]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/nvme/host/core.c
nvme: cleanup __nvme_check_ids
[mirror_ubuntu-jammy-kernel.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/pm_qos.h>
22 #include <asm/unaligned.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29
30 #define NVME_MINORS (1U << MINORBITS)
31
32 unsigned int admin_timeout = 60;
33 module_param(admin_timeout, uint, 0644);
34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
35 EXPORT_SYMBOL_GPL(admin_timeout);
36
37 unsigned int nvme_io_timeout = 30;
38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
40 EXPORT_SYMBOL_GPL(nvme_io_timeout);
41
42 static unsigned char shutdown_timeout = 5;
43 module_param(shutdown_timeout, byte, 0644);
44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
45
46 static u8 nvme_max_retries = 5;
47 module_param_named(max_retries, nvme_max_retries, byte, 0644);
48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
49
50 static unsigned long default_ps_max_latency_us = 100000;
51 module_param(default_ps_max_latency_us, ulong, 0644);
52 MODULE_PARM_DESC(default_ps_max_latency_us,
53 "max power saving latency for new devices; use PM QOS to change per device");
54
55 static bool force_apst;
56 module_param(force_apst, bool, 0644);
57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
58
59 static unsigned long apst_primary_timeout_ms = 100;
60 module_param(apst_primary_timeout_ms, ulong, 0644);
61 MODULE_PARM_DESC(apst_primary_timeout_ms,
62 "primary APST timeout in ms");
63
64 static unsigned long apst_secondary_timeout_ms = 2000;
65 module_param(apst_secondary_timeout_ms, ulong, 0644);
66 MODULE_PARM_DESC(apst_secondary_timeout_ms,
67 "secondary APST timeout in ms");
68
69 static unsigned long apst_primary_latency_tol_us = 15000;
70 module_param(apst_primary_latency_tol_us, ulong, 0644);
71 MODULE_PARM_DESC(apst_primary_latency_tol_us,
72 "primary APST latency tolerance in us");
73
74 static unsigned long apst_secondary_latency_tol_us = 100000;
75 module_param(apst_secondary_latency_tol_us, ulong, 0644);
76 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
77 "secondary APST latency tolerance in us");
78
79 static bool streams;
80 module_param(streams, bool, 0644);
81 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
82
83 /*
84 * nvme_wq - hosts nvme related works that are not reset or delete
85 * nvme_reset_wq - hosts nvme reset works
86 * nvme_delete_wq - hosts nvme delete works
87 *
88 * nvme_wq will host works such as scan, aen handling, fw activation,
89 * keep-alive, periodic reconnects etc. nvme_reset_wq
90 * runs reset works which also flush works hosted on nvme_wq for
91 * serialization purposes. nvme_delete_wq host controller deletion
92 * works which flush reset works for serialization.
93 */
94 struct workqueue_struct *nvme_wq;
95 EXPORT_SYMBOL_GPL(nvme_wq);
96
97 struct workqueue_struct *nvme_reset_wq;
98 EXPORT_SYMBOL_GPL(nvme_reset_wq);
99
100 struct workqueue_struct *nvme_delete_wq;
101 EXPORT_SYMBOL_GPL(nvme_delete_wq);
102
103 static LIST_HEAD(nvme_subsystems);
104 static DEFINE_MUTEX(nvme_subsystems_lock);
105
106 static DEFINE_IDA(nvme_instance_ida);
107 static dev_t nvme_ctrl_base_chr_devt;
108 static struct class *nvme_class;
109 static struct class *nvme_subsys_class;
110
111 static DEFINE_IDA(nvme_ns_chr_minor_ida);
112 static dev_t nvme_ns_chr_devt;
113 static struct class *nvme_ns_chr_class;
114
115 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
116 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
117 unsigned nsid);
118 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
119 struct nvme_command *cmd);
120
121 /*
122 * Prepare a queue for teardown.
123 *
124 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
125 * the capacity to 0 after that to avoid blocking dispatchers that may be
126 * holding bd_butex. This will end buffered writers dirtying pages that can't
127 * be synced.
128 */
129 static void nvme_set_queue_dying(struct nvme_ns *ns)
130 {
131 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
132 return;
133
134 blk_mark_disk_dead(ns->disk);
135 blk_mq_unquiesce_queue(ns->queue);
136
137 set_capacity_and_notify(ns->disk, 0);
138 }
139
140 void nvme_queue_scan(struct nvme_ctrl *ctrl)
141 {
142 /*
143 * Only new queue scan work when admin and IO queues are both alive
144 */
145 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
146 queue_work(nvme_wq, &ctrl->scan_work);
147 }
148
149 /*
150 * Use this function to proceed with scheduling reset_work for a controller
151 * that had previously been set to the resetting state. This is intended for
152 * code paths that can't be interrupted by other reset attempts. A hot removal
153 * may prevent this from succeeding.
154 */
155 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
156 {
157 if (ctrl->state != NVME_CTRL_RESETTING)
158 return -EBUSY;
159 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
160 return -EBUSY;
161 return 0;
162 }
163 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
164
165 static void nvme_failfast_work(struct work_struct *work)
166 {
167 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
168 struct nvme_ctrl, failfast_work);
169
170 if (ctrl->state != NVME_CTRL_CONNECTING)
171 return;
172
173 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
174 dev_info(ctrl->device, "failfast expired\n");
175 nvme_kick_requeue_lists(ctrl);
176 }
177
178 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
179 {
180 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
181 return;
182
183 schedule_delayed_work(&ctrl->failfast_work,
184 ctrl->opts->fast_io_fail_tmo * HZ);
185 }
186
187 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
188 {
189 if (!ctrl->opts)
190 return;
191
192 cancel_delayed_work_sync(&ctrl->failfast_work);
193 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
194 }
195
196
197 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
198 {
199 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
200 return -EBUSY;
201 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
202 return -EBUSY;
203 return 0;
204 }
205 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
206
207 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
208 {
209 int ret;
210
211 ret = nvme_reset_ctrl(ctrl);
212 if (!ret) {
213 flush_work(&ctrl->reset_work);
214 if (ctrl->state != NVME_CTRL_LIVE)
215 ret = -ENETRESET;
216 }
217
218 return ret;
219 }
220
221 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
222 {
223 dev_info(ctrl->device,
224 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
225
226 flush_work(&ctrl->reset_work);
227 nvme_stop_ctrl(ctrl);
228 nvme_remove_namespaces(ctrl);
229 ctrl->ops->delete_ctrl(ctrl);
230 nvme_uninit_ctrl(ctrl);
231 }
232
233 static void nvme_delete_ctrl_work(struct work_struct *work)
234 {
235 struct nvme_ctrl *ctrl =
236 container_of(work, struct nvme_ctrl, delete_work);
237
238 nvme_do_delete_ctrl(ctrl);
239 }
240
241 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
242 {
243 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
244 return -EBUSY;
245 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
246 return -EBUSY;
247 return 0;
248 }
249 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
250
251 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
252 {
253 /*
254 * Keep a reference until nvme_do_delete_ctrl() complete,
255 * since ->delete_ctrl can free the controller.
256 */
257 nvme_get_ctrl(ctrl);
258 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
259 nvme_do_delete_ctrl(ctrl);
260 nvme_put_ctrl(ctrl);
261 }
262
263 static blk_status_t nvme_error_status(u16 status)
264 {
265 switch (status & 0x7ff) {
266 case NVME_SC_SUCCESS:
267 return BLK_STS_OK;
268 case NVME_SC_CAP_EXCEEDED:
269 return BLK_STS_NOSPC;
270 case NVME_SC_LBA_RANGE:
271 case NVME_SC_CMD_INTERRUPTED:
272 case NVME_SC_NS_NOT_READY:
273 return BLK_STS_TARGET;
274 case NVME_SC_BAD_ATTRIBUTES:
275 case NVME_SC_ONCS_NOT_SUPPORTED:
276 case NVME_SC_INVALID_OPCODE:
277 case NVME_SC_INVALID_FIELD:
278 case NVME_SC_INVALID_NS:
279 return BLK_STS_NOTSUPP;
280 case NVME_SC_WRITE_FAULT:
281 case NVME_SC_READ_ERROR:
282 case NVME_SC_UNWRITTEN_BLOCK:
283 case NVME_SC_ACCESS_DENIED:
284 case NVME_SC_READ_ONLY:
285 case NVME_SC_COMPARE_FAILED:
286 return BLK_STS_MEDIUM;
287 case NVME_SC_GUARD_CHECK:
288 case NVME_SC_APPTAG_CHECK:
289 case NVME_SC_REFTAG_CHECK:
290 case NVME_SC_INVALID_PI:
291 return BLK_STS_PROTECTION;
292 case NVME_SC_RESERVATION_CONFLICT:
293 return BLK_STS_NEXUS;
294 case NVME_SC_HOST_PATH_ERROR:
295 return BLK_STS_TRANSPORT;
296 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
297 return BLK_STS_ZONE_ACTIVE_RESOURCE;
298 case NVME_SC_ZONE_TOO_MANY_OPEN:
299 return BLK_STS_ZONE_OPEN_RESOURCE;
300 default:
301 return BLK_STS_IOERR;
302 }
303 }
304
305 static void nvme_retry_req(struct request *req)
306 {
307 unsigned long delay = 0;
308 u16 crd;
309
310 /* The mask and shift result must be <= 3 */
311 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
312 if (crd)
313 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
314
315 nvme_req(req)->retries++;
316 blk_mq_requeue_request(req, false);
317 blk_mq_delay_kick_requeue_list(req->q, delay);
318 }
319
320 enum nvme_disposition {
321 COMPLETE,
322 RETRY,
323 FAILOVER,
324 };
325
326 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
327 {
328 if (likely(nvme_req(req)->status == 0))
329 return COMPLETE;
330
331 if (blk_noretry_request(req) ||
332 (nvme_req(req)->status & NVME_SC_DNR) ||
333 nvme_req(req)->retries >= nvme_max_retries)
334 return COMPLETE;
335
336 if (req->cmd_flags & REQ_NVME_MPATH) {
337 if (nvme_is_path_error(nvme_req(req)->status) ||
338 blk_queue_dying(req->q))
339 return FAILOVER;
340 } else {
341 if (blk_queue_dying(req->q))
342 return COMPLETE;
343 }
344
345 return RETRY;
346 }
347
348 static inline void nvme_end_req(struct request *req)
349 {
350 blk_status_t status = nvme_error_status(nvme_req(req)->status);
351
352 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
353 req_op(req) == REQ_OP_ZONE_APPEND)
354 req->__sector = nvme_lba_to_sect(req->q->queuedata,
355 le64_to_cpu(nvme_req(req)->result.u64));
356
357 nvme_trace_bio_complete(req);
358 blk_mq_end_request(req, status);
359 }
360
361 void nvme_complete_rq(struct request *req)
362 {
363 trace_nvme_complete_rq(req);
364 nvme_cleanup_cmd(req);
365
366 if (nvme_req(req)->ctrl->kas)
367 nvme_req(req)->ctrl->comp_seen = true;
368
369 switch (nvme_decide_disposition(req)) {
370 case COMPLETE:
371 nvme_end_req(req);
372 return;
373 case RETRY:
374 nvme_retry_req(req);
375 return;
376 case FAILOVER:
377 nvme_failover_req(req);
378 return;
379 }
380 }
381 EXPORT_SYMBOL_GPL(nvme_complete_rq);
382
383 /*
384 * Called to unwind from ->queue_rq on a failed command submission so that the
385 * multipathing code gets called to potentially failover to another path.
386 * The caller needs to unwind all transport specific resource allocations and
387 * must return propagate the return value.
388 */
389 blk_status_t nvme_host_path_error(struct request *req)
390 {
391 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
392 blk_mq_set_request_complete(req);
393 nvme_complete_rq(req);
394 return BLK_STS_OK;
395 }
396 EXPORT_SYMBOL_GPL(nvme_host_path_error);
397
398 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
399 {
400 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
401 "Cancelling I/O %d", req->tag);
402
403 /* don't abort one completed request */
404 if (blk_mq_request_completed(req))
405 return true;
406
407 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
408 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
409 blk_mq_complete_request(req);
410 return true;
411 }
412 EXPORT_SYMBOL_GPL(nvme_cancel_request);
413
414 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
415 {
416 if (ctrl->tagset) {
417 blk_mq_tagset_busy_iter(ctrl->tagset,
418 nvme_cancel_request, ctrl);
419 blk_mq_tagset_wait_completed_request(ctrl->tagset);
420 }
421 }
422 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
423
424 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
425 {
426 if (ctrl->admin_tagset) {
427 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
428 nvme_cancel_request, ctrl);
429 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
430 }
431 }
432 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
433
434 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
435 enum nvme_ctrl_state new_state)
436 {
437 enum nvme_ctrl_state old_state;
438 unsigned long flags;
439 bool changed = false;
440
441 spin_lock_irqsave(&ctrl->lock, flags);
442
443 old_state = ctrl->state;
444 switch (new_state) {
445 case NVME_CTRL_LIVE:
446 switch (old_state) {
447 case NVME_CTRL_NEW:
448 case NVME_CTRL_RESETTING:
449 case NVME_CTRL_CONNECTING:
450 changed = true;
451 fallthrough;
452 default:
453 break;
454 }
455 break;
456 case NVME_CTRL_RESETTING:
457 switch (old_state) {
458 case NVME_CTRL_NEW:
459 case NVME_CTRL_LIVE:
460 changed = true;
461 fallthrough;
462 default:
463 break;
464 }
465 break;
466 case NVME_CTRL_CONNECTING:
467 switch (old_state) {
468 case NVME_CTRL_NEW:
469 case NVME_CTRL_RESETTING:
470 changed = true;
471 fallthrough;
472 default:
473 break;
474 }
475 break;
476 case NVME_CTRL_DELETING:
477 switch (old_state) {
478 case NVME_CTRL_LIVE:
479 case NVME_CTRL_RESETTING:
480 case NVME_CTRL_CONNECTING:
481 changed = true;
482 fallthrough;
483 default:
484 break;
485 }
486 break;
487 case NVME_CTRL_DELETING_NOIO:
488 switch (old_state) {
489 case NVME_CTRL_DELETING:
490 case NVME_CTRL_DEAD:
491 changed = true;
492 fallthrough;
493 default:
494 break;
495 }
496 break;
497 case NVME_CTRL_DEAD:
498 switch (old_state) {
499 case NVME_CTRL_DELETING:
500 changed = true;
501 fallthrough;
502 default:
503 break;
504 }
505 break;
506 default:
507 break;
508 }
509
510 if (changed) {
511 ctrl->state = new_state;
512 wake_up_all(&ctrl->state_wq);
513 }
514
515 spin_unlock_irqrestore(&ctrl->lock, flags);
516 if (!changed)
517 return false;
518
519 if (ctrl->state == NVME_CTRL_LIVE) {
520 if (old_state == NVME_CTRL_CONNECTING)
521 nvme_stop_failfast_work(ctrl);
522 nvme_kick_requeue_lists(ctrl);
523 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
524 old_state == NVME_CTRL_RESETTING) {
525 nvme_start_failfast_work(ctrl);
526 }
527 return changed;
528 }
529 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
530
531 /*
532 * Returns true for sink states that can't ever transition back to live.
533 */
534 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
535 {
536 switch (ctrl->state) {
537 case NVME_CTRL_NEW:
538 case NVME_CTRL_LIVE:
539 case NVME_CTRL_RESETTING:
540 case NVME_CTRL_CONNECTING:
541 return false;
542 case NVME_CTRL_DELETING:
543 case NVME_CTRL_DELETING_NOIO:
544 case NVME_CTRL_DEAD:
545 return true;
546 default:
547 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
548 return true;
549 }
550 }
551
552 /*
553 * Waits for the controller state to be resetting, or returns false if it is
554 * not possible to ever transition to that state.
