]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/core.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS (1U << MINORBITS)
36
37 unsigned int admin_timeout = 60;
38 module_param(admin_timeout, uint, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned int nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54
55 static unsigned long default_ps_max_latency_us = 100000;
56 module_param(default_ps_max_latency_us, ulong, 0644);
57 MODULE_PARM_DESC(default_ps_max_latency_us,
58 "max power saving latency for new devices; use PM QOS to change per device");
59
60 static bool force_apst;
61 module_param(force_apst, bool, 0644);
62 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
63
64 static bool streams;
65 module_param(streams, bool, 0644);
66 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
67
68 struct workqueue_struct *nvme_wq;
69 EXPORT_SYMBOL_GPL(nvme_wq);
70
71 static DEFINE_IDA(nvme_subsystems_ida);
72 static LIST_HEAD(nvme_subsystems);
73 static DEFINE_MUTEX(nvme_subsystems_lock);
74
75 static DEFINE_IDA(nvme_instance_ida);
76 static dev_t nvme_chr_devt;
77 static struct class *nvme_class;
78 static struct class *nvme_subsys_class;
79
80 static void nvme_ns_remove(struct nvme_ns *ns);
81 static int nvme_revalidate_disk(struct gendisk *disk);
82
83 static __le32 nvme_get_log_dw10(u8 lid, size_t size)
84 {
85 return cpu_to_le32((((size / 4) - 1) << 16) | lid);
86 }
87
88 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
89 {
90 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
91 return -EBUSY;
92 if (!queue_work(nvme_wq, &ctrl->reset_work))
93 return -EBUSY;
94 return 0;
95 }
96 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
97
98 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
99 {
100 int ret;
101
102 ret = nvme_reset_ctrl(ctrl);
103 if (!ret)
104 flush_work(&ctrl->reset_work);
105 return ret;
106 }
107
108 static void nvme_delete_ctrl_work(struct work_struct *work)
109 {
110 struct nvme_ctrl *ctrl =
111 container_of(work, struct nvme_ctrl, delete_work);
112
113 flush_work(&ctrl->reset_work);
114 nvme_stop_ctrl(ctrl);
115 nvme_remove_namespaces(ctrl);
116 ctrl->ops->delete_ctrl(ctrl);
117 nvme_uninit_ctrl(ctrl);
118 nvme_put_ctrl(ctrl);
119 }
120
121 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
122 {
123 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
124 return -EBUSY;
125 if (!queue_work(nvme_wq, &ctrl->delete_work))
126 return -EBUSY;
127 return 0;
128 }
129 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
130
131 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
132 {
133 int ret = 0;
134
135 /*
136 * Keep a reference until the work is flushed since ->delete_ctrl
137 * can free the controller.
138 */
139 nvme_get_ctrl(ctrl);
140 ret = nvme_delete_ctrl(ctrl);
141 if (!ret)
142 flush_work(&ctrl->delete_work);
143 nvme_put_ctrl(ctrl);
144 return ret;
145 }
146 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
147
148 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
149 {
150 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
151 }
152
153 static blk_status_t nvme_error_status(struct request *req)
154 {
155 switch (nvme_req(req)->status & 0x7ff) {
156 case NVME_SC_SUCCESS:
157 return BLK_STS_OK;
158 case NVME_SC_CAP_EXCEEDED:
159 return BLK_STS_NOSPC;
160 case NVME_SC_ONCS_NOT_SUPPORTED:
161 return BLK_STS_NOTSUPP;
162 case NVME_SC_WRITE_FAULT:
163 case NVME_SC_READ_ERROR:
164 case NVME_SC_UNWRITTEN_BLOCK:
165 case NVME_SC_ACCESS_DENIED:
166 case NVME_SC_READ_ONLY:
167 return BLK_STS_MEDIUM;
168 case NVME_SC_GUARD_CHECK:
169 case NVME_SC_APPTAG_CHECK:
170 case NVME_SC_REFTAG_CHECK:
171 case NVME_SC_INVALID_PI:
172 return BLK_STS_PROTECTION;
173 case NVME_SC_RESERVATION_CONFLICT:
174 return BLK_STS_NEXUS;
175 default:
176 return BLK_STS_IOERR;
177 }
178 }
179
180 static inline bool nvme_req_needs_retry(struct request *req)
181 {
182 if (blk_noretry_request(req))
183 return false;
184 if (nvme_req(req)->status & NVME_SC_DNR)
185 return false;
186 if (nvme_req(req)->retries >= nvme_max_retries)
187 return false;
188 return true;
189 }
190
191 void nvme_complete_rq(struct request *req)
192 {
193 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
194 if (nvme_req_needs_failover(req)) {
195 nvme_failover_req(req);
196 return;
197 }
198
199 if (!blk_queue_dying(req->q)) {
200 nvme_req(req)->retries++;
201 blk_mq_requeue_request(req, true);
202 return;
203 }
204 }
205
206 blk_mq_end_request(req, nvme_error_status(req));
207 }
208 EXPORT_SYMBOL_GPL(nvme_complete_rq);
209
210 void nvme_cancel_request(struct request *req, void *data, bool reserved)
211 {
212 if (!blk_mq_request_started(req))
213 return;
214
215 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
216 "Cancelling I/O %d", req->tag);
217
218 nvme_req(req)->status = NVME_SC_ABORT_REQ;
219 blk_mq_complete_request(req);
220
221 }
222 EXPORT_SYMBOL_GPL(nvme_cancel_request);
223
224 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
225 enum nvme_ctrl_state new_state)
226 {
227 enum nvme_ctrl_state old_state;
228 unsigned long flags;
229 bool changed = false;
230
231 spin_lock_irqsave(&ctrl->lock, flags);
232
233 old_state = ctrl->state;
234 switch (new_state) {
235 case NVME_CTRL_LIVE:
236 switch (old_state) {
237 case NVME_CTRL_NEW:
238 case NVME_CTRL_RESETTING:
239 case NVME_CTRL_RECONNECTING:
240 changed = true;
241 /* FALLTHRU */
242 default:
243 break;
244 }
245 break;
246 case NVME_CTRL_RESETTING:
247 switch (old_state) {
248 case NVME_CTRL_NEW:
249 case NVME_CTRL_LIVE:
250 changed = true;
251 /* FALLTHRU */
252 default:
253 break;
254 }
255 break;
256 case NVME_CTRL_RECONNECTING:
257 switch (old_state) {
258 case NVME_CTRL_LIVE:
259 case NVME_CTRL_RESETTING:
260 changed = true;
261 /* FALLTHRU */
262 default:
263 break;
264 }
265 break;
266 case NVME_CTRL_DELETING:
267 switch (old_state) {
268 case NVME_CTRL_LIVE:
269 case NVME_CTRL_RESETTING:
270 case NVME_CTRL_RECONNECTING:
271 changed = true;
272 /* FALLTHRU */
273 default:
274 break;
275 }
276 break;
277 case NVME_CTRL_DEAD:
278 switch (old_state) {
279 case NVME_CTRL_DELETING:
280 changed = true;
281 /* FALLTHRU */
282 default:
283 break;
284 }
285 break;
286 default:
287 break;
288 }
289
290 if (changed)
291 ctrl->state = new_state;
292
293 spin_unlock_irqrestore(&ctrl->lock, flags);
294 if (changed && ctrl->state == NVME_CTRL_LIVE)
295 nvme_kick_requeue_lists(ctrl);
296 return changed;
297 }
298 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
299
300 static void nvme_free_ns_head(struct kref *ref)
301 {
302 struct nvme_ns_head *head =
303 container_of(ref, struct nvme_ns_head, ref);
304
305 nvme_mpath_remove_disk(head);
306 ida_simple_remove(&head->subsys->ns_ida, head->instance);
307 list_del_init(&head->entry);
308 cleanup_srcu_struct(&head->srcu);
309 kfree(head);
310 }
311
312 static void nvme_put_ns_head(struct nvme_ns_head *head)
313 {
314 kref_put(&head->ref, nvme_free_ns_head);
315 }
316
317 static void nvme_free_ns(struct kref *kref)
318 {
319 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
320
321 if (ns->ndev)
322 nvme_nvm_unregister(ns);
323
324 put_disk(ns->disk);
325 nvme_put_ns_head(ns->head);
326 nvme_put_ctrl(ns->ctrl);
327 kfree(ns);
328 }
329
330 static void nvme_put_ns(struct nvme_ns *ns)
331 {
332 kref_put(&ns->kref, nvme_free_ns);
333 }
334
335 struct request *nvme_alloc_request(struct request_queue *q,
336 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
337 {
338 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
339 struct request *req;
340
341 if (qid == NVME_QID_ANY) {
342 req = blk_mq_alloc_request(q, op, flags);
343 } else {
344 req = blk_mq_alloc_request_hctx(q, op, flags,
345 qid ? qid - 1 : 0);
346 }
347 if (IS_ERR(req))
348 return req;
349
350 req->cmd_flags |= REQ_FAILFAST_DRIVER;
351 nvme_req(req)->cmd = cmd;
352
353 return req;
354 }
355 EXPORT_SYMBOL_GPL(nvme_alloc_request);
356
357 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
358 {
359 struct nvme_command c;
360
361 memset(&c, 0, sizeof(c));
362
363 c.directive.opcode = nvme_admin_directive_send;
364 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
365 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
366 c.directive.dtype = NVME_DIR_IDENTIFY;
367 c.directive.tdtype = NVME_DIR_STREAMS;
368 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
369
370 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
371 }
372
373 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
374 {
375 return nvme_toggle_streams(ctrl, false);
376 }
377
378 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
379 {
380 return nvme_toggle_streams(ctrl, true);
381 }
382
383 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
384 struct streams_directive_params *s, u32 nsid)
385 {
386 struct nvme_command c;
387
388 memset(&c, 0, sizeof(c));
389 memset(s, 0, sizeof(*s));
390
391 c.directive.opcode = nvme_admin_directive_recv;
392 c.directive.nsid = cpu_to_le32(nsid);
393 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
394 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
395 c.directive.dtype = NVME_DIR_STREAMS;
396
397 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
398 }
399
400 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
401 {
402 struct streams_directive_params s;
403 int ret;
404
405 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
406 return 0;
407 if (!streams)
408 return 0;
409
410 ret = nvme_enable_streams(ctrl);
411 if (ret)
412 return ret;
413
414 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
415 if (ret)
416 return ret;
417
418 ctrl->nssa = le16_to_cpu(s.nssa);
419 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
420 dev_info(ctrl->device, "too few streams (%u) available\n",
421 ctrl->nssa);
422 nvme_disable_streams(ctrl);
423 return 0;
424 }
425
426 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
427 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
428 return 0;
429 }
430
431 /*
432 * Check if 'req' has a write hint associated with it. If it does, assign
433 * a valid namespace stream to the write.
434 */
435 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
436 struct request *req, u16 *control,
437 u32 *dsmgmt)
438 {
439 enum rw_hint streamid = req->write_hint;
440
441 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
442 streamid = 0;
443 else {
444 streamid--;
445 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
446 return;
447
448 *control |= NVME_RW_DTYPE_STREAMS;
449 *dsmgmt |= streamid << 16;
450 }
451
452 if (streamid < ARRAY_SIZE(req->q->write_hints))
453 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
454 }
455
456 static inline void nvme_setup_flush(struct nvme_ns *ns,
457 struct nvme_command *cmnd)
458 {
459 memset(cmnd, 0, sizeof(*cmnd));
460 cmnd->common.opcode = nvme_cmd_flush;
461 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
462 }
463
464 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
465 struct nvme_command *cmnd)
466 {
467 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
468 struct nvme_dsm_range *range;
469 struct bio *bio;
470
471 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
472 if (!range)
473 return BLK_STS_RESOURCE;
474
475 __rq_for_each_bio(bio, req) {
476 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
477 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
478
479 range[n].cattr = cpu_to_le32(0);
480 range[n].nlb = cpu_to_le32(nlb);
481 range[n].slba = cpu_to_le64(slba);
482 n++;
483 }
484
485 if (WARN_ON_ONCE(n != segments)) {
486 kfree(range);
487 return BLK_STS_IOERR;
488 }
489
490 memset(cmnd, 0, sizeof(*cmnd));
491 cmnd->dsm.opcode = nvme_cmd_dsm;
492 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
493 cmnd->dsm.nr = cpu_to_le32(segments - 1);
494 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
495
496 req->special_vec.bv_page = virt_to_page(range);
497 req->special_vec.bv_offset = offset_in_page(range);
498 req->special_vec.bv_len = sizeof(*range) * segments;
499 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
500
501 return BLK_STS_OK;
502 }
503
504 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
505 struct request *req, struct nvme_command *cmnd)
506 {
507 struct nvme_ctrl *ctrl = ns->ctrl;
508 u16 control = 0;
509 u32 dsmgmt = 0;
510
511 if (req->cmd_flags & REQ_FUA)
512 control |= NVME_RW_FUA;
513 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
514 control |= NVME_RW_LR;
515
516 if (req->cmd_flags & REQ_RAHEAD)
517 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
518
519 memset(cmnd, 0, sizeof(*cmnd));
520 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
521 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
522 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
523 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
524
525 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
526 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
527
528 if (ns->ms) {
529 /*
530 * If formated with metadata, the block layer always provides a
531 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
532 * we enable the PRACT bit for protection information or set the
533 * namespace capacity to zero to prevent any I/O.
