)
4287 {
4288 class_destroy(nvme_subsys_class);
4289 class_destroy(nvme_class);
4290 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4291 destroy_workqueue(nvme_delete_wq);
4292 destroy_workqueue(nvme_reset_wq);
4293 destroy_workqueue(nvme_wq);
4294 }
4295
4296 MODULE_LICENSE("GPL");
4297 MODULE_VERSION("1.0");
4298 module_init(nvme_core_init);
4299 module_exit(nvme_core_exit);