555 */
556 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
557 {
558 wait_event(ctrl->state_wq,
559 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
560 nvme_state_terminal(ctrl));
561 return ctrl->state == NVME_CTRL_RESETTING;
562 }
563 EXPORT_SYMBOL_GPL(nvme_wait_reset);
564
565 static void nvme_free_ns_head(struct kref *ref)
566 {
567 struct nvme_ns_head *head =
568 container_of(ref, struct nvme_ns_head, ref);
569
570 nvme_mpath_remove_disk(head);
571 ida_simple_remove(&head->subsys->ns_ida, head->instance);
572 cleanup_srcu_struct(&head->srcu);
573 nvme_put_subsystem(head->subsys);
574 kfree(head);
575 }
576
577 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
578 {
579 return kref_get_unless_zero(&head->ref);
580 }
581
582 void nvme_put_ns_head(struct nvme_ns_head *head)
583 {
584 kref_put(&head->ref, nvme_free_ns_head);
585 }
586
587 static void nvme_free_ns(struct kref *kref)
588 {
589 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
590
591 put_disk(ns->disk);
592 nvme_put_ns_head(ns->head);
593 nvme_put_ctrl(ns->ctrl);
594 kfree(ns);
595 }
596
597 static inline bool nvme_get_ns(struct nvme_ns *ns)
598 {
599 return kref_get_unless_zero(&ns->kref);
600 }
601
602 void nvme_put_ns(struct nvme_ns *ns)
603 {
604 kref_put(&ns->kref, nvme_free_ns);
605 }
606 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
607
608 static inline void nvme_clear_nvme_request(struct request *req)
609 {
610 nvme_req(req)->status = 0;
611 nvme_req(req)->retries = 0;
612 nvme_req(req)->flags = 0;
613 req->rq_flags |= RQF_DONTPREP;
614 }
615
616 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
617 {
618 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
619 }
620
621 static inline void nvme_init_request(struct request *req,
622 struct nvme_command *cmd)
623 {
624 if (req->q->queuedata)
625 req->timeout = NVME_IO_TIMEOUT;
626 else /* no queuedata implies admin queue */
627 req->timeout = NVME_ADMIN_TIMEOUT;
628
629 /* passthru commands should let the driver set the SGL flags */
630 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
631
632 req->cmd_flags |= REQ_FAILFAST_DRIVER;
633 if (req->mq_hctx->type == HCTX_TYPE_POLL)
634 req->cmd_flags |= REQ_HIPRI;
635 nvme_clear_nvme_request(req);
636 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
637 }
638
639 struct request *nvme_alloc_request(struct request_queue *q,
640 struct nvme_command *cmd, blk_mq_req_flags_t flags)
641 {
642 struct request *req;
643
644 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
645 if (!IS_ERR(req))
646 nvme_init_request(req, cmd);
647 return req;
648 }
649 EXPORT_SYMBOL_GPL(nvme_alloc_request);
650
651 static struct request *nvme_alloc_request_qid(struct request_queue *q,
652 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
653 {
654 struct request *req;
655
656 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
657 qid ? qid - 1 : 0);
658 if (!IS_ERR(req))
659 nvme_init_request(req, cmd);
660 return req;
661 }
662
663 /*
664 * For something we're not in a state to send to the device the default action
665 * is to busy it and retry it after the controller state is recovered. However,
666 * if the controller is deleting or if anything is marked for failfast or
667 * nvme multipath it is immediately failed.
668 *
669 * Note: commands used to initialize the controller will be marked for failfast.
670 * Note: nvme cli/ioctl commands are marked for failfast.
671 */
672 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
673 struct request *rq)
674 {
675 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
676 ctrl->state != NVME_CTRL_DEAD &&
677 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
678 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
679 return BLK_STS_RESOURCE;
680 return nvme_host_path_error(rq);
681 }
682 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
683
684 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
685 bool queue_live)
686 {
687 struct nvme_request *req = nvme_req(rq);
688
689 /*
690 * currently we have a problem sending passthru commands
691 * on the admin_q if the controller is not LIVE because we can't
692 * make sure that they are going out after the admin connect,
693 * controller enable and/or other commands in the initialization
694 * sequence. until the controller will be LIVE, fail with
695 * BLK_STS_RESOURCE so that they will be rescheduled.
696 */
697 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
698 return false;
699
700 if (ctrl->ops->flags & NVME_F_FABRICS) {
701 /*
702 * Only allow commands on a live queue, except for the connect
703 * command, which is require to set the queue live in the
704 * appropinquate states.
705 */
706 switch (ctrl->state) {
707 case NVME_CTRL_CONNECTING:
708 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
709 req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
710 return true;
711 break;
712 default:
713 break;
714 case NVME_CTRL_DEAD:
715 return false;
716 }
717 }
718
719 return queue_live;
720 }
721 EXPORT_SYMBOL_GPL(__nvme_check_ready);
722
723 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
724 {
725 struct nvme_command c = { };
726
727 c.directive.opcode = nvme_admin_directive_send;
728 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
729 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
730 c.directive.dtype = NVME_DIR_IDENTIFY;
731 c.directive.tdtype = NVME_DIR_STREAMS;
732 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
733
734 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
735 }
736
737 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
738 {
739 return nvme_toggle_streams(ctrl, false);
740 }
741
742 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
743 {
744 return nvme_toggle_streams(ctrl, true);
745 }
746
747 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
748 struct streams_directive_params *s, u32 nsid)
749 {
750 struct nvme_command c = { };
751
752 memset(s, 0, sizeof(*s));
753
754 c.directive.opcode = nvme_admin_directive_recv;
755 c.directive.nsid = cpu_to_le32(nsid);
756 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
757 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
758 c.directive.dtype = NVME_DIR_STREAMS;
759
760 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
761 }
762
763 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
764 {
765 struct streams_directive_params s;
766 int ret;
767
768 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
769 return 0;
770 if (!streams)
771 return 0;
772
773 ret = nvme_enable_streams(ctrl);
774 if (ret)
775 return ret;
776
777 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
778 if (ret)
779 goto out_disable_stream;
780
781 ctrl->nssa = le16_to_cpu(s.nssa);
782 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
783 dev_info(ctrl->device, "too few streams (%u) available\n",
784 ctrl->nssa);
785 goto out_disable_stream;
786 }
787
788 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
789 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
790 return 0;
791
792 out_disable_stream:
793 nvme_disable_streams(ctrl);
794 return ret;
795 }
796
797 /*
798 * Check if 'req' has a write hint associated with it. If it does, assign
799 * a valid namespace stream to the write.
800 */
801 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
802 struct request *req, u16 *control,
803 u32 *dsmgmt)
804 {
805 enum rw_hint streamid = req->write_hint;
806
807 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
808 streamid = 0;
809 else {
810 streamid--;
811 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
812 return;
813
814 *control |= NVME_RW_DTYPE_STREAMS;
815 *dsmgmt |= streamid << 16;
816 }
817
818 if (streamid < ARRAY_SIZE(req->q->write_hints))
819 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
820 }
821
822 static inline void nvme_setup_flush(struct nvme_ns *ns,
823 struct nvme_command *cmnd)
824 {
825 cmnd->common.opcode = nvme_cmd_flush;
826 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
827 }
828
829 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
830 struct nvme_command *cmnd)
831 {
832 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
833 struct nvme_dsm_range *range;
834 struct bio *bio;
835
836 /*
837 * Some devices do not consider the DSM 'Number of Ranges' field when
838 * determining how much data to DMA. Always allocate memory for maximum
839 * number of segments to prevent device reading beyond end of buffer.
840 */
841 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
842
843 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
844 if (!range) {
845 /*
846 * If we fail allocation our range, fallback to the controller
847 * discard page. If that's also busy, it's safe to return
848 * busy, as we know we can make progress once that's freed.
849 */
850 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
851 return BLK_STS_RESOURCE;
852
853 range = page_address(ns->ctrl->discard_page);
854 }
855
856 __rq_for_each_bio(bio, req) {
857 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
858 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
859
860 if (n < segments) {
861 range[n].cattr = cpu_to_le32(0);
862 range[n].nlb = cpu_to_le32(nlb);
863 range[n].slba = cpu_to_le64(slba);
864 }
865 n++;
866 }
867
868 if (WARN_ON_ONCE(n != segments)) {
869 if (virt_to_page(range) == ns->ctrl->discard_page)
870 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
871 else
872 kfree(range);
873 return BLK_STS_IOERR;
874 }
875
876 cmnd->dsm.opcode = nvme_cmd_dsm;
877 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
878 cmnd->dsm.nr = cpu_to_le32(segments - 1);
879 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
880
881 req->special_vec.bv_page = virt_to_page(range);
882 req->special_vec.bv_offset = offset_in_page(range);
883 req->special_vec.bv_len = alloc_size;
884 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
885
886 return BLK_STS_OK;
887 }
888
889 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
890 struct request *req, struct nvme_command *cmnd)
891 {
892 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
893 return nvme_setup_discard(ns, req, cmnd);
894
895 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
896 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
897 cmnd->write_zeroes.slba =
898 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
899 cmnd->write_zeroes.length =
900 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
901 if (nvme_ns_has_pi(ns))
902 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
903 else
904 cmnd->write_zeroes.control = 0;
905 return BLK_STS_OK;
906 }
907
908 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
909 struct request *req, struct nvme_command *cmnd,
910 enum nvme_opcode op)
911 {
912 struct nvme_ctrl *ctrl = ns->ctrl;
913 u16 control = 0;
914 u32 dsmgmt = 0;
915
916 if (req->cmd_flags & REQ_FUA)
917 control |= NVME_RW_FUA;
918 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
919 control |= NVME_RW_LR;
920
921 if (req->cmd_flags & REQ_RAHEAD)
922 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
923
924 cmnd->rw.opcode = op;
925 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
926 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
927 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
928
929 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
930 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
931
932 if (ns->ms) {
933 /*
934 * If formated with metadata, the block layer always provides a
935 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
936 * we enable the PRACT bit for protection information or set the
937 * namespace capacity to zero to prevent any I/O.
938 */
939 if (!blk_integrity_rq(req)) {
940 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
941 return BLK_STS_NOTSUPP;
942 control |= NVME_RW_PRINFO_PRACT;
943 }
944
945 switch (ns->pi_type) {
946 case NVME_NS_DPS_PI_TYPE3:
947 control |= NVME_RW_PRINFO_PRCHK_GUARD;
948 break;
949 case NVME_NS_DPS_PI_TYPE1:
950 case NVME_NS_DPS_PI_TYPE2:
951 control |= NVME_RW_PRINFO_PRCHK_GUARD |
952 NVME_RW_PRINFO_PRCHK_REF;
953 if (op == nvme_cmd_zone_append)
954 control |= NVME_RW_APPEND_PIREMAP;
955 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
956 break;
957 }
958 }
959
960 cmnd->rw.control = cpu_to_le16(control);
961 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
962 return 0;
963 }
964
965 void nvme_cleanup_cmd(struct request *req)
966 {
967 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
968 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
969
970 if (req->special_vec.bv_page == ctrl->discard_page)
971 clear_bit_unlock(0, &ctrl->discard_page_busy);
972 else
973 kfree(bvec_virt(&req->special_vec));
974 }
975 }
976 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
977
978 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
979 {
980 struct nvme_command *cmd = nvme_req(req)->cmd;
981 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
982 blk_status_t ret = BLK_STS_OK;
983
984 if (!(req->rq_flags & RQF_DONTPREP)) {
985 nvme_clear_nvme_request(req);
986 memset(cmd, 0, sizeof(*cmd));
987 }
988
989 switch (req_op(req)) {
990 case REQ_OP_DRV_IN:
991 case REQ_OP_DRV_OUT:
992 /* these are setup prior to execution in nvme_init_request() */
993 break;
994 case REQ_OP_FLUSH:
995 nvme_setup_flush(ns, cmd);
996 break;
997 case REQ_OP_ZONE_RESET_ALL:
998 case REQ_OP_ZONE_RESET:
999 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1000 break;
1001 case REQ_OP_ZONE_OPEN:
1002 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1003 break;
1004 case REQ_OP_ZONE_CLOSE:
1005 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1006 break;
1007 case REQ_OP_ZONE_FINISH:
1008 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1009 break;
1010 case REQ_OP_WRITE_ZEROES:
1011 ret = nvme_setup_write_zeroes(ns, req, cmd);
1012 break;
1013 case REQ_OP_DISCARD:
1014 ret = nvme_setup_discard(ns, req, cmd);
1015 break;
1016 case REQ_OP_READ:
1017 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1018 break;
1019 case REQ_OP_WRITE:
1020 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1021 break;
1022 case REQ_OP_ZONE_APPEND:
1023 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1024 break;
1025 default:
1026 WARN_ON_ONCE(1);
1027 return BLK_STS_IOERR;
1028 }
1029
1030 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
1031 nvme_req(req)->genctr++;
1032 cmd->common.command_id = nvme_cid(req);
1033 trace_nvme_setup_cmd(req, cmd);
1034 return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1037
1038 /*
1039 * Return values:
1040 * 0: success
1041 * >0: nvme controller's cqe status response
1042 * <0: kernel error in lieu of controller response
1043 */
1044 static int nvme_execute_rq(struct gendisk *disk, struct request *rq,
1045 bool at_head)
1046 {
1047 blk_status_t status;
1048
1049 status = blk_execute_rq(disk, rq, at_head);
1050 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1051 return -EINTR;
1052 if (nvme_req(rq)->status)
1053 return nvme_req(rq)->status;
1054 return blk_status_to_errno(status);
1055 }
1056
1057 /*
1058 * Returns 0 on success. If the result is negative, it's a Linux error code;
1059 * if the result is positive, it's an NVM Express status code
1060 */
1061 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1062 union nvme_result *result, void *buffer, unsigned bufflen,
1063 unsigned timeout, int qid, int at_head,
1064 blk_mq_req_flags_t flags)
1065 {
1066 struct request *req;
1067 int ret;
1068
1069 if (qid == NVME_QID_ANY)
1070 req = nvme_alloc_request(q, cmd, flags);
1071 else
1072 req = nvme_alloc_request_qid(q, cmd, flags, qid);
1073 if (IS_ERR(req))
1074 return PTR_ERR(req);
1075
1076 if (timeout)
1077 req->timeout = timeout;
1078
1079 if (buffer && bufflen) {
1080 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1081 if (ret)
1082 goto out;
1083 }
1084
1085 ret = nvme_execute_rq(NULL, req, at_head);
1086 if (result && ret >= 0)
1087 *result = nvme_req(req)->result;
1088 out:
1089 blk_mq_free_request(req);
1090 return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1093
1094 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1095 void *buffer, unsigned bufflen)
1096 {
1097 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1098 NVME_QID_ANY, 0, 0);
1099 }
1100 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1101
1102 static u32 nvme_known_admin_effects(u8 opcode)
1103 {
1104 switch (opcode) {
1105 case nvme_admin_format_nvm:
1106 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1107 NVME_CMD_EFFECTS_CSE_MASK;
1108 case nvme_admin_sanitize_nvm:
1109 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1110 default:
1111 break;
1112 }
1113 return 0;
1114 }
1115
1116 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1117 {
1118 u32 effects = 0;
1119
1120 if (ns) {
1121 if (ns->head->effects)
1122 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1123 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1124 dev_warn_once(ctrl->device,
1125 "IO command:%02x has unhandled effects:%08x\n",
1126 opcode, effects);
1127 return 0;
1128 }
1129
1130 if (ctrl->effects)
1131 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1132 effects |= nvme_known_admin_effects(opcode);
1133
1134 return effects;
1135 }
1136 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1137
1138 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1139 u8 opcode)
1140 {
1141 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1142
1143 /*
1144 * For simplicity, IO to all namespaces is quiesced even if the command
1145 * effects say only one namespace is affected.