534 */
535 if (!blk_integrity_rq(req)) {
536 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
537 return BLK_STS_NOTSUPP;
538 control |= NVME_RW_PRINFO_PRACT;
539 }
540
541 switch (ns->pi_type) {
542 case NVME_NS_DPS_PI_TYPE3:
543 control |= NVME_RW_PRINFO_PRCHK_GUARD;
544 break;
545 case NVME_NS_DPS_PI_TYPE1:
546 case NVME_NS_DPS_PI_TYPE2:
547 control |= NVME_RW_PRINFO_PRCHK_GUARD |
548 NVME_RW_PRINFO_PRCHK_REF;
549 cmnd->rw.reftag = cpu_to_le32(
550 nvme_block_nr(ns, blk_rq_pos(req)));
551 break;
552 }
553 }
554
555 cmnd->rw.control = cpu_to_le16(control);
556 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
557 return 0;
558 }
559
560 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
561 struct nvme_command *cmd)
562 {
563 blk_status_t ret = BLK_STS_OK;
564
565 if (!(req->rq_flags & RQF_DONTPREP)) {
566 nvme_req(req)->retries = 0;
567 nvme_req(req)->flags = 0;
568 req->rq_flags |= RQF_DONTPREP;
569 }
570
571 switch (req_op(req)) {
572 case REQ_OP_DRV_IN:
573 case REQ_OP_DRV_OUT:
574 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
575 break;
576 case REQ_OP_FLUSH:
577 nvme_setup_flush(ns, cmd);
578 break;
579 case REQ_OP_WRITE_ZEROES:
580 /* currently only aliased to deallocate for a few ctrls: */
581 case REQ_OP_DISCARD:
582 ret = nvme_setup_discard(ns, req, cmd);
583 break;
584 case REQ_OP_READ:
585 case REQ_OP_WRITE:
586 ret = nvme_setup_rw(ns, req, cmd);
587 break;
588 default:
589 WARN_ON_ONCE(1);
590 return BLK_STS_IOERR;
591 }
592
593 cmd->common.command_id = req->tag;
594 return ret;
595 }
596 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
597
598 /*
599 * Returns 0 on success. If the result is negative, it's a Linux error code;
600 * if the result is positive, it's an NVM Express status code
601 */
602 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
603 union nvme_result *result, void *buffer, unsigned bufflen,
604 unsigned timeout, int qid, int at_head,
605 blk_mq_req_flags_t flags)
606 {
607 struct request *req;
608 int ret;
609
610 req = nvme_alloc_request(q, cmd, flags, qid);
611 if (IS_ERR(req))
612 return PTR_ERR(req);
613
614 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
615
616 if (buffer && bufflen) {
617 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
618 if (ret)
619 goto out;
620 }
621
622 blk_execute_rq(req->q, NULL, req, at_head);
623 if (result)
624 *result = nvme_req(req)->result;
625 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
626 ret = -EINTR;
627 else
628 ret = nvme_req(req)->status;
629 out:
630 blk_mq_free_request(req);
631 return ret;
632 }
633 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
634
635 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
636 void *buffer, unsigned bufflen)
637 {
638 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
639 NVME_QID_ANY, 0, 0);
640 }
641 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
642
643 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
644 unsigned len, u32 seed, bool write)
645 {
646 struct bio_integrity_payload *bip;
647 int ret = -ENOMEM;
648 void *buf;
649
650 buf = kmalloc(len, GFP_KERNEL);
651 if (!buf)
652 goto out;
653
654 ret = -EFAULT;
655 if (write && copy_from_user(buf, ubuf, len))
656 goto out_free_meta;
657
658 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
659 if (IS_ERR(bip)) {
660 ret = PTR_ERR(bip);
661 goto out_free_meta;
662 }
663
664 bip->bip_iter.bi_size = len;
665 bip->bip_iter.bi_sector = seed;
666 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
667 offset_in_page(buf));
668 if (ret == len)
669 return buf;
670 ret = -ENOMEM;
671 out_free_meta:
672 kfree(buf);
673 out:
674 return ERR_PTR(ret);
675 }
676
677 static int nvme_submit_user_cmd(struct request_queue *q,
678 struct nvme_command *cmd, void __user *ubuffer,
679 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
680 u32 meta_seed, u32 *result, unsigned timeout)
681 {
682 bool write = nvme_is_write(cmd);
683 struct nvme_ns *ns = q->queuedata;
684 struct gendisk *disk = ns ? ns->disk : NULL;
685 struct request *req;
686 struct bio *bio = NULL;
687 void *meta = NULL;
688 int ret;
689
690 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
691 if (IS_ERR(req))
692 return PTR_ERR(req);
693
694 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
695
696 if (ubuffer && bufflen) {
697 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
698 GFP_KERNEL);
699 if (ret)
700 goto out;
701 bio = req->bio;
702 bio->bi_disk = disk;
703 if (disk && meta_buffer && meta_len) {
704 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
705 meta_seed, write);
706 if (IS_ERR(meta)) {
707 ret = PTR_ERR(meta);
708 goto out_unmap;
709 }
710 }
711 }
712
713 blk_execute_rq(req->q, disk, req, 0);
714 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
715 ret = -EINTR;
716 else
717 ret = nvme_req(req)->status;
718 if (result)
719 *result = le32_to_cpu(nvme_req(req)->result.u32);
720 if (meta && !ret && !write) {
721 if (copy_to_user(meta_buffer, meta, meta_len))
722 ret = -EFAULT;
723 }
724 kfree(meta);
725 out_unmap:
726 if (bio)
727 blk_rq_unmap_user(bio);
728 out:
729 blk_mq_free_request(req);
730 return ret;
731 }
732
733 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
734 {
735 struct nvme_ctrl *ctrl = rq->end_io_data;
736
737 blk_mq_free_request(rq);
738
739 if (status) {
740 dev_err(ctrl->device,
741 "failed nvme_keep_alive_end_io error=%d\n",
742 status);
743 return;
744 }
745
746 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
747 }
748
749 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
750 {
751 struct nvme_command c;
752 struct request *rq;
753
754 memset(&c, 0, sizeof(c));
755 c.common.opcode = nvme_admin_keep_alive;
756
757 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
758 NVME_QID_ANY);
759 if (IS_ERR(rq))
760 return PTR_ERR(rq);
761
762 rq->timeout = ctrl->kato * HZ;
763 rq->end_io_data = ctrl;
764
765 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
766
767 return 0;
768 }
769
770 static void nvme_keep_alive_work(struct work_struct *work)
771 {
772 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
773 struct nvme_ctrl, ka_work);
774
775 if (nvme_keep_alive(ctrl)) {
776 /* allocation failure, reset the controller */
777 dev_err(ctrl->device, "keep-alive failed\n");
778 nvme_reset_ctrl(ctrl);
779 return;
780 }
781 }
782
783 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
784 {
785 if (unlikely(ctrl->kato == 0))
786 return;
787
788 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
789 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
790 }
791 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
792
793 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
794 {
795 if (unlikely(ctrl->kato == 0))
796 return;
797
798 cancel_delayed_work_sync(&ctrl->ka_work);
799 }
800 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
801
802 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
803 {
804 struct nvme_command c = { };
805 int error;
806
807 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
808 c.identify.opcode = nvme_admin_identify;
809 c.identify.cns = NVME_ID_CNS_CTRL;
810
811 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
812 if (!*id)
813 return -ENOMEM;
814
815 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
816 sizeof(struct nvme_id_ctrl));
817 if (error)
818 kfree(*id);
819 return error;
820 }
821
822 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
823 struct nvme_ns_ids *ids)
824 {
825 struct nvme_command c = { };
826 int status;
827 void *data;
828 int pos;
829 int len;
830
831 c.identify.opcode = nvme_admin_identify;
832 c.identify.nsid = cpu_to_le32(nsid);
833 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
834
835 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
836 if (!data)
837 return -ENOMEM;
838
839 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
840 NVME_IDENTIFY_DATA_SIZE);
841 if (status)
842 goto free_data;
843
844 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
845 struct nvme_ns_id_desc *cur = data + pos;
846
847 if (cur->nidl == 0)
848 break;
849
850 switch (cur->nidt) {
851 case NVME_NIDT_EUI64:
852 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
853 dev_warn(ctrl->device,
854 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
855 cur->nidl);
856 goto free_data;
857 }
858 len = NVME_NIDT_EUI64_LEN;
859 memcpy(ids->eui64, data + pos + sizeof(*cur), len);
860 break;
861 case NVME_NIDT_NGUID:
862 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
863 dev_warn(ctrl->device,
864 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
865 cur->nidl);
866 goto free_data;
867 }
868 len = NVME_NIDT_NGUID_LEN;
869 memcpy(ids->nguid, data + pos + sizeof(*cur), len);
870 break;
871 case NVME_NIDT_UUID:
872 if (cur->nidl != NVME_NIDT_UUID_LEN) {
873 dev_warn(ctrl->device,
874 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
875 cur->nidl);
876 goto free_data;
877 }
878 len = NVME_NIDT_UUID_LEN;
879 uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
880 break;
881 default:
882 /* Skip unnkown types */
883 len = cur->nidl;
884 break;
885 }
886
887 len += sizeof(*cur);
888 }
889 free_data:
890 kfree(data);
891 return status;
892 }
893
894 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
895 {
896 struct nvme_command c = { };
897
898 c.identify.opcode = nvme_admin_identify;
899 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
900 c.identify.nsid = cpu_to_le32(nsid);
901 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
902 }
903
904 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
905 unsigned nsid)
906 {
907 struct nvme_id_ns *id;
908 struct nvme_command c = { };
909 int error;
910
911 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
912 c.identify.opcode = nvme_admin_identify;
913 c.identify.nsid = cpu_to_le32(nsid);
914 c.identify.cns = NVME_ID_CNS_NS;
915
916 id = kmalloc(sizeof(*id), GFP_KERNEL);
917 if (!id)
918 return NULL;
919
920 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
921 if (error) {
922 dev_warn(ctrl->device, "Identify namespace failed\n");
923 kfree(id);
924 return NULL;
925 }
926
927 return id;
928 }
929
930 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
931 void *buffer, size_t buflen, u32 *result)
932 {
933 struct nvme_command c;
934 union nvme_result res;
935 int ret;
936
937 memset(&c, 0, sizeof(c));
938 c.features.opcode = nvme_admin_set_features;
939 c.features.fid = cpu_to_le32(fid);
940 c.features.dword11 = cpu_to_le32(dword11);
941
942 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
943 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
944 if (ret >= 0 && result)
945 *result = le32_to_cpu(res.u32);
946 return ret;
947 }
948
949 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
950 {
951 u32 q_count = (*count - 1) | ((*count - 1) << 16);
952 u32 result;
953 int status, nr_io_queues;
954
955 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
956 &result);
957 if (status < 0)
958 return status;
959
960 /*
961 * Degraded controllers might return an error when setting the queue
962 * count. We still want to be able to bring them online and offer
963 * access to the admin queue, as that might be only way to fix them up.
