]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/nvme/host/core.c
Merge tag 'asoc-fix-v5.14-rc2' of https://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static unsigned long apst_primary_timeout_ms = 100;
61 module_param(apst_primary_timeout_ms, ulong, 0644);
62 MODULE_PARM_DESC(apst_primary_timeout_ms,
63 "primary APST timeout in ms");
64
65 static unsigned long apst_secondary_timeout_ms = 2000;
66 module_param(apst_secondary_timeout_ms, ulong, 0644);
67 MODULE_PARM_DESC(apst_secondary_timeout_ms,
68 "secondary APST timeout in ms");
69
70 static unsigned long apst_primary_latency_tol_us = 15000;
71 module_param(apst_primary_latency_tol_us, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_latency_tol_us,
73 "primary APST latency tolerance in us");
74
75 static unsigned long apst_secondary_latency_tol_us = 100000;
76 module_param(apst_secondary_latency_tol_us, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
78 "secondary APST latency tolerance in us");
79
80 static bool streams;
81 module_param(streams, bool, 0644);
82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
83
84 /*
85 * nvme_wq - hosts nvme related works that are not reset or delete
86 * nvme_reset_wq - hosts nvme reset works
87 * nvme_delete_wq - hosts nvme delete works
88 *
89 * nvme_wq will host works such as scan, aen handling, fw activation,
90 * keep-alive, periodic reconnects etc. nvme_reset_wq
91 * runs reset works which also flush works hosted on nvme_wq for
92 * serialization purposes. nvme_delete_wq host controller deletion
93 * works which flush reset works for serialization.
94 */
95 struct workqueue_struct *nvme_wq;
96 EXPORT_SYMBOL_GPL(nvme_wq);
97
98 struct workqueue_struct *nvme_reset_wq;
99 EXPORT_SYMBOL_GPL(nvme_reset_wq);
100
101 struct workqueue_struct *nvme_delete_wq;
102 EXPORT_SYMBOL_GPL(nvme_delete_wq);
103
104 static LIST_HEAD(nvme_subsystems);
105 static DEFINE_MUTEX(nvme_subsystems_lock);
106
107 static DEFINE_IDA(nvme_instance_ida);
108 static dev_t nvme_ctrl_base_chr_devt;
109 static struct class *nvme_class;
110 static struct class *nvme_subsys_class;
111
112 static DEFINE_IDA(nvme_ns_chr_minor_ida);
113 static dev_t nvme_ns_chr_devt;
114 static struct class *nvme_ns_chr_class;
115
116 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
118 unsigned nsid);
119
120 /*
121 * Prepare a queue for teardown.
122 *
123 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
124 * the capacity to 0 after that to avoid blocking dispatchers that may be
125 * holding bd_butex. This will end buffered writers dirtying pages that can't
126 * be synced.
127 */
128 static void nvme_set_queue_dying(struct nvme_ns *ns)
129 {
130 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
131 return;
132
133 blk_set_queue_dying(ns->queue);
134 blk_mq_unquiesce_queue(ns->queue);
135
136 set_capacity_and_notify(ns->disk, 0);
137 }
138
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141 /*
142 * Only new queue scan work when admin and IO queues are both alive
143 */
144 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
145 queue_work(nvme_wq, &ctrl->scan_work);
146 }
147
148 /*
149 * Use this function to proceed with scheduling reset_work for a controller
150 * that had previously been set to the resetting state. This is intended for
151 * code paths that can't be interrupted by other reset attempts. A hot removal
152 * may prevent this from succeeding.
153 */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156 if (ctrl->state != NVME_CTRL_RESETTING)
157 return -EBUSY;
158 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 return -EBUSY;
160 return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 struct nvme_ctrl, failfast_work);
168
169 if (ctrl->state != NVME_CTRL_CONNECTING)
170 return;
171
172 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 dev_info(ctrl->device, "failfast expired\n");
174 nvme_kick_requeue_lists(ctrl);
175 }
176
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 return;
181
182 schedule_delayed_work(&ctrl->failfast_work,
183 ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188 if (!ctrl->opts)
189 return;
190
191 cancel_delayed_work_sync(&ctrl->failfast_work);
192 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194
195
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 return -EBUSY;
200 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201 return -EBUSY;
202 return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 int ret;
209
210 ret = nvme_reset_ctrl(ctrl);
211 if (!ret) {
212 flush_work(&ctrl->reset_work);
213 if (ctrl->state != NVME_CTRL_LIVE)
214 ret = -ENETRESET;
215 }
216
217 return ret;
218 }
219
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 dev_info(ctrl->device,
223 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
224
225 flush_work(&ctrl->reset_work);
226 nvme_stop_ctrl(ctrl);
227 nvme_remove_namespaces(ctrl);
228 ctrl->ops->delete_ctrl(ctrl);
229 nvme_uninit_ctrl(ctrl);
230 }
231
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234 struct nvme_ctrl *ctrl =
235 container_of(work, struct nvme_ctrl, delete_work);
236
237 nvme_do_delete_ctrl(ctrl);
238 }
239
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 return -EBUSY;
244 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245 return -EBUSY;
246 return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249
250 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252 /*
253 * Keep a reference until nvme_do_delete_ctrl() complete,
254 * since ->delete_ctrl can free the controller.
255 */
256 nvme_get_ctrl(ctrl);
257 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 nvme_do_delete_ctrl(ctrl);
259 nvme_put_ctrl(ctrl);
260 }
261
262 static blk_status_t nvme_error_status(u16 status)
263 {
264 switch (status & 0x7ff) {
265 case NVME_SC_SUCCESS:
266 return BLK_STS_OK;
267 case NVME_SC_CAP_EXCEEDED:
268 return BLK_STS_NOSPC;
269 case NVME_SC_LBA_RANGE:
270 case NVME_SC_CMD_INTERRUPTED:
271 case NVME_SC_NS_NOT_READY:
272 return BLK_STS_TARGET;
273 case NVME_SC_BAD_ATTRIBUTES:
274 case NVME_SC_ONCS_NOT_SUPPORTED:
275 case NVME_SC_INVALID_OPCODE:
276 case NVME_SC_INVALID_FIELD:
277 case NVME_SC_INVALID_NS:
278 return BLK_STS_NOTSUPP;
279 case NVME_SC_WRITE_FAULT:
280 case NVME_SC_READ_ERROR:
281 case NVME_SC_UNWRITTEN_BLOCK:
282 case NVME_SC_ACCESS_DENIED:
283 case NVME_SC_READ_ONLY:
284 case NVME_SC_COMPARE_FAILED:
285 return BLK_STS_MEDIUM;
286 case NVME_SC_GUARD_CHECK:
287 case NVME_SC_APPTAG_CHECK:
288 case NVME_SC_REFTAG_CHECK:
289 case NVME_SC_INVALID_PI:
290 return BLK_STS_PROTECTION;
291 case NVME_SC_RESERVATION_CONFLICT:
292 return BLK_STS_NEXUS;
293 case NVME_SC_HOST_PATH_ERROR:
294 return BLK_STS_TRANSPORT;
295 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 case NVME_SC_ZONE_TOO_MANY_OPEN:
298 return BLK_STS_ZONE_OPEN_RESOURCE;
299 default:
300 return BLK_STS_IOERR;
301 }
302 }
303
304 static void nvme_retry_req(struct request *req)
305 {
306 unsigned long delay = 0;
307 u16 crd;
308
309 /* The mask and shift result must be <= 3 */
310 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311 if (crd)
312 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313
314 nvme_req(req)->retries++;
315 blk_mq_requeue_request(req, false);
316 blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318
319 enum nvme_disposition {
320 COMPLETE,
321 RETRY,
322 FAILOVER,
323 };
324
325 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
326 {
327 if (likely(nvme_req(req)->status == 0))
328 return COMPLETE;
329
330 if (blk_noretry_request(req) ||
331 (nvme_req(req)->status & NVME_SC_DNR) ||
332 nvme_req(req)->retries >= nvme_max_retries)
333 return COMPLETE;
334
335 if (req->cmd_flags & REQ_NVME_MPATH) {
336 if (nvme_is_path_error(nvme_req(req)->status) ||
337 blk_queue_dying(req->q))
338 return FAILOVER;
339 } else {
340 if (blk_queue_dying(req->q))
341 return COMPLETE;
342 }
343
344 return RETRY;
345 }
346
347 static inline void nvme_end_req(struct request *req)
348 {
349 blk_status_t status = nvme_error_status(nvme_req(req)->status);
350
351 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
352 req_op(req) == REQ_OP_ZONE_APPEND)
353 req->__sector = nvme_lba_to_sect(req->q->queuedata,
354 le64_to_cpu(nvme_req(req)->result.u64));
355
356 nvme_trace_bio_complete(req);
357 blk_mq_end_request(req, status);
358 }
359
360 void nvme_complete_rq(struct request *req)
361 {
362 trace_nvme_complete_rq(req);
363 nvme_cleanup_cmd(req);
364
365 if (nvme_req(req)->ctrl->kas)
366 nvme_req(req)->ctrl->comp_seen = true;
367
368 switch (nvme_decide_disposition(req)) {
369 case COMPLETE:
370 nvme_end_req(req);
371 return;
372 case RETRY:
373 nvme_retry_req(req);
374 return;
375 case FAILOVER:
376 nvme_failover_req(req);
377 return;
378 }
379 }
380 EXPORT_SYMBOL_GPL(nvme_complete_rq);
381
382 /*
383 * Called to unwind from ->queue_rq on a failed command submission so that the
384 * multipathing code gets called to potentially failover to another path.
385 * The caller needs to unwind all transport specific resource allocations and
386 * must return propagate the return value.
387 */
388 blk_status_t nvme_host_path_error(struct request *req)
389 {
390 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
391 blk_mq_set_request_complete(req);
392 nvme_complete_rq(req);
393 return BLK_STS_OK;
394 }
395 EXPORT_SYMBOL_GPL(nvme_host_path_error);
396
397 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
398 {
399 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
400 "Cancelling I/O %d", req->tag);
401
402 /* don't abort one completed request */
403 if (blk_mq_request_completed(req))
404 return true;
405
406 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
407 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
408 blk_mq_complete_request(req);
409 return true;
410 }
411 EXPORT_SYMBOL_GPL(nvme_cancel_request);
412
413 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
414 {
415 if (ctrl->tagset) {
416 blk_mq_tagset_busy_iter(ctrl->tagset,
417 nvme_cancel_request, ctrl);
418 blk_mq_tagset_wait_completed_request(ctrl->tagset);
419 }
420 }
421 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
422
423 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
424 {
425 if (ctrl->admin_tagset) {
426 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
427 nvme_cancel_request, ctrl);
428 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
429 }
430 }
431 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
432
433 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
434 enum nvme_ctrl_state new_state)
435 {
436 enum nvme_ctrl_state old_state;
437 unsigned long flags;
438 bool changed = false;
439
440 spin_lock_irqsave(&ctrl->lock, flags);
441
442 old_state = ctrl->state;
443 switch (new_state) {
444 case NVME_CTRL_LIVE:
445 switch (old_state) {
446 case NVME_CTRL_NEW:
447 case NVME_CTRL_RESETTING:
448 case NVME_CTRL_CONNECTING:
449 changed = true;
450 fallthrough;
451 default:
452 break;
453 }
454 break;
455 case NVME_CTRL_RESETTING:
456 switch (old_state) {
457 case NVME_CTRL_NEW:
458 case NVME_CTRL_LIVE:
459 changed = true;
460 fallthrough;
461 default:
462 break;
463 }
464 break;
465 case NVME_CTRL_CONNECTING:
466 switch (old_state) {
467 case NVME_CTRL_NEW:
468 case NVME_CTRL_RESETTING:
469 changed = true;
470 fallthrough;
471 default:
472 break;
473 }
474 break;
475 case NVME_CTRL_DELETING:
476 switch (old_state) {
477 case NVME_CTRL_LIVE:
478 case NVME_CTRL_RESETTING:
479 case NVME_CTRL_CONNECTING:
480 changed = true;
481 fallthrough;
482 default:
483 break;
484 }
485 break;
486 case NVME_CTRL_DELETING_NOIO:
487 switch (old_state) {
488 case NVME_CTRL_DELETING:
489 case NVME_CTRL_DEAD:
490 changed = true;
491 fallthrough;
492 default:
493 break;
494 }
495 break;
496 case NVME_CTRL_DEAD:
497 switch (old_state) {
498 case NVME_CTRL_DELETING:
499 changed = true;
500 fallthrough;
501 default:
502 break;
503 }
504 break;
505 default:
506 break;
507 }
508
509 if (changed) {
510 ctrl->state = new_state;
511 wake_up_all(&ctrl->state_wq);
512 }
513
514 spin_unlock_irqrestore(&ctrl->lock, flags);
515 if (!changed)
516 return false;
517
518 if (ctrl->state == NVME_CTRL_LIVE) {
519 if (old_state == NVME_CTRL_CONNECTING)
520 nvme_stop_failfast_work(ctrl);
521 nvme_kick_requeue_lists(ctrl);
522 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
523 old_state == NVME_CTRL_RESETTING) {
524 nvme_start_failfast_work(ctrl);
525 }
526 return changed;
527 }
528 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
529
530 /*
531 * Returns true for sink states that can't ever transition back to live.
532 */
533 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
534 {
535 switch (ctrl->state) {
536 case NVME_CTRL_NEW:
537 case NVME_CTRL_LIVE:
538 case NVME_CTRL_RESETTING:
539 case NVME_CTRL_CONNECTING:
540 return false;
541 case NVME_CTRL_DELETING:
542 case NVME_CTRL_DELETING_NOIO:
543 case NVME_CTRL_DEAD:
544 return true;
545 default:
546 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
547 return true;
548 }
549 }
550
551 /*
552 * Waits for the controller state to be resetting, or returns false if it is
553 * not possible to ever transition to that state.
554 */
555 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
556 {
557 wait_event(ctrl->state_wq,
558 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
559 nvme_state_terminal(ctrl));
560 return ctrl->state == NVME_CTRL_RESETTING;
561 }
562 EXPORT_SYMBOL_GPL(nvme_wait_reset);
563
564 static void nvme_free_ns_head(struct kref *ref)
565 {
566 struct nvme_ns_head *head =
567 container_of(ref, struct nvme_ns_head, ref);
568
569 nvme_mpath_remove_disk(head);
570 ida_simple_remove(&head->subsys->ns_ida, head->instance);
571 cleanup_srcu_struct(&head->srcu);
572 nvme_put_subsystem(head->subsys);
573 kfree(head);
574 }
575
576 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
577 {
578 return kref_get_unless_zero(&head->ref);
579 }
580
581 void nvme_put_ns_head(struct nvme_ns_head *head)
582 {
583 kref_put(&head->ref, nvme_free_ns_head);
584 }
585
586 static void nvme_free_ns(struct kref *kref)
587 {
588 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
589
590 if (ns->ndev)
591 nvme_nvm_unregister(ns);
592
593 put_disk(ns->disk);
594 nvme_put_ns_head(ns->head);
595 nvme_put_ctrl(ns->ctrl);
596 kfree(ns);
597 }
598
599 static inline bool nvme_get_ns(struct nvme_ns *ns)
600 {
601 return kref_get_unless_zero(&ns->kref);
602 }
603
604 void nvme_put_ns(struct nvme_ns *ns)
605 {
606 kref_put(&ns->kref, nvme_free_ns);
607 }
608 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
609
610 static inline void nvme_clear_nvme_request(struct request *req)
611 {
612 nvme_req(req)->status = 0;
613 nvme_req(req)->retries = 0;
614 nvme_req(req)->flags = 0;
615 req->rq_flags |= RQF_DONTPREP;
616 }
617
618 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
619 {
620 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
621 }
622
623 static inline void nvme_init_request(struct request *req,
624 struct nvme_command *cmd)
625 {
626 if (req->q->queuedata)
627 req->timeout = NVME_IO_TIMEOUT;
628 else /* no queuedata implies admin queue */
629 req->timeout = NVME_ADMIN_TIMEOUT;
630
631 /* passthru commands should let the driver set the SGL flags */
632 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
633
634 req->cmd_flags |= REQ_FAILFAST_DRIVER;
635 if (req->mq_hctx->type == HCTX_TYPE_POLL)
636 req->cmd_flags |= REQ_HIPRI;
637 nvme_clear_nvme_request(req);
638 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
639 }
640
641 struct request *nvme_alloc_request(struct request_queue *q,
642 struct nvme_command *cmd, blk_mq_req_flags_t flags)
643 {
644 struct request *req;
645
646 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
647 if (!IS_ERR(req))
648 nvme_init_request(req, cmd);
649 return req;
650 }
651 EXPORT_SYMBOL_GPL(nvme_alloc_request);
652
653 static struct request *nvme_alloc_request_qid(struct request_queue *q,
654 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
655 {
656 struct request *req;
657
658 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
659 qid ? qid - 1 : 0);
660 if (!IS_ERR(req))
661 nvme_init_request(req, cmd);
662 return req;
663 }
664
665 /*
666 * For something we're not in a state to send to the device the default action
667 * is to busy it and retry it after the controller state is recovered. However,
668 * if the controller is deleting or if anything is marked for failfast or
669 * nvme multipath it is immediately failed.