1146 */
1147 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1148 mutex_lock(&ctrl->scan_lock);
1149 mutex_lock(&ctrl->subsys->lock);
1150 nvme_mpath_start_freeze(ctrl->subsys);
1151 nvme_mpath_wait_freeze(ctrl->subsys);
1152 nvme_start_freeze(ctrl);
1153 nvme_wait_freeze(ctrl);
1154 }
1155 return effects;
1156 }
1157
1158 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1159 struct nvme_command *cmd, int status)
1160 {
1161 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1162 nvme_unfreeze(ctrl);
1163 nvme_mpath_unfreeze(ctrl->subsys);
1164 mutex_unlock(&ctrl->subsys->lock);
1165 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1166 mutex_unlock(&ctrl->scan_lock);
1167 }
1168 if (effects & NVME_CMD_EFFECTS_CCC)
1169 nvme_init_ctrl_finish(ctrl);
1170 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1171 nvme_queue_scan(ctrl);
1172 flush_work(&ctrl->scan_work);
1173 }
1174
1175 switch (cmd->common.opcode) {
1176 case nvme_admin_set_features:
1177 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1178 case NVME_FEAT_KATO:
1179 /*
1180 * Keep alive commands interval on the host should be
1181 * updated when KATO is modified by Set Features
1182 * commands.
1183 */
1184 if (!status)
1185 nvme_update_keep_alive(ctrl, cmd);
1186 break;
1187 default:
1188 break;
1189 }
1190 break;
1191 default:
1192 break;
1193 }
1194 }
1195
1196 int nvme_execute_passthru_rq(struct request *rq)
1197 {
1198 struct nvme_command *cmd = nvme_req(rq)->cmd;
1199 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1200 struct nvme_ns *ns = rq->q->queuedata;
1201 struct gendisk *disk = ns ? ns->disk : NULL;
1202 u32 effects;
1203 int ret;
1204
1205 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1206 ret = nvme_execute_rq(disk, rq, false);
1207 if (effects) /* nothing to be done for zero cmd effects */
1208 nvme_passthru_end(ctrl, effects, cmd, ret);
1209
1210 return ret;
1211 }
1212 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1213
1214 /*
1215 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1216 *
1217 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1218 * accounting for transport roundtrip times [..].
1219 */
1220 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1221 {
1222 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1223 }
1224
1225 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1226 {
1227 struct nvme_ctrl *ctrl = rq->end_io_data;
1228 unsigned long flags;
1229 bool startka = false;
1230
1231 blk_mq_free_request(rq);
1232
1233 if (status) {
1234 dev_err(ctrl->device,
1235 "failed nvme_keep_alive_end_io error=%d\n",
1236 status);
1237 return;
1238 }
1239
1240 ctrl->comp_seen = false;
1241 spin_lock_irqsave(&ctrl->lock, flags);
1242 if (ctrl->state == NVME_CTRL_LIVE ||
1243 ctrl->state == NVME_CTRL_CONNECTING)
1244 startka = true;
1245 spin_unlock_irqrestore(&ctrl->lock, flags);
1246 if (startka)
1247 nvme_queue_keep_alive_work(ctrl);
1248 }
1249
1250 static void nvme_keep_alive_work(struct work_struct *work)
1251 {
1252 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1253 struct nvme_ctrl, ka_work);
1254 bool comp_seen = ctrl->comp_seen;
1255 struct request *rq;
1256
1257 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1258 dev_dbg(ctrl->device,
1259 "reschedule traffic based keep-alive timer\n");
1260 ctrl->comp_seen = false;
1261 nvme_queue_keep_alive_work(ctrl);
1262 return;
1263 }
1264
1265 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1266 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1267 if (IS_ERR(rq)) {
1268 /* allocation failure, reset the controller */
1269 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1270 nvme_reset_ctrl(ctrl);
1271 return;
1272 }
1273
1274 rq->timeout = ctrl->kato * HZ;
1275 rq->end_io_data = ctrl;
1276 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1277 }
1278
1279 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1280 {
1281 if (unlikely(ctrl->kato == 0))
1282 return;
1283
1284 nvme_queue_keep_alive_work(ctrl);
1285 }
1286
1287 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1288 {
1289 if (unlikely(ctrl->kato == 0))
1290 return;
1291
1292 cancel_delayed_work_sync(&ctrl->ka_work);
1293 }
1294 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1295
1296 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1297 struct nvme_command *cmd)
1298 {
1299 unsigned int new_kato =
1300 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1301
1302 dev_info(ctrl->device,
1303 "keep alive interval updated from %u ms to %u ms\n",
1304 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1305
1306 nvme_stop_keep_alive(ctrl);
1307 ctrl->kato = new_kato;
1308 nvme_start_keep_alive(ctrl);
1309 }
1310
1311 /*
1312 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1313 * flag, thus sending any new CNS opcodes has a big chance of not working.
1314 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1315 * (but not for any later version).
1316 */
1317 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1318 {
1319 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1320 return ctrl->vs < NVME_VS(1, 2, 0);
1321 return ctrl->vs < NVME_VS(1, 1, 0);
1322 }
1323
1324 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1325 {
1326 struct nvme_command c = { };
1327 int error;
1328
1329 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1330 c.identify.opcode = nvme_admin_identify;
1331 c.identify.cns = NVME_ID_CNS_CTRL;
1332
1333 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1334 if (!*id)
1335 return -ENOMEM;
1336
1337 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1338 sizeof(struct nvme_id_ctrl));
1339 if (error)
1340 kfree(*id);
1341 return error;
1342 }
1343
1344 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1345 struct nvme_ns_id_desc *cur, bool *csi_seen)
1346 {
1347 const char *warn_str = "ctrl returned bogus length:";
1348 void *data = cur;
1349
1350 switch (cur->nidt) {
1351 case NVME_NIDT_EUI64:
1352 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1353 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1354 warn_str, cur->nidl);
1355 return -1;
1356 }
1357 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1358 return NVME_NIDT_EUI64_LEN;
1359 case NVME_NIDT_NGUID:
1360 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1361 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1362 warn_str, cur->nidl);
1363 return -1;
1364 }
1365 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1366 return NVME_NIDT_NGUID_LEN;
1367 case NVME_NIDT_UUID:
1368 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1369 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1370 warn_str, cur->nidl);
1371 return -1;
1372 }
1373 uuid_copy(&ids->uuid, data + sizeof(*cur));
1374 return NVME_NIDT_UUID_LEN;
1375 case NVME_NIDT_CSI:
1376 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1377 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1378 warn_str, cur->nidl);
1379 return -1;
1380 }
1381 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1382 *csi_seen = true;
1383 return NVME_NIDT_CSI_LEN;
1384 default:
1385 /* Skip unknown types */
1386 return cur->nidl;
1387 }
1388 }
1389
1390 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1391 struct nvme_ns_ids *ids)
1392 {
1393 struct nvme_command c = { };
1394 bool csi_seen = false;
1395 int status, pos, len;
1396 void *data;
1397
1398 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1399 return 0;
1400 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1401 return 0;
1402
1403 c.identify.opcode = nvme_admin_identify;
1404 c.identify.nsid = cpu_to_le32(nsid);
1405 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1406
1407 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1408 if (!data)
1409 return -ENOMEM;
1410
1411 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1412 NVME_IDENTIFY_DATA_SIZE);
1413 if (status) {
1414 dev_warn(ctrl->device,
1415 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1416 nsid, status);
1417 goto free_data;
1418 }
1419
1420 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1421 struct nvme_ns_id_desc *cur = data + pos;
1422
1423 if (cur->nidl == 0)
1424 break;
1425
1426 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1427 if (len < 0)
1428 break;
1429
1430 len += sizeof(*cur);
1431 }
1432
1433 if (nvme_multi_css(ctrl) && !csi_seen) {
1434 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1435 nsid);
1436 status = -EINVAL;
1437 }
1438
1439 free_data:
1440 kfree(data);
1441 return status;
1442 }
1443
1444 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1445 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1446 {
1447 struct nvme_command c = { };
1448 int error;
1449
1450 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1451 c.identify.opcode = nvme_admin_identify;
1452 c.identify.nsid = cpu_to_le32(nsid);
1453 c.identify.cns = NVME_ID_CNS_NS;
1454
1455 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1456 if (!*id)
1457 return -ENOMEM;
1458
1459 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1460 if (error) {
1461 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1462 goto out_free_id;
1463 }
1464
1465 error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1466 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1467 goto out_free_id;
1468
1469 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1470 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1471 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1472 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1473 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1474 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1475
1476 return 0;
1477
1478 out_free_id:
1479 kfree(*id);
1480 return error;
1481 }
1482
1483 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1484 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1485 {
1486 union nvme_result res = { 0 };
1487 struct nvme_command c = { };
1488 int ret;
1489
1490 c.features.opcode = op;
1491 c.features.fid = cpu_to_le32(fid);
1492 c.features.dword11 = cpu_to_le32(dword11);
1493
1494 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1495 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1496 if (ret >= 0 && result)
1497 *result = le32_to_cpu(res.u32);
1498 return ret;
1499 }
1500
1501 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1502 unsigned int dword11, void *buffer, size_t buflen,
1503 u32 *result)
1504 {
1505 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1506 buflen, result);
1507 }
1508 EXPORT_SYMBOL_GPL(nvme_set_features);
1509
1510 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1511 unsigned int dword11, void *buffer, size_t buflen,
1512 u32 *result)
1513 {
1514 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1515 buflen, result);
1516 }
1517 EXPORT_SYMBOL_GPL(nvme_get_features);
1518
1519 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1520 {
1521 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1522 u32 result;
1523 int status, nr_io_queues;
1524
1525 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1526 &result);
1527 if (status < 0)
1528 return status;
1529
1530 /*
1531 * Degraded controllers might return an error when setting the queue
1532 * count. We still want to be able to bring them online and offer
1533 * access to the admin queue, as that might be only way to fix them up.
1534 */
1535 if (status > 0) {
1536 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1537 *count = 0;
1538 } else {
1539 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1540 *count = min(*count, nr_io_queues);
1541 }
1542
1543 return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1546
1547 #define NVME_AEN_SUPPORTED \
1548 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1549 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1550
1551 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1552 {
1553 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1554 int status;
1555
1556 if (!supported_aens)
1557 return;
1558
1559 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1560 NULL, 0, &result);
1561 if (status)
1562 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1563 supported_aens);
1564
1565 queue_work(nvme_wq, &ctrl->async_event_work);
1566 }
1567
1568 static int nvme_ns_open(struct nvme_ns *ns)
1569 {
1570
1571 /* should never be called due to GENHD_FL_HIDDEN */
1572 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1573 goto fail;
1574 if (!nvme_get_ns(ns))
1575 goto fail;
1576 if (!try_module_get(ns->ctrl->ops->module))
1577 goto fail_put_ns;
1578
1579 return 0;
1580
1581 fail_put_ns:
1582 nvme_put_ns(ns);
1583 fail:
1584 return -ENXIO;
1585 }
1586
1587 static void nvme_ns_release(struct nvme_ns *ns)
1588 {
1589
1590 module_put(ns->ctrl->ops->module);
1591 nvme_put_ns(ns);
1592 }
1593
1594 static int nvme_open(struct block_device *bdev, fmode_t mode)
1595 {
1596 return nvme_ns_open(bdev->bd_disk->private_data);
1597 }
1598
1599 static void nvme_release(struct gendisk *disk, fmode_t mode)
1600 {
1601 nvme_ns_release(disk->private_data);
1602 }
1603
1604 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1605 {
1606 /* some standard values */
1607 geo->heads = 1 << 6;
1608 geo->sectors = 1 << 5;
1609 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1610 return 0;
1611 }
1612
1613 #ifdef CONFIG_BLK_DEV_INTEGRITY
1614 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1615 u32 max_integrity_segments)
1616 {
1617 struct blk_integrity integrity = { };
1618
1619 switch (pi_type) {
1620 case NVME_NS_DPS_PI_TYPE3:
1621 integrity.profile = &t10_pi_type3_crc;
1622 integrity.tag_size = sizeof(u16) + sizeof(u32);
1623 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1624 break;
1625 case NVME_NS_DPS_PI_TYPE1:
1626 case NVME_NS_DPS_PI_TYPE2:
1627 integrity.profile = &t10_pi_type1_crc;
1628 integrity.tag_size = sizeof(u16);
1629 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1630 break;
1631 default:
1632 integrity.profile = NULL;
1633 break;
1634 }
1635 integrity.tuple_size = ms;
1636 blk_integrity_register(disk, &integrity);
1637 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1638 }
1639 #else
1640 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1641 u32 max_integrity_segments)
1642 {
1643 }
1644 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1645
1646 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1647 {
1648 struct nvme_ctrl *ctrl = ns->ctrl;
1649 struct request_queue *queue = disk->queue;
1650 u32 size = queue_logical_block_size(queue);
1651
1652 if (ctrl->max_discard_sectors == 0) {
1653 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1654 return;
1655 }
1656
1657 if (ctrl->nr_streams && ns->sws && ns->sgs)
1658 size *= ns->sws * ns->sgs;
1659
1660 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1661 NVME_DSM_MAX_RANGES);
1662
1663 queue->limits.discard_alignment = 0;
1664 queue->limits.discard_granularity = size;
1665
1666 /* If discard is already enabled, don't reset queue limits */
1667 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1668 return;
1669
1670 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1671 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1672
1673 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1674 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1675 }
1676
1677 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1678 {
1679 return !uuid_is_null(&ids->uuid) ||
1680 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1681 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1682 }
1683
1684 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1685 {
1686 return uuid_equal(&a->uuid, &b->uuid) &&
1687 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1688 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1689 a->csi == b->csi;
1690 }
1691
1692 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1693 u32 *phys_bs, u32 *io_opt)
1694 {
1695 struct streams_directive_params s;
1696 int ret;
1697
1698 if (!ctrl->nr_streams)
1699 return 0;
1700
1701 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1702 if (ret)
1703 return ret;
1704
1705 ns->sws = le32_to_cpu(s.sws);
1706 ns->sgs = le16_to_cpu(s.sgs);
1707
1708 if (ns->sws) {
1709 *phys_bs = ns->sws * (1 << ns->lba_shift);
1710 if (ns->sgs)
1711 *io_opt = *phys_bs * ns->sgs;
1712 }
1713
1714 return 0;
1715 }
1716
1717 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1718 {
1719 struct nvme_ctrl *ctrl = ns->ctrl;
1720
1721 /*
1722 * The PI implementation requires the metadata size to be equal to the
1723 * t10 pi tuple size.
1724 */
1725 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1726 if (ns->ms == sizeof(struct t10_pi_tuple))
1727 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1728 else
1729 ns->pi_type = 0;
1730
1731 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1732 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1733 return 0;
1734 if (ctrl->ops->flags & NVME_F_FABRICS) {
1735 /*
1736 * The NVMe over Fabrics specification only supports metadata as
1737 * part of the extended data LBA. We rely on HCA/HBA support to
1738 * remap the separate metadata buffer from the block layer.
1739 */
1740 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1741 return -EINVAL;
1742 if (ctrl->max_integrity_segments)
1743 ns->features |=
1744 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1745 } else {
1746 /*
1747 * For PCIe controllers, we can't easily remap the separate
1748 * metadata buffer from the block layer and thus require a
1749 * separate metadata buffer for block layer metadata/PI support.
1750 * We allow extended LBAs for the passthrough interface, though.
1751 */
1752 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1753 ns->features |= NVME_NS_EXT_LBAS;
1754 else
1755 ns->features |= NVME_NS_METADATA_SUPPORTED;
1756 }
1757
1758 return 0;
1759 }
1760
1761 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1762 struct request_queue *q)
1763 {
1764 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1765
1766 if (ctrl->max_hw_sectors) {
1767 u32 max_segments =
1768 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1769
1770 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1771 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1772 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1773 }
1774 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1775 blk_queue_dma_alignment(q, 7);
1776 blk_queue_write_cache(q, vwc, vwc);
1777 }
1778
1779 static void nvme_update_disk_info(struct gendisk *disk,
1780 struct nvme_ns *ns, struct nvme_id_ns *id)
1781 {
1782 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1783 unsigned short bs = 1 << ns->lba_shift;
1784 u32 atomic_bs, phys_bs, io_opt = 0;
1785
1786 /*
1787 * The block layer can't support LBA sizes larger than the page size
1788 * yet, so catch this early and don't allow block I/O.