964 */
965 if (status > 0) {
966 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
967 *count = 0;
968 } else {
969 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
970 *count = min(*count, nr_io_queues);
971 }
972
973 return 0;
974 }
975 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
976
977 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
978 {
979 struct nvme_user_io io;
980 struct nvme_command c;
981 unsigned length, meta_len;
982 void __user *metadata;
983
984 if (copy_from_user(&io, uio, sizeof(io)))
985 return -EFAULT;
986 if (io.flags)
987 return -EINVAL;
988
989 switch (io.opcode) {
990 case nvme_cmd_write:
991 case nvme_cmd_read:
992 case nvme_cmd_compare:
993 break;
994 default:
995 return -EINVAL;
996 }
997
998 length = (io.nblocks + 1) << ns->lba_shift;
999 meta_len = (io.nblocks + 1) * ns->ms;
1000 metadata = (void __user *)(uintptr_t)io.metadata;
1001
1002 if (ns->ext) {
1003 length += meta_len;
1004 meta_len = 0;
1005 } else if (meta_len) {
1006 if ((io.metadata & 3) || !io.metadata)
1007 return -EINVAL;
1008 }
1009
1010 memset(&c, 0, sizeof(c));
1011 c.rw.opcode = io.opcode;
1012 c.rw.flags = io.flags;
1013 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1014 c.rw.slba = cpu_to_le64(io.slba);
1015 c.rw.length = cpu_to_le16(io.nblocks);
1016 c.rw.control = cpu_to_le16(io.control);
1017 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1018 c.rw.reftag = cpu_to_le32(io.reftag);
1019 c.rw.apptag = cpu_to_le16(io.apptag);
1020 c.rw.appmask = cpu_to_le16(io.appmask);
1021
1022 return nvme_submit_user_cmd(ns->queue, &c,
1023 (void __user *)(uintptr_t)io.addr, length,
1024 metadata, meta_len, io.slba, NULL, 0);
1025 }
1026
1027 static u32 nvme_known_admin_effects(u8 opcode)
1028 {
1029 switch (opcode) {
1030 case nvme_admin_format_nvm:
1031 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1032 NVME_CMD_EFFECTS_CSE_MASK;
1033 case nvme_admin_sanitize_nvm:
1034 return NVME_CMD_EFFECTS_CSE_MASK;
1035 default:
1036 break;
1037 }
1038 return 0;
1039 }
1040
1041 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1042 u8 opcode)
1043 {
1044 u32 effects = 0;
1045
1046 if (ns) {
1047 if (ctrl->effects)
1048 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1049 if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1050 dev_warn(ctrl->device,
1051 "IO command:%02x has unhandled effects:%08x\n",
1052 opcode, effects);
1053 return 0;
1054 }
1055
1056 if (ctrl->effects)
1057 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1058 else
1059 effects = nvme_known_admin_effects(opcode);
1060
1061 /*
1062 * For simplicity, IO to all namespaces is quiesced even if the command
1063 * effects say only one namespace is affected.
1064 */
1065 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1066 nvme_start_freeze(ctrl);
1067 nvme_wait_freeze(ctrl);
1068 }
1069 return effects;
1070 }
1071
1072 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1073 {
1074 struct nvme_ns *ns;
1075
1076 mutex_lock(&ctrl->namespaces_mutex);
1077 list_for_each_entry(ns, &ctrl->namespaces, list) {
1078 if (ns->disk && nvme_revalidate_disk(ns->disk))
1079 nvme_ns_remove(ns);
1080 }
1081 mutex_unlock(&ctrl->namespaces_mutex);
1082 }
1083
1084 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1085 {
1086 /*
1087 * Revalidate LBA changes prior to unfreezing. This is necessary to
1088 * prevent memory corruption if a logical block size was changed by
1089 * this command.
1090 */
1091 if (effects & NVME_CMD_EFFECTS_LBCC)
1092 nvme_update_formats(ctrl);
1093 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1094 nvme_unfreeze(ctrl);
1095 if (effects & NVME_CMD_EFFECTS_CCC)
1096 nvme_init_identify(ctrl);
1097 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1098 nvme_queue_scan(ctrl);
1099 }
1100
1101 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1102 struct nvme_passthru_cmd __user *ucmd)
1103 {
1104 struct nvme_passthru_cmd cmd;
1105 struct nvme_command c;
1106 unsigned timeout = 0;
1107 u32 effects;
1108 int status;
1109
1110 if (!capable(CAP_SYS_ADMIN))
1111 return -EACCES;
1112 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1113 return -EFAULT;
1114 if (cmd.flags)
1115 return -EINVAL;
1116
1117 memset(&c, 0, sizeof(c));
1118 c.common.opcode = cmd.opcode;
1119 c.common.flags = cmd.flags;
1120 c.common.nsid = cpu_to_le32(cmd.nsid);
1121 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1122 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1123 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1124 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1125 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1126 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1127 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1128 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1129
1130 if (cmd.timeout_ms)
1131 timeout = msecs_to_jiffies(cmd.timeout_ms);
1132
1133 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1134 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1135 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1136 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1137 0, &cmd.result, timeout);
1138 nvme_passthru_end(ctrl, effects);
1139
1140 if (status >= 0) {
1141 if (put_user(cmd.result, &ucmd->result))
1142 return -EFAULT;
1143 }
1144
1145 return status;
1146 }
1147
1148 /*
1149 * Issue ioctl requests on the first available path. Note that unlike normal
1150 * block layer requests we will not retry failed request on another controller.
1151 */
1152 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1153 struct nvme_ns_head **head, int *srcu_idx)
1154 {
1155 #ifdef CONFIG_NVME_MULTIPATH
1156 if (disk->fops == &nvme_ns_head_ops) {
1157 *head = disk->private_data;
1158 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1159 return nvme_find_path(*head);
1160 }
1161 #endif
1162 *head = NULL;
1163 *srcu_idx = -1;
1164 return disk->private_data;
1165 }
1166
1167 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1168 {
1169 if (head)
1170 srcu_read_unlock(&head->srcu, idx);
1171 }
1172
1173 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1174 {
1175 switch (cmd) {
1176 case NVME_IOCTL_ID:
1177 force_successful_syscall_return();
1178 return ns->head->ns_id;
1179 case NVME_IOCTL_ADMIN_CMD:
1180 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1181 case NVME_IOCTL_IO_CMD:
1182 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1183 case NVME_IOCTL_SUBMIT_IO:
1184 return nvme_submit_io(ns, (void __user *)arg);
1185 default:
1186 #ifdef CONFIG_NVM
1187 if (ns->ndev)
1188 return nvme_nvm_ioctl(ns, cmd, arg);
1189 #endif
1190 if (is_sed_ioctl(cmd))
1191 return sed_ioctl(ns->ctrl->opal_dev, cmd,
1192 (void __user *) arg);
1193 return -ENOTTY;
1194 }
1195 }
1196
1197 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1198 unsigned int cmd, unsigned long arg)
1199 {
1200 struct nvme_ns_head *head = NULL;
1201 struct nvme_ns *ns;
1202 int srcu_idx, ret;
1203
1204 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1205 if (unlikely(!ns))
1206 ret = -EWOULDBLOCK;
1207 else
1208 ret = nvme_ns_ioctl(ns, cmd, arg);
1209 nvme_put_ns_from_disk(head, srcu_idx);
1210 return ret;
1211 }
1212
1213 static int nvme_open(struct block_device *bdev, fmode_t mode)
1214 {
1215 struct nvme_ns *ns = bdev->bd_disk->private_data;
1216
1217 #ifdef CONFIG_NVME_MULTIPATH
1218 /* should never be called due to GENHD_FL_HIDDEN */
1219 if (WARN_ON_ONCE(ns->head->disk))
1220 return -ENXIO;
1221 #endif
1222 if (!kref_get_unless_zero(&ns->kref))
1223 return -ENXIO;
1224 return 0;
1225 }
1226
1227 static void nvme_release(struct gendisk *disk, fmode_t mode)
1228 {
1229 nvme_put_ns(disk->private_data);
1230 }
1231
1232 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1233 {
1234 /* some standard values */
1235 geo->heads = 1 << 6;
1236 geo->sectors = 1 << 5;
1237 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1238 return 0;
1239 }
1240
1241 #ifdef CONFIG_BLK_DEV_INTEGRITY
1242 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1243 {
1244 struct blk_integrity integrity;
1245
1246 memset(&integrity, 0, sizeof(integrity));
1247 switch (pi_type) {
1248 case NVME_NS_DPS_PI_TYPE3:
1249 integrity.profile = &t10_pi_type3_crc;
1250 integrity.tag_size = sizeof(u16) + sizeof(u32);
1251 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1252 break;
1253 case NVME_NS_DPS_PI_TYPE1:
1254 case NVME_NS_DPS_PI_TYPE2:
1255 integrity.profile = &t10_pi_type1_crc;
1256 integrity.tag_size = sizeof(u16);
1257 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1258 break;
1259 default:
1260 integrity.profile = NULL;
1261 break;
1262 }
1263 integrity.tuple_size = ms;
1264 blk_integrity_register(disk, &integrity);
1265 blk_queue_max_integrity_segments(disk->queue, 1);
1266 }
1267 #else
1268 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1269 {
1270 }
1271 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1272
1273 static void nvme_set_chunk_size(struct nvme_ns *ns)
1274 {
1275 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1276 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1277 }
1278
1279 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1280 unsigned stream_alignment, struct request_queue *queue)
1281 {
1282 u32 size = queue_logical_block_size(queue);
1283
1284 if (stream_alignment)
1285 size *= stream_alignment;
1286
1287 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1288 NVME_DSM_MAX_RANGES);
1289
1290 queue->limits.discard_alignment = 0;
1291 queue->limits.discard_granularity = size;
1292
1293 blk_queue_max_discard_sectors(queue, UINT_MAX);
1294 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1295 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, queue);
1296
1297 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1298 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1299 }
1300
1301 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1302 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1303 {
1304 memset(ids, 0, sizeof(*ids));
1305
1306 if (ctrl->vs >= NVME_VS(1, 1, 0))
1307 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1308 if (ctrl->vs >= NVME_VS(1, 2, 0))
1309 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1310 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1311 /* Don't treat error as fatal we potentially
1312 * already have a NGUID or EUI-64
1313 */
1314 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1315 dev_warn(ctrl->device,
1316 "%s: Identify Descriptors failed\n", __func__);
1317 }
1318 }
1319
1320 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1321 {
1322 return !uuid_is_null(&ids->uuid) ||
1323 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1324 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1325 }
1326
1327 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1328 {
1329 return uuid_equal(&a->uuid, &b->uuid) &&
1330 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1331 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1332 }
1333
1334 static void nvme_update_disk_info(struct gendisk *disk,
1335 struct nvme_ns *ns, struct nvme_id_ns *id)
1336 {
1337 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1338 unsigned short bs = 1 << ns->lba_shift;
1339 unsigned stream_alignment = 0;
1340
1341 if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1342 stream_alignment = ns->sws * ns->sgs;
1343
1344 blk_mq_freeze_queue(disk->queue);
1345 blk_integrity_unregister(disk);
1346
1347 blk_queue_logical_block_size(disk->queue, bs);
1348 blk_queue_physical_block_size(disk->queue, bs);
1349 blk_queue_io_min(disk->queue, bs);
1350
1351 if (ns->ms && !ns->ext &&
1352 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1353 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1354 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1355 capacity = 0;
1356 set_capacity(disk, capacity);
1357
1358 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1359 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1360 blk_mq_unfreeze_queue(disk->queue);
1361 }
1362
1363 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1364 {
1365 struct nvme_ns *ns = disk->private_data;
1366
1367 /*
1368 * If identify namespace failed, use default 512 byte block size so
1369 * block layer can use before failing read/write for 0 capacity.