670 *
671 * Note: commands used to initialize the controller will be marked for failfast.
672 * Note: nvme cli/ioctl commands are marked for failfast.
673 */
674 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
675 struct request *rq)
676 {
677 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
678 ctrl->state != NVME_CTRL_DEAD &&
679 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
680 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
681 return BLK_STS_RESOURCE;
682 return nvme_host_path_error(rq);
683 }
684 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
685
686 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
687 bool queue_live)
688 {
689 struct nvme_request *req = nvme_req(rq);
690
691 /*
692 * currently we have a problem sending passthru commands
693 * on the admin_q if the controller is not LIVE because we can't
694 * make sure that they are going out after the admin connect,
695 * controller enable and/or other commands in the initialization
696 * sequence. until the controller will be LIVE, fail with
697 * BLK_STS_RESOURCE so that they will be rescheduled.
698 */
699 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
700 return false;
701
702 if (ctrl->ops->flags & NVME_F_FABRICS) {
703 /*
704 * Only allow commands on a live queue, except for the connect
705 * command, which is require to set the queue live in the
706 * appropinquate states.
707 */
708 switch (ctrl->state) {
709 case NVME_CTRL_CONNECTING:
710 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
711 req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
712 return true;
713 break;
714 default:
715 break;
716 case NVME_CTRL_DEAD:
717 return false;
718 }
719 }
720
721 return queue_live;
722 }
723 EXPORT_SYMBOL_GPL(__nvme_check_ready);
724
725 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
726 {
727 struct nvme_command c = { };
728
729 c.directive.opcode = nvme_admin_directive_send;
730 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
731 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
732 c.directive.dtype = NVME_DIR_IDENTIFY;
733 c.directive.tdtype = NVME_DIR_STREAMS;
734 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
735
736 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
737 }
738
739 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
740 {
741 return nvme_toggle_streams(ctrl, false);
742 }
743
744 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
745 {
746 return nvme_toggle_streams(ctrl, true);
747 }
748
749 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
750 struct streams_directive_params *s, u32 nsid)
751 {
752 struct nvme_command c = { };
753
754 memset(s, 0, sizeof(*s));
755
756 c.directive.opcode = nvme_admin_directive_recv;
757 c.directive.nsid = cpu_to_le32(nsid);
758 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
759 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
760 c.directive.dtype = NVME_DIR_STREAMS;
761
762 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
763 }
764
765 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
766 {
767 struct streams_directive_params s;
768 int ret;
769
770 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
771 return 0;
772 if (!streams)
773 return 0;
774
775 ret = nvme_enable_streams(ctrl);
776 if (ret)
777 return ret;
778
779 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
780 if (ret)
781 goto out_disable_stream;
782
783 ctrl->nssa = le16_to_cpu(s.nssa);
784 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
785 dev_info(ctrl->device, "too few streams (%u) available\n",
786 ctrl->nssa);
787 goto out_disable_stream;
788 }
789
790 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
791 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
792 return 0;
793
794 out_disable_stream:
795 nvme_disable_streams(ctrl);
796 return ret;
797 }
798
799 /*
800 * Check if 'req' has a write hint associated with it. If it does, assign
801 * a valid namespace stream to the write.
802 */
803 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
804 struct request *req, u16 *control,
805 u32 *dsmgmt)
806 {
807 enum rw_hint streamid = req->write_hint;
808
809 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
810 streamid = 0;
811 else {
812 streamid--;
813 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
814 return;
815
816 *control |= NVME_RW_DTYPE_STREAMS;
817 *dsmgmt |= streamid << 16;
818 }
819
820 if (streamid < ARRAY_SIZE(req->q->write_hints))
821 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
822 }
823
824 static inline void nvme_setup_flush(struct nvme_ns *ns,
825 struct nvme_command *cmnd)
826 {
827 cmnd->common.opcode = nvme_cmd_flush;
828 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
829 }
830
831 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
832 struct nvme_command *cmnd)
833 {
834 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
835 struct nvme_dsm_range *range;
836 struct bio *bio;
837
838 /*
839 * Some devices do not consider the DSM 'Number of Ranges' field when
840 * determining how much data to DMA. Always allocate memory for maximum
841 * number of segments to prevent device reading beyond end of buffer.
842 */
843 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
844
845 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
846 if (!range) {
847 /*
848 * If we fail allocation our range, fallback to the controller
849 * discard page. If that's also busy, it's safe to return
850 * busy, as we know we can make progress once that's freed.
851 */
852 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
853 return BLK_STS_RESOURCE;
854
855 range = page_address(ns->ctrl->discard_page);
856 }
857
858 __rq_for_each_bio(bio, req) {
859 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
860 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
861
862 if (n < segments) {
863 range[n].cattr = cpu_to_le32(0);
864 range[n].nlb = cpu_to_le32(nlb);
865 range[n].slba = cpu_to_le64(slba);
866 }
867 n++;
868 }
869
870 if (WARN_ON_ONCE(n != segments)) {
871 if (virt_to_page(range) == ns->ctrl->discard_page)
872 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
873 else
874 kfree(range);
875 return BLK_STS_IOERR;
876 }
877
878 cmnd->dsm.opcode = nvme_cmd_dsm;
879 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
880 cmnd->dsm.nr = cpu_to_le32(segments - 1);
881 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
882
883 req->special_vec.bv_page = virt_to_page(range);
884 req->special_vec.bv_offset = offset_in_page(range);
885 req->special_vec.bv_len = alloc_size;
886 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
887
888 return BLK_STS_OK;
889 }
890
891 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
892 struct request *req, struct nvme_command *cmnd)
893 {
894 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
895 return nvme_setup_discard(ns, req, cmnd);
896
897 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
898 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
899 cmnd->write_zeroes.slba =
900 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
901 cmnd->write_zeroes.length =
902 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
903 cmnd->write_zeroes.control = 0;
904 return BLK_STS_OK;
905 }
906
907 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
908 struct request *req, struct nvme_command *cmnd,
909 enum nvme_opcode op)
910 {
911 struct nvme_ctrl *ctrl = ns->ctrl;
912 u16 control = 0;
913 u32 dsmgmt = 0;
914
915 if (req->cmd_flags & REQ_FUA)
916 control |= NVME_RW_FUA;
917 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
918 control |= NVME_RW_LR;
919
920 if (req->cmd_flags & REQ_RAHEAD)
921 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
922
923 cmnd->rw.opcode = op;
924 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
925 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
926 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
927
928 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
929 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
930
931 if (ns->ms) {
932 /*
933 * If formated with metadata, the block layer always provides a
934 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
935 * we enable the PRACT bit for protection information or set the
936 * namespace capacity to zero to prevent any I/O.
937 */
938 if (!blk_integrity_rq(req)) {
939 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
940 return BLK_STS_NOTSUPP;
941 control |= NVME_RW_PRINFO_PRACT;
942 }
943
944 switch (ns->pi_type) {
945 case NVME_NS_DPS_PI_TYPE3:
946 control |= NVME_RW_PRINFO_PRCHK_GUARD;
947 break;
948 case NVME_NS_DPS_PI_TYPE1:
949 case NVME_NS_DPS_PI_TYPE2:
950 control |= NVME_RW_PRINFO_PRCHK_GUARD |
951 NVME_RW_PRINFO_PRCHK_REF;
952 if (op == nvme_cmd_zone_append)
953 control |= NVME_RW_APPEND_PIREMAP;
954 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
955 break;
956 }
957 }
958
959 cmnd->rw.control = cpu_to_le16(control);
960 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
961 return 0;
962 }
963
964 void nvme_cleanup_cmd(struct request *req)
965 {
966 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
967 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
968 struct page *page = req->special_vec.bv_page;
969
970 if (page == ctrl->discard_page)
971 clear_bit_unlock(0, &ctrl->discard_page_busy);
972 else
973 kfree(page_address(page) + req->special_vec.bv_offset);
974 }
975 }
976 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
977
978 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
979 {
980 struct nvme_command *cmd = nvme_req(req)->cmd;
981 blk_status_t ret = BLK_STS_OK;
982
983 if (!(req->rq_flags & RQF_DONTPREP)) {
984 nvme_clear_nvme_request(req);
985 memset(cmd, 0, sizeof(*cmd));
986 }
987
988 switch (req_op(req)) {
989 case REQ_OP_DRV_IN:
990 case REQ_OP_DRV_OUT:
991 /* these are setup prior to execution in nvme_init_request() */
992 break;
993 case REQ_OP_FLUSH:
994 nvme_setup_flush(ns, cmd);
995 break;
996 case REQ_OP_ZONE_RESET_ALL:
997 case REQ_OP_ZONE_RESET:
998 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
999 break;
1000 case REQ_OP_ZONE_OPEN:
1001 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1002 break;
1003 case REQ_OP_ZONE_CLOSE:
1004 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1005 break;
1006 case REQ_OP_ZONE_FINISH:
1007 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1008 break;
1009 case REQ_OP_WRITE_ZEROES:
1010 ret = nvme_setup_write_zeroes(ns, req, cmd);
1011 break;
1012 case REQ_OP_DISCARD:
1013 ret = nvme_setup_discard(ns, req, cmd);
1014 break;
1015 case REQ_OP_READ:
1016 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1017 break;
1018 case REQ_OP_WRITE:
1019 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1020 break;
1021 case REQ_OP_ZONE_APPEND:
1022 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1023 break;
1024 default:
1025 WARN_ON_ONCE(1);
1026 return BLK_STS_IOERR;
1027 }
1028
1029 cmd->common.command_id = req->tag;
1030 trace_nvme_setup_cmd(req, cmd);
1031 return ret;
1032 }
1033 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1034
1035 /*
1036 * Return values:
1037 * 0: success
1038 * >0: nvme controller's cqe status response
1039 * <0: kernel error in lieu of controller response
1040 */
1041 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1042 bool at_head)
1043 {
1044 blk_status_t status;
1045
1046 status = blk_execute_rq(disk, rq, at_head);
1047 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1048 return -EINTR;
1049 if (nvme_req(rq)->status)
1050 return nvme_req(rq)->status;
1051 return blk_status_to_errno(status);
1052 }
1053
1054 /*
1055 * Returns 0 on success. If the result is negative, it's a Linux error code;
1056 * if the result is positive, it's an NVM Express status code
1057 */
1058 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1059 union nvme_result *result, void *buffer, unsigned bufflen,
1060 unsigned timeout, int qid, int at_head,
1061 blk_mq_req_flags_t flags)
1062 {
1063 struct request *req;
1064 int ret;
1065
1066 if (qid == NVME_QID_ANY)
1067 req = nvme_alloc_request(q, cmd, flags);
1068 else
1069 req = nvme_alloc_request_qid(q, cmd, flags, qid);
1070 if (IS_ERR(req))
1071 return PTR_ERR(req);
1072
1073 if (timeout)
1074 req->timeout = timeout;
1075
1076 if (buffer && bufflen) {
1077 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1078 if (ret)
1079 goto out;
1080 }
1081
1082 ret = nvme_execute_rq(NULL, req, at_head);
1083 if (result && ret >= 0)
1084 *result = nvme_req(req)->result;
1085 out:
1086 blk_mq_free_request(req);
1087 return ret;
1088 }
1089 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1090
1091 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1092 void *buffer, unsigned bufflen)
1093 {
1094 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1095 NVME_QID_ANY, 0, 0);
1096 }
1097 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1098
1099 static u32 nvme_known_admin_effects(u8 opcode)
1100 {
1101 switch (opcode) {
1102 case nvme_admin_format_nvm:
1103 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1104 NVME_CMD_EFFECTS_CSE_MASK;
1105 case nvme_admin_sanitize_nvm:
1106 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1107 default:
1108 break;
1109 }
1110 return 0;
1111 }
1112
1113 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1114 {
1115 u32 effects = 0;
1116
1117 if (ns) {
1118 if (ns->head->effects)
1119 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1120 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1121 dev_warn_once(ctrl->device,
1122 "IO command:%02x has unhandled effects:%08x\n",
1123 opcode, effects);
1124 return 0;
1125 }
1126
1127 if (ctrl->effects)
1128 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1129 effects |= nvme_known_admin_effects(opcode);
1130
1131 return effects;
1132 }
1133 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1134
1135 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1136 u8 opcode)
1137 {
1138 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1139
1140 /*
1141 * For simplicity, IO to all namespaces is quiesced even if the command
1142 * effects say only one namespace is affected.
1143 */
1144 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1145 mutex_lock(&ctrl->scan_lock);
1146 mutex_lock(&ctrl->subsys->lock);
1147 nvme_mpath_start_freeze(ctrl->subsys);
1148 nvme_mpath_wait_freeze(ctrl->subsys);
1149 nvme_start_freeze(ctrl);
1150 nvme_wait_freeze(ctrl);
1151 }
1152 return effects;
1153 }
1154
1155 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1156 {
1157 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1158 nvme_unfreeze(ctrl);
1159 nvme_mpath_unfreeze(ctrl->subsys);
1160 mutex_unlock(&ctrl->subsys->lock);
1161 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1162 mutex_unlock(&ctrl->scan_lock);
1163 }
1164 if (effects & NVME_CMD_EFFECTS_CCC)
1165 nvme_init_ctrl_finish(ctrl);
1166 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1167 nvme_queue_scan(ctrl);
1168 flush_work(&ctrl->scan_work);
1169 }
1170 }
1171
1172 int nvme_execute_passthru_rq(struct request *rq)
1173 {
1174 struct nvme_command *cmd = nvme_req(rq)->cmd;
1175 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1176 struct nvme_ns *ns = rq->q->queuedata;
1177 struct gendisk *disk = ns ? ns->disk : NULL;
1178 u32 effects;
1179 int ret;
1180
1181 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1182 ret = nvme_execute_rq(disk, rq, false);
1183 if (effects) /* nothing to be done for zero cmd effects */
1184 nvme_passthru_end(ctrl, effects);
1185
1186 return ret;
1187 }
1188 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1189
1190 /*
1191 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1192 *
1193 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1194 * accounting for transport roundtrip times [..].