1789 */
1790 if (ns->lba_shift > PAGE_SHIFT) {
1791 capacity = 0;
1792 bs = (1 << 9);
1793 }
1794
1795 blk_integrity_unregister(disk);
1796
1797 atomic_bs = phys_bs = bs;
1798 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1799 if (id->nabo == 0) {
1800 /*
1801 * Bit 1 indicates whether NAWUPF is defined for this namespace
1802 * and whether it should be used instead of AWUPF. If NAWUPF ==
1803 * 0 then AWUPF must be used instead.
1804 */
1805 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1806 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1807 else
1808 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1809 }
1810
1811 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1812 /* NPWG = Namespace Preferred Write Granularity */
1813 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1814 /* NOWS = Namespace Optimal Write Size */
1815 io_opt = bs * (1 + le16_to_cpu(id->nows));
1816 }
1817
1818 blk_queue_logical_block_size(disk->queue, bs);
1819 /*
1820 * Linux filesystems assume writing a single physical block is
1821 * an atomic operation. Hence limit the physical block size to the
1822 * value of the Atomic Write Unit Power Fail parameter.
1823 */
1824 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1825 blk_queue_io_min(disk->queue, phys_bs);
1826 blk_queue_io_opt(disk->queue, io_opt);
1827
1828 /*
1829 * Register a metadata profile for PI, or the plain non-integrity NVMe
1830 * metadata masquerading as Type 0 if supported, otherwise reject block
1831 * I/O to namespaces with metadata except when the namespace supports
1832 * PI, as it can strip/insert in that case.
1833 */
1834 if (ns->ms) {
1835 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1836 (ns->features & NVME_NS_METADATA_SUPPORTED))
1837 nvme_init_integrity(disk, ns->ms, ns->pi_type,
1838 ns->ctrl->max_integrity_segments);
1839 else if (!nvme_ns_has_pi(ns))
1840 capacity = 0;
1841 }
1842
1843 set_capacity_and_notify(disk, capacity);
1844
1845 nvme_config_discard(disk, ns);
1846 blk_queue_max_write_zeroes_sectors(disk->queue,
1847 ns->ctrl->max_zeroes_sectors);
1848
1849 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1850 test_bit(NVME_NS_FORCE_RO, &ns->flags));
1851 }
1852
1853 static inline bool nvme_first_scan(struct gendisk *disk)
1854 {
1855 /* nvme_alloc_ns() scans the disk prior to adding it */
1856 return !disk_live(disk);
1857 }
1858
1859 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1860 {
1861 struct nvme_ctrl *ctrl = ns->ctrl;
1862 u32 iob;
1863
1864 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1865 is_power_of_2(ctrl->max_hw_sectors))
1866 iob = ctrl->max_hw_sectors;
1867 else
1868 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1869
1870 if (!iob)
1871 return;
1872
1873 if (!is_power_of_2(iob)) {
1874 if (nvme_first_scan(ns->disk))
1875 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1876 ns->disk->disk_name, iob);
1877 return;
1878 }
1879
1880 if (blk_queue_is_zoned(ns->disk->queue)) {
1881 if (nvme_first_scan(ns->disk))
1882 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1883 ns->disk->disk_name);
1884 return;
1885 }
1886
1887 blk_queue_chunk_sectors(ns->queue, iob);
1888 }
1889
1890 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1891 {
1892 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1893 int ret;
1894
1895 blk_mq_freeze_queue(ns->disk->queue);
1896 ns->lba_shift = id->lbaf[lbaf].ds;
1897 nvme_set_queue_limits(ns->ctrl, ns->queue);
1898
1899 ret = nvme_configure_metadata(ns, id);
1900 if (ret)
1901 goto out_unfreeze;
1902 nvme_set_chunk_sectors(ns, id);
1903 nvme_update_disk_info(ns->disk, ns, id);
1904
1905 if (ns->head->ids.csi == NVME_CSI_ZNS) {
1906 ret = nvme_update_zone_info(ns, lbaf);
1907 if (ret)
1908 goto out_unfreeze;
1909 }
1910
1911 set_bit(NVME_NS_READY, &ns->flags);
1912 blk_mq_unfreeze_queue(ns->disk->queue);
1913
1914 if (blk_queue_is_zoned(ns->queue)) {
1915 ret = nvme_revalidate_zones(ns);
1916 if (ret && !nvme_first_scan(ns->disk))
1917 return ret;
1918 }
1919
1920 if (nvme_ns_head_multipath(ns->head)) {
1921 blk_mq_freeze_queue(ns->head->disk->queue);
1922 nvme_update_disk_info(ns->head->disk, ns, id);
1923 nvme_mpath_revalidate_paths(ns);
1924 blk_stack_limits(&ns->head->disk->queue->limits,
1925 &ns->queue->limits, 0);
1926 disk_update_readahead(ns->head->disk);
1927 blk_mq_unfreeze_queue(ns->head->disk->queue);
1928 }
1929 return 0;
1930
1931 out_unfreeze:
1932 /*
1933 * If probing fails due an unsupported feature, hide the block device,
1934 * but still allow other access.
1935 */
1936 if (ret == -ENODEV) {
1937 ns->disk->flags |= GENHD_FL_HIDDEN;
1938 set_bit(NVME_NS_READY, &ns->flags);
1939 ret = 0;
1940 }
1941 blk_mq_unfreeze_queue(ns->disk->queue);
1942 return ret;
1943 }
1944
1945 static char nvme_pr_type(enum pr_type type)
1946 {
1947 switch (type) {
1948 case PR_WRITE_EXCLUSIVE:
1949 return 1;
1950 case PR_EXCLUSIVE_ACCESS:
1951 return 2;
1952 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1953 return 3;
1954 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1955 return 4;
1956 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1957 return 5;
1958 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1959 return 6;
1960 default:
1961 return 0;
1962 }
1963 };
1964
1965 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
1966 struct nvme_command *c, u8 data[16])
1967 {
1968 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1969 int srcu_idx = srcu_read_lock(&head->srcu);
1970 struct nvme_ns *ns = nvme_find_path(head);
1971 int ret = -EWOULDBLOCK;
1972
1973 if (ns) {
1974 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1975 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
1976 }
1977 srcu_read_unlock(&head->srcu, srcu_idx);
1978 return ret;
1979 }
1980
1981 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
1982 u8 data[16])
1983 {
1984 c->common.nsid = cpu_to_le32(ns->head->ns_id);
1985 return nvme_submit_sync_cmd(ns->queue, c, data, 16);
1986 }
1987
1988 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1989 u64 key, u64 sa_key, u8 op)
1990 {
1991 struct nvme_command c = { };
1992 u8 data[16] = { 0, };
1993
1994 put_unaligned_le64(key, &data[0]);
1995 put_unaligned_le64(sa_key, &data[8]);
1996
1997 c.common.opcode = op;
1998 c.common.cdw10 = cpu_to_le32(cdw10);
1999
2000 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2001 bdev->bd_disk->fops == &nvme_ns_head_ops)
2002 return nvme_send_ns_head_pr_command(bdev, &c, data);
2003 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2004 }
2005
2006 static int nvme_pr_register(struct block_device *bdev, u64 old,
2007 u64 new, unsigned flags)
2008 {
2009 u32 cdw10;
2010
2011 if (flags & ~PR_FL_IGNORE_KEY)
2012 return -EOPNOTSUPP;
2013
2014 cdw10 = old ? 2 : 0;
2015 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2016 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2017 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2018 }
2019
2020 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2021 enum pr_type type, unsigned flags)
2022 {
2023 u32 cdw10;
2024
2025 if (flags & ~PR_FL_IGNORE_KEY)
2026 return -EOPNOTSUPP;
2027
2028 cdw10 = nvme_pr_type(type) << 8;
2029 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2030 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2031 }
2032
2033 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2034 enum pr_type type, bool abort)
2035 {
2036 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2037
2038 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2039 }
2040
2041 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2042 {
2043 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2044
2045 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2046 }
2047
2048 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2049 {
2050 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2051
2052 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2053 }
2054
2055 const struct pr_ops nvme_pr_ops = {
2056 .pr_register = nvme_pr_register,
2057 .pr_reserve = nvme_pr_reserve,
2058 .pr_release = nvme_pr_release,
2059 .pr_preempt = nvme_pr_preempt,
2060 .pr_clear = nvme_pr_clear,
2061 };
2062
2063 #ifdef CONFIG_BLK_SED_OPAL
2064 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2065 bool send)
2066 {
2067 struct nvme_ctrl *ctrl = data;
2068 struct nvme_command cmd = { };
2069
2070 if (send)
2071 cmd.common.opcode = nvme_admin_security_send;
2072 else
2073 cmd.common.opcode = nvme_admin_security_recv;
2074 cmd.common.nsid = 0;
2075 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2076 cmd.common.cdw11 = cpu_to_le32(len);
2077
2078 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2079 NVME_QID_ANY, 1, 0);
2080 }
2081 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2082 #endif /* CONFIG_BLK_SED_OPAL */
2083
2084 #ifdef CONFIG_BLK_DEV_ZONED
2085 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2086 unsigned int nr_zones, report_zones_cb cb, void *data)
2087 {
2088 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2089 data);
2090 }
2091 #else
2092 #define nvme_report_zones NULL
2093 #endif /* CONFIG_BLK_DEV_ZONED */
2094
2095 static const struct block_device_operations nvme_bdev_ops = {
2096 .owner = THIS_MODULE,
2097 .ioctl = nvme_ioctl,
2098 .open = nvme_open,
2099 .release = nvme_release,
2100 .getgeo = nvme_getgeo,
2101 .report_zones = nvme_report_zones,
2102 .pr_ops = &nvme_pr_ops,
2103 };
2104
2105 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2106 {
2107 unsigned long timeout =
2108 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2109 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2110 int ret;
2111
2112 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2113 if (csts == ~0)
2114 return -ENODEV;
2115 if ((csts & NVME_CSTS_RDY) == bit)
2116 break;
2117
2118 usleep_range(1000, 2000);
2119 if (fatal_signal_pending(current))
2120 return -EINTR;
2121 if (time_after(jiffies, timeout)) {
2122 dev_err(ctrl->device,
2123 "Device not ready; aborting %s, CSTS=0x%x\n",
2124 enabled ? "initialisation" : "reset", csts);
2125 return -ENODEV;
2126 }
2127 }
2128
2129 return ret;
2130 }
2131
2132 /*
2133 * If the device has been passed off to us in an enabled state, just clear
2134 * the enabled bit. The spec says we should set the 'shutdown notification
2135 * bits', but doing so may cause the device to complete commands to the
2136 * admin queue ... and we don't know what memory that might be pointing at!
2137 */
2138 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2139 {
2140 int ret;
2141
2142 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2143 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2144
2145 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2146 if (ret)
2147 return ret;
2148
2149 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2150 msleep(NVME_QUIRK_DELAY_AMOUNT);
2151
2152 return nvme_wait_ready(ctrl, ctrl->cap, false);
2153 }
2154 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2155
2156 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2157 {
2158 unsigned dev_page_min;
2159 int ret;
2160
2161 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2162 if (ret) {
2163 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2164 return ret;
2165 }
2166 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2167
2168 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2169 dev_err(ctrl->device,
2170 "Minimum device page size %u too large for host (%u)\n",
2171 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2172 return -ENODEV;
2173 }
2174
2175 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2176 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2177 else
2178 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2179 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2180 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2181 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2182 ctrl->ctrl_config |= NVME_CC_ENABLE;
2183
2184 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2185 if (ret)
2186 return ret;
2187 return nvme_wait_ready(ctrl, ctrl->cap, true);
2188 }
2189 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2190
2191 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2192 {
2193 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2194 u32 csts;
2195 int ret;
2196
2197 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2198 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2199
2200 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2201 if (ret)
2202 return ret;
2203
2204 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2205 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2206 break;
2207
2208 msleep(100);
2209 if (fatal_signal_pending(current))
2210 return -EINTR;
2211 if (time_after(jiffies, timeout)) {
2212 dev_err(ctrl->device,
2213 "Device shutdown incomplete; abort shutdown\n");
2214 return -ENODEV;
2215 }
2216 }
2217
2218 return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2221
2222 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2223 {
2224 __le64 ts;
2225 int ret;
2226
2227 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2228 return 0;
2229
2230 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2231 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2232 NULL);
2233 if (ret)
2234 dev_warn_once(ctrl->device,
2235 "could not set timestamp (%d)\n", ret);
2236 return ret;
2237 }
2238
2239 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2240 {
2241 struct nvme_feat_host_behavior *host;
2242 int ret;
2243
2244 /* Don't bother enabling the feature if retry delay is not reported */
2245 if (!ctrl->crdt[0])
2246 return 0;
2247
2248 host = kzalloc(sizeof(*host), GFP_KERNEL);
2249 if (!host)
2250 return 0;
2251
2252 host->acre = NVME_ENABLE_ACRE;
2253 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2254 host, sizeof(*host), NULL);
2255 kfree(host);
2256 return ret;
2257 }
2258
2259 /*
2260 * The function checks whether the given total (exlat + enlat) latency of
2261 * a power state allows the latter to be used as an APST transition target.
2262 * It does so by comparing the latency to the primary and secondary latency
2263 * tolerances defined by module params. If there's a match, the corresponding
2264 * timeout value is returned and the matching tolerance index (1 or 2) is
2265 * reported.
2266 */
2267 static bool nvme_apst_get_transition_time(u64 total_latency,
2268 u64 *transition_time, unsigned *last_index)
2269 {
2270 if (total_latency <= apst_primary_latency_tol_us) {
2271 if (*last_index == 1)
2272 return false;
2273 *last_index = 1;
2274 *transition_time = apst_primary_timeout_ms;
2275 return true;
2276 }
2277 if (apst_secondary_timeout_ms &&
2278 total_latency <= apst_secondary_latency_tol_us) {
2279 if (*last_index <= 2)
2280 return false;
2281 *last_index = 2;
2282 *transition_time = apst_secondary_timeout_ms;
2283 return true;
2284 }
2285 return false;
2286 }
2287
2288 /*
2289 * APST (Autonomous Power State Transition) lets us program a table of power
2290 * state transitions that the controller will perform automatically.
2291 *
2292 * Depending on module params, one of the two supported techniques will be used:
2293 *
2294 * - If the parameters provide explicit timeouts and tolerances, they will be
2295 * used to build a table with up to 2 non-operational states to transition to.
2296 * The default parameter values were selected based on the values used by
2297 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2298 * regeneration of the APST table in the event of switching between external
2299 * and battery power, the timeouts and tolerances reflect a compromise
2300 * between values used by Microsoft for AC and battery scenarios.
2301 * - If not, we'll configure the table with a simple heuristic: we are willing
2302 * to spend at most 2% of the time transitioning between power states.
2303 * Therefore, when running in any given state, we will enter the next
2304 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2305 * microseconds, as long as that state's exit latency is under the requested
2306 * maximum latency.
2307 *
2308 * We will not autonomously enter any non-operational state for which the total
2309 * latency exceeds ps_max_latency_us.
2310 *
2311 * Users can set ps_max_latency_us to zero to turn off APST.
2312 */
2313 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2314 {
2315 struct nvme_feat_auto_pst *table;
2316 unsigned apste = 0;
2317 u64 max_lat_us = 0;
2318 __le64 target = 0;
2319 int max_ps = -1;
2320 int state;
2321 int ret;
2322 unsigned last_lt_index = UINT_MAX;
2323
2324 /*
2325 * If APST isn't supported or if we haven't been initialized yet,
2326 * then don't do anything.