1370 */
1371 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1372 if (ns->lba_shift == 0)
1373 ns->lba_shift = 9;
1374 ns->noiob = le16_to_cpu(id->noiob);
1375 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1376 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1377 /* the PI implementation requires metadata equal t10 pi tuple size */
1378 if (ns->ms == sizeof(struct t10_pi_tuple))
1379 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1380 else
1381 ns->pi_type = 0;
1382
1383 if (ns->noiob)
1384 nvme_set_chunk_size(ns);
1385 nvme_update_disk_info(disk, ns, id);
1386 #ifdef CONFIG_NVME_MULTIPATH
1387 if (ns->head->disk)
1388 nvme_update_disk_info(ns->head->disk, ns, id);
1389 #endif
1390 }
1391
1392 static int nvme_revalidate_disk(struct gendisk *disk)
1393 {
1394 struct nvme_ns *ns = disk->private_data;
1395 struct nvme_ctrl *ctrl = ns->ctrl;
1396 struct nvme_id_ns *id;
1397 struct nvme_ns_ids ids;
1398 int ret = 0;
1399
1400 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1401 set_capacity(disk, 0);
1402 return -ENODEV;
1403 }
1404
1405 id = nvme_identify_ns(ctrl, ns->head->ns_id);
1406 if (!id)
1407 return -ENODEV;
1408
1409 if (id->ncap == 0) {
1410 ret = -ENODEV;
1411 goto out;
1412 }
1413
1414 __nvme_revalidate_disk(disk, id);
1415 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1416 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1417 dev_err(ctrl->device,
1418 "identifiers changed for nsid %d\n", ns->head->ns_id);
1419 ret = -ENODEV;
1420 }
1421
1422 out:
1423 kfree(id);
1424 return ret;
1425 }
1426
1427 static char nvme_pr_type(enum pr_type type)
1428 {
1429 switch (type) {
1430 case PR_WRITE_EXCLUSIVE:
1431 return 1;
1432 case PR_EXCLUSIVE_ACCESS:
1433 return 2;
1434 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1435 return 3;
1436 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1437 return 4;
1438 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1439 return 5;
1440 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1441 return 6;
1442 default:
1443 return 0;
1444 }
1445 };
1446
1447 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1448 u64 key, u64 sa_key, u8 op)
1449 {
1450 struct nvme_ns_head *head = NULL;
1451 struct nvme_ns *ns;
1452 struct nvme_command c;
1453 int srcu_idx, ret;
1454 u8 data[16] = { 0, };
1455
1456 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1457 if (unlikely(!ns))
1458 return -EWOULDBLOCK;
1459
1460 put_unaligned_le64(key, &data[0]);
1461 put_unaligned_le64(sa_key, &data[8]);
1462
1463 memset(&c, 0, sizeof(c));
1464 c.common.opcode = op;
1465 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1466 c.common.cdw10[0] = cpu_to_le32(cdw10);
1467
1468 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1469 nvme_put_ns_from_disk(head, srcu_idx);
1470 return ret;
1471 }
1472
1473 static int nvme_pr_register(struct block_device *bdev, u64 old,
1474 u64 new, unsigned flags)
1475 {
1476 u32 cdw10;
1477
1478 if (flags & ~PR_FL_IGNORE_KEY)
1479 return -EOPNOTSUPP;
1480
1481 cdw10 = old ? 2 : 0;
1482 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1483 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1484 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1485 }
1486
1487 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1488 enum pr_type type, unsigned flags)
1489 {
1490 u32 cdw10;
1491
1492 if (flags & ~PR_FL_IGNORE_KEY)
1493 return -EOPNOTSUPP;
1494
1495 cdw10 = nvme_pr_type(type) << 8;
1496 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1497 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1498 }
1499
1500 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1501 enum pr_type type, bool abort)
1502 {
1503 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1504 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1505 }
1506
1507 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1508 {
1509 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1510 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1511 }
1512
1513 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1514 {
1515 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1516 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1517 }
1518
1519 static const struct pr_ops nvme_pr_ops = {
1520 .pr_register = nvme_pr_register,
1521 .pr_reserve = nvme_pr_reserve,
1522 .pr_release = nvme_pr_release,
1523 .pr_preempt = nvme_pr_preempt,
1524 .pr_clear = nvme_pr_clear,
1525 };
1526
1527 #ifdef CONFIG_BLK_SED_OPAL
1528 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1529 bool send)
1530 {
1531 struct nvme_ctrl *ctrl = data;
1532 struct nvme_command cmd;
1533
1534 memset(&cmd, 0, sizeof(cmd));
1535 if (send)
1536 cmd.common.opcode = nvme_admin_security_send;
1537 else
1538 cmd.common.opcode = nvme_admin_security_recv;
1539 cmd.common.nsid = 0;
1540 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1541 cmd.common.cdw10[1] = cpu_to_le32(len);
1542
1543 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1544 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1545 }
1546 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1547 #endif /* CONFIG_BLK_SED_OPAL */
1548
1549 static const struct block_device_operations nvme_fops = {
1550 .owner = THIS_MODULE,
1551 .ioctl = nvme_ioctl,
1552 .compat_ioctl = nvme_ioctl,
1553 .open = nvme_open,
1554 .release = nvme_release,
1555 .getgeo = nvme_getgeo,
1556 .revalidate_disk= nvme_revalidate_disk,
1557 .pr_ops = &nvme_pr_ops,
1558 };
1559
1560 #ifdef CONFIG_NVME_MULTIPATH
1561 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1562 {
1563 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1564
1565 if (!kref_get_unless_zero(&head->ref))
1566 return -ENXIO;
1567 return 0;
1568 }
1569
1570 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1571 {
1572 nvme_put_ns_head(disk->private_data);
1573 }
1574
1575 const struct block_device_operations nvme_ns_head_ops = {
1576 .owner = THIS_MODULE,
1577 .open = nvme_ns_head_open,
1578 .release = nvme_ns_head_release,
1579 .ioctl = nvme_ioctl,
1580 .compat_ioctl = nvme_ioctl,
1581 .getgeo = nvme_getgeo,
1582 .pr_ops = &nvme_pr_ops,
1583 };
1584 #endif /* CONFIG_NVME_MULTIPATH */
1585
1586 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1587 {
1588 unsigned long timeout =
1589 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1590 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1591 int ret;
1592
1593 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1594 if (csts == ~0)
1595 return -ENODEV;
1596 if ((csts & NVME_CSTS_RDY) == bit)
1597 break;
1598
1599 msleep(100);
1600 if (fatal_signal_pending(current))
1601 return -EINTR;
1602 if (time_after(jiffies, timeout)) {
1603 dev_err(ctrl->device,
1604 "Device not ready; aborting %s\n", enabled ?
1605 "initialisation" : "reset");
1606 return -ENODEV;
1607 }
1608 }
1609
1610 return ret;
1611 }
1612
1613 /*
1614 * If the device has been passed off to us in an enabled state, just clear
1615 * the enabled bit. The spec says we should set the 'shutdown notification
1616 * bits', but doing so may cause the device to complete commands to the
1617 * admin queue ... and we don't know what memory that might be pointing at!
1618 */
1619 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1620 {
1621 int ret;
1622
1623 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1624 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1625
1626 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1627 if (ret)
1628 return ret;
1629
1630 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1631 msleep(NVME_QUIRK_DELAY_AMOUNT);
1632
1633 return nvme_wait_ready(ctrl, cap, false);
1634 }
1635 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1636
1637 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1638 {
1639 /*
1640 * Default to a 4K page size, with the intention to update this
1641 * path in the future to accomodate architectures with differing
1642 * kernel and IO page sizes.
1643 */
1644 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1645 int ret;
1646
1647 if (page_shift < dev_page_min) {
1648 dev_err(ctrl->device,
1649 "Minimum device page size %u too large for host (%u)\n",
1650 1 << dev_page_min, 1 << page_shift);
1651 return -ENODEV;
1652 }
1653
1654 ctrl->page_size = 1 << page_shift;
1655
1656 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1657 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1658 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1659 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1660 ctrl->ctrl_config |= NVME_CC_ENABLE;
1661
1662 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1663 if (ret)
1664 return ret;
1665 return nvme_wait_ready(ctrl, cap, true);
1666 }
1667 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1668
1669 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1670 {
1671 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1672 u32 csts;
1673 int ret;
1674
1675 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1676 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1677
1678 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1679 if (ret)
1680 return ret;
1681
1682 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1683 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1684 break;
1685
1686 msleep(100);
1687 if (fatal_signal_pending(current))
1688 return -EINTR;
1689 if (time_after(jiffies, timeout)) {
1690 dev_err(ctrl->device,
1691 "Device shutdown incomplete; abort shutdown\n");
1692 return -ENODEV;
1693 }
1694 }
1695
1696 return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1699
1700 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1701 struct request_queue *q)
1702 {
1703 bool vwc = false;
1704
1705 if (ctrl->max_hw_sectors) {
1706 u32 max_segments =
1707 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1708
1709 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1710 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1711 }
1712 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1713 is_power_of_2(ctrl->max_hw_sectors))
1714 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1715 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1716 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1717 vwc = true;
1718 blk_queue_write_cache(q, vwc, vwc);
1719 }
1720
1721 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1722 {
1723 __le64 ts;
1724 int ret;
1725
1726 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1727 return 0;
1728
1729 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1730 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1731 NULL);
1732 if (ret)
1733 dev_warn_once(ctrl->device,
1734 "could not set timestamp (%d)\n", ret);
1735 return ret;
1736 }
1737
1738 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1739 {
1740 /*
1741 * APST (Autonomous Power State Transition) lets us program a
1742 * table of power state transitions that the controller will
1743 * perform automatically. We configure it with a simple
1744 * heuristic: we are willing to spend at most 2% of the time
1745 * transitioning between power states. Therefore, when running
1746 * in any given state, we will enter the next lower-power
1747 * non-operational state after waiting 50 * (enlat + exlat)
1748 * microseconds, as long as that state's exit latency is under
1749 * the requested maximum latency.
1750 *
1751 * We will not autonomously enter any non-operational state for
1752 * which the total latency exceeds ps_max_latency_us. Users
1753 * can set ps_max_latency_us to zero to turn off APST.
1754 */
1755
1756 unsigned apste;
1757 struct nvme_feat_auto_pst *table;
1758 u64 max_lat_us = 0;
1759 int max_ps = -1;
1760 int ret;
1761
1762 /*
1763 * If APST isn't supported or if we haven't been initialized yet,
1764 * then don't do anything.
1765 */
1766 if (!ctrl->apsta)
1767 return 0;
1768
1769 if (ctrl->npss > 31) {
1770 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1771 return 0;
1772 }
1773
1774 table = kzalloc(sizeof(*table), GFP_KERNEL);
1775 if (!table)
1776 return 0;
1777
1778 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1779 /* Turn off APST. */
1780 apste = 0;
1781 dev_dbg(ctrl->device, "APST disabled\n");
1782 } else {
1783 __le64 target = cpu_to_le64(0);
1784 int state;
1785
1786 /*
1787 * Walk through all states from lowest- to highest-power.
1788 * According to the spec, lower-numbered states use more
1789 * power. NPSS, despite the name, is the index of the
1790 * lowest-power state, not the number of states.
1791 */
1792 for (state = (int)ctrl->npss; state >= 0; state--) {
1793 u64 total_latency_us, exit_latency_us, transition_ms;
1794
1795 if (target)
1796 table->entries[state] = target;
1797
1798 /*
1799 * Don't allow transitions to the deepest state
1800 * if it's quirked off.
1801 */
1802 if (state == ctrl->npss &&
1803 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1804 continue;
1805
1806 /*
1807 * Is this state a useful non-operational state for
1808 * higher-power states to autonomously transition to?
1809 */
1810 if (!(ctrl->psd[state].flags &
1811 NVME_PS_FLAGS_NON_OP_STATE))
1812 continue;
1813
1814 exit_latency_us =
1815 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1816 if (exit_latency_us > ctrl->ps_max_latency_us)
1817 continue;
1818
1819 total_latency_us =
1820 exit_latency_us +
1821 le32_to_cpu(ctrl->psd[state].entry_lat);
1822
1823 /*
1824 * This state is good. Use it as the APST idle
1825 * target for higher power states.