1195 */
1196 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1197 {
1198 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1199 }
1200
1201 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1202 {
1203 struct nvme_ctrl *ctrl = rq->end_io_data;
1204 unsigned long flags;
1205 bool startka = false;
1206
1207 blk_mq_free_request(rq);
1208
1209 if (status) {
1210 dev_err(ctrl->device,
1211 "failed nvme_keep_alive_end_io error=%d\n",
1212 status);
1213 return;
1214 }
1215
1216 ctrl->comp_seen = false;
1217 spin_lock_irqsave(&ctrl->lock, flags);
1218 if (ctrl->state == NVME_CTRL_LIVE ||
1219 ctrl->state == NVME_CTRL_CONNECTING)
1220 startka = true;
1221 spin_unlock_irqrestore(&ctrl->lock, flags);
1222 if (startka)
1223 nvme_queue_keep_alive_work(ctrl);
1224 }
1225
1226 static void nvme_keep_alive_work(struct work_struct *work)
1227 {
1228 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1229 struct nvme_ctrl, ka_work);
1230 bool comp_seen = ctrl->comp_seen;
1231 struct request *rq;
1232
1233 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1234 dev_dbg(ctrl->device,
1235 "reschedule traffic based keep-alive timer\n");
1236 ctrl->comp_seen = false;
1237 nvme_queue_keep_alive_work(ctrl);
1238 return;
1239 }
1240
1241 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1242 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1243 if (IS_ERR(rq)) {
1244 /* allocation failure, reset the controller */
1245 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1246 nvme_reset_ctrl(ctrl);
1247 return;
1248 }
1249
1250 rq->timeout = ctrl->kato * HZ;
1251 rq->end_io_data = ctrl;
1252 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1253 }
1254
1255 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1256 {
1257 if (unlikely(ctrl->kato == 0))
1258 return;
1259
1260 nvme_queue_keep_alive_work(ctrl);
1261 }
1262
1263 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1264 {
1265 if (unlikely(ctrl->kato == 0))
1266 return;
1267
1268 cancel_delayed_work_sync(&ctrl->ka_work);
1269 }
1270 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1271
1272 /*
1273 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1274 * flag, thus sending any new CNS opcodes has a big chance of not working.
1275 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1276 * (but not for any later version).
1277 */
1278 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1279 {
1280 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1281 return ctrl->vs < NVME_VS(1, 2, 0);
1282 return ctrl->vs < NVME_VS(1, 1, 0);
1283 }
1284
1285 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1286 {
1287 struct nvme_command c = { };
1288 int error;
1289
1290 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1291 c.identify.opcode = nvme_admin_identify;
1292 c.identify.cns = NVME_ID_CNS_CTRL;
1293
1294 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1295 if (!*id)
1296 return -ENOMEM;
1297
1298 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1299 sizeof(struct nvme_id_ctrl));
1300 if (error)
1301 kfree(*id);
1302 return error;
1303 }
1304
1305 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1306 {
1307 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1308 }
1309
1310 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1311 struct nvme_ns_id_desc *cur, bool *csi_seen)
1312 {
1313 const char *warn_str = "ctrl returned bogus length:";
1314 void *data = cur;
1315
1316 switch (cur->nidt) {
1317 case NVME_NIDT_EUI64:
1318 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1319 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1320 warn_str, cur->nidl);
1321 return -1;
1322 }
1323 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1324 return NVME_NIDT_EUI64_LEN;
1325 case NVME_NIDT_NGUID:
1326 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1327 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1328 warn_str, cur->nidl);
1329 return -1;
1330 }
1331 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1332 return NVME_NIDT_NGUID_LEN;
1333 case NVME_NIDT_UUID:
1334 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1335 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1336 warn_str, cur->nidl);
1337 return -1;
1338 }
1339 uuid_copy(&ids->uuid, data + sizeof(*cur));
1340 return NVME_NIDT_UUID_LEN;
1341 case NVME_NIDT_CSI:
1342 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1343 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1344 warn_str, cur->nidl);
1345 return -1;
1346 }
1347 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1348 *csi_seen = true;
1349 return NVME_NIDT_CSI_LEN;
1350 default:
1351 /* Skip unknown types */
1352 return cur->nidl;
1353 }
1354 }
1355
1356 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1357 struct nvme_ns_ids *ids)
1358 {
1359 struct nvme_command c = { };
1360 bool csi_seen = false;
1361 int status, pos, len;
1362 void *data;
1363
1364 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1365 return 0;
1366 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1367 return 0;
1368
1369 c.identify.opcode = nvme_admin_identify;
1370 c.identify.nsid = cpu_to_le32(nsid);
1371 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1372
1373 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1374 if (!data)
1375 return -ENOMEM;
1376
1377 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1378 NVME_IDENTIFY_DATA_SIZE);
1379 if (status) {
1380 dev_warn(ctrl->device,
1381 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1382 nsid, status);
1383 goto free_data;
1384 }
1385
1386 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1387 struct nvme_ns_id_desc *cur = data + pos;
1388
1389 if (cur->nidl == 0)
1390 break;
1391
1392 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1393 if (len < 0)
1394 break;
1395
1396 len += sizeof(*cur);
1397 }
1398
1399 if (nvme_multi_css(ctrl) && !csi_seen) {
1400 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1401 nsid);
1402 status = -EINVAL;
1403 }
1404
1405 free_data:
1406 kfree(data);
1407 return status;
1408 }
1409
1410 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1411 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1412 {
1413 struct nvme_command c = { };
1414 int error;
1415
1416 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1417 c.identify.opcode = nvme_admin_identify;
1418 c.identify.nsid = cpu_to_le32(nsid);
1419 c.identify.cns = NVME_ID_CNS_NS;
1420
1421 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1422 if (!*id)
1423 return -ENOMEM;
1424
1425 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1426 if (error) {
1427 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1428 goto out_free_id;
1429 }
1430
1431 error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1432 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1433 goto out_free_id;
1434
1435 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1436 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1437 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1438 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1439 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1440 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1441
1442 return 0;
1443
1444 out_free_id:
1445 kfree(*id);
1446 return error;
1447 }
1448
1449 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1450 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1451 {
1452 union nvme_result res = { 0 };
1453 struct nvme_command c = { };
1454 int ret;
1455
1456 c.features.opcode = op;
1457 c.features.fid = cpu_to_le32(fid);
1458 c.features.dword11 = cpu_to_le32(dword11);
1459
1460 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1461 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1462 if (ret >= 0 && result)
1463 *result = le32_to_cpu(res.u32);
1464 return ret;
1465 }
1466
1467 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1468 unsigned int dword11, void *buffer, size_t buflen,
1469 u32 *result)
1470 {
1471 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1472 buflen, result);
1473 }
1474 EXPORT_SYMBOL_GPL(nvme_set_features);
1475
1476 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1477 unsigned int dword11, void *buffer, size_t buflen,
1478 u32 *result)
1479 {
1480 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1481 buflen, result);
1482 }
1483 EXPORT_SYMBOL_GPL(nvme_get_features);
1484
1485 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1486 {
1487 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1488 u32 result;
1489 int status, nr_io_queues;
1490
1491 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1492 &result);
1493 if (status < 0)
1494 return status;
1495
1496 /*
1497 * Degraded controllers might return an error when setting the queue
1498 * count. We still want to be able to bring them online and offer
1499 * access to the admin queue, as that might be only way to fix them up.
1500 */
1501 if (status > 0) {
1502 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1503 *count = 0;
1504 } else {
1505 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1506 *count = min(*count, nr_io_queues);
1507 }
1508
1509 return 0;
1510 }
1511 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1512
1513 #define NVME_AEN_SUPPORTED \
1514 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1515 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1516
1517 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1518 {
1519 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1520 int status;
1521
1522 if (!supported_aens)
1523 return;
1524
1525 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1526 NULL, 0, &result);
1527 if (status)
1528 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1529 supported_aens);
1530
1531 queue_work(nvme_wq, &ctrl->async_event_work);
1532 }
1533
1534 static int nvme_ns_open(struct nvme_ns *ns)
1535 {
1536
1537 /* should never be called due to GENHD_FL_HIDDEN */
1538 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1539 goto fail;
1540 if (!nvme_get_ns(ns))
1541 goto fail;
1542 if (!try_module_get(ns->ctrl->ops->module))
1543 goto fail_put_ns;
1544
1545 return 0;
1546
1547 fail_put_ns:
1548 nvme_put_ns(ns);
1549 fail:
1550 return -ENXIO;
1551 }
1552
1553 static void nvme_ns_release(struct nvme_ns *ns)
1554 {
1555
1556 module_put(ns->ctrl->ops->module);
1557 nvme_put_ns(ns);
1558 }
1559
1560 static int nvme_open(struct block_device *bdev, fmode_t mode)
1561 {
1562 return nvme_ns_open(bdev->bd_disk->private_data);
1563 }
1564
1565 static void nvme_release(struct gendisk *disk, fmode_t mode)
1566 {
1567 nvme_ns_release(disk->private_data);
1568 }
1569
1570 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1571 {
1572 /* some standard values */
1573 geo->heads = 1 << 6;
1574 geo->sectors = 1 << 5;
1575 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1576 return 0;
1577 }
1578
1579 #ifdef CONFIG_BLK_DEV_INTEGRITY
1580 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1581 u32 max_integrity_segments)
1582 {
1583 struct blk_integrity integrity = { };
1584
1585 switch (pi_type) {
1586 case NVME_NS_DPS_PI_TYPE3:
1587 integrity.profile = &t10_pi_type3_crc;
1588 integrity.tag_size = sizeof(u16) + sizeof(u32);
1589 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1590 break;
1591 case NVME_NS_DPS_PI_TYPE1:
1592 case NVME_NS_DPS_PI_TYPE2:
1593 integrity.profile = &t10_pi_type1_crc;
1594 integrity.tag_size = sizeof(u16);
1595 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1596 break;
1597 default:
1598 integrity.profile = NULL;
1599 break;
1600 }
1601 integrity.tuple_size = ms;
1602 blk_integrity_register(disk, &integrity);
1603 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1604 }
1605 #else
1606 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1607 u32 max_integrity_segments)
1608 {
1609 }
1610 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1611
1612 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1613 {
1614 struct nvme_ctrl *ctrl = ns->ctrl;
1615 struct request_queue *queue = disk->queue;
1616 u32 size = queue_logical_block_size(queue);
1617
1618 if (ctrl->max_discard_sectors == 0) {
1619 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1620 return;
1621 }
1622
1623 if (ctrl->nr_streams && ns->sws && ns->sgs)
1624 size *= ns->sws * ns->sgs;
1625
1626 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1627 NVME_DSM_MAX_RANGES);
1628
1629 queue->limits.discard_alignment = 0;
1630 queue->limits.discard_granularity = size;
1631
1632 /* If discard is already enabled, don't reset queue limits */
1633 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1634 return;
1635
1636 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1637 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1638
1639 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1640 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1641 }
1642
1643 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1644 {
1645 return !uuid_is_null(&ids->uuid) ||
1646 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1647 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1648 }
1649
1650 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1651 {
1652 return uuid_equal(&a->uuid, &b->uuid) &&
1653 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1654 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1655 a->csi == b->csi;
1656 }
1657
1658 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1659 u32 *phys_bs, u32 *io_opt)
1660 {
1661 struct streams_directive_params s;
1662 int ret;
1663
1664 if (!ctrl->nr_streams)
1665 return 0;
1666
1667 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1668 if (ret)
1669 return ret;
1670
1671 ns->sws = le32_to_cpu(s.sws);
1672 ns->sgs = le16_to_cpu(s.sgs);
1673
1674 if (ns->sws) {
1675 *phys_bs = ns->sws * (1 << ns->lba_shift);
1676 if (ns->sgs)
1677 *io_opt = *phys_bs * ns->sgs;
1678 }
1679
1680 return 0;
1681 }
1682
1683 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1684 {
1685 struct nvme_ctrl *ctrl = ns->ctrl;
1686
1687 /*
1688 * The PI implementation requires the metadata size to be equal to the
1689 * t10 pi tuple size.
1690 */
1691 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1692 if (ns->ms == sizeof(struct t10_pi_tuple))
1693 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1694 else
1695 ns->pi_type = 0;
1696
1697 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1698 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1699 return 0;
1700 if (ctrl->ops->flags & NVME_F_FABRICS) {
1701 /*
1702 * The NVMe over Fabrics specification only supports metadata as
1703 * part of the extended data LBA. We rely on HCA/HBA support to
1704 * remap the separate metadata buffer from the block layer.
1705 */
1706 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1707 return -EINVAL;
1708 if (ctrl->max_integrity_segments)
1709 ns->features |=
1710 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1711 } else {
1712 /*
1713 * For PCIe controllers, we can't easily remap the separate
1714 * metadata buffer from the block layer and thus require a
1715 * separate metadata buffer for block layer metadata/PI support.
1716 * We allow extended LBAs for the passthrough interface, though.
1717 */
1718 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1719 ns->features |= NVME_NS_EXT_LBAS;
1720 else
1721 ns->features |= NVME_NS_METADATA_SUPPORTED;
1722 }
1723
1724 return 0;
1725 }
1726
1727 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1728 struct request_queue *q)
1729 {
1730 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1731
1732 if (ctrl->max_hw_sectors) {
1733 u32 max_segments =
1734 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1735
1736 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1737 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1738 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1739 }
1740 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1741 blk_queue_dma_alignment(q, 7);
1742 blk_queue_write_cache(q, vwc, vwc);
1743 }
1744
1745 static void nvme_update_disk_info(struct gendisk *disk,
1746 struct nvme_ns *ns, struct nvme_id_ns *id)
1747 {
1748 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1749 unsigned short bs = 1 << ns->lba_shift;
1750 u32 atomic_bs, phys_bs, io_opt = 0;
1751
1752 /*
1753 * The block layer can't support LBA sizes larger than the page size
1754 * yet, so catch this early and don't allow block I/O.
1755 */
1756 if (ns->lba_shift > PAGE_SHIFT) {
1757 capacity = 0;
1758 bs = (1 << 9);
1759 }
1760
1761 blk_integrity_unregister(disk);
1762
1763 atomic_bs = phys_bs = bs;
1764 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1765 if (id->nabo == 0) {
1766 /*
1767 * Bit 1 indicates whether NAWUPF is defined for this namespace
1768 * and whether it should be used instead of AWUPF. If NAWUPF ==
1769 * 0 then AWUPF must be used instead.
1770 */
1771 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1772 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1773 else
1774 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1775 }
1776
1777 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1778 /* NPWG = Namespace Preferred Write Granularity */
1779 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1780 /* NOWS = Namespace Optimal Write Size */
1781 io_opt = bs * (1 + le16_to_cpu(id->nows));
1782 }
1783
1784 blk_queue_logical_block_size(disk->queue, bs);
1785 /*
1786 * Linux filesystems assume writing a single physical block is
1787 * an atomic operation. Hence limit the physical block size to the
1788 * value of the Atomic Write Unit Power Fail parameter.
1789 */
1790 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1791 blk_queue_io_min(disk->queue, phys_bs);
1792 blk_queue_io_opt(disk->queue, io_opt);
1793
1794 /*
1795 * Register a metadata profile for PI, or the plain non-integrity NVMe
1796 * metadata masquerading as Type 0 if supported, otherwise reject block
1797 * I/O to namespaces with metadata except when the namespace supports
1798 * PI, as it can strip/insert in that case.