2327 */
2328 if (!ctrl->apsta)
2329 return 0;
2330
2331 if (ctrl->npss > 31) {
2332 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2333 return 0;
2334 }
2335
2336 table = kzalloc(sizeof(*table), GFP_KERNEL);
2337 if (!table)
2338 return 0;
2339
2340 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2341 /* Turn off APST. */
2342 dev_dbg(ctrl->device, "APST disabled\n");
2343 goto done;
2344 }
2345
2346 /*
2347 * Walk through all states from lowest- to highest-power.
2348 * According to the spec, lower-numbered states use more power. NPSS,
2349 * despite the name, is the index of the lowest-power state, not the
2350 * number of states.
2351 */
2352 for (state = (int)ctrl->npss; state >= 0; state--) {
2353 u64 total_latency_us, exit_latency_us, transition_ms;
2354
2355 if (target)
2356 table->entries[state] = target;
2357
2358 /*
2359 * Don't allow transitions to the deepest state if it's quirked
2360 * off.
2361 */
2362 if (state == ctrl->npss &&
2363 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2364 continue;
2365
2366 /*
2367 * Is this state a useful non-operational state for higher-power
2368 * states to autonomously transition to?
2369 */
2370 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2371 continue;
2372
2373 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2374 if (exit_latency_us > ctrl->ps_max_latency_us)
2375 continue;
2376
2377 total_latency_us = exit_latency_us +
2378 le32_to_cpu(ctrl->psd[state].entry_lat);
2379
2380 /*
2381 * This state is good. It can be used as the APST idle target
2382 * for higher power states.
2383 */
2384 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2385 if (!nvme_apst_get_transition_time(total_latency_us,
2386 &transition_ms, &last_lt_index))
2387 continue;
2388 } else {
2389 transition_ms = total_latency_us + 19;
2390 do_div(transition_ms, 20);
2391 if (transition_ms > (1 << 24) - 1)
2392 transition_ms = (1 << 24) - 1;
2393 }
2394
2395 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2396 if (max_ps == -1)
2397 max_ps = state;
2398 if (total_latency_us > max_lat_us)
2399 max_lat_us = total_latency_us;
2400 }
2401
2402 if (max_ps == -1)
2403 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2404 else
2405 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2406 max_ps, max_lat_us, (int)sizeof(*table), table);
2407 apste = 1;
2408
2409 done:
2410 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2411 table, sizeof(*table), NULL);
2412 if (ret)
2413 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2414 kfree(table);
2415 return ret;
2416 }
2417
2418 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2419 {
2420 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2421 u64 latency;
2422
2423 switch (val) {
2424 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2425 case PM_QOS_LATENCY_ANY:
2426 latency = U64_MAX;
2427 break;
2428
2429 default:
2430 latency = val;
2431 }
2432
2433 if (ctrl->ps_max_latency_us != latency) {
2434 ctrl->ps_max_latency_us = latency;
2435 if (ctrl->state == NVME_CTRL_LIVE)
2436 nvme_configure_apst(ctrl);
2437 }
2438 }
2439
2440 struct nvme_core_quirk_entry {
2441 /*
2442 * NVMe model and firmware strings are padded with spaces. For
2443 * simplicity, strings in the quirk table are padded with NULLs
2444 * instead.
2445 */
2446 u16 vid;
2447 const char *mn;
2448 const char *fr;
2449 unsigned long quirks;
2450 };
2451
2452 static const struct nvme_core_quirk_entry core_quirks[] = {
2453 {
2454 /*
2455 * This Toshiba device seems to die using any APST states. See:
2456 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2457 */
2458 .vid = 0x1179,
2459 .mn = "THNSF5256GPUK TOSHIBA",
2460 .quirks = NVME_QUIRK_NO_APST,
2461 },
2462 {
2463 /*
2464 * This LiteON CL1-3D*-Q11 firmware version has a race
2465 * condition associated with actions related to suspend to idle
2466 * LiteON has resolved the problem in future firmware
2467 */
2468 .vid = 0x14a4,
2469 .fr = "22301111",
2470 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2471 }
2472 };
2473
2474 /* match is null-terminated but idstr is space-padded. */
2475 static bool string_matches(const char *idstr, const char *match, size_t len)
2476 {
2477 size_t matchlen;
2478
2479 if (!match)
2480 return true;
2481
2482 matchlen = strlen(match);
2483 WARN_ON_ONCE(matchlen > len);
2484
2485 if (memcmp(idstr, match, matchlen))
2486 return false;
2487
2488 for (; matchlen < len; matchlen++)
2489 if (idstr[matchlen] != ' ')
2490 return false;
2491
2492 return true;
2493 }
2494
2495 static bool quirk_matches(const struct nvme_id_ctrl *id,
2496 const struct nvme_core_quirk_entry *q)
2497 {
2498 return q->vid == le16_to_cpu(id->vid) &&
2499 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2500 string_matches(id->fr, q->fr, sizeof(id->fr));
2501 }
2502
2503 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2504 struct nvme_id_ctrl *id)
2505 {
2506 size_t nqnlen;
2507 int off;
2508
2509 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2510 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2511 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2512 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2513 return;
2514 }
2515
2516 if (ctrl->vs >= NVME_VS(1, 2, 1))
2517 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2518 }
2519
2520 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2521 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2522 "nqn.2014.08.org.nvmexpress:%04x%04x",
2523 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2524 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2525 off += sizeof(id->sn);
2526 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2527 off += sizeof(id->mn);
2528 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2529 }
2530
2531 static void nvme_release_subsystem(struct device *dev)
2532 {
2533 struct nvme_subsystem *subsys =
2534 container_of(dev, struct nvme_subsystem, dev);
2535
2536 if (subsys->instance >= 0)
2537 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2538 kfree(subsys);
2539 }
2540
2541 static void nvme_destroy_subsystem(struct kref *ref)
2542 {
2543 struct nvme_subsystem *subsys =
2544 container_of(ref, struct nvme_subsystem, ref);
2545
2546 mutex_lock(&nvme_subsystems_lock);
2547 list_del(&subsys->entry);
2548 mutex_unlock(&nvme_subsystems_lock);
2549
2550 ida_destroy(&subsys->ns_ida);
2551 device_del(&subsys->dev);
2552 put_device(&subsys->dev);
2553 }
2554
2555 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2556 {
2557 kref_put(&subsys->ref, nvme_destroy_subsystem);
2558 }
2559
2560 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2561 {
2562 struct nvme_subsystem *subsys;
2563
2564 lockdep_assert_held(&nvme_subsystems_lock);
2565
2566 /*
2567 * Fail matches for discovery subsystems. This results
2568 * in each discovery controller bound to a unique subsystem.
2569 * This avoids issues with validating controller values
2570 * that can only be true when there is a single unique subsystem.
2571 * There may be multiple and completely independent entities
2572 * that provide discovery controllers.
2573 */
2574 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2575 return NULL;
2576
2577 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2578 if (strcmp(subsys->subnqn, subsysnqn))
2579 continue;
2580 if (!kref_get_unless_zero(&subsys->ref))
2581 continue;
2582 return subsys;
2583 }
2584
2585 return NULL;
2586 }
2587
2588 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2589 struct device_attribute subsys_attr_##_name = \
2590 __ATTR(_name, _mode, _show, NULL)
2591
2592 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2593 struct device_attribute *attr,
2594 char *buf)
2595 {
2596 struct nvme_subsystem *subsys =
2597 container_of(dev, struct nvme_subsystem, dev);
2598
2599 return sysfs_emit(buf, "%s\n", subsys->subnqn);
2600 }
2601 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2602
2603 #define nvme_subsys_show_str_function(field) \
2604 static ssize_t subsys_##field##_show(struct device *dev, \
2605 struct device_attribute *attr, char *buf) \
2606 { \
2607 struct nvme_subsystem *subsys = \
2608 container_of(dev, struct nvme_subsystem, dev); \
2609 return sysfs_emit(buf, "%.*s\n", \
2610 (int)sizeof(subsys->field), subsys->field); \
2611 } \
2612 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2613
2614 nvme_subsys_show_str_function(model);
2615 nvme_subsys_show_str_function(serial);
2616 nvme_subsys_show_str_function(firmware_rev);
2617
2618 static struct attribute *nvme_subsys_attrs[] = {
2619 &subsys_attr_model.attr,
2620 &subsys_attr_serial.attr,
2621 &subsys_attr_firmware_rev.attr,
2622 &subsys_attr_subsysnqn.attr,
2623 #ifdef CONFIG_NVME_MULTIPATH
2624 &subsys_attr_iopolicy.attr,
2625 #endif
2626 NULL,
2627 };
2628
2629 static const struct attribute_group nvme_subsys_attrs_group = {
2630 .attrs = nvme_subsys_attrs,
2631 };
2632
2633 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2634 &nvme_subsys_attrs_group,
2635 NULL,
2636 };
2637
2638 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2639 {
2640 return ctrl->opts && ctrl->opts->discovery_nqn;
2641 }
2642
2643 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2644 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2645 {
2646 struct nvme_ctrl *tmp;
2647
2648 lockdep_assert_held(&nvme_subsystems_lock);
2649
2650 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2651 if (nvme_state_terminal(tmp))
2652 continue;
2653
2654 if (tmp->cntlid == ctrl->cntlid) {
2655 dev_err(ctrl->device,
2656 "Duplicate cntlid %u with %s, rejecting\n",
2657 ctrl->cntlid, dev_name(tmp->device));
2658 return false;
2659 }
2660
2661 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2662 nvme_discovery_ctrl(ctrl))
2663 continue;
2664
2665 dev_err(ctrl->device,
2666 "Subsystem does not support multiple controllers\n");
2667 return false;
2668 }
2669
2670 return true;
2671 }
2672
2673 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2674 {
2675 struct nvme_subsystem *subsys, *found;
2676 int ret;
2677
2678 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2679 if (!subsys)
2680 return -ENOMEM;
2681
2682 subsys->instance = -1;
2683 mutex_init(&subsys->lock);
2684 kref_init(&subsys->ref);
2685 INIT_LIST_HEAD(&subsys->ctrls);
2686 INIT_LIST_HEAD(&subsys->nsheads);
2687 nvme_init_subnqn(subsys, ctrl, id);
2688 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2689 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2690 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2691 subsys->vendor_id = le16_to_cpu(id->vid);
2692 subsys->cmic = id->cmic;
2693 subsys->awupf = le16_to_cpu(id->awupf);
2694 #ifdef CONFIG_NVME_MULTIPATH
2695 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2696 #endif
2697
2698 subsys->dev.class = nvme_subsys_class;
2699 subsys->dev.release = nvme_release_subsystem;
2700 subsys->dev.groups = nvme_subsys_attrs_groups;
2701 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2702 device_initialize(&subsys->dev);
2703
2704 mutex_lock(&nvme_subsystems_lock);
2705 found = __nvme_find_get_subsystem(subsys->subnqn);
2706 if (found) {
2707 put_device(&subsys->dev);
2708 subsys = found;
2709
2710 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2711 ret = -EINVAL;
2712 goto out_put_subsystem;
2713 }
2714 } else {
2715 ret = device_add(&subsys->dev);
2716 if (ret) {
2717 dev_err(ctrl->device,
2718 "failed to register subsystem device.\n");
2719 put_device(&subsys->dev);
2720 goto out_unlock;
2721 }
2722 ida_init(&subsys->ns_ida);
2723 list_add_tail(&subsys->entry, &nvme_subsystems);
2724 }
2725
2726 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2727 dev_name(ctrl->device));
2728 if (ret) {
2729 dev_err(ctrl->device,
2730 "failed to create sysfs link from subsystem.\n");
2731 goto out_put_subsystem;
2732 }
2733
2734 if (!found)
2735 subsys->instance = ctrl->instance;
2736 ctrl->subsys = subsys;
2737 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2738 mutex_unlock(&nvme_subsystems_lock);
2739 return 0;
2740
2741 out_put_subsystem:
2742 nvme_put_subsystem(subsys);
2743 out_unlock:
2744 mutex_unlock(&nvme_subsystems_lock);
2745 return ret;
2746 }
2747
2748 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2749 void *log, size_t size, u64 offset)
2750 {
2751 struct nvme_command c = { };
2752 u32 dwlen = nvme_bytes_to_numd(size);
2753
2754 c.get_log_page.opcode = nvme_admin_get_log_page;
2755 c.get_log_page.nsid = cpu_to_le32(nsid);
2756 c.get_log_page.lid = log_page;
2757 c.get_log_page.lsp = lsp;
2758 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2759 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2760 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2761 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2762 c.get_log_page.csi = csi;
2763
2764 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2765 }
2766
2767 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2768 struct nvme_effects_log **log)
2769 {
2770 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2771 int ret;
2772
2773 if (cel)
2774 goto out;
2775
2776 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2777 if (!cel)
2778 return -ENOMEM;
2779
2780 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2781 cel, sizeof(*cel), 0);
2782 if (ret) {
2783 kfree(cel);
2784 return ret;
2785 }
2786
2787 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2788 out:
2789 *log = cel;
2790 return 0;
2791 }
2792
2793 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2794 {
2795 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2796
2797 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2798 return UINT_MAX;
2799 return val;
2800 }
2801
2802 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2803 {
2804 struct nvme_command c = { };
2805 struct nvme_id_ctrl_nvm *id;
2806 int ret;
2807
2808 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2809 ctrl->max_discard_sectors = UINT_MAX;
2810 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2811 } else {
2812 ctrl->max_discard_sectors = 0;
2813 ctrl->max_discard_segments = 0;
2814 }
2815
2816 /*
2817 * Even though NVMe spec explicitly states that MDTS is not applicable
2818 * to the write-zeroes, we are cautious and limit the size to the
2819 * controllers max_hw_sectors value, which is based on the MDTS field
2820 * and possibly other limiting factors.
2821 */
2822 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2823 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2824 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2825 else
2826 ctrl->max_zeroes_sectors = 0;
2827
2828 if (nvme_ctrl_limited_cns(ctrl))
2829 return 0;
2830
2831 id = kzalloc(sizeof(*id), GFP_KERNEL);
2832 if (!id)
2833 return 0;
2834
2835 c.identify.opcode = nvme_admin_identify;
2836 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2837 c.identify.csi = NVME_CSI_NVM;
2838
2839 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2840 if (ret)
2841 goto free_data;
2842
2843 if (id->dmrl)
2844 ctrl->max_discard_segments = id->dmrl;
2845 if (id->dmrsl)
2846 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2847 if (id->wzsl)
2848 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2849
2850 free_data:
2851 kfree(id);
2852 return ret;
2853 }
2854
2855 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2856 {
2857 struct nvme_id_ctrl *id;
2858 u32 max_hw_sectors;
2859 bool prev_apst_enabled;
2860 int ret;
2861
2862 ret = nvme_identify_ctrl(ctrl, &id);
2863 if (ret) {
2864 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2865 return -EIO;
2866 }
2867
2868 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2869 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2870 if (ret < 0)
2871 goto out_free;
2872 }
2873
2874 if (!(ctrl->ops->flags & NVME_F_FABRICS))
2875 ctrl->cntlid = le16_to_cpu(id->cntlid);
2876
2877 if (!ctrl->identified) {
2878 unsigned int i;
2879
2880 ret = nvme_init_subsystem(ctrl, id);
2881 if (ret)
2882 goto out_free;
2883
2884 /*
2885 * Check for quirks. Quirk can depend on firmware version,
2886 * so, in principle, the set of quirks present can change
2887 * across a reset. As a possible future enhancement, we
2888 * could re-scan for quirks every time we reinitialize
2889 * the device, but we'd have to make sure that the driver
2890 * behaves intelligently if the quirks change.