1826 */
1827 transition_ms = total_latency_us + 19;
1828 do_div(transition_ms, 20);
1829 if (transition_ms > (1 << 24) - 1)
1830 transition_ms = (1 << 24) - 1;
1831
1832 target = cpu_to_le64((state << 3) |
1833 (transition_ms << 8));
1834
1835 if (max_ps == -1)
1836 max_ps = state;
1837
1838 if (total_latency_us > max_lat_us)
1839 max_lat_us = total_latency_us;
1840 }
1841
1842 apste = 1;
1843
1844 if (max_ps == -1) {
1845 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1846 } else {
1847 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1848 max_ps, max_lat_us, (int)sizeof(*table), table);
1849 }
1850 }
1851
1852 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1853 table, sizeof(*table), NULL);
1854 if (ret)
1855 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1856
1857 kfree(table);
1858 return ret;
1859 }
1860
1861 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1862 {
1863 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1864 u64 latency;
1865
1866 switch (val) {
1867 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1868 case PM_QOS_LATENCY_ANY:
1869 latency = U64_MAX;
1870 break;
1871
1872 default:
1873 latency = val;
1874 }
1875
1876 if (ctrl->ps_max_latency_us != latency) {
1877 ctrl->ps_max_latency_us = latency;
1878 nvme_configure_apst(ctrl);
1879 }
1880 }
1881
1882 struct nvme_core_quirk_entry {
1883 /*
1884 * NVMe model and firmware strings are padded with spaces. For
1885 * simplicity, strings in the quirk table are padded with NULLs
1886 * instead.
1887 */
1888 u16 vid;
1889 const char *mn;
1890 const char *fr;
1891 unsigned long quirks;
1892 };
1893
1894 static const struct nvme_core_quirk_entry core_quirks[] = {
1895 {
1896 /*
1897 * This Toshiba device seems to die using any APST states. See:
1898 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1899 */
1900 .vid = 0x1179,
1901 .mn = "THNSF5256GPUK TOSHIBA",
1902 .quirks = NVME_QUIRK_NO_APST,
1903 }
1904 };
1905
1906 /* match is null-terminated but idstr is space-padded. */
1907 static bool string_matches(const char *idstr, const char *match, size_t len)
1908 {
1909 size_t matchlen;
1910
1911 if (!match)
1912 return true;
1913
1914 matchlen = strlen(match);
1915 WARN_ON_ONCE(matchlen > len);
1916
1917 if (memcmp(idstr, match, matchlen))
1918 return false;
1919
1920 for (; matchlen < len; matchlen++)
1921 if (idstr[matchlen] != ' ')
1922 return false;
1923
1924 return true;
1925 }
1926
1927 static bool quirk_matches(const struct nvme_id_ctrl *id,
1928 const struct nvme_core_quirk_entry *q)
1929 {
1930 return q->vid == le16_to_cpu(id->vid) &&
1931 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1932 string_matches(id->fr, q->fr, sizeof(id->fr));
1933 }
1934
1935 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
1936 struct nvme_id_ctrl *id)
1937 {
1938 size_t nqnlen;
1939 int off;
1940
1941 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1942 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1943 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
1944 return;
1945 }
1946
1947 if (ctrl->vs >= NVME_VS(1, 2, 1))
1948 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1949
1950 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1951 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
1952 "nqn.2014.08.org.nvmexpress:%4x%4x",
1953 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1954 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
1955 off += sizeof(id->sn);
1956 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
1957 off += sizeof(id->mn);
1958 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
1959 }
1960
1961 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
1962 {
1963 ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
1964 kfree(subsys);
1965 }
1966
1967 static void nvme_release_subsystem(struct device *dev)
1968 {
1969 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
1970 }
1971
1972 static void nvme_destroy_subsystem(struct kref *ref)
1973 {
1974 struct nvme_subsystem *subsys =
1975 container_of(ref, struct nvme_subsystem, ref);
1976
1977 mutex_lock(&nvme_subsystems_lock);
1978 list_del(&subsys->entry);
1979 mutex_unlock(&nvme_subsystems_lock);
1980
1981 ida_destroy(&subsys->ns_ida);
1982 device_del(&subsys->dev);
1983 put_device(&subsys->dev);
1984 }
1985
1986 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
1987 {
1988 kref_put(&subsys->ref, nvme_destroy_subsystem);
1989 }
1990
1991 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
1992 {
1993 struct nvme_subsystem *subsys;
1994
1995 lockdep_assert_held(&nvme_subsystems_lock);
1996
1997 list_for_each_entry(subsys, &nvme_subsystems, entry) {
1998 if (strcmp(subsys->subnqn, subsysnqn))
1999 continue;
2000 if (!kref_get_unless_zero(&subsys->ref))
2001 continue;
2002 return subsys;
2003 }
2004
2005 return NULL;
2006 }
2007
2008 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2009 struct device_attribute subsys_attr_##_name = \
2010 __ATTR(_name, _mode, _show, NULL)
2011
2012 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2013 struct device_attribute *attr,
2014 char *buf)
2015 {
2016 struct nvme_subsystem *subsys =
2017 container_of(dev, struct nvme_subsystem, dev);
2018
2019 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2020 }
2021 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2022
2023 #define nvme_subsys_show_str_function(field) \
2024 static ssize_t subsys_##field##_show(struct device *dev, \
2025 struct device_attribute *attr, char *buf) \
2026 { \
2027 struct nvme_subsystem *subsys = \
2028 container_of(dev, struct nvme_subsystem, dev); \
2029 return sprintf(buf, "%.*s\n", \
2030 (int)sizeof(subsys->field), subsys->field); \
2031 } \
2032 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2033
2034 nvme_subsys_show_str_function(model);
2035 nvme_subsys_show_str_function(serial);
2036 nvme_subsys_show_str_function(firmware_rev);
2037
2038 static struct attribute *nvme_subsys_attrs[] = {
2039 &subsys_attr_model.attr,
2040 &subsys_attr_serial.attr,
2041 &subsys_attr_firmware_rev.attr,
2042 &subsys_attr_subsysnqn.attr,
2043 NULL,
2044 };
2045
2046 static struct attribute_group nvme_subsys_attrs_group = {
2047 .attrs = nvme_subsys_attrs,
2048 };
2049
2050 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2051 &nvme_subsys_attrs_group,
2052 NULL,
2053 };
2054
2055 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2056 {
2057 struct nvme_subsystem *subsys, *found;
2058 int ret;
2059
2060 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2061 if (!subsys)
2062 return -ENOMEM;
2063 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2064 if (ret < 0) {
2065 kfree(subsys);
2066 return ret;
2067 }
2068 subsys->instance = ret;
2069 mutex_init(&subsys->lock);
2070 kref_init(&subsys->ref);
2071 INIT_LIST_HEAD(&subsys->ctrls);
2072 INIT_LIST_HEAD(&subsys->nsheads);
2073 nvme_init_subnqn(subsys, ctrl, id);
2074 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2075 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2076 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2077 subsys->vendor_id = le16_to_cpu(id->vid);
2078 subsys->cmic = id->cmic;
2079
2080 subsys->dev.class = nvme_subsys_class;
2081 subsys->dev.release = nvme_release_subsystem;
2082 subsys->dev.groups = nvme_subsys_attrs_groups;
2083 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2084 device_initialize(&subsys->dev);
2085
2086 mutex_lock(&nvme_subsystems_lock);
2087 found = __nvme_find_get_subsystem(subsys->subnqn);
2088 if (found) {
2089 /*
2090 * Verify that the subsystem actually supports multiple
2091 * controllers, else bail out.
2092 */
2093 if (!(id->cmic & (1 << 1))) {
2094 dev_err(ctrl->device,
2095 "ignoring ctrl due to duplicate subnqn (%s).\n",
2096 found->subnqn);
2097 nvme_put_subsystem(found);
2098 ret = -EINVAL;
2099 goto out_unlock;
2100 }
2101
2102 __nvme_release_subsystem(subsys);
2103 subsys = found;
2104 } else {
2105 ret = device_add(&subsys->dev);
2106 if (ret) {
2107 dev_err(ctrl->device,
2108 "failed to register subsystem device.\n");
2109 goto out_unlock;
2110 }
2111 ida_init(&subsys->ns_ida);
2112 list_add_tail(&subsys->entry, &nvme_subsystems);
2113 }
2114
2115 ctrl->subsys = subsys;
2116 mutex_unlock(&nvme_subsystems_lock);
2117
2118 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2119 dev_name(ctrl->device))) {
2120 dev_err(ctrl->device,
2121 "failed to create sysfs link from subsystem.\n");
2122 /* the transport driver will eventually put the subsystem */
2123 return -EINVAL;
2124 }
2125
2126 mutex_lock(&subsys->lock);
2127 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2128 mutex_unlock(&subsys->lock);
2129
2130 return 0;
2131
2132 out_unlock:
2133 mutex_unlock(&nvme_subsystems_lock);
2134 put_device(&subsys->dev);
2135 return ret;
2136 }
2137
2138 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2139 size_t size)
2140 {
2141 struct nvme_command c = { };
2142
2143 c.common.opcode = nvme_admin_get_log_page;
2144 c.common.nsid = cpu_to_le32(NVME_NSID_ALL);
2145 c.common.cdw10[0] = nvme_get_log_dw10(log_page, size);
2146
2147 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2148 }
2149
2150 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2151 {
2152 int ret;
2153
2154 if (!ctrl->effects)
2155 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2156
2157 if (!ctrl->effects)
2158 return 0;
2159
2160 ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2161 sizeof(*ctrl->effects));
2162 if (ret) {
2163 kfree(ctrl->effects);
2164 ctrl->effects = NULL;
2165 }
2166 return ret;
2167 }
2168
2169 /*
2170 * Initialize the cached copies of the Identify data and various controller
2171 * register in our nvme_ctrl structure. This should be called as soon as
2172 * the admin queue is fully up and running.
2173 */
2174 int nvme_init_identify(struct nvme_ctrl *ctrl)
2175 {
2176 struct nvme_id_ctrl *id;
2177 u64 cap;
2178 int ret, page_shift;
2179 u32 max_hw_sectors;
2180 bool prev_apst_enabled;
2181
2182 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2183 if (ret) {
2184 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2185 return ret;
2186 }
2187
2188 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2189 if (ret) {
2190 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2191 return ret;
2192 }
2193 page_shift = NVME_CAP_MPSMIN(cap) + 12;
2194
2195 if (ctrl->vs >= NVME_VS(1, 1, 0))
2196 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2197
2198 ret = nvme_identify_ctrl(ctrl, &id);
2199 if (ret) {
2200 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2201 return -EIO;
2202 }
2203
2204 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2205 ret = nvme_get_effects_log(ctrl);
2206 if (ret < 0)
2207 return ret;
2208 }
2209
2210 if (!ctrl->identified) {
2211 int i;
2212
2213 ret = nvme_init_subsystem(ctrl, id);
2214 if (ret)
2215 goto out_free;
2216
2217 /*
2218 * Check for quirks. Quirk can depend on firmware version,
2219 * so, in principle, the set of quirks present can change
2220 * across a reset. As a possible future enhancement, we
2221 * could re-scan for quirks every time we reinitialize
2222 * the device, but we'd have to make sure that the driver
2223 * behaves intelligently if the quirks change.