1799 */
1800 if (ns->ms) {
1801 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1802 (ns->features & NVME_NS_METADATA_SUPPORTED))
1803 nvme_init_integrity(disk, ns->ms, ns->pi_type,
1804 ns->ctrl->max_integrity_segments);
1805 else if (!nvme_ns_has_pi(ns))
1806 capacity = 0;
1807 }
1808
1809 set_capacity_and_notify(disk, capacity);
1810
1811 nvme_config_discard(disk, ns);
1812 blk_queue_max_write_zeroes_sectors(disk->queue,
1813 ns->ctrl->max_zeroes_sectors);
1814
1815 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1816 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1817 }
1818
1819 static inline bool nvme_first_scan(struct gendisk *disk)
1820 {
1821 /* nvme_alloc_ns() scans the disk prior to adding it */
1822 return !(disk->flags & GENHD_FL_UP);
1823 }
1824
1825 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1826 {
1827 struct nvme_ctrl *ctrl = ns->ctrl;
1828 u32 iob;
1829
1830 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1831 is_power_of_2(ctrl->max_hw_sectors))
1832 iob = ctrl->max_hw_sectors;
1833 else
1834 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1835
1836 if (!iob)
1837 return;
1838
1839 if (!is_power_of_2(iob)) {
1840 if (nvme_first_scan(ns->disk))
1841 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1842 ns->disk->disk_name, iob);
1843 return;
1844 }
1845
1846 if (blk_queue_is_zoned(ns->disk->queue)) {
1847 if (nvme_first_scan(ns->disk))
1848 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1849 ns->disk->disk_name);
1850 return;
1851 }
1852
1853 blk_queue_chunk_sectors(ns->queue, iob);
1854 }
1855
1856 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1857 {
1858 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1859 int ret;
1860
1861 blk_mq_freeze_queue(ns->disk->queue);
1862 ns->lba_shift = id->lbaf[lbaf].ds;
1863 nvme_set_queue_limits(ns->ctrl, ns->queue);
1864
1865 ret = nvme_configure_metadata(ns, id);
1866 if (ret)
1867 goto out_unfreeze;
1868 nvme_set_chunk_sectors(ns, id);
1869 nvme_update_disk_info(ns->disk, ns, id);
1870
1871 if (ns->head->ids.csi == NVME_CSI_ZNS) {
1872 ret = nvme_update_zone_info(ns, lbaf);
1873 if (ret)
1874 goto out_unfreeze;
1875 }
1876
1877 blk_mq_unfreeze_queue(ns->disk->queue);
1878
1879 if (blk_queue_is_zoned(ns->queue)) {
1880 ret = nvme_revalidate_zones(ns);
1881 if (ret && !nvme_first_scan(ns->disk))
1882 goto out;
1883 }
1884
1885 if (nvme_ns_head_multipath(ns->head)) {
1886 blk_mq_freeze_queue(ns->head->disk->queue);
1887 nvme_update_disk_info(ns->head->disk, ns, id);
1888 blk_stack_limits(&ns->head->disk->queue->limits,
1889 &ns->queue->limits, 0);
1890 blk_queue_update_readahead(ns->head->disk->queue);
1891 blk_mq_unfreeze_queue(ns->head->disk->queue);
1892 }
1893 return 0;
1894
1895 out_unfreeze:
1896 blk_mq_unfreeze_queue(ns->disk->queue);
1897 out:
1898 /*
1899 * If probing fails due an unsupported feature, hide the block device,
1900 * but still allow other access.
1901 */
1902 if (ret == -ENODEV) {
1903 ns->disk->flags |= GENHD_FL_HIDDEN;
1904 ret = 0;
1905 }
1906 return ret;
1907 }
1908
1909 static char nvme_pr_type(enum pr_type type)
1910 {
1911 switch (type) {
1912 case PR_WRITE_EXCLUSIVE:
1913 return 1;
1914 case PR_EXCLUSIVE_ACCESS:
1915 return 2;
1916 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1917 return 3;
1918 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1919 return 4;
1920 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1921 return 5;
1922 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1923 return 6;
1924 default:
1925 return 0;
1926 }
1927 };
1928
1929 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1930 struct nvme_command *c, u8 data[16])
1931 {
1932 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1933 int srcu_idx = srcu_read_lock(&head->srcu);
1934 struct nvme_ns *ns = nvme_find_path(head);
1935 int ret = -EWOULDBLOCK;
1936
1937 if (ns) {
1938 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1939 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1940 }
1941 srcu_read_unlock(&head->srcu, srcu_idx);
1942 return ret;
1943 }
1944
1945 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1946 u8 data[16])
1947 {
1948 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1949 return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1950 }
1951
1952 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1953 u64 key, u64 sa_key, u8 op)
1954 {
1955 struct nvme_command c = { };
1956 u8 data[16] = { 0, };
1957
1958 put_unaligned_le64(key, &data[0]);
1959 put_unaligned_le64(sa_key, &data[8]);
1960
1961 c.common.opcode = op;
1962 c.common.cdw10 = cpu_to_le32(cdw10);
1963
1964 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
1965 bdev->bd_disk->fops == &nvme_ns_head_ops)
1966 return nvme_send_ns_head_pr_command(bdev, &c, data);
1967 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
1968 }
1969
1970 static int nvme_pr_register(struct block_device *bdev, u64 old,
1971 u64 new, unsigned flags)
1972 {
1973 u32 cdw10;
1974
1975 if (flags & ~PR_FL_IGNORE_KEY)
1976 return -EOPNOTSUPP;
1977
1978 cdw10 = old ? 2 : 0;
1979 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1980 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1981 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1982 }
1983
1984 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1985 enum pr_type type, unsigned flags)
1986 {
1987 u32 cdw10;
1988
1989 if (flags & ~PR_FL_IGNORE_KEY)
1990 return -EOPNOTSUPP;
1991
1992 cdw10 = nvme_pr_type(type) << 8;
1993 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1994 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1995 }
1996
1997 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1998 enum pr_type type, bool abort)
1999 {
2000 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2001
2002 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2003 }
2004
2005 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2006 {
2007 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2008
2009 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2010 }
2011
2012 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2013 {
2014 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2015
2016 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2017 }
2018
2019 const struct pr_ops nvme_pr_ops = {
2020 .pr_register = nvme_pr_register,
2021 .pr_reserve = nvme_pr_reserve,
2022 .pr_release = nvme_pr_release,
2023 .pr_preempt = nvme_pr_preempt,
2024 .pr_clear = nvme_pr_clear,
2025 };
2026
2027 #ifdef CONFIG_BLK_SED_OPAL
2028 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2029 bool send)
2030 {
2031 struct nvme_ctrl *ctrl = data;
2032 struct nvme_command cmd = { };
2033
2034 if (send)
2035 cmd.common.opcode = nvme_admin_security_send;
2036 else
2037 cmd.common.opcode = nvme_admin_security_recv;
2038 cmd.common.nsid = 0;
2039 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2040 cmd.common.cdw11 = cpu_to_le32(len);
2041
2042 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2043 NVME_QID_ANY, 1, 0);
2044 }
2045 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2046 #endif /* CONFIG_BLK_SED_OPAL */
2047
2048 #ifdef CONFIG_BLK_DEV_ZONED
2049 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2050 unsigned int nr_zones, report_zones_cb cb, void *data)
2051 {
2052 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2053 data);
2054 }
2055 #else
2056 #define nvme_report_zones NULL
2057 #endif /* CONFIG_BLK_DEV_ZONED */
2058
2059 static const struct block_device_operations nvme_bdev_ops = {
2060 .owner = THIS_MODULE,
2061 .ioctl = nvme_ioctl,
2062 .open = nvme_open,
2063 .release = nvme_release,
2064 .getgeo = nvme_getgeo,
2065 .report_zones = nvme_report_zones,
2066 .pr_ops = &nvme_pr_ops,
2067 };
2068
2069 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2070 {
2071 unsigned long timeout =
2072 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2073 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2074 int ret;
2075
2076 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2077 if (csts == ~0)
2078 return -ENODEV;
2079 if ((csts & NVME_CSTS_RDY) == bit)
2080 break;
2081
2082 usleep_range(1000, 2000);
2083 if (fatal_signal_pending(current))
2084 return -EINTR;
2085 if (time_after(jiffies, timeout)) {
2086 dev_err(ctrl->device,
2087 "Device not ready; aborting %s, CSTS=0x%x\n",
2088 enabled ? "initialisation" : "reset", csts);
2089 return -ENODEV;
2090 }
2091 }
2092
2093 return ret;
2094 }
2095
2096 /*
2097 * If the device has been passed off to us in an enabled state, just clear
2098 * the enabled bit. The spec says we should set the 'shutdown notification
2099 * bits', but doing so may cause the device to complete commands to the
2100 * admin queue ... and we don't know what memory that might be pointing at!
2101 */
2102 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2103 {
2104 int ret;
2105
2106 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2107 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2108
2109 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2110 if (ret)
2111 return ret;
2112
2113 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2114 msleep(NVME_QUIRK_DELAY_AMOUNT);
2115
2116 return nvme_wait_ready(ctrl, ctrl->cap, false);
2117 }
2118 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2119
2120 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2121 {
2122 unsigned dev_page_min;
2123 int ret;
2124
2125 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2126 if (ret) {
2127 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2128 return ret;
2129 }
2130 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2131
2132 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2133 dev_err(ctrl->device,
2134 "Minimum device page size %u too large for host (%u)\n",
2135 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2136 return -ENODEV;
2137 }
2138
2139 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2140 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2141 else
2142 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2143 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2144 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2145 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2146 ctrl->ctrl_config |= NVME_CC_ENABLE;
2147
2148 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2149 if (ret)
2150 return ret;
2151 return nvme_wait_ready(ctrl, ctrl->cap, true);
2152 }
2153 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2154
2155 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2156 {
2157 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2158 u32 csts;
2159 int ret;
2160
2161 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2162 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2163
2164 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2165 if (ret)
2166 return ret;
2167
2168 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2169 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2170 break;
2171
2172 msleep(100);
2173 if (fatal_signal_pending(current))
2174 return -EINTR;
2175 if (time_after(jiffies, timeout)) {
2176 dev_err(ctrl->device,
2177 "Device shutdown incomplete; abort shutdown\n");
2178 return -ENODEV;
2179 }
2180 }
2181
2182 return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2185
2186 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2187 {
2188 __le64 ts;
2189 int ret;
2190
2191 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2192 return 0;
2193
2194 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2195 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2196 NULL);
2197 if (ret)
2198 dev_warn_once(ctrl->device,
2199 "could not set timestamp (%d)\n", ret);
2200 return ret;
2201 }
2202
2203 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2204 {
2205 struct nvme_feat_host_behavior *host;
2206 int ret;
2207
2208 /* Don't bother enabling the feature if retry delay is not reported */
2209 if (!ctrl->crdt[0])
2210 return 0;
2211
2212 host = kzalloc(sizeof(*host), GFP_KERNEL);
2213 if (!host)
2214 return 0;
2215
2216 host->acre = NVME_ENABLE_ACRE;
2217 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2218 host, sizeof(*host), NULL);
2219 kfree(host);
2220 return ret;
2221 }
2222
2223 /*
2224 * The function checks whether the given total (exlat + enlat) latency of
2225 * a power state allows the latter to be used as an APST transition target.
2226 * It does so by comparing the latency to the primary and secondary latency
2227 * tolerances defined by module params. If there's a match, the corresponding
2228 * timeout value is returned and the matching tolerance index (1 or 2) is
2229 * reported.
2230 */
2231 static bool nvme_apst_get_transition_time(u64 total_latency,
2232 u64 *transition_time, unsigned *last_index)
2233 {
2234 if (total_latency <= apst_primary_latency_tol_us) {
2235 if (*last_index == 1)
2236 return false;
2237 *last_index = 1;
2238 *transition_time = apst_primary_timeout_ms;
2239 return true;
2240 }
2241 if (apst_secondary_timeout_ms &&
2242 total_latency <= apst_secondary_latency_tol_us) {
2243 if (*last_index <= 2)
2244 return false;
2245 *last_index = 2;
2246 *transition_time = apst_secondary_timeout_ms;
2247 return true;
2248 }
2249 return false;
2250 }
2251
2252 /*
2253 * APST (Autonomous Power State Transition) lets us program a table of power
2254 * state transitions that the controller will perform automatically.
2255 *
2256 * Depending on module params, one of the two supported techniques will be used:
2257 *
2258 * - If the parameters provide explicit timeouts and tolerances, they will be
2259 * used to build a table with up to 2 non-operational states to transition to.
2260 * The default parameter values were selected based on the values used by
2261 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2262 * regeneration of the APST table in the event of switching between external
2263 * and battery power, the timeouts and tolerances reflect a compromise
2264 * between values used by Microsoft for AC and battery scenarios.
2265 * - If not, we'll configure the table with a simple heuristic: we are willing
2266 * to spend at most 2% of the time transitioning between power states.
2267 * Therefore, when running in any given state, we will enter the next
2268 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2269 * microseconds, as long as that state's exit latency is under the requested
2270 * maximum latency.
2271 *
2272 * We will not autonomously enter any non-operational state for which the total
2273 * latency exceeds ps_max_latency_us.
2274 *
2275 * Users can set ps_max_latency_us to zero to turn off APST.
2276 */
2277 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2278 {
2279 struct nvme_feat_auto_pst *table;
2280 unsigned apste = 0;
2281 u64 max_lat_us = 0;
2282 __le64 target = 0;
2283 int max_ps = -1;
2284 int state;
2285 int ret;
2286 unsigned last_lt_index = UINT_MAX;
2287
2288 /*
2289 * If APST isn't supported or if we haven't been initialized yet,
2290 * then don't do anything.
2291 */
2292 if (!ctrl->apsta)
2293 return 0;
2294
2295 if (ctrl->npss > 31) {
2296 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2297 return 0;
2298 }
2299
2300 table = kzalloc(sizeof(*table), GFP_KERNEL);
2301 if (!table)
2302 return 0;
2303
2304 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2305 /* Turn off APST. */
2306 dev_dbg(ctrl->device, "APST disabled\n");
2307 goto done;
2308 }
2309
2310 /*
2311 * Walk through all states from lowest- to highest-power.
2312 * According to the spec, lower-numbered states use more power. NPSS,
2313 * despite the name, is the index of the lowest-power state, not the
2314 * number of states.
2315 */
2316 for (state = (int)ctrl->npss; state >= 0; state--) {
2317 u64 total_latency_us, exit_latency_us, transition_ms;
2318
2319 if (target)
2320 table->entries[state] = target;
2321
2322 /*
2323 * Don't allow transitions to the deepest state if it's quirked
2324 * off.
2325 */
2326 if (state == ctrl->npss &&
2327 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2328 continue;
2329
2330 /*
2331 * Is this state a useful non-operational state for higher-power
2332 * states to autonomously transition to?
2333 */
2334 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2335 continue;
2336
2337 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2338 if (exit_latency_us > ctrl->ps_max_latency_us)
2339 continue;
2340
2341 total_latency_us = exit_latency_us +
2342 le32_to_cpu(ctrl->psd[state].entry_lat);
2343
2344 /*
2345 * This state is good. It can be used as the APST idle target
2346 * for higher power states.
2347 */
2348 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2349 if (!nvme_apst_get_transition_time(total_latency_us,
2350 &transition_ms, &last_lt_index))
2351 continue;
2352 } else {
2353 transition_ms = total_latency_us + 19;
2354 do_div(transition_ms, 20);
2355 if (transition_ms > (1 << 24) - 1)
2356 transition_ms = (1 << 24) - 1;
2357 }
2358
2359 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2360 if (max_ps == -1)
2361 max_ps = state;
2362 if (total_latency_us > max_lat_us)
2363 max_lat_us = total_latency_us;
2364 }
2365
2366 if (max_ps == -1)
2367 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2368 else
2369 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2370 max_ps, max_lat_us, (int)sizeof(*table), table);
2371 apste = 1;
2372
2373 done:
2374 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2375 table, sizeof(*table), NULL);
2376 if (ret)
2377 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2378 kfree(table);
2379 return ret;
2380 }
2381
2382 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2383 {
2384 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2385 u64 latency;
2386
2387 switch (val) {
2388 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2389 case PM_QOS_LATENCY_ANY:
2390 latency = U64_MAX;
2391 break;
2392
2393 default:
2394 latency = val;
2395 }
2396
2397 if (ctrl->ps_max_latency_us != latency) {
2398 ctrl->ps_max_latency_us = latency;
2399 if (ctrl->state == NVME_CTRL_LIVE)
2400 nvme_configure_apst(ctrl);
2401 }
2402 }
2403
2404 struct nvme_core_quirk_entry {
2405 /*
2406 * NVMe model and firmware strings are padded with spaces. For
2407 * simplicity, strings in the quirk table are padded with NULLs
2408 * instead.