2891 */
2892 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2893 if (quirk_matches(id, &core_quirks[i]))
2894 ctrl->quirks |= core_quirks[i].quirks;
2895 }
2896 }
2897
2898 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2899 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2900 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2901 }
2902
2903 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2904 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2905 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2906
2907 ctrl->oacs = le16_to_cpu(id->oacs);
2908 ctrl->oncs = le16_to_cpu(id->oncs);
2909 ctrl->mtfa = le16_to_cpu(id->mtfa);
2910 ctrl->oaes = le32_to_cpu(id->oaes);
2911 ctrl->wctemp = le16_to_cpu(id->wctemp);
2912 ctrl->cctemp = le16_to_cpu(id->cctemp);
2913
2914 atomic_set(&ctrl->abort_limit, id->acl + 1);
2915 ctrl->vwc = id->vwc;
2916 if (id->mdts)
2917 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2918 else
2919 max_hw_sectors = UINT_MAX;
2920 ctrl->max_hw_sectors =
2921 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2922
2923 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2924 ctrl->sgls = le32_to_cpu(id->sgls);
2925 ctrl->kas = le16_to_cpu(id->kas);
2926 ctrl->max_namespaces = le32_to_cpu(id->mnan);
2927 ctrl->ctratt = le32_to_cpu(id->ctratt);
2928
2929 if (id->rtd3e) {
2930 /* us -> s */
2931 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2932
2933 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2934 shutdown_timeout, 60);
2935
2936 if (ctrl->shutdown_timeout != shutdown_timeout)
2937 dev_info(ctrl->device,
2938 "Shutdown timeout set to %u seconds\n",
2939 ctrl->shutdown_timeout);
2940 } else
2941 ctrl->shutdown_timeout = shutdown_timeout;
2942
2943 ctrl->npss = id->npss;
2944 ctrl->apsta = id->apsta;
2945 prev_apst_enabled = ctrl->apst_enabled;
2946 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2947 if (force_apst && id->apsta) {
2948 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2949 ctrl->apst_enabled = true;
2950 } else {
2951 ctrl->apst_enabled = false;
2952 }
2953 } else {
2954 ctrl->apst_enabled = id->apsta;
2955 }
2956 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2957
2958 if (ctrl->ops->flags & NVME_F_FABRICS) {
2959 ctrl->icdoff = le16_to_cpu(id->icdoff);
2960 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2961 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2962 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2963
2964 /*
2965 * In fabrics we need to verify the cntlid matches the
2966 * admin connect
2967 */
2968 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2969 dev_err(ctrl->device,
2970 "Mismatching cntlid: Connect %u vs Identify "
2971 "%u, rejecting\n",
2972 ctrl->cntlid, le16_to_cpu(id->cntlid));
2973 ret = -EINVAL;
2974 goto out_free;
2975 }
2976
2977 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2978 dev_err(ctrl->device,
2979 "keep-alive support is mandatory for fabrics\n");
2980 ret = -EINVAL;
2981 goto out_free;
2982 }
2983 } else {
2984 ctrl->hmpre = le32_to_cpu(id->hmpre);
2985 ctrl->hmmin = le32_to_cpu(id->hmmin);
2986 ctrl->hmminds = le32_to_cpu(id->hmminds);
2987 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2988 }
2989
2990 ret = nvme_mpath_init_identify(ctrl, id);
2991 if (ret < 0)
2992 goto out_free;
2993
2994 if (ctrl->apst_enabled && !prev_apst_enabled)
2995 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2996 else if (!ctrl->apst_enabled && prev_apst_enabled)
2997 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2998
2999 out_free:
3000 kfree(id);
3001 return ret;
3002 }
3003
3004 /*
3005 * Initialize the cached copies of the Identify data and various controller
3006 * register in our nvme_ctrl structure. This should be called as soon as
3007 * the admin queue is fully up and running.
3008 */
3009 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3010 {
3011 int ret;
3012
3013 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3014 if (ret) {
3015 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3016 return ret;
3017 }
3018
3019 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3020
3021 if (ctrl->vs >= NVME_VS(1, 1, 0))
3022 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3023
3024 ret = nvme_init_identify(ctrl);
3025 if (ret)
3026 return ret;
3027
3028 ret = nvme_init_non_mdts_limits(ctrl);
3029 if (ret < 0)
3030 return ret;
3031
3032 ret = nvme_configure_apst(ctrl);
3033 if (ret < 0)
3034 return ret;
3035
3036 ret = nvme_configure_timestamp(ctrl);
3037 if (ret < 0)
3038 return ret;
3039
3040 ret = nvme_configure_directives(ctrl);
3041 if (ret < 0)
3042 return ret;
3043
3044 ret = nvme_configure_acre(ctrl);
3045 if (ret < 0)
3046 return ret;
3047
3048 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3049 ret = nvme_hwmon_init(ctrl);
3050 if (ret < 0)
3051 return ret;
3052 }
3053
3054 ctrl->identified = true;
3055
3056 return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3059
3060 static int nvme_dev_open(struct inode *inode, struct file *file)
3061 {
3062 struct nvme_ctrl *ctrl =
3063 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3064
3065 switch (ctrl->state) {
3066 case NVME_CTRL_LIVE:
3067 break;
3068 default:
3069 return -EWOULDBLOCK;
3070 }
3071
3072 nvme_get_ctrl(ctrl);
3073 if (!try_module_get(ctrl->ops->module)) {
3074 nvme_put_ctrl(ctrl);
3075 return -EINVAL;
3076 }
3077
3078 file->private_data = ctrl;
3079 return 0;
3080 }
3081
3082 static int nvme_dev_release(struct inode *inode, struct file *file)
3083 {
3084 struct nvme_ctrl *ctrl =
3085 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3086
3087 module_put(ctrl->ops->module);
3088 nvme_put_ctrl(ctrl);
3089 return 0;
3090 }
3091
3092 static const struct file_operations nvme_dev_fops = {
3093 .owner = THIS_MODULE,
3094 .open = nvme_dev_open,
3095 .release = nvme_dev_release,
3096 .unlocked_ioctl = nvme_dev_ioctl,
3097 .compat_ioctl = compat_ptr_ioctl,
3098 };
3099
3100 static ssize_t nvme_sysfs_reset(struct device *dev,
3101 struct device_attribute *attr, const char *buf,
3102 size_t count)
3103 {
3104 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3105 int ret;
3106
3107 ret = nvme_reset_ctrl_sync(ctrl);
3108 if (ret < 0)
3109 return ret;
3110 return count;
3111 }
3112 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3113
3114 static ssize_t nvme_sysfs_rescan(struct device *dev,
3115 struct device_attribute *attr, const char *buf,
3116 size_t count)
3117 {
3118 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3119
3120 nvme_queue_scan(ctrl);
3121 return count;
3122 }
3123 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3124
3125 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3126 {
3127 struct gendisk *disk = dev_to_disk(dev);
3128
3129 if (disk->fops == &nvme_bdev_ops)
3130 return nvme_get_ns_from_dev(dev)->head;
3131 else
3132 return disk->private_data;
3133 }
3134
3135 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3136 char *buf)
3137 {
3138 struct nvme_ns_head *head = dev_to_ns_head(dev);
3139 struct nvme_ns_ids *ids = &head->ids;
3140 struct nvme_subsystem *subsys = head->subsys;
3141 int serial_len = sizeof(subsys->serial);
3142 int model_len = sizeof(subsys->model);
3143
3144 if (!uuid_is_null(&ids->uuid))
3145 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3146
3147 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3148 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3149
3150 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3151 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3152
3153 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3154 subsys->serial[serial_len - 1] == '\0'))
3155 serial_len--;
3156 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3157 subsys->model[model_len - 1] == '\0'))
3158 model_len--;
3159
3160 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3161 serial_len, subsys->serial, model_len, subsys->model,
3162 head->ns_id);
3163 }
3164 static DEVICE_ATTR_RO(wwid);
3165
3166 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3167 char *buf)
3168 {
3169 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3170 }
3171 static DEVICE_ATTR_RO(nguid);
3172
3173 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3174 char *buf)
3175 {
3176 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3177
3178 /* For backward compatibility expose the NGUID to userspace if
3179 * we have no UUID set
3180 */
3181 if (uuid_is_null(&ids->uuid)) {
3182 printk_ratelimited(KERN_WARNING
3183 "No UUID available providing old NGUID\n");
3184 return sysfs_emit(buf, "%pU\n", ids->nguid);
3185 }
3186 return sysfs_emit(buf, "%pU\n", &ids->uuid);
3187 }
3188 static DEVICE_ATTR_RO(uuid);
3189
3190 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3191 char *buf)
3192 {
3193 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3194 }
3195 static DEVICE_ATTR_RO(eui);
3196
3197 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3198 char *buf)
3199 {
3200 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3201 }
3202 static DEVICE_ATTR_RO(nsid);
3203
3204 static struct attribute *nvme_ns_id_attrs[] = {
3205 &dev_attr_wwid.attr,
3206 &dev_attr_uuid.attr,
3207 &dev_attr_nguid.attr,
3208 &dev_attr_eui.attr,
3209 &dev_attr_nsid.attr,
3210 #ifdef CONFIG_NVME_MULTIPATH
3211 &dev_attr_ana_grpid.attr,
3212 &dev_attr_ana_state.attr,
3213 #endif
3214 NULL,
3215 };
3216
3217 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3218 struct attribute *a, int n)
3219 {
3220 struct device *dev = container_of(kobj, struct device, kobj);
3221 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3222
3223 if (a == &dev_attr_uuid.attr) {
3224 if (uuid_is_null(&ids->uuid) &&
3225 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3226 return 0;
3227 }
3228 if (a == &dev_attr_nguid.attr) {
3229 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3230 return 0;
3231 }
3232 if (a == &dev_attr_eui.attr) {
3233 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3234 return 0;
3235 }
3236 #ifdef CONFIG_NVME_MULTIPATH
3237 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3238 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3239 return 0;
3240 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3241 return 0;
3242 }
3243 #endif
3244 return a->mode;
3245 }
3246
3247 static const struct attribute_group nvme_ns_id_attr_group = {
3248 .attrs = nvme_ns_id_attrs,
3249 .is_visible = nvme_ns_id_attrs_are_visible,
3250 };
3251
3252 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3253 &nvme_ns_id_attr_group,
3254 NULL,
3255 };
3256
3257 #define nvme_show_str_function(field) \
3258 static ssize_t field##_show(struct device *dev, \
3259 struct device_attribute *attr, char *buf) \
3260 { \
3261 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3262 return sysfs_emit(buf, "%.*s\n", \
3263 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3264 } \
3265 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3266
3267 nvme_show_str_function(model);
3268 nvme_show_str_function(serial);
3269 nvme_show_str_function(firmware_rev);
3270
3271 #define nvme_show_int_function(field) \
3272 static ssize_t field##_show(struct device *dev, \
3273 struct device_attribute *attr, char *buf) \
3274 { \
3275 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3276 return sysfs_emit(buf, "%d\n", ctrl->field); \
3277 } \
3278 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3279
3280 nvme_show_int_function(cntlid);
3281 nvme_show_int_function(numa_node);
3282 nvme_show_int_function(queue_count);
3283 nvme_show_int_function(sqsize);
3284 nvme_show_int_function(kato);
3285
3286 static ssize_t nvme_sysfs_delete(struct device *dev,
3287 struct device_attribute *attr, const char *buf,
3288 size_t count)
3289 {
3290 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3291
3292 if (device_remove_file_self(dev, attr))
3293 nvme_delete_ctrl_sync(ctrl);
3294 return count;
3295 }
3296 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3297
3298 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3299 struct device_attribute *attr,
3300 char *buf)
3301 {
3302 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3303
3304 return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3305 }
3306 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3307
3308 static ssize_t nvme_sysfs_show_state(struct device *dev,
3309 struct device_attribute *attr,
3310 char *buf)
3311 {
3312 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3313 static const char *const state_name[] = {
3314 [NVME_CTRL_NEW] = "new",
3315 [NVME_CTRL_LIVE] = "live",
3316 [NVME_CTRL_RESETTING] = "resetting",
3317 [NVME_CTRL_CONNECTING] = "connecting",
3318 [NVME_CTRL_DELETING] = "deleting",
3319 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3320 [NVME_CTRL_DEAD] = "dead",
3321 };
3322
3323 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3324 state_name[ctrl->state])
3325 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3326
3327 return sysfs_emit(buf, "unknown state\n");
3328 }
3329
3330 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3331
3332 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3333 struct device_attribute *attr,
3334 char *buf)
3335 {
3336 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3337
3338 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3339 }
3340 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3341
3342 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3343 struct device_attribute *attr,
3344 char *buf)
3345 {
3346 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3347
3348 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3349 }
3350 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3351
3352 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3353 struct device_attribute *attr,
3354 char *buf)
3355 {
3356 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3357
3358 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3359 }
3360 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3361
3362 static ssize_t nvme_sysfs_show_address(struct device *dev,
3363 struct device_attribute *attr,
3364 char *buf)
3365 {
3366 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3367
3368 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3369 }
3370 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3371
3372 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3373 struct device_attribute *attr, char *buf)
3374 {
3375 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3376 struct nvmf_ctrl_options *opts = ctrl->opts;
3377
3378 if (ctrl->opts->max_reconnects == -1)
3379 return sysfs_emit(buf, "off\n");
3380 return sysfs_emit(buf, "%d\n",
3381 opts->max_reconnects * opts->reconnect_delay);
3382 }
3383
3384 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3385 struct device_attribute *attr, const char *buf, size_t count)
3386 {
3387 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3388 struct nvmf_ctrl_options *opts = ctrl->opts;
3389 int ctrl_loss_tmo, err;
3390
3391 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3392 if (err)
3393 return -EINVAL;
3394
3395 if (ctrl_loss_tmo < 0)
3396 opts->max_reconnects = -1;
3397 else
3398 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3399 opts->reconnect_delay);
3400 return count;
3401 }
3402 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3403 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3404
3405 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3406 struct device_attribute *attr, char *buf)
3407 {
3408 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3409
3410 if (ctrl->opts->reconnect_delay == -1)
3411 return sysfs_emit(buf, "off\n");
3412 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3413 }
3414
3415 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3416 struct device_attribute *attr, const char *buf, size_t count)
3417 {
3418 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3419 unsigned int v;
3420 int err;
3421
3422 err = kstrtou32(buf, 10, &v);
3423 if (err)
3424 return err;
3425
3426 ctrl->opts->reconnect_delay = v;
3427 return count;
3428 }
3429 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3430 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3431
3432 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3433 struct device_attribute *attr, char *buf)
3434 {
3435 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3436
3437 if (ctrl->opts->fast_io_fail_tmo == -1)
3438 return sysfs_emit(buf, "off\n");
3439 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3440 }
3441
3442 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3443 struct device_attribute *attr, const char *buf, size_t count)
3444 {