2224 */
2225 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2226 if (quirk_matches(id, &core_quirks[i]))
2227 ctrl->quirks |= core_quirks[i].quirks;
2228 }
2229 }
2230
2231 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2232 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2233 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2234 }
2235
2236 ctrl->oacs = le16_to_cpu(id->oacs);
2237 ctrl->oncs = le16_to_cpup(&id->oncs);
2238 atomic_set(&ctrl->abort_limit, id->acl + 1);
2239 ctrl->vwc = id->vwc;
2240 ctrl->cntlid = le16_to_cpup(&id->cntlid);
2241 if (id->mdts)
2242 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2243 else
2244 max_hw_sectors = UINT_MAX;
2245 ctrl->max_hw_sectors =
2246 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2247
2248 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2249 ctrl->sgls = le32_to_cpu(id->sgls);
2250 ctrl->kas = le16_to_cpu(id->kas);
2251
2252 if (id->rtd3e) {
2253 /* us -> s */
2254 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2255
2256 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2257 shutdown_timeout, 60);
2258
2259 if (ctrl->shutdown_timeout != shutdown_timeout)
2260 dev_warn(ctrl->device,
2261 "Shutdown timeout set to %u seconds\n",
2262 ctrl->shutdown_timeout);
2263 } else
2264 ctrl->shutdown_timeout = shutdown_timeout;
2265
2266 ctrl->npss = id->npss;
2267 ctrl->apsta = id->apsta;
2268 prev_apst_enabled = ctrl->apst_enabled;
2269 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2270 if (force_apst && id->apsta) {
2271 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2272 ctrl->apst_enabled = true;
2273 } else {
2274 ctrl->apst_enabled = false;
2275 }
2276 } else {
2277 ctrl->apst_enabled = id->apsta;
2278 }
2279 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2280
2281 if (ctrl->ops->flags & NVME_F_FABRICS) {
2282 ctrl->icdoff = le16_to_cpu(id->icdoff);
2283 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2284 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2285 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2286
2287 /*
2288 * In fabrics we need to verify the cntlid matches the
2289 * admin connect
2290 */
2291 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2292 ret = -EINVAL;
2293 goto out_free;
2294 }
2295
2296 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2297 dev_err(ctrl->device,
2298 "keep-alive support is mandatory for fabrics\n");
2299 ret = -EINVAL;
2300 goto out_free;
2301 }
2302 } else {
2303 ctrl->cntlid = le16_to_cpu(id->cntlid);
2304 ctrl->hmpre = le32_to_cpu(id->hmpre);
2305 ctrl->hmmin = le32_to_cpu(id->hmmin);
2306 ctrl->hmminds = le32_to_cpu(id->hmminds);
2307 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2308 }
2309
2310 kfree(id);
2311
2312 if (ctrl->apst_enabled && !prev_apst_enabled)
2313 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2314 else if (!ctrl->apst_enabled && prev_apst_enabled)
2315 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2316
2317 ret = nvme_configure_apst(ctrl);
2318 if (ret < 0)
2319 return ret;
2320
2321 ret = nvme_configure_timestamp(ctrl);
2322 if (ret < 0)
2323 return ret;
2324
2325 ret = nvme_configure_directives(ctrl);
2326 if (ret < 0)
2327 return ret;
2328
2329 ctrl->identified = true;
2330
2331 return 0;
2332
2333 out_free:
2334 kfree(id);
2335 return ret;
2336 }
2337 EXPORT_SYMBOL_GPL(nvme_init_identify);
2338
2339 static int nvme_dev_open(struct inode *inode, struct file *file)
2340 {
2341 struct nvme_ctrl *ctrl =
2342 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2343
2344 if (ctrl->state != NVME_CTRL_LIVE)
2345 return -EWOULDBLOCK;
2346 file->private_data = ctrl;
2347 return 0;
2348 }
2349
2350 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2351 {
2352 struct nvme_ns *ns;
2353 int ret;
2354
2355 mutex_lock(&ctrl->namespaces_mutex);
2356 if (list_empty(&ctrl->namespaces)) {
2357 ret = -ENOTTY;
2358 goto out_unlock;
2359 }
2360
2361 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2362 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2363 dev_warn(ctrl->device,
2364 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2365 ret = -EINVAL;
2366 goto out_unlock;
2367 }
2368
2369 dev_warn(ctrl->device,
2370 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2371 kref_get(&ns->kref);
2372 mutex_unlock(&ctrl->namespaces_mutex);
2373
2374 ret = nvme_user_cmd(ctrl, ns, argp);
2375 nvme_put_ns(ns);
2376 return ret;
2377
2378 out_unlock:
2379 mutex_unlock(&ctrl->namespaces_mutex);
2380 return ret;
2381 }
2382
2383 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2384 unsigned long arg)
2385 {
2386 struct nvme_ctrl *ctrl = file->private_data;
2387 void __user *argp = (void __user *)arg;
2388
2389 switch (cmd) {
2390 case NVME_IOCTL_ADMIN_CMD:
2391 return nvme_user_cmd(ctrl, NULL, argp);
2392 case NVME_IOCTL_IO_CMD:
2393 return nvme_dev_user_cmd(ctrl, argp);
2394 case NVME_IOCTL_RESET:
2395 dev_warn(ctrl->device, "resetting controller\n");
2396 return nvme_reset_ctrl_sync(ctrl);
2397 case NVME_IOCTL_SUBSYS_RESET:
2398 return nvme_reset_subsystem(ctrl);
2399 case NVME_IOCTL_RESCAN:
2400 nvme_queue_scan(ctrl);
2401 return 0;
2402 default:
2403 return -ENOTTY;
2404 }
2405 }
2406
2407 static const struct file_operations nvme_dev_fops = {
2408 .owner = THIS_MODULE,
2409 .open = nvme_dev_open,
2410 .unlocked_ioctl = nvme_dev_ioctl,
2411 .compat_ioctl = nvme_dev_ioctl,
2412 };
2413
2414 static ssize_t nvme_sysfs_reset(struct device *dev,
2415 struct device_attribute *attr, const char *buf,
2416 size_t count)
2417 {
2418 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2419 int ret;
2420
2421 ret = nvme_reset_ctrl_sync(ctrl);
2422 if (ret < 0)
2423 return ret;
2424 return count;
2425 }
2426 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2427
2428 static ssize_t nvme_sysfs_rescan(struct device *dev,
2429 struct device_attribute *attr, const char *buf,
2430 size_t count)
2431 {
2432 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2433
2434 nvme_queue_scan(ctrl);
2435 return count;
2436 }
2437 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2438
2439 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2440 {
2441 struct gendisk *disk = dev_to_disk(dev);
2442
2443 if (disk->fops == &nvme_fops)
2444 return nvme_get_ns_from_dev(dev)->head;
2445 else
2446 return disk->private_data;
2447 }
2448
2449 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2450 char *buf)
2451 {
2452 struct nvme_ns_head *head = dev_to_ns_head(dev);
2453 struct nvme_ns_ids *ids = &head->ids;
2454 struct nvme_subsystem *subsys = head->subsys;
2455 int serial_len = sizeof(subsys->serial);
2456 int model_len = sizeof(subsys->model);
2457
2458 if (!uuid_is_null(&ids->uuid))
2459 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2460
2461 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2462 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2463
2464 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2465 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2466
2467 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2468 subsys->serial[serial_len - 1] == '\0'))
2469 serial_len--;
2470 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2471 subsys->model[model_len - 1] == '\0'))
2472 model_len--;
2473
2474 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2475 serial_len, subsys->serial, model_len, subsys->model,
2476 head->ns_id);
2477 }
2478 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2479
2480 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2481 char *buf)
2482 {
2483 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2484 }
2485 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2486
2487 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2488 char *buf)
2489 {
2490 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2491
2492 /* For backward compatibility expose the NGUID to userspace if
2493 * we have no UUID set
2494 */
2495 if (uuid_is_null(&ids->uuid)) {
2496 printk_ratelimited(KERN_WARNING
2497 "No UUID available providing old NGUID\n");
2498 return sprintf(buf, "%pU\n", ids->nguid);
2499 }
2500 return sprintf(buf, "%pU\n", &ids->uuid);
2501 }
2502 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2503
2504 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2505 char *buf)
2506 {
2507 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2508 }
2509 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2510
2511 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2512 char *buf)
2513 {
2514 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2515 }
2516 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2517
2518 static struct attribute *nvme_ns_id_attrs[] = {
2519 &dev_attr_wwid.attr,
2520 &dev_attr_uuid.attr,
2521 &dev_attr_nguid.attr,
2522 &dev_attr_eui.attr,
2523 &dev_attr_nsid.attr,
2524 NULL,
2525 };
2526
2527 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2528 struct attribute *a, int n)
2529 {
2530 struct device *dev = container_of(kobj, struct device, kobj);
2531 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2532
2533 if (a == &dev_attr_uuid.attr) {
2534 if (uuid_is_null(&ids->uuid) &&
2535 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2536 return 0;
2537 }
2538 if (a == &dev_attr_nguid.attr) {
2539 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2540 return 0;
2541 }
2542 if (a == &dev_attr_eui.attr) {
2543 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2544 return 0;
2545 }
2546 return a->mode;
2547 }
2548
2549 const struct attribute_group nvme_ns_id_attr_group = {
2550 .attrs = nvme_ns_id_attrs,
2551 .is_visible = nvme_ns_id_attrs_are_visible,
2552 };
2553
2554 #define nvme_show_str_function(field) \
2555 static ssize_t field##_show(struct device *dev, \
2556 struct device_attribute *attr, char *buf) \
2557 { \
2558 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2559 return sprintf(buf, "%.*s\n", \
2560 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2561 } \
2562 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2563
2564 nvme_show_str_function(model);
2565 nvme_show_str_function(serial);
2566 nvme_show_str_function(firmware_rev);
2567
2568 #define nvme_show_int_function(field) \
2569 static ssize_t field##_show(struct device *dev, \
2570 struct device_attribute *attr, char *buf) \
2571 { \
2572 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2573 return sprintf(buf, "%d\n", ctrl->field); \
2574 } \
2575 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2576
2577 nvme_show_int_function(cntlid);
2578
2579 static ssize_t nvme_sysfs_delete(struct device *dev,
2580 struct device_attribute *attr, const char *buf,
2581 size_t count)
2582 {
2583 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2584
2585 if (device_remove_file_self(dev, attr))
2586 nvme_delete_ctrl_sync(ctrl);
2587 return count;
2588 }
2589 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2590
2591 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2592 struct device_attribute *attr,
2593 char *buf)
2594 {
2595 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2596
2597 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2598 }
2599 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2600
2601 static ssize_t nvme_sysfs_show_state(struct device *dev,
2602 struct device_attribute *attr,
2603 char *buf)
2604 {
2605 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2606 static const char *const state_name[] = {
2607 [NVME_CTRL_NEW] = "new",
2608 [NVME_CTRL_LIVE] = "live",
2609 [NVME_CTRL_RESETTING] = "resetting",
2610 [NVME_CTRL_RECONNECTING]= "reconnecting",
2611 [NVME_CTRL_DELETING] = "deleting",
2612 [NVME_CTRL_DEAD] = "dead",
2613 };
2614
2615 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2616 state_name[ctrl->state])
2617 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2618
2619 return sprintf(buf, "unknown state\n");
2620 }
2621
2622 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2623
2624 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2625 struct device_attribute *attr,
2626 char *buf)
2627 {
2628 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2629
2630 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2631 }
2632 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2633
2634 static ssize_t nvme_sysfs_show_address(struct device *dev,
2635 struct device_attribute *attr,
2636 char *buf)
2637 {
2638 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2639
2640 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2641 }
2642 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2643