2409 */
2410 u16 vid;
2411 const char *mn;
2412 const char *fr;
2413 unsigned long quirks;
2414 };
2415
2416 static const struct nvme_core_quirk_entry core_quirks[] = {
2417 {
2418 /*
2419 * This Toshiba device seems to die using any APST states. See:
2420 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2421 */
2422 .vid = 0x1179,
2423 .mn = "THNSF5256GPUK TOSHIBA",
2424 .quirks = NVME_QUIRK_NO_APST,
2425 },
2426 {
2427 /*
2428 * This LiteON CL1-3D*-Q11 firmware version has a race
2429 * condition associated with actions related to suspend to idle
2430 * LiteON has resolved the problem in future firmware
2431 */
2432 .vid = 0x14a4,
2433 .fr = "22301111",
2434 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2435 }
2436 };
2437
2438 /* match is null-terminated but idstr is space-padded. */
2439 static bool string_matches(const char *idstr, const char *match, size_t len)
2440 {
2441 size_t matchlen;
2442
2443 if (!match)
2444 return true;
2445
2446 matchlen = strlen(match);
2447 WARN_ON_ONCE(matchlen > len);
2448
2449 if (memcmp(idstr, match, matchlen))
2450 return false;
2451
2452 for (; matchlen < len; matchlen++)
2453 if (idstr[matchlen] != ' ')
2454 return false;
2455
2456 return true;
2457 }
2458
2459 static bool quirk_matches(const struct nvme_id_ctrl *id,
2460 const struct nvme_core_quirk_entry *q)
2461 {
2462 return q->vid == le16_to_cpu(id->vid) &&
2463 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2464 string_matches(id->fr, q->fr, sizeof(id->fr));
2465 }
2466
2467 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2468 struct nvme_id_ctrl *id)
2469 {
2470 size_t nqnlen;
2471 int off;
2472
2473 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2474 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2475 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2476 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2477 return;
2478 }
2479
2480 if (ctrl->vs >= NVME_VS(1, 2, 1))
2481 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2482 }
2483
2484 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2485 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2486 "nqn.2014.08.org.nvmexpress:%04x%04x",
2487 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2488 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2489 off += sizeof(id->sn);
2490 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2491 off += sizeof(id->mn);
2492 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2493 }
2494
2495 static void nvme_release_subsystem(struct device *dev)
2496 {
2497 struct nvme_subsystem *subsys =
2498 container_of(dev, struct nvme_subsystem, dev);
2499
2500 if (subsys->instance >= 0)
2501 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2502 kfree(subsys);
2503 }
2504
2505 static void nvme_destroy_subsystem(struct kref *ref)
2506 {
2507 struct nvme_subsystem *subsys =
2508 container_of(ref, struct nvme_subsystem, ref);
2509
2510 mutex_lock(&nvme_subsystems_lock);
2511 list_del(&subsys->entry);
2512 mutex_unlock(&nvme_subsystems_lock);
2513
2514 ida_destroy(&subsys->ns_ida);
2515 device_del(&subsys->dev);
2516 put_device(&subsys->dev);
2517 }
2518
2519 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2520 {
2521 kref_put(&subsys->ref, nvme_destroy_subsystem);
2522 }
2523
2524 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2525 {
2526 struct nvme_subsystem *subsys;
2527
2528 lockdep_assert_held(&nvme_subsystems_lock);
2529
2530 /*
2531 * Fail matches for discovery subsystems. This results
2532 * in each discovery controller bound to a unique subsystem.
2533 * This avoids issues with validating controller values
2534 * that can only be true when there is a single unique subsystem.
2535 * There may be multiple and completely independent entities
2536 * that provide discovery controllers.
2537 */
2538 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2539 return NULL;
2540
2541 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2542 if (strcmp(subsys->subnqn, subsysnqn))
2543 continue;
2544 if (!kref_get_unless_zero(&subsys->ref))
2545 continue;
2546 return subsys;
2547 }
2548
2549 return NULL;
2550 }
2551
2552 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2553 struct device_attribute subsys_attr_##_name = \
2554 __ATTR(_name, _mode, _show, NULL)
2555
2556 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2557 struct device_attribute *attr,
2558 char *buf)
2559 {
2560 struct nvme_subsystem *subsys =
2561 container_of(dev, struct nvme_subsystem, dev);
2562
2563 return sysfs_emit(buf, "%s\n", subsys->subnqn);
2564 }
2565 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2566
2567 #define nvme_subsys_show_str_function(field) \
2568 static ssize_t subsys_##field##_show(struct device *dev, \
2569 struct device_attribute *attr, char *buf) \
2570 { \
2571 struct nvme_subsystem *subsys = \
2572 container_of(dev, struct nvme_subsystem, dev); \
2573 return sysfs_emit(buf, "%.*s\n", \
2574 (int)sizeof(subsys->field), subsys->field); \
2575 } \
2576 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2577
2578 nvme_subsys_show_str_function(model);
2579 nvme_subsys_show_str_function(serial);
2580 nvme_subsys_show_str_function(firmware_rev);
2581
2582 static struct attribute *nvme_subsys_attrs[] = {
2583 &subsys_attr_model.attr,
2584 &subsys_attr_serial.attr,
2585 &subsys_attr_firmware_rev.attr,
2586 &subsys_attr_subsysnqn.attr,
2587 #ifdef CONFIG_NVME_MULTIPATH
2588 &subsys_attr_iopolicy.attr,
2589 #endif
2590 NULL,
2591 };
2592
2593 static const struct attribute_group nvme_subsys_attrs_group = {
2594 .attrs = nvme_subsys_attrs,
2595 };
2596
2597 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2598 &nvme_subsys_attrs_group,
2599 NULL,
2600 };
2601
2602 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2603 {
2604 return ctrl->opts && ctrl->opts->discovery_nqn;
2605 }
2606
2607 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2608 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2609 {
2610 struct nvme_ctrl *tmp;
2611
2612 lockdep_assert_held(&nvme_subsystems_lock);
2613
2614 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2615 if (nvme_state_terminal(tmp))
2616 continue;
2617
2618 if (tmp->cntlid == ctrl->cntlid) {
2619 dev_err(ctrl->device,
2620 "Duplicate cntlid %u with %s, rejecting\n",
2621 ctrl->cntlid, dev_name(tmp->device));
2622 return false;
2623 }
2624
2625 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2626 nvme_discovery_ctrl(ctrl))
2627 continue;
2628
2629 dev_err(ctrl->device,
2630 "Subsystem does not support multiple controllers\n");
2631 return false;
2632 }
2633
2634 return true;
2635 }
2636
2637 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2638 {
2639 struct nvme_subsystem *subsys, *found;
2640 int ret;
2641
2642 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2643 if (!subsys)
2644 return -ENOMEM;
2645
2646 subsys->instance = -1;
2647 mutex_init(&subsys->lock);
2648 kref_init(&subsys->ref);
2649 INIT_LIST_HEAD(&subsys->ctrls);
2650 INIT_LIST_HEAD(&subsys->nsheads);
2651 nvme_init_subnqn(subsys, ctrl, id);
2652 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2653 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2654 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2655 subsys->vendor_id = le16_to_cpu(id->vid);
2656 subsys->cmic = id->cmic;
2657 subsys->awupf = le16_to_cpu(id->awupf);
2658 #ifdef CONFIG_NVME_MULTIPATH
2659 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2660 #endif
2661
2662 subsys->dev.class = nvme_subsys_class;
2663 subsys->dev.release = nvme_release_subsystem;
2664 subsys->dev.groups = nvme_subsys_attrs_groups;
2665 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2666 device_initialize(&subsys->dev);
2667
2668 mutex_lock(&nvme_subsystems_lock);
2669 found = __nvme_find_get_subsystem(subsys->subnqn);
2670 if (found) {
2671 put_device(&subsys->dev);
2672 subsys = found;
2673
2674 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2675 ret = -EINVAL;
2676 goto out_put_subsystem;
2677 }
2678 } else {
2679 ret = device_add(&subsys->dev);
2680 if (ret) {
2681 dev_err(ctrl->device,
2682 "failed to register subsystem device.\n");
2683 put_device(&subsys->dev);
2684 goto out_unlock;
2685 }
2686 ida_init(&subsys->ns_ida);
2687 list_add_tail(&subsys->entry, &nvme_subsystems);
2688 }
2689
2690 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2691 dev_name(ctrl->device));
2692 if (ret) {
2693 dev_err(ctrl->device,
2694 "failed to create sysfs link from subsystem.\n");
2695 goto out_put_subsystem;
2696 }
2697
2698 if (!found)
2699 subsys->instance = ctrl->instance;
2700 ctrl->subsys = subsys;
2701 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2702 mutex_unlock(&nvme_subsystems_lock);
2703 return 0;
2704
2705 out_put_subsystem:
2706 nvme_put_subsystem(subsys);
2707 out_unlock:
2708 mutex_unlock(&nvme_subsystems_lock);
2709 return ret;
2710 }
2711
2712 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2713 void *log, size_t size, u64 offset)
2714 {
2715 struct nvme_command c = { };
2716 u32 dwlen = nvme_bytes_to_numd(size);
2717
2718 c.get_log_page.opcode = nvme_admin_get_log_page;
2719 c.get_log_page.nsid = cpu_to_le32(nsid);
2720 c.get_log_page.lid = log_page;
2721 c.get_log_page.lsp = lsp;
2722 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2723 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2724 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2725 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2726 c.get_log_page.csi = csi;
2727
2728 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2729 }
2730
2731 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2732 struct nvme_effects_log **log)
2733 {
2734 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2735 int ret;
2736
2737 if (cel)
2738 goto out;
2739
2740 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2741 if (!cel)
2742 return -ENOMEM;
2743
2744 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2745 cel, sizeof(*cel), 0);
2746 if (ret) {
2747 kfree(cel);
2748 return ret;
2749 }
2750
2751 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2752 out:
2753 *log = cel;
2754 return 0;
2755 }
2756
2757 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2758 {
2759 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2760
2761 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2762 return UINT_MAX;
2763 return val;
2764 }
2765
2766 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2767 {
2768 struct nvme_command c = { };
2769 struct nvme_id_ctrl_nvm *id;
2770 int ret;
2771
2772 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2773 ctrl->max_discard_sectors = UINT_MAX;
2774 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2775 } else {
2776 ctrl->max_discard_sectors = 0;
2777 ctrl->max_discard_segments = 0;
2778 }
2779
2780 /*
2781 * Even though NVMe spec explicitly states that MDTS is not applicable
2782 * to the write-zeroes, we are cautious and limit the size to the
2783 * controllers max_hw_sectors value, which is based on the MDTS field
2784 * and possibly other limiting factors.
2785 */
2786 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2787 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2788 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2789 else
2790 ctrl->max_zeroes_sectors = 0;
2791
2792 if (nvme_ctrl_limited_cns(ctrl))
2793 return 0;
2794
2795 id = kzalloc(sizeof(*id), GFP_KERNEL);
2796 if (!id)
2797 return 0;
2798
2799 c.identify.opcode = nvme_admin_identify;
2800 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2801 c.identify.csi = NVME_CSI_NVM;
2802
2803 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2804 if (ret)
2805 goto free_data;
2806
2807 if (id->dmrl)
2808 ctrl->max_discard_segments = id->dmrl;
2809 if (id->dmrsl)
2810 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2811 if (id->wzsl)
2812 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2813
2814 free_data:
2815 kfree(id);
2816 return ret;
2817 }
2818
2819 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2820 {
2821 struct nvme_id_ctrl *id;
2822 u32 max_hw_sectors;
2823 bool prev_apst_enabled;
2824 int ret;
2825
2826 ret = nvme_identify_ctrl(ctrl, &id);
2827 if (ret) {
2828 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2829 return -EIO;
2830 }
2831
2832 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2833 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2834 if (ret < 0)
2835 goto out_free;
2836 }
2837
2838 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2839 ctrl->cntlid = le16_to_cpu(id->cntlid);
2840
2841 if (!ctrl->identified) {
2842 unsigned int i;
2843
2844 ret = nvme_init_subsystem(ctrl, id);
2845 if (ret)
2846 goto out_free;
2847
2848 /*
2849 * Check for quirks. Quirk can depend on firmware version,
2850 * so, in principle, the set of quirks present can change
2851 * across a reset. As a possible future enhancement, we
2852 * could re-scan for quirks every time we reinitialize
2853 * the device, but we'd have to make sure that the driver
2854 * behaves intelligently if the quirks change.
2855 */
2856 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2857 if (quirk_matches(id, &core_quirks[i]))
2858 ctrl->quirks |= core_quirks[i].quirks;
2859 }
2860 }
2861
2862 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2863 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2864 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2865 }
2866
2867 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2868 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2869 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2870
2871 ctrl->oacs = le16_to_cpu(id->oacs);
2872 ctrl->oncs = le16_to_cpu(id->oncs);
2873 ctrl->mtfa = le16_to_cpu(id->mtfa);
2874 ctrl->oaes = le32_to_cpu(id->oaes);
2875 ctrl->wctemp = le16_to_cpu(id->wctemp);
2876 ctrl->cctemp = le16_to_cpu(id->cctemp);
2877
2878 atomic_set(&ctrl->abort_limit, id->acl + 1);
2879 ctrl->vwc = id->vwc;
2880 if (id->mdts)
2881 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2882 else
2883 max_hw_sectors = UINT_MAX;
2884 ctrl->max_hw_sectors =
2885 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2886
2887 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2888 ctrl->sgls = le32_to_cpu(id->sgls);
2889 ctrl->kas = le16_to_cpu(id->kas);
2890 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2891 ctrl->ctratt = le32_to_cpu(id->ctratt);
2892
2893 if (id->rtd3e) {
2894 /* us -> s */
2895 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2896
2897 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2898 shutdown_timeout, 60);
2899
2900 if (ctrl->shutdown_timeout != shutdown_timeout)
2901 dev_info(ctrl->device,
2902 "Shutdown timeout set to %u seconds\n",
2903 ctrl->shutdown_timeout);
2904 } else
2905 ctrl->shutdown_timeout = shutdown_timeout;
2906
2907 ctrl->npss = id->npss;
2908 ctrl->apsta = id->apsta;
2909 prev_apst_enabled = ctrl->apst_enabled;
2910 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2911 if (force_apst && id->apsta) {
2912 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2913 ctrl->apst_enabled = true;
2914 } else {
2915 ctrl->apst_enabled = false;
2916 }
2917 } else {
2918 ctrl->apst_enabled = id->apsta;
2919 }
2920 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2921
2922 if (ctrl->ops->flags & NVME_F_FABRICS) {
2923 ctrl->icdoff = le16_to_cpu(id->icdoff);
2924 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2925 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2926 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2927
2928 /*
2929 * In fabrics we need to verify the cntlid matches the
2930 * admin connect
2931 */
2932 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2933 dev_err(ctrl->device,
2934 "Mismatching cntlid: Connect %u vs Identify "
2935 "%u, rejecting\n",
2936 ctrl->cntlid, le16_to_cpu(id->cntlid));
2937 ret = -EINVAL;
2938 goto out_free;
2939 }
2940
2941 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2942 dev_err(ctrl->device,
2943 "keep-alive support is mandatory for fabrics\n");
2944 ret = -EINVAL;
2945 goto out_free;
2946 }
2947 } else {
2948 ctrl->hmpre = le32_to_cpu(id->hmpre);
2949 ctrl->hmmin = le32_to_cpu(id->hmmin);
2950 ctrl->hmminds = le32_to_cpu(id->hmminds);
2951 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2952 }
2953
2954 ret = nvme_mpath_init_identify(ctrl, id);
2955 if (ret < 0)
2956 goto out_free;
2957
2958 if (ctrl->apst_enabled && !prev_apst_enabled)
2959 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2960 else if (!ctrl->apst_enabled && prev_apst_enabled)
2961 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2962
2963 out_free:
2964 kfree(id);
2965 return ret;
2966 }
2967
2968 /*
2969 * Initialize the cached copies of the Identify data and various controller
2970 * register in our nvme_ctrl structure. This should be called as soon as
2971 * the admin queue is fully up and running.