3445 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3446 struct nvmf_ctrl_options *opts = ctrl->opts;
3447 int fast_io_fail_tmo, err;
3448
3449 err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3450 if (err)
3451 return -EINVAL;
3452
3453 if (fast_io_fail_tmo < 0)
3454 opts->fast_io_fail_tmo = -1;
3455 else
3456 opts->fast_io_fail_tmo = fast_io_fail_tmo;
3457 return count;
3458 }
3459 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3460 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3461
3462 static struct attribute *nvme_dev_attrs[] = {
3463 &dev_attr_reset_controller.attr,
3464 &dev_attr_rescan_controller.attr,
3465 &dev_attr_model.attr,
3466 &dev_attr_serial.attr,
3467 &dev_attr_firmware_rev.attr,
3468 &dev_attr_cntlid.attr,
3469 &dev_attr_delete_controller.attr,
3470 &dev_attr_transport.attr,
3471 &dev_attr_subsysnqn.attr,
3472 &dev_attr_address.attr,
3473 &dev_attr_state.attr,
3474 &dev_attr_numa_node.attr,
3475 &dev_attr_queue_count.attr,
3476 &dev_attr_sqsize.attr,
3477 &dev_attr_hostnqn.attr,
3478 &dev_attr_hostid.attr,
3479 &dev_attr_ctrl_loss_tmo.attr,
3480 &dev_attr_reconnect_delay.attr,
3481 &dev_attr_fast_io_fail_tmo.attr,
3482 &dev_attr_kato.attr,
3483 NULL
3484 };
3485
3486 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3487 struct attribute *a, int n)
3488 {
3489 struct device *dev = container_of(kobj, struct device, kobj);
3490 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3491
3492 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3493 return 0;
3494 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3495 return 0;
3496 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3497 return 0;
3498 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3499 return 0;
3500 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3501 return 0;
3502 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3503 return 0;
3504 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3505 return 0;
3506
3507 return a->mode;
3508 }
3509
3510 static const struct attribute_group nvme_dev_attrs_group = {
3511 .attrs = nvme_dev_attrs,
3512 .is_visible = nvme_dev_attrs_are_visible,
3513 };
3514
3515 static const struct attribute_group *nvme_dev_attr_groups[] = {
3516 &nvme_dev_attrs_group,
3517 NULL,
3518 };
3519
3520 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3521 unsigned nsid)
3522 {
3523 struct nvme_ns_head *h;
3524
3525 lockdep_assert_held(&subsys->lock);
3526
3527 list_for_each_entry(h, &subsys->nsheads, entry) {
3528 if (h->ns_id != nsid)
3529 continue;
3530 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3531 return h;
3532 }
3533
3534 return NULL;
3535 }
3536
3537 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3538 struct nvme_ns_ids *ids)
3539 {
3540 struct nvme_ns_head *h;
3541
3542 lockdep_assert_held(&subsys->lock);
3543
3544 list_for_each_entry(h, &subsys->nsheads, entry) {
3545 if (nvme_ns_ids_valid(ids) && nvme_ns_ids_equal(ids, &h->ids))
3546 return -EINVAL;
3547 }
3548
3549 return 0;
3550 }
3551
3552 static void nvme_cdev_rel(struct device *dev)
3553 {
3554 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3555 }
3556
3557 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3558 {
3559 cdev_device_del(cdev, cdev_device);
3560 put_device(cdev_device);
3561 }
3562
3563 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3564 const struct file_operations *fops, struct module *owner)
3565 {
3566 int minor, ret;
3567
3568 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3569 if (minor < 0)
3570 return minor;
3571 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3572 cdev_device->class = nvme_ns_chr_class;
3573 cdev_device->release = nvme_cdev_rel;
3574 device_initialize(cdev_device);
3575 cdev_init(cdev, fops);
3576 cdev->owner = owner;
3577 ret = cdev_device_add(cdev, cdev_device);
3578 if (ret)
3579 put_device(cdev_device);
3580
3581 return ret;
3582 }
3583
3584 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3585 {
3586 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3587 }
3588
3589 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3590 {
3591 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3592 return 0;
3593 }
3594
3595 static const struct file_operations nvme_ns_chr_fops = {
3596 .owner = THIS_MODULE,
3597 .open = nvme_ns_chr_open,
3598 .release = nvme_ns_chr_release,
3599 .unlocked_ioctl = nvme_ns_chr_ioctl,
3600 .compat_ioctl = compat_ptr_ioctl,
3601 };
3602
3603 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3604 {
3605 int ret;
3606
3607 ns->cdev_device.parent = ns->ctrl->device;
3608 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3609 ns->ctrl->instance, ns->head->instance);
3610 if (ret)
3611 return ret;
3612
3613 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3614 ns->ctrl->ops->module);
3615 }
3616
3617 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3618 unsigned nsid, struct nvme_ns_ids *ids)
3619 {
3620 struct nvme_ns_head *head;
3621 size_t size = sizeof(*head);
3622 int ret = -ENOMEM;
3623
3624 #ifdef CONFIG_NVME_MULTIPATH
3625 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3626 #endif
3627
3628 head = kzalloc(size, GFP_KERNEL);
3629 if (!head)
3630 goto out;
3631 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3632 if (ret < 0)
3633 goto out_free_head;
3634 head->instance = ret;
3635 INIT_LIST_HEAD(&head->list);
3636 ret = init_srcu_struct(&head->srcu);
3637 if (ret)
3638 goto out_ida_remove;
3639 head->subsys = ctrl->subsys;
3640 head->ns_id = nsid;
3641 head->ids = *ids;
3642 kref_init(&head->ref);
3643
3644 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &head->ids);
3645 if (ret) {
3646 dev_err(ctrl->device,
3647 "duplicate IDs for nsid %d\n", nsid);
3648 goto out_cleanup_srcu;
3649 }
3650
3651 if (head->ids.csi) {
3652 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3653 if (ret)
3654 goto out_cleanup_srcu;
3655 } else
3656 head->effects = ctrl->effects;
3657
3658 ret = nvme_mpath_alloc_disk(ctrl, head);
3659 if (ret)
3660 goto out_cleanup_srcu;
3661
3662 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3663
3664 kref_get(&ctrl->subsys->ref);
3665
3666 return head;
3667 out_cleanup_srcu:
3668 cleanup_srcu_struct(&head->srcu);
3669 out_ida_remove:
3670 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3671 out_free_head:
3672 kfree(head);
3673 out:
3674 if (ret > 0)
3675 ret = blk_status_to_errno(nvme_error_status(ret));
3676 return ERR_PTR(ret);
3677 }
3678
3679 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3680 struct nvme_ns_ids *ids, bool is_shared)
3681 {
3682 struct nvme_ctrl *ctrl = ns->ctrl;
3683 struct nvme_ns_head *head = NULL;
3684 int ret = 0;
3685
3686 mutex_lock(&ctrl->subsys->lock);
3687 head = nvme_find_ns_head(ctrl->subsys, nsid);
3688 if (!head) {
3689 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3690 if (IS_ERR(head)) {
3691 ret = PTR_ERR(head);
3692 goto out_unlock;
3693 }
3694 head->shared = is_shared;
3695 } else {
3696 ret = -EINVAL;
3697 if (!is_shared || !head->shared) {
3698 dev_err(ctrl->device,
3699 "Duplicate unshared namespace %d\n", nsid);
3700 goto out_put_ns_head;
3701 }
3702 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3703 dev_err(ctrl->device,
3704 "IDs don't match for shared namespace %d\n",
3705 nsid);
3706 goto out_put_ns_head;
3707 }
3708 }
3709
3710 list_add_tail_rcu(&ns->siblings, &head->list);
3711 ns->head = head;
3712 mutex_unlock(&ctrl->subsys->lock);
3713 return 0;
3714
3715 out_put_ns_head:
3716 nvme_put_ns_head(head);
3717 out_unlock:
3718 mutex_unlock(&ctrl->subsys->lock);
3719 return ret;
3720 }
3721
3722 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3723 {
3724 struct nvme_ns *ns, *ret = NULL;
3725
3726 down_read(&ctrl->namespaces_rwsem);
3727 list_for_each_entry(ns, &ctrl->namespaces, list) {
3728 if (ns->head->ns_id == nsid) {
3729 if (!nvme_get_ns(ns))
3730 continue;
3731 ret = ns;
3732 break;
3733 }
3734 if (ns->head->ns_id > nsid)
3735 break;
3736 }
3737 up_read(&ctrl->namespaces_rwsem);
3738 return ret;
3739 }
3740 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3741
3742 /*
3743 * Add the namespace to the controller list while keeping the list ordered.
3744 */
3745 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3746 {
3747 struct nvme_ns *tmp;
3748
3749 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3750 if (tmp->head->ns_id < ns->head->ns_id) {
3751 list_add(&ns->list, &tmp->list);
3752 return;
3753 }
3754 }
3755 list_add(&ns->list, &ns->ctrl->namespaces);
3756 }
3757
3758 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3759 struct nvme_ns_ids *ids)
3760 {
3761 struct nvme_ns *ns;
3762 struct gendisk *disk;
3763 struct nvme_id_ns *id;
3764 int node = ctrl->numa_node;
3765
3766 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3767 return;
3768
3769 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3770 if (!ns)
3771 goto out_free_id;
3772
3773 disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3774 if (IS_ERR(disk))
3775 goto out_free_ns;
3776 disk->fops = &nvme_bdev_ops;
3777 disk->private_data = ns;
3778
3779 ns->disk = disk;
3780 ns->queue = disk->queue;
3781
3782 if (ctrl->opts && ctrl->opts->data_digest)
3783 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3784
3785 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3786 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3787 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3788
3789 ns->ctrl = ctrl;
3790 kref_init(&ns->kref);
3791
3792 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3793 goto out_cleanup_disk;
3794
3795 /*
3796 * Without the multipath code enabled, multiple controller per
3797 * subsystems are visible as devices and thus we cannot use the
3798 * subsystem instance.
3799 */
3800 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3801 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3802 ns->head->instance);
3803
3804 if (nvme_update_ns_info(ns, id))
3805 goto out_unlink_ns;
3806
3807 down_write(&ctrl->namespaces_rwsem);
3808 nvme_ns_add_to_ctrl_list(ns);
3809 up_write(&ctrl->namespaces_rwsem);
3810 nvme_get_ctrl(ctrl);
3811
3812 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3813 goto out_cleanup_ns_from_list;
3814
3815 if (!nvme_ns_head_multipath(ns->head))
3816 nvme_add_ns_cdev(ns);
3817
3818 nvme_mpath_add_disk(ns, id);
3819 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3820 kfree(id);
3821
3822 return;
3823
3824 out_cleanup_ns_from_list:
3825 nvme_put_ctrl(ctrl);
3826 down_write(&ctrl->namespaces_rwsem);
3827 list_del_init(&ns->list);
3828 up_write(&ctrl->namespaces_rwsem);
3829 out_unlink_ns:
3830 mutex_lock(&ctrl->subsys->lock);
3831 list_del_rcu(&ns->siblings);
3832 if (list_empty(&ns->head->list))
3833 list_del_init(&ns->head->entry);
3834 mutex_unlock(&ctrl->subsys->lock);
3835 nvme_put_ns_head(ns->head);
3836 out_cleanup_disk:
3837 blk_cleanup_disk(disk);
3838 out_free_ns:
3839 kfree(ns);
3840 out_free_id:
3841 kfree(id);
3842 }
3843
3844 static void nvme_ns_remove(struct nvme_ns *ns)
3845 {
3846 bool last_path = false;
3847
3848 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3849 return;
3850
3851 clear_bit(NVME_NS_READY, &ns->flags);
3852 set_capacity(ns->disk, 0);
3853 nvme_fault_inject_fini(&ns->fault_inject);
3854
3855 mutex_lock(&ns->ctrl->subsys->lock);
3856 list_del_rcu(&ns->siblings);
3857 if (list_empty(&ns->head->list)) {
3858 list_del_init(&ns->head->entry);
3859 last_path = true;
3860 }
3861 mutex_unlock(&ns->ctrl->subsys->lock);
3862
3863 /* guarantee not available in head->list */
3864 synchronize_rcu();
3865
3866 /* wait for concurrent submissions */
3867 if (nvme_mpath_clear_current_path(ns))
3868 synchronize_srcu(&ns->head->srcu);
3869
3870 if (!nvme_ns_head_multipath(ns->head))
3871 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3872 del_gendisk(ns->disk);
3873 blk_cleanup_queue(ns->queue);
3874
3875 down_write(&ns->ctrl->namespaces_rwsem);
3876 list_del_init(&ns->list);
3877 up_write(&ns->ctrl->namespaces_rwsem);
3878
3879 if (last_path)
3880 nvme_mpath_shutdown_disk(ns->head);
3881 nvme_put_ns(ns);
3882 }
3883
3884 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3885 {
3886 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3887
3888 if (ns) {
3889 nvme_ns_remove(ns);
3890 nvme_put_ns(ns);
3891 }
3892 }
3893
3894 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3895 {
3896 struct nvme_id_ns *id;
3897 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3898
3899 if (test_bit(NVME_NS_DEAD, &ns->flags))
3900 goto out;
3901
3902 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3903 if (ret)
3904 goto out;
3905
3906 ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3907 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3908 dev_err(ns->ctrl->device,
3909 "identifiers changed for nsid %d\n", ns->head->ns_id);
3910 goto out_free_id;
3911 }
3912
3913 ret = nvme_update_ns_info(ns, id);
3914
3915 out_free_id:
3916 kfree(id);
3917 out:
3918 /*
3919 * Only remove the namespace if we got a fatal error back from the
3920 * device, otherwise ignore the error and just move on.
3921 *
3922 * TODO: we should probably schedule a delayed retry here.
3923 */
3924 if (ret > 0 && (ret & NVME_SC_DNR))
3925 nvme_ns_remove(ns);
3926 }
3927
3928 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3929 {
3930 struct nvme_ns_ids ids = { };
3931 struct nvme_ns *ns;
3932
3933 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3934 return;
3935
3936 ns = nvme_find_get_ns(ctrl, nsid);
3937 if (ns) {
3938 nvme_validate_ns(ns, &ids);
3939 nvme_put_ns(ns);
3940 return;
3941 }
3942
3943 switch (ids.csi) {
3944 case NVME_CSI_NVM:
3945 nvme_alloc_ns(ctrl, nsid, &ids);
3946 break;
3947 case NVME_CSI_ZNS:
3948 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3949 dev_warn(ctrl->device,
3950 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3951 nsid);
3952 break;
3953 }
3954 if (!nvme_multi_css(ctrl)) {
3955 dev_warn(ctrl->device,
3956 "command set not reported for nsid: %d\n",
3957 nsid);
3958 break;
3959 }
3960 nvme_alloc_ns(ctrl, nsid, &ids);
3961 break;
3962 default:
3963 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3964 ids.csi, nsid);
3965 break;
3966 }
3967 }
3968
3969 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3970 unsigned nsid)
3971 {
3972 struct nvme_ns *ns, *next;
3973 LIST_HEAD(rm_list);
3974
3975 down_write(&ctrl->namespaces_rwsem);
3976 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3977 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3978 list_move_tail(&ns->list, &rm_list);
3979 }
3980 up_write(&ctrl->namespaces_rwsem);
3981
3982 list_for_each_entry_safe(ns, next, &rm_list, list)
3983 nvme_ns_remove(ns);
3984
3985 }
3986
3987 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3988 {
3989 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3990 __le32 *ns_list;
3991 u32 prev = 0;
3992 int ret = 0, i;
3993
3994 if (nvme_ctrl_limited_cns(ctrl))
3995 return -EOPNOTSUPP;
3996
3997 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3998 if (!ns_list)
3999 return -ENOMEM;
4000
4001 for (;;) {
4002 struct nvme_command cmd = {
4003 .identify.opcode = nvme_admin_identify,
4004 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4005 .identify.nsid = cpu_to_le32(prev),
4006 };
4007
4008 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4009 NVME_IDENTIFY_DATA_SIZE);
4010 if (ret) {
4011 dev_warn(ctrl->device,
4012 "Identify NS List failed (status=0x%x)\n", ret);
4013 goto free;
4014 }
4015
4016 for (i = 0; i < nr_entries; i++) {
4017 u32 nsid = le32_to_cpu(ns_list[i]);
4018
4019 if (!nsid) /* end of the list? */
4020 goto out;
4021 nvme_validate_or_alloc_ns(ctrl, nsid);
4022 while (++prev < nsid)
4023 nvme_ns_remove_by_nsid(ctrl, prev);
4024 }
4025 }
4026 out:
4027 nvme_remove_invalid_namespaces(ctrl, prev);
4028 free:
4029 kfree(ns_list);
4030 return ret;
4031 }
4032
4033 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4034 {
4035 struct nvme_id_ctrl *id;
4036 u32 nn, i;
4037
4038 if (nvme_identify_ctrl(ctrl, &id))
4039 return;
4040 nn = le32_to_cpu(id->nn);
4041 kfree(id);
4042
4043 for (i = 1; i <= nn; i++)
4044 nvme_validate_or_alloc_ns(ctrl, i);
4045
4046 nvme_remove_invalid_namespaces(ctrl, nn);
4047 }
4048
4049 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4050 {
4051 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4052 __le32 *log;
4053 int error;
4054
4055 log = kzalloc(log_size, GFP_KERNEL);
4056 if (!log)
4057 return;
4058
4059 /*
4060 * We need to read the log to clear the AEN, but we don't want to rely
4061 * on it for the changed namespace information as userspace could have
4062 * raced with us in reading the log page, which could cause us to miss
4063 * updates.