2644 static struct attribute *nvme_dev_attrs[] = {
2645 &dev_attr_reset_controller.attr,
2646 &dev_attr_rescan_controller.attr,
2647 &dev_attr_model.attr,
2648 &dev_attr_serial.attr,
2649 &dev_attr_firmware_rev.attr,
2650 &dev_attr_cntlid.attr,
2651 &dev_attr_delete_controller.attr,
2652 &dev_attr_transport.attr,
2653 &dev_attr_subsysnqn.attr,
2654 &dev_attr_address.attr,
2655 &dev_attr_state.attr,
2656 NULL
2657 };
2658
2659 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2660 struct attribute *a, int n)
2661 {
2662 struct device *dev = container_of(kobj, struct device, kobj);
2663 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2664
2665 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2666 return 0;
2667 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2668 return 0;
2669
2670 return a->mode;
2671 }
2672
2673 static struct attribute_group nvme_dev_attrs_group = {
2674 .attrs = nvme_dev_attrs,
2675 .is_visible = nvme_dev_attrs_are_visible,
2676 };
2677
2678 static const struct attribute_group *nvme_dev_attr_groups[] = {
2679 &nvme_dev_attrs_group,
2680 NULL,
2681 };
2682
2683 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2684 unsigned nsid)
2685 {
2686 struct nvme_ns_head *h;
2687
2688 lockdep_assert_held(&subsys->lock);
2689
2690 list_for_each_entry(h, &subsys->nsheads, entry) {
2691 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2692 return h;
2693 }
2694
2695 return NULL;
2696 }
2697
2698 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2699 struct nvme_ns_head *new)
2700 {
2701 struct nvme_ns_head *h;
2702
2703 lockdep_assert_held(&subsys->lock);
2704
2705 list_for_each_entry(h, &subsys->nsheads, entry) {
2706 if (nvme_ns_ids_valid(&new->ids) &&
2707 nvme_ns_ids_equal(&new->ids, &h->ids))
2708 return -EINVAL;
2709 }
2710
2711 return 0;
2712 }
2713
2714 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2715 unsigned nsid, struct nvme_id_ns *id)
2716 {
2717 struct nvme_ns_head *head;
2718 int ret = -ENOMEM;
2719
2720 head = kzalloc(sizeof(*head), GFP_KERNEL);
2721 if (!head)
2722 goto out;
2723 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2724 if (ret < 0)
2725 goto out_free_head;
2726 head->instance = ret;
2727 INIT_LIST_HEAD(&head->list);
2728 init_srcu_struct(&head->srcu);
2729 head->subsys = ctrl->subsys;
2730 head->ns_id = nsid;
2731 kref_init(&head->ref);
2732
2733 nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2734
2735 ret = __nvme_check_ids(ctrl->subsys, head);
2736 if (ret) {
2737 dev_err(ctrl->device,
2738 "duplicate IDs for nsid %d\n", nsid);
2739 goto out_cleanup_srcu;
2740 }
2741
2742 ret = nvme_mpath_alloc_disk(ctrl, head);
2743 if (ret)
2744 goto out_cleanup_srcu;
2745
2746 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2747 return head;
2748 out_cleanup_srcu:
2749 cleanup_srcu_struct(&head->srcu);
2750 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2751 out_free_head:
2752 kfree(head);
2753 out:
2754 return ERR_PTR(ret);
2755 }
2756
2757 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2758 struct nvme_id_ns *id, bool *new)
2759 {
2760 struct nvme_ctrl *ctrl = ns->ctrl;
2761 bool is_shared = id->nmic & (1 << 0);
2762 struct nvme_ns_head *head = NULL;
2763 int ret = 0;
2764
2765 mutex_lock(&ctrl->subsys->lock);
2766 if (is_shared)
2767 head = __nvme_find_ns_head(ctrl->subsys, nsid);
2768 if (!head) {
2769 head = nvme_alloc_ns_head(ctrl, nsid, id);
2770 if (IS_ERR(head)) {
2771 ret = PTR_ERR(head);
2772 goto out_unlock;
2773 }
2774
2775 *new = true;
2776 } else {
2777 struct nvme_ns_ids ids;
2778
2779 nvme_report_ns_ids(ctrl, nsid, id, &ids);
2780 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2781 dev_err(ctrl->device,
2782 "IDs don't match for shared namespace %d\n",
2783 nsid);
2784 ret = -EINVAL;
2785 goto out_unlock;
2786 }
2787
2788 *new = false;
2789 }
2790
2791 list_add_tail(&ns->siblings, &head->list);
2792 ns->head = head;
2793
2794 out_unlock:
2795 mutex_unlock(&ctrl->subsys->lock);
2796 return ret;
2797 }
2798
2799 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2800 {
2801 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2802 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2803
2804 return nsa->head->ns_id - nsb->head->ns_id;
2805 }
2806
2807 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2808 {
2809 struct nvme_ns *ns, *ret = NULL;
2810
2811 mutex_lock(&ctrl->namespaces_mutex);
2812 list_for_each_entry(ns, &ctrl->namespaces, list) {
2813 if (ns->head->ns_id == nsid) {
2814 if (!kref_get_unless_zero(&ns->kref))
2815 continue;
2816 ret = ns;
2817 break;
2818 }
2819 if (ns->head->ns_id > nsid)
2820 break;
2821 }
2822 mutex_unlock(&ctrl->namespaces_mutex);
2823 return ret;
2824 }
2825
2826 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2827 {
2828 struct streams_directive_params s;
2829 int ret;
2830
2831 if (!ctrl->nr_streams)
2832 return 0;
2833
2834 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2835 if (ret)
2836 return ret;
2837
2838 ns->sws = le32_to_cpu(s.sws);
2839 ns->sgs = le16_to_cpu(s.sgs);
2840
2841 if (ns->sws) {
2842 unsigned int bs = 1 << ns->lba_shift;
2843
2844 blk_queue_io_min(ns->queue, bs * ns->sws);
2845 if (ns->sgs)
2846 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2847 }
2848
2849 return 0;
2850 }
2851
2852 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2853 {
2854 struct nvme_ns *ns;
2855 struct gendisk *disk;
2856 struct nvme_id_ns *id;
2857 char disk_name[DISK_NAME_LEN];
2858 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2859 bool new = true;
2860
2861 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2862 if (!ns)
2863 return;
2864
2865 ns->queue = blk_mq_init_queue(ctrl->tagset);
2866 if (IS_ERR(ns->queue))
2867 goto out_free_ns;
2868 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2869 ns->queue->queuedata = ns;
2870 ns->ctrl = ctrl;
2871
2872 kref_init(&ns->kref);
2873 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2874
2875 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2876 nvme_set_queue_limits(ctrl, ns->queue);
2877
2878 id = nvme_identify_ns(ctrl, nsid);
2879 if (!id)
2880 goto out_free_queue;
2881
2882 if (id->ncap == 0)
2883 goto out_free_id;
2884
2885 if (nvme_init_ns_head(ns, nsid, id, &new))
2886 goto out_free_id;
2887 nvme_setup_streams_ns(ctrl, ns);
2888
2889 #ifdef CONFIG_NVME_MULTIPATH
2890 /*
2891 * If multipathing is enabled we need to always use the subsystem
2892 * instance number for numbering our devices to avoid conflicts
2893 * between subsystems that have multiple controllers and thus use
2894 * the multipath-aware subsystem node and those that have a single
2895 * controller and use the controller node directly.
2896 */
2897 if (ns->head->disk) {
2898 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
2899 ctrl->cntlid, ns->head->instance);
2900 flags = GENHD_FL_HIDDEN;
2901 } else {
2902 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
2903 ns->head->instance);
2904 }
2905 #else
2906 /*
2907 * But without the multipath code enabled, multiple controller per
2908 * subsystems are visible as devices and thus we cannot use the
2909 * subsystem instance.
2910 */
2911 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
2912 #endif
2913
2914 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
2915 if (nvme_nvm_register(ns, disk_name, node)) {
2916 dev_warn(ctrl->device, "LightNVM init failure\n");
2917 goto out_unlink_ns;
2918 }
2919 }
2920
2921 disk = alloc_disk_node(0, node);
2922 if (!disk)
2923 goto out_unlink_ns;
2924
2925 disk->fops = &nvme_fops;
2926 disk->private_data = ns;
2927 disk->queue = ns->queue;
2928 disk->flags = flags;
2929 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2930 ns->disk = disk;
2931
2932 __nvme_revalidate_disk(disk, id);
2933
2934 mutex_lock(&ctrl->namespaces_mutex);
2935 list_add_tail(&ns->list, &ctrl->namespaces);
2936 mutex_unlock(&ctrl->namespaces_mutex);
2937
2938 nvme_get_ctrl(ctrl);
2939
2940 kfree(id);
2941
2942 device_add_disk(ctrl->device, ns->disk);
2943 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2944 &nvme_ns_id_attr_group))
2945 pr_warn("%s: failed to create sysfs group for identification\n",
2946 ns->disk->disk_name);
2947 if (ns->ndev && nvme_nvm_register_sysfs(ns))
2948 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2949 ns->disk->disk_name);
2950
2951 if (new)
2952 nvme_mpath_add_disk(ns->head);
2953 nvme_mpath_add_disk_links(ns);
2954 return;
2955 out_unlink_ns:
2956 mutex_lock(&ctrl->subsys->lock);
2957 list_del_rcu(&ns->siblings);
2958 mutex_unlock(&ctrl->subsys->lock);
2959 out_free_id:
2960 kfree(id);
2961 out_free_queue:
2962 blk_cleanup_queue(ns->queue);
2963 out_free_ns:
2964 kfree(ns);
2965 }
2966
2967 static void nvme_ns_remove(struct nvme_ns *ns)
2968 {
2969 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2970 return;
2971
2972 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2973 nvme_mpath_remove_disk_links(ns);
2974 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2975 &nvme_ns_id_attr_group);
2976 if (ns->ndev)
2977 nvme_nvm_unregister_sysfs(ns);
2978 del_gendisk(ns->disk);
2979 blk_cleanup_queue(ns->queue);
2980 if (blk_get_integrity(ns->disk))
2981 blk_integrity_unregister(ns->disk);
2982 }
2983
2984 mutex_lock(&ns->ctrl->subsys->lock);
2985 nvme_mpath_clear_current_path(ns);
2986 list_del_rcu(&ns->siblings);
2987 mutex_unlock(&ns->ctrl->subsys->lock);
2988
2989 mutex_lock(&ns->ctrl->namespaces_mutex);
2990 list_del_init(&ns->list);
2991 mutex_unlock(&ns->ctrl->namespaces_mutex);
2992
2993 synchronize_srcu(&ns->head->srcu);
2994 nvme_mpath_check_last_path(ns);
2995 nvme_put_ns(ns);
2996 }
2997
2998 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2999 {
3000 struct nvme_ns *ns;
3001
3002 ns = nvme_find_get_ns(ctrl, nsid);
3003 if (ns) {
3004 if (ns->disk && revalidate_disk(ns->disk))
3005 nvme_ns_remove(ns);
3006 nvme_put_ns(ns);
3007 } else
3008 nvme_alloc_ns(ctrl, nsid);
3009 }
3010
3011 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3012 unsigned nsid)
3013 {
3014 struct nvme_ns *ns, *next;
3015
3016 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3017 if (ns->head->ns_id > nsid)
3018 nvme_ns_remove(ns);
3019 }
3020 }
3021
3022 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3023 {
3024 struct nvme_ns *ns;
3025 __le32 *ns_list;
3026 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3027 int ret = 0;
3028
3029 ns_list = kzalloc(0x1000, GFP_KERNEL);
3030 if (!ns_list)
3031 return -ENOMEM;
3032
3033 for (i = 0; i < num_lists; i++) {
3034 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3035 if (ret)
3036 goto free;
3037
3038 for (j = 0; j < min(nn, 1024U); j++) {
3039 nsid = le32_to_cpu(ns_list[j]);
3040 if (!nsid)
3041 goto out;
3042
3043 nvme_validate_ns(ctrl, nsid);
3044
3045 while (++prev < nsid) {
3046 ns = nvme_find_get_ns(ctrl, prev);
3047 if (ns) {
3048 nvme_ns_remove(ns);
3049 nvme_put_ns(ns);
3050 }
3051 }
3052 }
3053 nn -= j;
3054 }
3055 out:
3056 nvme_remove_invalid_namespaces(ctrl, prev);
3057 free:
3058 kfree(ns_list);
3059 return ret;
3060 }
3061
3062 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3063 {
3064 unsigned i;
3065
3066 for (i = 1; i <= nn; i++)
3067 nvme_validate_ns(ctrl, i);
3068
3069 nvme_remove_invalid_namespaces(ctrl, nn);
3070 }
3071
3072 static void nvme_scan_work(struct work_struct *work)
3073 {
3074 struct nvme_ctrl *ctrl =
3075 container_of(work, struct nvme_ctrl, scan_work);
3076 struct nvme_id_ctrl *id;
3077 unsigned nn;
3078
3079 if (ctrl->state != NVME_CTRL_LIVE)
3080 return;
3081
3082 if (nvme_identify_ctrl(ctrl, &id))
3083 return;
3084
3085 nn = le32_to_cpu(id->nn);
3086 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3087 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3088 if (!nvme_scan_ns_list(ctrl, nn))
3089 goto done;
3090 }
3091 nvme_scan_ns_sequential(ctrl, nn);
3092 done:
3093 mutex_lock(&ctrl->namespaces_mutex);
3094 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3095 mutex_unlock(&ctrl->namespaces_mutex);
3096 kfree(id);
3097 }
3098
3099 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3100 {
3101 /*
3102 * Do not queue new scan work when a controller is reset during
3103 * removal.
3104 */
3105 if (ctrl->state == NVME_CTRL_LIVE)
3106 queue_work(nvme_wq, &ctrl->scan_work);
3107 }
3108 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3109
3110 /*
3111 * This function iterates the namespace list unlocked to allow recovery from
3112 * controller failure. It is up to the caller to ensure the namespace list is
3113 * not modified by scan work while this function is executing.