2972 */
2973 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2974 {
2975 int ret;
2976
2977 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2978 if (ret) {
2979 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2980 return ret;
2981 }
2982
2983 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2984
2985 if (ctrl->vs >= NVME_VS(1, 1, 0))
2986 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2987
2988 ret = nvme_init_identify(ctrl);
2989 if (ret)
2990 return ret;
2991
2992 ret = nvme_init_non_mdts_limits(ctrl);
2993 if (ret < 0)
2994 return ret;
2995
2996 ret = nvme_configure_apst(ctrl);
2997 if (ret < 0)
2998 return ret;
2999
3000 ret = nvme_configure_timestamp(ctrl);
3001 if (ret < 0)
3002 return ret;
3003
3004 ret = nvme_configure_directives(ctrl);
3005 if (ret < 0)
3006 return ret;
3007
3008 ret = nvme_configure_acre(ctrl);
3009 if (ret < 0)
3010 return ret;
3011
3012 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3013 ret = nvme_hwmon_init(ctrl);
3014 if (ret < 0)
3015 return ret;
3016 }
3017
3018 ctrl->identified = true;
3019
3020 return 0;
3021 }
3022 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3023
3024 static int nvme_dev_open(struct inode *inode, struct file *file)
3025 {
3026 struct nvme_ctrl *ctrl =
3027 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3028
3029 switch (ctrl->state) {
3030 case NVME_CTRL_LIVE:
3031 break;
3032 default:
3033 return -EWOULDBLOCK;
3034 }
3035
3036 nvme_get_ctrl(ctrl);
3037 if (!try_module_get(ctrl->ops->module)) {
3038 nvme_put_ctrl(ctrl);
3039 return -EINVAL;
3040 }
3041
3042 file->private_data = ctrl;
3043 return 0;
3044 }
3045
3046 static int nvme_dev_release(struct inode *inode, struct file *file)
3047 {
3048 struct nvme_ctrl *ctrl =
3049 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3050
3051 module_put(ctrl->ops->module);
3052 nvme_put_ctrl(ctrl);
3053 return 0;
3054 }
3055
3056 static const struct file_operations nvme_dev_fops = {
3057 .owner = THIS_MODULE,
3058 .open = nvme_dev_open,
3059 .release = nvme_dev_release,
3060 .unlocked_ioctl = nvme_dev_ioctl,
3061 .compat_ioctl = compat_ptr_ioctl,
3062 };
3063
3064 static ssize_t nvme_sysfs_reset(struct device *dev,
3065 struct device_attribute *attr, const char *buf,
3066 size_t count)
3067 {
3068 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3069 int ret;
3070
3071 ret = nvme_reset_ctrl_sync(ctrl);
3072 if (ret < 0)
3073 return ret;
3074 return count;
3075 }
3076 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3077
3078 static ssize_t nvme_sysfs_rescan(struct device *dev,
3079 struct device_attribute *attr, const char *buf,
3080 size_t count)
3081 {
3082 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3083
3084 nvme_queue_scan(ctrl);
3085 return count;
3086 }
3087 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3088
3089 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3090 {
3091 struct gendisk *disk = dev_to_disk(dev);
3092
3093 if (disk->fops == &nvme_bdev_ops)
3094 return nvme_get_ns_from_dev(dev)->head;
3095 else
3096 return disk->private_data;
3097 }
3098
3099 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3100 char *buf)
3101 {
3102 struct nvme_ns_head *head = dev_to_ns_head(dev);
3103 struct nvme_ns_ids *ids = &head->ids;
3104 struct nvme_subsystem *subsys = head->subsys;
3105 int serial_len = sizeof(subsys->serial);
3106 int model_len = sizeof(subsys->model);
3107
3108 if (!uuid_is_null(&ids->uuid))
3109 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3110
3111 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3112 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3113
3114 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3115 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3116
3117 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3118 subsys->serial[serial_len - 1] == '\0'))
3119 serial_len--;
3120 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3121 subsys->model[model_len - 1] == '\0'))
3122 model_len--;
3123
3124 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3125 serial_len, subsys->serial, model_len, subsys->model,
3126 head->ns_id);
3127 }
3128 static DEVICE_ATTR_RO(wwid);
3129
3130 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3131 char *buf)
3132 {
3133 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3134 }
3135 static DEVICE_ATTR_RO(nguid);
3136
3137 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3138 char *buf)
3139 {
3140 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3141
3142 /* For backward compatibility expose the NGUID to userspace if
3143 * we have no UUID set
3144 */
3145 if (uuid_is_null(&ids->uuid)) {
3146 printk_ratelimited(KERN_WARNING
3147 "No UUID available providing old NGUID\n");
3148 return sysfs_emit(buf, "%pU\n", ids->nguid);
3149 }
3150 return sysfs_emit(buf, "%pU\n", &ids->uuid);
3151 }
3152 static DEVICE_ATTR_RO(uuid);
3153
3154 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3155 char *buf)
3156 {
3157 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3158 }
3159 static DEVICE_ATTR_RO(eui);
3160
3161 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3162 char *buf)
3163 {
3164 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3165 }
3166 static DEVICE_ATTR_RO(nsid);
3167
3168 static struct attribute *nvme_ns_id_attrs[] = {
3169 &dev_attr_wwid.attr,
3170 &dev_attr_uuid.attr,
3171 &dev_attr_nguid.attr,
3172 &dev_attr_eui.attr,
3173 &dev_attr_nsid.attr,
3174 #ifdef CONFIG_NVME_MULTIPATH
3175 &dev_attr_ana_grpid.attr,
3176 &dev_attr_ana_state.attr,
3177 #endif
3178 NULL,
3179 };
3180
3181 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3182 struct attribute *a, int n)
3183 {
3184 struct device *dev = container_of(kobj, struct device, kobj);
3185 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3186
3187 if (a == &dev_attr_uuid.attr) {
3188 if (uuid_is_null(&ids->uuid) &&
3189 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3190 return 0;
3191 }
3192 if (a == &dev_attr_nguid.attr) {
3193 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3194 return 0;
3195 }
3196 if (a == &dev_attr_eui.attr) {
3197 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3198 return 0;
3199 }
3200 #ifdef CONFIG_NVME_MULTIPATH
3201 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3202 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3203 return 0;
3204 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3205 return 0;
3206 }
3207 #endif
3208 return a->mode;
3209 }
3210
3211 static const struct attribute_group nvme_ns_id_attr_group = {
3212 .attrs = nvme_ns_id_attrs,
3213 .is_visible = nvme_ns_id_attrs_are_visible,
3214 };
3215
3216 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3217 &nvme_ns_id_attr_group,
3218 #ifdef CONFIG_NVM
3219 &nvme_nvm_attr_group,
3220 #endif
3221 NULL,
3222 };
3223
3224 #define nvme_show_str_function(field) \
3225 static ssize_t field##_show(struct device *dev, \
3226 struct device_attribute *attr, char *buf) \
3227 { \
3228 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3229 return sysfs_emit(buf, "%.*s\n", \
3230 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3231 } \
3232 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3233
3234 nvme_show_str_function(model);
3235 nvme_show_str_function(serial);
3236 nvme_show_str_function(firmware_rev);
3237
3238 #define nvme_show_int_function(field) \
3239 static ssize_t field##_show(struct device *dev, \
3240 struct device_attribute *attr, char *buf) \
3241 { \
3242 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3243 return sysfs_emit(buf, "%d\n", ctrl->field); \
3244 } \
3245 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3246
3247 nvme_show_int_function(cntlid);
3248 nvme_show_int_function(numa_node);
3249 nvme_show_int_function(queue_count);
3250 nvme_show_int_function(sqsize);
3251 nvme_show_int_function(kato);
3252
3253 static ssize_t nvme_sysfs_delete(struct device *dev,
3254 struct device_attribute *attr, const char *buf,
3255 size_t count)
3256 {
3257 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3258
3259 if (device_remove_file_self(dev, attr))
3260 nvme_delete_ctrl_sync(ctrl);
3261 return count;
3262 }
3263 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3264
3265 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3266 struct device_attribute *attr,
3267 char *buf)
3268 {
3269 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3270
3271 return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3272 }
3273 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3274
3275 static ssize_t nvme_sysfs_show_state(struct device *dev,
3276 struct device_attribute *attr,
3277 char *buf)
3278 {
3279 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3280 static const char *const state_name[] = {
3281 [NVME_CTRL_NEW] = "new",
3282 [NVME_CTRL_LIVE] = "live",
3283 [NVME_CTRL_RESETTING] = "resetting",
3284 [NVME_CTRL_CONNECTING] = "connecting",
3285 [NVME_CTRL_DELETING] = "deleting",
3286 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3287 [NVME_CTRL_DEAD] = "dead",
3288 };
3289
3290 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3291 state_name[ctrl->state])
3292 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3293
3294 return sysfs_emit(buf, "unknown state\n");
3295 }
3296
3297 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3298
3299 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3300 struct device_attribute *attr,
3301 char *buf)
3302 {
3303 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3304
3305 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3306 }
3307 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3308
3309 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3310 struct device_attribute *attr,
3311 char *buf)
3312 {
3313 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3314
3315 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3316 }
3317 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3318
3319 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3320 struct device_attribute *attr,
3321 char *buf)
3322 {
3323 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3324
3325 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3326 }
3327 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3328
3329 static ssize_t nvme_sysfs_show_address(struct device *dev,
3330 struct device_attribute *attr,
3331 char *buf)
3332 {
3333 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3334
3335 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3336 }
3337 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3338
3339 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3340 struct device_attribute *attr, char *buf)
3341 {
3342 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3343 struct nvmf_ctrl_options *opts = ctrl->opts;
3344
3345 if (ctrl->opts->max_reconnects == -1)
3346 return sysfs_emit(buf, "off\n");
3347 return sysfs_emit(buf, "%d\n",
3348 opts->max_reconnects * opts->reconnect_delay);
3349 }
3350
3351 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3352 struct device_attribute *attr, const char *buf, size_t count)
3353 {
3354 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3355 struct nvmf_ctrl_options *opts = ctrl->opts;
3356 int ctrl_loss_tmo, err;
3357
3358 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3359 if (err)
3360 return -EINVAL;
3361
3362 if (ctrl_loss_tmo < 0)
3363 opts->max_reconnects = -1;
3364 else
3365 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3366 opts->reconnect_delay);
3367 return count;
3368 }
3369 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3370 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3371
3372 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3373 struct device_attribute *attr, char *buf)
3374 {
3375 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3376
3377 if (ctrl->opts->reconnect_delay == -1)
3378 return sysfs_emit(buf, "off\n");
3379 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3380 }
3381
3382 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3383 struct device_attribute *attr, const char *buf, size_t count)
3384 {
3385 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3386 unsigned int v;
3387 int err;
3388
3389 err = kstrtou32(buf, 10, &v);
3390 if (err)
3391 return err;
3392
3393 ctrl->opts->reconnect_delay = v;
3394 return count;
3395 }
3396 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3397 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3398
3399 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3400 struct device_attribute *attr, char *buf)
3401 {
3402 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3403
3404 if (ctrl->opts->fast_io_fail_tmo == -1)
3405 return sysfs_emit(buf, "off\n");
3406 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3407 }
3408
3409 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3410 struct device_attribute *attr, const char *buf, size_t count)
3411 {
3412 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3413 struct nvmf_ctrl_options *opts = ctrl->opts;
3414 int fast_io_fail_tmo, err;
3415
3416 err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3417 if (err)
3418 return -EINVAL;
3419
3420 if (fast_io_fail_tmo < 0)
3421 opts->fast_io_fail_tmo = -1;
3422 else
3423 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3424 return count;
3425 }
3426 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3427 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3428
3429 static struct attribute *nvme_dev_attrs[] = {
3430 &dev_attr_reset_controller.attr,
3431 &dev_attr_rescan_controller.attr,
3432 &dev_attr_model.attr,
3433 &dev_attr_serial.attr,
3434 &dev_attr_firmware_rev.attr,
3435 &dev_attr_cntlid.attr,
3436 &dev_attr_delete_controller.attr,
3437 &dev_attr_transport.attr,
3438 &dev_attr_subsysnqn.attr,
3439 &dev_attr_address.attr,
3440 &dev_attr_state.attr,
3441 &dev_attr_numa_node.attr,
3442 &dev_attr_queue_count.attr,
3443 &dev_attr_sqsize.attr,
3444 &dev_attr_hostnqn.attr,
3445 &dev_attr_hostid.attr,
3446 &dev_attr_ctrl_loss_tmo.attr,
3447 &dev_attr_reconnect_delay.attr,
3448 &dev_attr_fast_io_fail_tmo.attr,
3449 &dev_attr_kato.attr,
3450 NULL
3451 };
3452
3453 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3454 struct attribute *a, int n)
3455 {
3456 struct device *dev = container_of(kobj, struct device, kobj);
3457 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3458
3459 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3460 return 0;
3461 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3462 return 0;
3463 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3464 return 0;
3465 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3466 return 0;
3467 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3468 return 0;
3469 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3470 return 0;
3471 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3472 return 0;
3473
3474 return a->mode;
3475 }
3476
3477 static const struct attribute_group nvme_dev_attrs_group = {
3478 .attrs = nvme_dev_attrs,
3479 .is_visible = nvme_dev_attrs_are_visible,
3480 };
3481
3482 static const struct attribute_group *nvme_dev_attr_groups[] = {
3483 &nvme_dev_attrs_group,
3484 NULL,
3485 };
3486
3487 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3488 unsigned nsid)
3489 {
3490 struct nvme_ns_head *h;
3491
3492 lockdep_assert_held(&subsys->lock);
3493
3494 list_for_each_entry(h, &subsys->nsheads, entry) {
3495 if (h->ns_id == nsid && nvme_tryget_ns_head(h))
3496 return h;
3497 }
3498
3499 return NULL;
3500 }
3501
3502 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3503 struct nvme_ns_head *new)
3504 {
3505 struct nvme_ns_head *h;
3506
3507 lockdep_assert_held(&subsys->lock);
3508
3509 list_for_each_entry(h, &subsys->nsheads, entry) {
3510 if (nvme_ns_ids_valid(&new->ids) &&
3511 nvme_ns_ids_equal(&new->ids, &h->ids))
3512 return -EINVAL;
3513 }
3514
3515 return 0;
3516 }
3517
3518 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3519 {
3520 cdev_device_del(cdev, cdev_device);
3521 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt));
3522 }
3523
3524 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3525 const struct file_operations *fops, struct module *owner)
3526 {
3527 int minor, ret;
3528
3529 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3530 if (minor < 0)
3531 return minor;
3532 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3533 cdev_device->class = nvme_ns_chr_class;
3534 device_initialize(cdev_device);
3535 cdev_init(cdev, fops);
3536 cdev->owner = owner;
3537 ret = cdev_device_add(cdev, cdev_device);
3538 if (ret) {
3539 put_device(cdev_device);
3540 ida_simple_remove(&nvme_ns_chr_minor_ida, minor);
3541 }
3542 return ret;
3543 }
3544
3545 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3546 {
3547 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3548 }
3549
3550 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3551 {
3552 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3553 return 0;
3554 }
3555
3556 static const struct file_operations nvme_ns_chr_fops = {
3557 .owner = THIS_MODULE,
3558 .open = nvme_ns_chr_open,
3559 .release = nvme_ns_chr_release,
3560 .unlocked_ioctl = nvme_ns_chr_ioctl,
3561 .compat_ioctl = compat_ptr_ioctl,
3562 };
3563
3564 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3565 {
3566 int ret;
3567
3568 ns->cdev_device.parent = ns->ctrl->device;
3569 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3570 ns->ctrl->instance, ns->head->instance);
3571 if (ret)
3572 return ret;
3573 ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3574 ns->ctrl->ops->module);
3575 if (ret)
3576 kfree_const(ns->cdev_device.kobj.name);
3577 return ret;
3578 }
3579
3580 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3581 unsigned nsid, struct nvme_ns_ids *ids)
3582 {
3583 struct nvme_ns_head *head;
3584 size_t size = sizeof(*head);
3585 int ret = -ENOMEM;
3586
3587 #ifdef CONFIG_NVME_MULTIPATH
3588 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3589 #endif
3590
3591 head = kzalloc(size, GFP_KERNEL);
3592 if (!head)
3593 goto out;
3594 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3595 if (ret < 0)
3596 goto out_free_head;
3597 head->instance = ret;
3598 INIT_LIST_HEAD(&head->list);
3599 ret = init_srcu_struct(&head->srcu);
3600 if (ret)
3601 goto out_ida_remove;
3602 head->subsys = ctrl->subsys;
3603 head->ns_id = nsid;
3604 head->ids = *ids;
3605 kref_init(&head->ref);
3606
3607 ret = __nvme_check_ids(ctrl->subsys, head);
3608 if (ret) {
3609 dev_err(ctrl->device,
3610 "duplicate IDs for nsid %d\n", nsid);
3611 goto out_cleanup_srcu;
3612 }
3613
3614 if (head->ids.csi) {
3615 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3616 if (ret)
3617 goto out_cleanup_srcu;
3618 } else
3619 head->effects = ctrl->effects;
3620
3621 ret = nvme_mpath_alloc_disk(ctrl, head);
3622 if (ret)
3623 goto out_cleanup_srcu;
3624
3625 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3626
3627 kref_get(&ctrl->subsys->ref);
3628
3629 return head;
3630 out_cleanup_srcu:
3631 cleanup_srcu_struct(&head->srcu);
3632 out_ida_remove:
3633 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3634 out_free_head:
3635 kfree(head);
3636 out:
3637 if (ret > 0)
3638 ret = blk_status_to_errno(nvme_error_status(ret));
3639 return ERR_PTR(ret);
3640 }
3641
3642 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3643 struct nvme_ns_ids *ids, bool is_shared)
3644 {
3645 struct nvme_ctrl *ctrl = ns->ctrl;
3646 struct nvme_ns_head *head = NULL;
3647 int ret = 0;
3648
3649 mutex_lock(&ctrl->subsys->lock);
3650 head = nvme_find_ns_head(ctrl->subsys, nsid);
3651 if (!head) {
3652 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3653 if (IS_ERR(head)) {
3654 ret = PTR_ERR(head);
3655 goto out_unlock;
3656 }
3657 head->shared = is_shared;
3658 } else {
3659 ret = -EINVAL;
3660 if (!is_shared || !head->shared) {
3661 dev_err(ctrl->device,
3662 "Duplicate unshared namespace %d\n", nsid);
3663 goto out_put_ns_head;
3664 }
3665 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3666 dev_err(ctrl->device,
3667 "IDs don't match for shared namespace %d\n",
3668 nsid);
3669 goto out_put_ns_head;
3670 }
3671 }
3672
3673 list_add_tail_rcu(&ns->siblings, &head->list);
3674 ns->head = head;
3675 mutex_unlock(&ctrl->subsys->lock);
3676 return 0;
3677
3678 out_put_ns_head:
3679 nvme_put_ns_head(head);
3680 out_unlock:
3681 mutex_unlock(&ctrl->subsys->lock);
3682 return ret;
3683 }
3684
3685 static int ns_cmp(void *priv, const struct list_head *a,
3686 const struct list_head *b)
3687 {
3688 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3689 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3690
3691 return nsa->head->ns_id - nsb->head->ns_id;
3692 }
3693
3694 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3695 {
3696 struct nvme_ns *ns, *ret = NULL;
3697
3698 down_read(&ctrl->namespaces_rwsem);
3699 list_for_each_entry(ns, &ctrl->namespaces, list) {
3700 if (ns->head->ns_id == nsid) {
3701 if (!nvme_get_ns(ns))
3702 continue;
3703 ret = ns;
3704 break;
3705 }
3706 if (ns->head->ns_id > nsid)
3707 break;
3708 }
3709 up_read(&ctrl->namespaces_rwsem);
3710 return ret;
3711 }
3712 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3713
3714 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3715 struct nvme_ns_ids *ids)
3716 {
3717 struct nvme_ns *ns;
3718 struct gendisk *disk;
3719 struct nvme_id_ns *id;
3720 int node = ctrl->numa_node;
3721
3722 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3723 return;
3724
3725 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3726 if (!ns)
3727 goto out_free_id;
3728
3729 ns->queue = blk_mq_init_queue(ctrl->tagset);
3730 if (IS_ERR(ns->queue))
3731 goto out_free_ns;
3732
3733 if (ctrl->opts && ctrl->opts->data_digest)
3734 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3735
3736 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3737 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3738 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3739
3740 ns->queue->queuedata = ns;
3741 ns->ctrl = ctrl;
3742 kref_init(&ns->kref);
3743
3744 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3745 goto out_free_queue;
3746
3747 disk = alloc_disk_node(0, node);
3748 if (!disk)
3749 goto out_unlink_ns;
3750
3751 disk->fops = &nvme_bdev_ops;
3752 disk->private_data = ns;
3753 disk->queue = ns->queue;
3754 /*
3755 * Without the multipath code enabled, multiple controller per
3756 * subsystems are visible as devices and thus we cannot use the
3757 * subsystem instance.
3758 */
3759 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3760 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3761 ns->head->instance);
3762 ns->disk = disk;
3763
3764 if (nvme_update_ns_info(ns, id))
3765 goto out_put_disk;
3766
3767 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3768 if (nvme_nvm_register(ns, disk->disk_name, node)) {
3769 dev_warn(ctrl->device, "LightNVM init failure\n");
3770 goto out_put_disk;
3771 }
3772 }
3773
3774 down_write(&ctrl->namespaces_rwsem);
3775 list_add_tail(&ns->list, &ctrl->namespaces);
3776 up_write(&ctrl->namespaces_rwsem);
3777
3778 nvme_get_ctrl(ctrl);
3779
3780 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3781 if (!nvme_ns_head_multipath(ns->head))
3782 nvme_add_ns_cdev(ns);
3783
3784 nvme_mpath_add_disk(ns, id);
3785 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3786 kfree(id);
3787
3788 return;
3789 out_put_disk:
3790 /* prevent double queue cleanup */
3791 ns->disk->queue = NULL;
3792 put_disk(ns->disk);
3793 out_unlink_ns:
3794 mutex_lock(&ctrl->subsys->lock);
3795 list_del_rcu(&ns->siblings);
3796 if (list_empty(&ns->head->list))
3797 list_del_init(&ns->head->entry);
3798 mutex_unlock(&ctrl->subsys->lock);
3799 nvme_put_ns_head(ns->head);
3800 out_free_queue:
3801 blk_cleanup_queue(ns->queue);
3802 out_free_ns:
3803 kfree(ns);
3804 out_free_id:
3805 kfree(id);
3806 }
3807
3808 static void nvme_ns_remove(struct nvme_ns *ns)
3809 {
3810 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3811 return;
3812
3813 set_capacity(ns->disk, 0);
3814 nvme_fault_inject_fini(&ns->fault_inject);
3815
3816 mutex_lock(&ns->ctrl->subsys->lock);
3817 list_del_rcu(&ns->siblings);
3818 if (list_empty(&ns->head->list))
3819 list_del_init(&ns->head->entry);
3820 mutex_unlock(&ns->ctrl->subsys->lock);
3821
3822 synchronize_rcu(); /* guarantee not available in head->list */
3823 nvme_mpath_clear_current_path(ns);
3824 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3825
3826 if (ns->disk->flags & GENHD_FL_UP) {
3827 if (!nvme_ns_head_multipath(ns->head))
3828 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3829 del_gendisk(ns->disk);
3830 blk_cleanup_queue(ns->queue);
3831 if (blk_get_integrity(ns->disk))
3832 blk_integrity_unregister(ns->disk);
3833 }
3834
3835 down_write(&ns->ctrl->namespaces_rwsem);
3836 list_del_init(&ns->list);
3837 up_write(&ns->ctrl->namespaces_rwsem);
3838
3839 nvme_mpath_check_last_path(ns);
3840 nvme_put_ns(ns);
3841 }
3842
3843 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3844 {
3845 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3846
3847 if (ns) {
3848 nvme_ns_remove(ns);
3849 nvme_put_ns(ns);
3850 }
3851 }
3852
3853 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3854 {
3855 struct nvme_id_ns *id;
3856 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3857
3858 if (test_bit(NVME_NS_DEAD, &ns->flags))
3859 goto out;
3860
3861 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3862 if (ret)
3863 goto out;
3864
3865 ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3866 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3867 dev_err(ns->ctrl->device,
3868 "identifiers changed for nsid %d\n", ns->head->ns_id);
3869 goto out_free_id;
3870 }
3871
3872 ret = nvme_update_ns_info(ns, id);
3873
3874 out_free_id:
3875 kfree(id);
3876 out:
3877 /*
3878 * Only remove the namespace if we got a fatal error back from the
3879 * device, otherwise ignore the error and just move on.
3880 *
3881 * TODO: we should probably schedule a delayed retry here.
3882 */
3883 if (ret > 0 && (ret & NVME_SC_DNR))
3884 nvme_ns_remove(ns);
3885 }
3886
3887 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3888 {
3889 struct nvme_ns_ids ids = { };
3890 struct nvme_ns *ns;
3891
3892 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3893 return;
3894
3895 ns = nvme_find_get_ns(ctrl, nsid);
3896 if (ns) {
3897 nvme_validate_ns(ns, &ids);
3898 nvme_put_ns(ns);
3899 return;
3900 }
3901
3902 switch (ids.csi) {
3903 case NVME_CSI_NVM:
3904 nvme_alloc_ns(ctrl, nsid, &ids);
3905 break;
3906 case NVME_CSI_ZNS:
3907 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3908 dev_warn(ctrl->device,
3909 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3910 nsid);
3911 break;
3912 }
3913 if (!nvme_multi_css(ctrl)) {
3914 dev_warn(ctrl->device,
3915 "command set not reported for nsid: %d\n",
3916 nsid);
3917 break;
3918 }
3919 nvme_alloc_ns(ctrl, nsid, &ids);
3920 break;
3921 default:
3922 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3923 ids.csi, nsid);
3924 break;
3925 }
3926 }
3927
3928 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3929 unsigned nsid)
3930 {
3931 struct nvme_ns *ns, *next;
3932 LIST_HEAD(rm_list);
3933
3934 down_write(&ctrl->namespaces_rwsem);
3935 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3936 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3937 list_move_tail(&ns->list, &rm_list);
3938 }
3939 up_write(&ctrl->namespaces_rwsem);
3940
3941 list_for_each_entry_safe(ns, next, &rm_list, list)
3942 nvme_ns_remove(ns);
3943
3944 }
3945
3946 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3947 {
3948 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3949 __le32 *ns_list;
3950 u32 prev = 0;
3951 int ret = 0, i;
3952
3953 if (nvme_ctrl_limited_cns(ctrl))
3954 return -EOPNOTSUPP;
3955
3956 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3957 if (!ns_list)
3958 return -ENOMEM;
3959
3960 for (;;) {
3961 struct nvme_command cmd = {
3962 .identify.opcode = nvme_admin_identify,
3963 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
3964 .identify.nsid = cpu_to_le32(prev),
3965 };
3966
3967 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3968 NVME_IDENTIFY_DATA_SIZE);
3969 if (ret) {
3970 dev_warn(ctrl->device,
3971 "Identify NS List failed (status=0x%x)\n", ret);
3972 goto free;
3973 }
3974
3975 for (i = 0; i < nr_entries; i++) {
3976 u32 nsid = le32_to_cpu(ns_list[i]);
3977
3978 if (!nsid) /* end of the list? */
3979 goto out;
3980 nvme_validate_or_alloc_ns(ctrl, nsid);
3981 while (++prev < nsid)
3982 nvme_ns_remove_by_nsid(ctrl, prev);
3983 }
3984 }
3985 out:
3986 nvme_remove_invalid_namespaces(ctrl, prev);
3987 free:
3988 kfree(ns_list);
3989 return ret;
3990 }
3991
3992 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3993 {
3994 struct nvme_id_ctrl *id;
3995 u32 nn, i;
3996
3997 if (nvme_identify_ctrl(ctrl, &id))
3998 return;
3999 nn = le32_to_cpu(id->nn);
4000 kfree(id);
4001
4002 for (i = 1; i <= nn; i++)
4003 nvme_validate_or_alloc_ns(ctrl, i);
4004
4005 nvme_remove_invalid_namespaces(ctrl, nn);
4006 }
4007
4008 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4009 {
4010 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4011 __le32 *log;
4012 int error;
4013
4014 log = kzalloc(log_size, GFP_KERNEL);
4015 if (!log)
4016 return;
4017
4018 /*
4019 * We need to read the log to clear the AEN, but we don't want to rely
4020 * on it for the changed namespace information as userspace could have
4021 * raced with us in reading the log page, which could cause us to miss
4022 * updates.
4023 */
4024 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4025 NVME_CSI_NVM, log, log_size, 0);
4026 if (error)
4027 dev_warn(ctrl->device,
4028 "reading changed ns log failed: %d\n", error);
4029
4030 kfree(log);
4031 }
4032
4033 static void nvme_scan_work(struct work_struct *work)
4034 {
4035 struct nvme_ctrl *ctrl =
4036 container_of(work, struct nvme_ctrl, scan_work);
4037
4038 /* No tagset on a live ctrl means IO queues could not created */
4039 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4040 return;
4041
4042 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4043 dev_info(ctrl->device, "rescanning namespaces.\n");
4044 nvme_clear_changed_ns_log(ctrl);
4045 }
4046
4047 mutex_lock(&ctrl->scan_lock);
4048 if (nvme_scan_ns_list(ctrl) != 0)
4049 nvme_scan_ns_sequential(ctrl);
4050 mutex_unlock(&ctrl->scan_lock);
4051
4052 down_write(&ctrl->namespaces_rwsem);
4053 list_sort(NULL, &ctrl->namespaces, ns_cmp);
4054 up_write(&ctrl->namespaces_rwsem);
4055 }
4056
4057 /*
4058 * This function iterates the namespace list unlocked to allow recovery from
4059 * controller failure. It is up to the caller to ensure the namespace list is
4060 * not modified by scan work while this function is executing.
4061 */
4062 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4063 {
4064 struct nvme_ns *ns, *next;
4065 LIST_HEAD(ns_list);
4066
4067 /*
4068 * make sure to requeue I/O to all namespaces as these
4069 * might result from the scan itself and must complete
4070 * for the scan_work to make progress
4071 */
4072 nvme_mpath_clear_ctrl_paths(ctrl);
4073
4074 /* prevent racing with ns scanning */
4075 flush_work(&ctrl->scan_work);
4076
4077 /*
4078 * The dead states indicates the controller was not gracefully
4079 * disconnected. In that case, we won't be able to flush any data while
4080 * removing the namespaces' disks; fail all the queues now to avoid
4081 * potentially having to clean up the failed sync later.