3114 */
3115 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3116 {
3117 struct nvme_ns *ns, *next;
3118
3119 /*
3120 * The dead states indicates the controller was not gracefully
3121 * disconnected. In that case, we won't be able to flush any data while
3122 * removing the namespaces' disks; fail all the queues now to avoid
3123 * potentially having to clean up the failed sync later.
3124 */
3125 if (ctrl->state == NVME_CTRL_DEAD)
3126 nvme_kill_queues(ctrl);
3127
3128 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
3129 nvme_ns_remove(ns);
3130 }
3131 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3132
3133 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3134 {
3135 char *envp[2] = { NULL, NULL };
3136 u32 aen_result = ctrl->aen_result;
3137
3138 ctrl->aen_result = 0;
3139 if (!aen_result)
3140 return;
3141
3142 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3143 if (!envp[0])
3144 return;
3145 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3146 kfree(envp[0]);
3147 }
3148
3149 static void nvme_async_event_work(struct work_struct *work)
3150 {
3151 struct nvme_ctrl *ctrl =
3152 container_of(work, struct nvme_ctrl, async_event_work);
3153
3154 nvme_aen_uevent(ctrl);
3155 ctrl->ops->submit_async_event(ctrl);
3156 }
3157
3158 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3159 {
3160
3161 u32 csts;
3162
3163 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3164 return false;
3165
3166 if (csts == ~0)
3167 return false;
3168
3169 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3170 }
3171
3172 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3173 {
3174 struct nvme_fw_slot_info_log *log;
3175
3176 log = kmalloc(sizeof(*log), GFP_KERNEL);
3177 if (!log)
3178 return;
3179
3180 if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3181 dev_warn(ctrl->device,
3182 "Get FW SLOT INFO log error\n");
3183 kfree(log);
3184 }
3185
3186 static void nvme_fw_act_work(struct work_struct *work)
3187 {
3188 struct nvme_ctrl *ctrl = container_of(work,
3189 struct nvme_ctrl, fw_act_work);
3190 unsigned long fw_act_timeout;
3191
3192 if (ctrl->mtfa)
3193 fw_act_timeout = jiffies +
3194 msecs_to_jiffies(ctrl->mtfa * 100);
3195 else
3196 fw_act_timeout = jiffies +
3197 msecs_to_jiffies(admin_timeout * 1000);
3198
3199 nvme_stop_queues(ctrl);
3200 while (nvme_ctrl_pp_status(ctrl)) {
3201 if (time_after(jiffies, fw_act_timeout)) {
3202 dev_warn(ctrl->device,
3203 "Fw activation timeout, reset controller\n");
3204 nvme_reset_ctrl(ctrl);
3205 break;
3206 }
3207 msleep(100);
3208 }
3209
3210 if (ctrl->state != NVME_CTRL_LIVE)
3211 return;
3212
3213 nvme_start_queues(ctrl);
3214 /* read FW slot information to clear the AER */
3215 nvme_get_fw_slot_info(ctrl);
3216 }
3217
3218 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3219 union nvme_result *res)
3220 {
3221 u32 result = le32_to_cpu(res->u32);
3222
3223 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3224 return;
3225
3226 switch (result & 0x7) {
3227 case NVME_AER_ERROR:
3228 case NVME_AER_SMART:
3229 case NVME_AER_CSS:
3230 case NVME_AER_VS:
3231 ctrl->aen_result = result;
3232 break;
3233 default:
3234 break;
3235 }
3236
3237 switch (result & 0xff07) {
3238 case NVME_AER_NOTICE_NS_CHANGED:
3239 dev_info(ctrl->device, "rescanning\n");
3240 nvme_queue_scan(ctrl);
3241 break;
3242 case NVME_AER_NOTICE_FW_ACT_STARTING:
3243 queue_work(nvme_wq, &ctrl->fw_act_work);
3244 break;
3245 default:
3246 dev_warn(ctrl->device, "async event result %08x\n", result);
3247 }
3248 queue_work(nvme_wq, &ctrl->async_event_work);
3249 }
3250 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3251
3252 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3253 {
3254 nvme_stop_keep_alive(ctrl);
3255 flush_work(&ctrl->async_event_work);
3256 flush_work(&ctrl->scan_work);
3257 cancel_work_sync(&ctrl->fw_act_work);
3258 }
3259 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3260
3261 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3262 {
3263 if (ctrl->kato)
3264 nvme_start_keep_alive(ctrl);
3265
3266 if (ctrl->queue_count > 1) {
3267 nvme_queue_scan(ctrl);
3268 queue_work(nvme_wq, &ctrl->async_event_work);
3269 nvme_start_queues(ctrl);
3270 }
3271 }
3272 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3273
3274 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3275 {
3276 cdev_device_del(&ctrl->cdev, ctrl->device);
3277 }
3278 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3279
3280 static void nvme_free_ctrl(struct device *dev)
3281 {
3282 struct nvme_ctrl *ctrl =
3283 container_of(dev, struct nvme_ctrl, ctrl_device);
3284 struct nvme_subsystem *subsys = ctrl->subsys;
3285
3286 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3287 kfree(ctrl->effects);
3288
3289 if (subsys) {
3290 mutex_lock(&subsys->lock);
3291 list_del(&ctrl->subsys_entry);
3292 mutex_unlock(&subsys->lock);
3293 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3294 }
3295
3296 ctrl->ops->free_ctrl(ctrl);
3297
3298 if (subsys)
3299 nvme_put_subsystem(subsys);
3300 }
3301
3302 /*
3303 * Initialize a NVMe controller structures. This needs to be called during
3304 * earliest initialization so that we have the initialized structured around
3305 * during probing.
3306 */
3307 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3308 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3309 {
3310 int ret;
3311
3312 ctrl->state = NVME_CTRL_NEW;
3313 spin_lock_init(&ctrl->lock);
3314 INIT_LIST_HEAD(&ctrl->namespaces);
3315 mutex_init(&ctrl->namespaces_mutex);
3316 ctrl->dev = dev;
3317 ctrl->ops = ops;
3318 ctrl->quirks = quirks;
3319 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3320 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3321 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3322 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3323
3324 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3325 if (ret < 0)
3326 goto out;
3327 ctrl->instance = ret;
3328
3329 device_initialize(&ctrl->ctrl_device);
3330 ctrl->device = &ctrl->ctrl_device;
3331 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3332 ctrl->device->class = nvme_class;
3333 ctrl->device->parent = ctrl->dev;
3334 ctrl->device->groups = nvme_dev_attr_groups;
3335 ctrl->device->release = nvme_free_ctrl;
3336 dev_set_drvdata(ctrl->device, ctrl);
3337 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3338 if (ret)
3339 goto out_release_instance;
3340
3341 cdev_init(&ctrl->cdev, &nvme_dev_fops);
3342 ctrl->cdev.owner = ops->module;
3343 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3344 if (ret)
3345 goto out_free_name;
3346
3347 /*
3348 * Initialize latency tolerance controls. The sysfs files won't
3349 * be visible to userspace unless the device actually supports APST.
3350 */
3351 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3352 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3353 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3354
3355 return 0;
3356 out_free_name:
3357 kfree_const(dev->kobj.name);
3358 out_release_instance:
3359 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3360 out:
3361 return ret;
3362 }
3363 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3364
3365 /**
3366 * nvme_kill_queues(): Ends all namespace queues
3367 * @ctrl: the dead controller that needs to end
3368 *
3369 * Call this function when the driver determines it is unable to get the
3370 * controller in a state capable of servicing IO.
3371 */
3372 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3373 {
3374 struct nvme_ns *ns;
3375
3376 mutex_lock(&ctrl->namespaces_mutex);
3377
3378 /* Forcibly unquiesce queues to avoid blocking dispatch */
3379 if (ctrl->admin_q)
3380 blk_mq_unquiesce_queue(ctrl->admin_q);
3381
3382 list_for_each_entry(ns, &ctrl->namespaces, list) {
3383 /*
3384 * Revalidating a dead namespace sets capacity to 0. This will
3385 * end buffered writers dirtying pages that can't be synced.
3386 */
3387 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3388 continue;
3389 revalidate_disk(ns->disk);
3390 blk_set_queue_dying(ns->queue);
3391
3392 /* Forcibly unquiesce queues to avoid blocking dispatch */
3393 blk_mq_unquiesce_queue(ns->queue);
3394 }
3395 mutex_unlock(&ctrl->namespaces_mutex);
3396 }
3397 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3398
3399 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3400 {
3401 struct nvme_ns *ns;
3402
3403 mutex_lock(&ctrl->namespaces_mutex);
3404 list_for_each_entry(ns, &ctrl->namespaces, list)
3405 blk_mq_unfreeze_queue(ns->queue);
3406 mutex_unlock(&ctrl->namespaces_mutex);
3407 }
3408 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3409
3410 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3411 {
3412 struct nvme_ns *ns;
3413
3414 mutex_lock(&ctrl->namespaces_mutex);
3415 list_for_each_entry(ns, &ctrl->namespaces, list) {
3416 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3417 if (timeout <= 0)
3418 break;
3419 }
3420 mutex_unlock(&ctrl->namespaces_mutex);
3421 }
3422 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3423
3424 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3425 {
3426 struct nvme_ns *ns;
3427
3428 mutex_lock(&ctrl->namespaces_mutex);
3429 list_for_each_entry(ns, &ctrl->namespaces, list)
3430 blk_mq_freeze_queue_wait(ns->queue);
3431 mutex_unlock(&ctrl->namespaces_mutex);
3432 }
3433 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3434
3435 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3436 {
3437 struct nvme_ns *ns;
3438
3439 mutex_lock(&ctrl->namespaces_mutex);
3440 list_for_each_entry(ns, &ctrl->namespaces, list)
3441 blk_freeze_queue_start(ns->queue);
3442 mutex_unlock(&ctrl->namespaces_mutex);
3443 }
3444 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3445
3446 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3447 {
3448 struct nvme_ns *ns;
3449
3450 mutex_lock(&ctrl->namespaces_mutex);
3451 list_for_each_entry(ns, &ctrl->namespaces, list)
3452 blk_mq_quiesce_queue(ns->queue);
3453 mutex_unlock(&ctrl->namespaces_mutex);
3454 }
3455 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3456
3457 void nvme_start_queues(struct nvme_ctrl *ctrl)
3458 {
3459 struct nvme_ns *ns;
3460
3461 mutex_lock(&ctrl->namespaces_mutex);
3462 list_for_each_entry(ns, &ctrl->namespaces, list)
3463 blk_mq_unquiesce_queue(ns->queue);
3464 mutex_unlock(&ctrl->namespaces_mutex);
3465 }
3466 EXPORT_SYMBOL_GPL(nvme_start_queues);
3467
3468 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3469 {
3470 if (!ctrl->ops->reinit_request)
3471 return 0;
3472
3473 return blk_mq_tagset_iter(set, set->driver_data,
3474 ctrl->ops->reinit_request);
3475 }
3476 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3477
3478 int __init nvme_core_init(void)
3479 {
3480 int result;
3481
3482 nvme_wq = alloc_workqueue("nvme-wq",
3483 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3484 if (!nvme_wq)
3485 return -ENOMEM;
3486
3487 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3488 if (result < 0)
3489 goto destroy_wq;
3490
3491 nvme_class = class_create(THIS_MODULE, "nvme");
3492 if (IS_ERR(nvme_class)) {
3493 result = PTR_ERR(nvme_class);
3494 goto unregister_chrdev;
3495 }
3496
3497 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3498 if (IS_ERR(nvme_subsys_class)) {
3499 result = PTR_ERR(nvme_subsys_class);
3500 goto destroy_class;
3501 }
3502 return 0;
3503
3504 destroy_class:
3505 class_destroy(nvme_class);
3506 unregister_chrdev:
3507 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3508 destroy_wq:
3509 destroy_workqueue(nvme_wq);
3510 return result;
3511 }
3512
3513 void nvme_core_exit(void)
3514 {
3515 ida_destroy(&nvme_subsystems_ida);
3516 class_destroy(nvme_subsys_class);
3517 class_destroy(nvme_class);
3518 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3519 destroy_workqueue(nvme_wq);
3520 }
3521
3522 MODULE_LICENSE("GPL");
3523 MODULE_VERSION("1.0");
3524 module_init(nvme_core_init);
3525 module_exit(nvme_core_exit);