4082 */
4083 if (ctrl->state == NVME_CTRL_DEAD)
4084 nvme_kill_queues(ctrl);
4085
4086 /* this is a no-op when called from the controller reset handler */
4087 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4088
4089 down_write(&ctrl->namespaces_rwsem);
4090 list_splice_init(&ctrl->namespaces, &ns_list);
4091 up_write(&ctrl->namespaces_rwsem);
4092
4093 list_for_each_entry_safe(ns, next, &ns_list, list)
4094 nvme_ns_remove(ns);
4095 }
4096 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4097
4098 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4099 {
4100 struct nvme_ctrl *ctrl =
4101 container_of(dev, struct nvme_ctrl, ctrl_device);
4102 struct nvmf_ctrl_options *opts = ctrl->opts;
4103 int ret;
4104
4105 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4106 if (ret)
4107 return ret;
4108
4109 if (opts) {
4110 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4111 if (ret)
4112 return ret;
4113
4114 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4115 opts->trsvcid ?: "none");
4116 if (ret)
4117 return ret;
4118
4119 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4120 opts->host_traddr ?: "none");
4121 if (ret)
4122 return ret;
4123
4124 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4125 opts->host_iface ?: "none");
4126 }
4127 return ret;
4128 }
4129
4130 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4131 {
4132 char *envp[2] = { NULL, NULL };
4133 u32 aen_result = ctrl->aen_result;
4134
4135 ctrl->aen_result = 0;
4136 if (!aen_result)
4137 return;
4138
4139 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4140 if (!envp[0])
4141 return;
4142 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4143 kfree(envp[0]);
4144 }
4145
4146 static void nvme_async_event_work(struct work_struct *work)
4147 {
4148 struct nvme_ctrl *ctrl =
4149 container_of(work, struct nvme_ctrl, async_event_work);
4150
4151 nvme_aen_uevent(ctrl);
4152 ctrl->ops->submit_async_event(ctrl);
4153 }
4154
4155 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4156 {
4157
4158 u32 csts;
4159
4160 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4161 return false;
4162
4163 if (csts == ~0)
4164 return false;
4165
4166 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4167 }
4168
4169 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4170 {
4171 struct nvme_fw_slot_info_log *log;
4172
4173 log = kmalloc(sizeof(*log), GFP_KERNEL);
4174 if (!log)
4175 return;
4176
4177 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4178 log, sizeof(*log), 0))
4179 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4180 kfree(log);
4181 }
4182
4183 static void nvme_fw_act_work(struct work_struct *work)
4184 {
4185 struct nvme_ctrl *ctrl = container_of(work,
4186 struct nvme_ctrl, fw_act_work);
4187 unsigned long fw_act_timeout;
4188
4189 if (ctrl->mtfa)
4190 fw_act_timeout = jiffies +
4191 msecs_to_jiffies(ctrl->mtfa * 100);
4192 else
4193 fw_act_timeout = jiffies +
4194 msecs_to_jiffies(admin_timeout * 1000);
4195
4196 nvme_stop_queues(ctrl);
4197 while (nvme_ctrl_pp_status(ctrl)) {
4198 if (time_after(jiffies, fw_act_timeout)) {
4199 dev_warn(ctrl->device,
4200 "Fw activation timeout, reset controller\n");
4201 nvme_try_sched_reset(ctrl);
4202 return;
4203 }
4204 msleep(100);
4205 }
4206
4207 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4208 return;
4209
4210 nvme_start_queues(ctrl);
4211 /* read FW slot information to clear the AER */
4212 nvme_get_fw_slot_info(ctrl);
4213 }
4214
4215 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4216 {
4217 u32 aer_notice_type = (result & 0xff00) >> 8;
4218
4219 trace_nvme_async_event(ctrl, aer_notice_type);
4220
4221 switch (aer_notice_type) {
4222 case NVME_AER_NOTICE_NS_CHANGED:
4223 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4224 nvme_queue_scan(ctrl);
4225 break;
4226 case NVME_AER_NOTICE_FW_ACT_STARTING:
4227 /*
4228 * We are (ab)using the RESETTING state to prevent subsequent
4229 * recovery actions from interfering with the controller's
4230 * firmware activation.
4231 */
4232 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4233 queue_work(nvme_wq, &ctrl->fw_act_work);
4234 break;
4235 #ifdef CONFIG_NVME_MULTIPATH
4236 case NVME_AER_NOTICE_ANA:
4237 if (!ctrl->ana_log_buf)
4238 break;
4239 queue_work(nvme_wq, &ctrl->ana_work);
4240 break;
4241 #endif
4242 case NVME_AER_NOTICE_DISC_CHANGED:
4243 ctrl->aen_result = result;
4244 break;
4245 default:
4246 dev_warn(ctrl->device, "async event result %08x\n", result);
4247 }
4248 }
4249
4250 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4251 volatile union nvme_result *res)
4252 {
4253 u32 result = le32_to_cpu(res->u32);
4254 u32 aer_type = result & 0x07;
4255
4256 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4257 return;
4258
4259 switch (aer_type) {
4260 case NVME_AER_NOTICE:
4261 nvme_handle_aen_notice(ctrl, result);
4262 break;
4263 case NVME_AER_ERROR:
4264 case NVME_AER_SMART:
4265 case NVME_AER_CSS:
4266 case NVME_AER_VS:
4267 trace_nvme_async_event(ctrl, aer_type);
4268 ctrl->aen_result = result;
4269 break;
4270 default:
4271 break;
4272 }
4273 queue_work(nvme_wq, &ctrl->async_event_work);
4274 }
4275 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4276
4277 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4278 {
4279 nvme_mpath_stop(ctrl);
4280 nvme_stop_keep_alive(ctrl);
4281 nvme_stop_failfast_work(ctrl);
4282 flush_work(&ctrl->async_event_work);
4283 cancel_work_sync(&ctrl->fw_act_work);
4284 }
4285 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4286
4287 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4288 {
4289 nvme_start_keep_alive(ctrl);
4290
4291 nvme_enable_aen(ctrl);
4292
4293 if (ctrl->queue_count > 1) {
4294 nvme_queue_scan(ctrl);
4295 nvme_start_queues(ctrl);
4296 }
4297 }
4298 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4299
4300 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4301 {
4302 nvme_hwmon_exit(ctrl);
4303 nvme_fault_inject_fini(&ctrl->fault_inject);
4304 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4305 cdev_device_del(&ctrl->cdev, ctrl->device);
4306 nvme_put_ctrl(ctrl);
4307 }
4308 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4309
4310 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4311 {
4312 struct nvme_effects_log *cel;
4313 unsigned long i;
4314
4315 xa_for_each(&ctrl->cels, i, cel) {
4316 xa_erase(&ctrl->cels, i);
4317 kfree(cel);
4318 }
4319
4320 xa_destroy(&ctrl->cels);
4321 }
4322
4323 static void nvme_free_ctrl(struct device *dev)
4324 {
4325 struct nvme_ctrl *ctrl =
4326 container_of(dev, struct nvme_ctrl, ctrl_device);
4327 struct nvme_subsystem *subsys = ctrl->subsys;
4328
4329 if (!subsys || ctrl->instance != subsys->instance)
4330 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4331
4332 nvme_free_cels(ctrl);
4333 nvme_mpath_uninit(ctrl);
4334 __free_page(ctrl->discard_page);
4335
4336 if (subsys) {
4337 mutex_lock(&nvme_subsystems_lock);
4338 list_del(&ctrl->subsys_entry);
4339 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4340 mutex_unlock(&nvme_subsystems_lock);
4341 }
4342
4343 ctrl->ops->free_ctrl(ctrl);
4344
4345 if (subsys)
4346 nvme_put_subsystem(subsys);
4347 }
4348
4349 /*
4350 * Initialize a NVMe controller structures. This needs to be called during
4351 * earliest initialization so that we have the initialized structured around
4352 * during probing.
4353 */
4354 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4355 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4356 {
4357 int ret;
4358
4359 ctrl->state = NVME_CTRL_NEW;
4360 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4361 spin_lock_init(&ctrl->lock);
4362 mutex_init(&ctrl->scan_lock);
4363 INIT_LIST_HEAD(&ctrl->namespaces);
4364 xa_init(&ctrl->cels);
4365 init_rwsem(&ctrl->namespaces_rwsem);
4366 ctrl->dev = dev;
4367 ctrl->ops = ops;
4368 ctrl->quirks = quirks;
4369 ctrl->numa_node = NUMA_NO_NODE;
4370 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4371 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4372 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4373 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4374 init_waitqueue_head(&ctrl->state_wq);
4375
4376 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4377 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4378 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4379 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4380
4381 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4382 PAGE_SIZE);
4383 ctrl->discard_page = alloc_page(GFP_KERNEL);
4384 if (!ctrl->discard_page) {
4385 ret = -ENOMEM;
4386 goto out;
4387 }
4388
4389 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4390 if (ret < 0)
4391 goto out;
4392 ctrl->instance = ret;
4393
4394 device_initialize(&ctrl->ctrl_device);
4395 ctrl->device = &ctrl->ctrl_device;
4396 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4397 ctrl->instance);
4398 ctrl->device->class = nvme_class;
4399 ctrl->device->parent = ctrl->dev;
4400 ctrl->device->groups = nvme_dev_attr_groups;
4401 ctrl->device->release = nvme_free_ctrl;
4402 dev_set_drvdata(ctrl->device, ctrl);
4403 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4404 if (ret)
4405 goto out_release_instance;
4406
4407 nvme_get_ctrl(ctrl);
4408 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4409 ctrl->cdev.owner = ops->module;
4410 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4411 if (ret)
4412 goto out_free_name;
4413
4414 /*
4415 * Initialize latency tolerance controls. The sysfs files won't
4416 * be visible to userspace unless the device actually supports APST.
4417 */
4418 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4419 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4420 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4421
4422 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4423 nvme_mpath_init_ctrl(ctrl);
4424
4425 return 0;
4426 out_free_name:
4427 nvme_put_ctrl(ctrl);
4428 kfree_const(ctrl->device->kobj.name);
4429 out_release_instance:
4430 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4431 out:
4432 if (ctrl->discard_page)
4433 __free_page(ctrl->discard_page);
4434 return ret;
4435 }
4436 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4437
4438 /**
4439 * nvme_kill_queues(): Ends all namespace queues
4440 * @ctrl: the dead controller that needs to end
4441 *
4442 * Call this function when the driver determines it is unable to get the
4443 * controller in a state capable of servicing IO.
4444 */
4445 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4446 {
4447 struct nvme_ns *ns;
4448
4449 down_read(&ctrl->namespaces_rwsem);
4450
4451 /* Forcibly unquiesce queues to avoid blocking dispatch */
4452 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4453 blk_mq_unquiesce_queue(ctrl->admin_q);
4454
4455 list_for_each_entry(ns, &ctrl->namespaces, list)
4456 nvme_set_queue_dying(ns);
4457
4458 up_read(&ctrl->namespaces_rwsem);
4459 }
4460 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4461
4462 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4463 {
4464 struct nvme_ns *ns;
4465
4466 down_read(&ctrl->namespaces_rwsem);
4467 list_for_each_entry(ns, &ctrl->namespaces, list)
4468 blk_mq_unfreeze_queue(ns->queue);
4469 up_read(&ctrl->namespaces_rwsem);
4470 }
4471 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4472
4473 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4474 {
4475 struct nvme_ns *ns;
4476
4477 down_read(&ctrl->namespaces_rwsem);
4478 list_for_each_entry(ns, &ctrl->namespaces, list) {
4479 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4480 if (timeout <= 0)
4481 break;
4482 }
4483 up_read(&ctrl->namespaces_rwsem);
4484 return timeout;
4485 }
4486 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4487
4488 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4489 {
4490 struct nvme_ns *ns;
4491
4492 down_read(&ctrl->namespaces_rwsem);
4493 list_for_each_entry(ns, &ctrl->namespaces, list)
4494 blk_mq_freeze_queue_wait(ns->queue);
4495 up_read(&ctrl->namespaces_rwsem);
4496 }
4497 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4498
4499 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4500 {
4501 struct nvme_ns *ns;
4502
4503 down_read(&ctrl->namespaces_rwsem);
4504 list_for_each_entry(ns, &ctrl->namespaces, list)
4505 blk_freeze_queue_start(ns->queue);
4506 up_read(&ctrl->namespaces_rwsem);
4507 }
4508 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4509
4510 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4511 {
4512 struct nvme_ns *ns;
4513
4514 down_read(&ctrl->namespaces_rwsem);
4515 list_for_each_entry(ns, &ctrl->namespaces, list)
4516 blk_mq_quiesce_queue(ns->queue);
4517 up_read(&ctrl->namespaces_rwsem);
4518 }
4519 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4520
4521 void nvme_start_queues(struct nvme_ctrl *ctrl)
4522 {
4523 struct nvme_ns *ns;
4524
4525 down_read(&ctrl->namespaces_rwsem);
4526 list_for_each_entry(ns, &ctrl->namespaces, list)
4527 blk_mq_unquiesce_queue(ns->queue);
4528 up_read(&ctrl->namespaces_rwsem);
4529 }
4530 EXPORT_SYMBOL_GPL(nvme_start_queues);
4531
4532 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4533 {
4534 struct nvme_ns *ns;
4535
4536 down_read(&ctrl->namespaces_rwsem);
4537 list_for_each_entry(ns, &ctrl->namespaces, list)
4538 blk_sync_queue(ns->queue);
4539 up_read(&ctrl->namespaces_rwsem);
4540 }
4541 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4542
4543 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4544 {
4545 nvme_sync_io_queues(ctrl);
4546 if (ctrl->admin_q)
4547 blk_sync_queue(ctrl->admin_q);
4548 }
4549 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4550
4551 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4552 {
4553 if (file->f_op != &nvme_dev_fops)
4554 return NULL;
4555 return file->private_data;
4556 }
4557 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4558
4559 /*
4560 * Check we didn't inadvertently grow the command structure sizes:
4561 */
4562 static inline void _nvme_check_size(void)
4563 {
4564 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4565 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4566 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4567 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4568 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4569 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4570 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4571 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4572 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4573 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4574 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4575 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4576 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4577 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4578 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4579 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4580 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4581 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4582 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4583 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4584 }
4585
4586
4587 static int __init nvme_core_init(void)
4588 {
4589 int result = -ENOMEM;
4590
4591 _nvme_check_size();
4592
4593 nvme_wq = alloc_workqueue("nvme-wq",
4594 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4595 if (!nvme_wq)
4596 goto out;
4597
4598 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4599 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4600 if (!nvme_reset_wq)
4601 goto destroy_wq;
4602
4603 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4604 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4605 if (!nvme_delete_wq)
4606 goto destroy_reset_wq;
4607
4608 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4609 NVME_MINORS, "nvme");
4610 if (result < 0)
4611 goto destroy_delete_wq;
4612
4613 nvme_class = class_create(THIS_MODULE, "nvme");
4614 if (IS_ERR(nvme_class)) {
4615 result = PTR_ERR(nvme_class);
4616 goto unregister_chrdev;
4617 }
4618 nvme_class->dev_uevent = nvme_class_uevent;
4619
4620 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4621 if (IS_ERR(nvme_subsys_class)) {
4622 result = PTR_ERR(nvme_subsys_class);
4623 goto destroy_class;
4624 }
4625
4626 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4627 "nvme-generic");
4628 if (result < 0)
4629 goto destroy_subsys_class;
4630
4631 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4632 if (IS_ERR(nvme_ns_chr_class)) {
4633 result = PTR_ERR(nvme_ns_chr_class);
4634 goto unregister_generic_ns;
4635 }
4636
4637 return 0;
4638
4639 unregister_generic_ns:
4640 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4641 destroy_subsys_class:
4642 class_destroy(nvme_subsys_class);
4643 destroy_class:
4644 class_destroy(nvme_class);
4645 unregister_chrdev:
4646 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4647 destroy_delete_wq:
4648 destroy_workqueue(nvme_delete_wq);
4649 destroy_reset_wq:
4650 destroy_workqueue(nvme_reset_wq);
4651 destroy_wq:
4652 destroy_workqueue(nvme_wq);
4653 out:
4654 return result;
4655 }
4656
4657 static void __exit nvme_core_exit(void)
4658 {
4659 class_destroy(nvme_ns_chr_class);
4660 class_destroy(nvme_subsys_class);
4661 class_destroy(nvme_class);
4662 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4663 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4664 destroy_workqueue(nvme_delete_wq);
4665 destroy_workqueue(nvme_reset_wq);
4666 destroy_workqueue(nvme_wq);
4667 ida_destroy(&nvme_ns_chr_minor_ida);
4668 ida_destroy(&nvme_instance_ida);
4669 }
4670
4671 MODULE_LICENSE("GPL");
4672 MODULE_VERSION("1.0");
4673 module_init(nvme_core_init);
4674 module_exit(nvme_core_exit);