4064 */
4065 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4066 NVME_CSI_NVM, log, log_size, 0);
4067 if (error)
4068 dev_warn(ctrl->device,
4069 "reading changed ns log failed: %d\n", error);
4070
4071 kfree(log);
4072 }
4073
4074 static void nvme_scan_work(struct work_struct *work)
4075 {
4076 struct nvme_ctrl *ctrl =
4077 container_of(work, struct nvme_ctrl, scan_work);
4078
4079 /* No tagset on a live ctrl means IO queues could not created */
4080 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4081 return;
4082
4083 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4084 dev_info(ctrl->device, "rescanning namespaces.\n");
4085 nvme_clear_changed_ns_log(ctrl);
4086 }
4087
4088 mutex_lock(&ctrl->scan_lock);
4089 if (nvme_scan_ns_list(ctrl) != 0)
4090 nvme_scan_ns_sequential(ctrl);
4091 mutex_unlock(&ctrl->scan_lock);
4092 }
4093
4094 /*
4095 * This function iterates the namespace list unlocked to allow recovery from
4096 * controller failure. It is up to the caller to ensure the namespace list is
4097 * not modified by scan work while this function is executing.
4098 */
4099 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4100 {
4101 struct nvme_ns *ns, *next;
4102 LIST_HEAD(ns_list);
4103
4104 /*
4105 * make sure to requeue I/O to all namespaces as these
4106 * might result from the scan itself and must complete
4107 * for the scan_work to make progress
4108 */
4109 nvme_mpath_clear_ctrl_paths(ctrl);
4110
4111 /* prevent racing with ns scanning */
4112 flush_work(&ctrl->scan_work);
4113
4114 /*
4115 * The dead states indicates the controller was not gracefully
4116 * disconnected. In that case, we won't be able to flush any data while
4117 * removing the namespaces' disks; fail all the queues now to avoid
4118 * potentially having to clean up the failed sync later.
4119 */
4120 if (ctrl->state == NVME_CTRL_DEAD)
4121 nvme_kill_queues(ctrl);
4122
4123 /* this is a no-op when called from the controller reset handler */
4124 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4125
4126 down_write(&ctrl->namespaces_rwsem);
4127 list_splice_init(&ctrl->namespaces, &ns_list);
4128 up_write(&ctrl->namespaces_rwsem);
4129
4130 list_for_each_entry_safe(ns, next, &ns_list, list)
4131 nvme_ns_remove(ns);
4132 }
4133 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4134
4135 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4136 {
4137 struct nvme_ctrl *ctrl =
4138 container_of(dev, struct nvme_ctrl, ctrl_device);
4139 struct nvmf_ctrl_options *opts = ctrl->opts;
4140 int ret;
4141
4142 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4143 if (ret)
4144 return ret;
4145
4146 if (opts) {
4147 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4148 if (ret)
4149 return ret;
4150
4151 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4152 opts->trsvcid ?: "none");
4153 if (ret)
4154 return ret;
4155
4156 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4157 opts->host_traddr ?: "none");
4158 if (ret)
4159 return ret;
4160
4161 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4162 opts->host_iface ?: "none");
4163 }
4164 return ret;
4165 }
4166
4167 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4168 {
4169 char *envp[2] = { NULL, NULL };
4170 u32 aen_result = ctrl->aen_result;
4171
4172 ctrl->aen_result = 0;
4173 if (!aen_result)
4174 return;
4175
4176 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4177 if (!envp[0])
4178 return;
4179 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4180 kfree(envp[0]);
4181 }
4182
4183 static void nvme_async_event_work(struct work_struct *work)
4184 {
4185 struct nvme_ctrl *ctrl =
4186 container_of(work, struct nvme_ctrl, async_event_work);
4187
4188 nvme_aen_uevent(ctrl);
4189
4190 /*
4191 * The transport drivers must guarantee AER submission here is safe by
4192 * flushing ctrl async_event_work after changing the controller state
4193 * from LIVE and before freeing the admin queue.
4194 */
4195 if (ctrl->state == NVME_CTRL_LIVE)
4196 ctrl->ops->submit_async_event(ctrl);
4197 }
4198
4199 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4200 {
4201
4202 u32 csts;
4203
4204 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4205 return false;
4206
4207 if (csts == ~0)
4208 return false;
4209
4210 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4211 }
4212
4213 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4214 {
4215 struct nvme_fw_slot_info_log *log;
4216
4217 log = kmalloc(sizeof(*log), GFP_KERNEL);
4218 if (!log)
4219 return;
4220
4221 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4222 log, sizeof(*log), 0))
4223 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4224 kfree(log);
4225 }
4226
4227 static void nvme_fw_act_work(struct work_struct *work)
4228 {
4229 struct nvme_ctrl *ctrl = container_of(work,
4230 struct nvme_ctrl, fw_act_work);
4231 unsigned long fw_act_timeout;
4232
4233 if (ctrl->mtfa)
4234 fw_act_timeout = jiffies +
4235 msecs_to_jiffies(ctrl->mtfa * 100);
4236 else
4237 fw_act_timeout = jiffies +
4238 msecs_to_jiffies(admin_timeout * 1000);
4239
4240 nvme_stop_queues(ctrl);
4241 while (nvme_ctrl_pp_status(ctrl)) {
4242 if (time_after(jiffies, fw_act_timeout)) {
4243 dev_warn(ctrl->device,
4244 "Fw activation timeout, reset controller\n");
4245 nvme_try_sched_reset(ctrl);
4246 return;
4247 }
4248 msleep(100);
4249 }
4250
4251 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4252 return;
4253
4254 nvme_start_queues(ctrl);
4255 /* read FW slot information to clear the AER */
4256 nvme_get_fw_slot_info(ctrl);
4257 }
4258
4259 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4260 {
4261 u32 aer_notice_type = (result & 0xff00) >> 8;
4262
4263 trace_nvme_async_event(ctrl, aer_notice_type);
4264
4265 switch (aer_notice_type) {
4266 case NVME_AER_NOTICE_NS_CHANGED:
4267 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4268 nvme_queue_scan(ctrl);
4269 break;
4270 case NVME_AER_NOTICE_FW_ACT_STARTING:
4271 /*
4272 * We are (ab)using the RESETTING state to prevent subsequent
4273 * recovery actions from interfering with the controller's
4274 * firmware activation.
4275 */
4276 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4277 queue_work(nvme_wq, &ctrl->fw_act_work);
4278 break;
4279 #ifdef CONFIG_NVME_MULTIPATH
4280 case NVME_AER_NOTICE_ANA:
4281 if (!ctrl->ana_log_buf)
4282 break;
4283 queue_work(nvme_wq, &ctrl->ana_work);
4284 break;
4285 #endif
4286 case NVME_AER_NOTICE_DISC_CHANGED:
4287 ctrl->aen_result = result;
4288 break;
4289 default:
4290 dev_warn(ctrl->device, "async event result %08x\n", result);
4291 }
4292 }
4293
4294 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4295 volatile union nvme_result *res)
4296 {
4297 u32 result = le32_to_cpu(res->u32);
4298 u32 aer_type = result & 0x07;
4299
4300 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4301 return;
4302
4303 switch (aer_type) {
4304 case NVME_AER_NOTICE:
4305 nvme_handle_aen_notice(ctrl, result);
4306 break;
4307 case NVME_AER_ERROR:
4308 case NVME_AER_SMART:
4309 case NVME_AER_CSS:
4310 case NVME_AER_VS:
4311 trace_nvme_async_event(ctrl, aer_type);
4312 ctrl->aen_result = result;
4313 break;
4314 default:
4315 break;
4316 }
4317 queue_work(nvme_wq, &ctrl->async_event_work);
4318 }
4319 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4320
4321 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4322 {
4323 nvme_mpath_stop(ctrl);
4324 nvme_stop_keep_alive(ctrl);
4325 nvme_stop_failfast_work(ctrl);
4326 flush_work(&ctrl->async_event_work);
4327 cancel_work_sync(&ctrl->fw_act_work);
4328 }
4329 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4330
4331 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4332 {
4333 nvme_start_keep_alive(ctrl);
4334
4335 nvme_enable_aen(ctrl);
4336
4337 if (ctrl->queue_count > 1) {
4338 nvme_queue_scan(ctrl);
4339 nvme_start_queues(ctrl);
4340 }
4341 }
4342 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4343
4344 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4345 {
4346 nvme_hwmon_exit(ctrl);
4347 nvme_fault_inject_fini(&ctrl->fault_inject);
4348 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4349 cdev_device_del(&ctrl->cdev, ctrl->device);
4350 nvme_put_ctrl(ctrl);
4351 }
4352 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4353
4354 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4355 {
4356 struct nvme_effects_log *cel;
4357 unsigned long i;
4358
4359 xa_for_each(&ctrl->cels, i, cel) {
4360 xa_erase(&ctrl->cels, i);
4361 kfree(cel);
4362 }
4363
4364 xa_destroy(&ctrl->cels);
4365 }
4366
4367 static void nvme_free_ctrl(struct device *dev)
4368 {
4369 struct nvme_ctrl *ctrl =
4370 container_of(dev, struct nvme_ctrl, ctrl_device);
4371 struct nvme_subsystem *subsys = ctrl->subsys;
4372
4373 if (!subsys || ctrl->instance != subsys->instance)
4374 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4375
4376 nvme_free_cels(ctrl);
4377 nvme_mpath_uninit(ctrl);
4378 __free_page(ctrl->discard_page);
4379
4380 if (subsys) {
4381 mutex_lock(&nvme_subsystems_lock);
4382 list_del(&ctrl->subsys_entry);
4383 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4384 mutex_unlock(&nvme_subsystems_lock);
4385 }
4386
4387 ctrl->ops->free_ctrl(ctrl);
4388
4389 if (subsys)
4390 nvme_put_subsystem(subsys);
4391 }
4392
4393 /*
4394 * Initialize a NVMe controller structures. This needs to be called during
4395 * earliest initialization so that we have the initialized structured around
4396 * during probing.
4397 */
4398 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4399 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4400 {
4401 int ret;
4402
4403 ctrl->state = NVME_CTRL_NEW;
4404 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4405 spin_lock_init(&ctrl->lock);
4406 mutex_init(&ctrl->scan_lock);
4407 INIT_LIST_HEAD(&ctrl->namespaces);
4408 xa_init(&ctrl->cels);
4409 init_rwsem(&ctrl->namespaces_rwsem);
4410 ctrl->dev = dev;
4411 ctrl->ops = ops;
4412 ctrl->quirks = quirks;
4413 ctrl->numa_node = NUMA_NO_NODE;
4414 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4415 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4416 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4417 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4418 init_waitqueue_head(&ctrl->state_wq);
4419
4420 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4421 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4422 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4423 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4424
4425 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4426 PAGE_SIZE);
4427 ctrl->discard_page = alloc_page(GFP_KERNEL);
4428 if (!ctrl->discard_page) {
4429 ret = -ENOMEM;
4430 goto out;
4431 }
4432
4433 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4434 if (ret < 0)
4435 goto out;
4436 ctrl->instance = ret;
4437
4438 device_initialize(&ctrl->ctrl_device);
4439 ctrl->device = &ctrl->ctrl_device;
4440 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4441 ctrl->instance);
4442 ctrl->device->class = nvme_class;
4443 ctrl->device->parent = ctrl->dev;
4444 ctrl->device->groups = nvme_dev_attr_groups;
4445 ctrl->device->release = nvme_free_ctrl;
4446 dev_set_drvdata(ctrl->device, ctrl);
4447 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4448 if (ret)
4449 goto out_release_instance;
4450
4451 nvme_get_ctrl(ctrl);
4452 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4453 ctrl->cdev.owner = ops->module;
4454 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4455 if (ret)
4456 goto out_free_name;
4457
4458 /*
4459 * Initialize latency tolerance controls. The sysfs files won't
4460 * be visible to userspace unless the device actually supports APST.
4461 */
4462 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4463 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4464 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4465
4466 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4467 nvme_mpath_init_ctrl(ctrl);
4468
4469 return 0;
4470 out_free_name:
4471 nvme_put_ctrl(ctrl);
4472 kfree_const(ctrl->device->kobj.name);
4473 out_release_instance:
4474 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4475 out:
4476 if (ctrl->discard_page)
4477 __free_page(ctrl->discard_page);
4478 return ret;
4479 }
4480 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4481
4482 /**
4483 * nvme_kill_queues(): Ends all namespace queues
4484 * @ctrl: the dead controller that needs to end
4485 *
4486 * Call this function when the driver determines it is unable to get the
4487 * controller in a state capable of servicing IO.
4488 */
4489 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4490 {
4491 struct nvme_ns *ns;
4492
4493 down_read(&ctrl->namespaces_rwsem);
4494
4495 /* Forcibly unquiesce queues to avoid blocking dispatch */
4496 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4497 blk_mq_unquiesce_queue(ctrl->admin_q);
4498
4499 list_for_each_entry(ns, &ctrl->namespaces, list)
4500 nvme_set_queue_dying(ns);
4501
4502 up_read(&ctrl->namespaces_rwsem);
4503 }
4504 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4505
4506 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4507 {
4508 struct nvme_ns *ns;
4509
4510 down_read(&ctrl->namespaces_rwsem);
4511 list_for_each_entry(ns, &ctrl->namespaces, list)
4512 blk_mq_unfreeze_queue(ns->queue);
4513 up_read(&ctrl->namespaces_rwsem);
4514 }
4515 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4516
4517 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4518 {
4519 struct nvme_ns *ns;
4520
4521 down_read(&ctrl->namespaces_rwsem);
4522 list_for_each_entry(ns, &ctrl->namespaces, list) {
4523 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4524 if (timeout <= 0)
4525 break;
4526 }
4527 up_read(&ctrl->namespaces_rwsem);
4528 return timeout;
4529 }
4530 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4531
4532 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4533 {
4534 struct nvme_ns *ns;
4535
4536 down_read(&ctrl->namespaces_rwsem);
4537 list_for_each_entry(ns, &ctrl->namespaces, list)
4538 blk_mq_freeze_queue_wait(ns->queue);
4539 up_read(&ctrl->namespaces_rwsem);
4540 }
4541 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4542
4543 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4544 {
4545 struct nvme_ns *ns;
4546
4547 down_read(&ctrl->namespaces_rwsem);
4548 list_for_each_entry(ns, &ctrl->namespaces, list)
4549 blk_freeze_queue_start(ns->queue);
4550 up_read(&ctrl->namespaces_rwsem);
4551 }
4552 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4553
4554 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4555 {
4556 struct nvme_ns *ns;
4557
4558 down_read(&ctrl->namespaces_rwsem);
4559 list_for_each_entry(ns, &ctrl->namespaces, list)
4560 blk_mq_quiesce_queue(ns->queue);
4561 up_read(&ctrl->namespaces_rwsem);
4562 }
4563 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4564
4565 void nvme_start_queues(struct nvme_ctrl *ctrl)
4566 {
4567 struct nvme_ns *ns;
4568
4569 down_read(&ctrl->namespaces_rwsem);
4570 list_for_each_entry(ns, &ctrl->namespaces, list)
4571 blk_mq_unquiesce_queue(ns->queue);
4572 up_read(&ctrl->namespaces_rwsem);
4573 }
4574 EXPORT_SYMBOL_GPL(nvme_start_queues);
4575
4576 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4577 {
4578 struct nvme_ns *ns;
4579
4580 down_read(&ctrl->namespaces_rwsem);
4581 list_for_each_entry(ns, &ctrl->namespaces, list)
4582 blk_sync_queue(ns->queue);
4583 up_read(&ctrl->namespaces_rwsem);
4584 }
4585 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4586
4587 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4588 {
4589 nvme_sync_io_queues(ctrl);
4590 if (ctrl->admin_q)
4591 blk_sync_queue(ctrl->admin_q);
4592 }
4593 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4594
4595 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4596 {
4597 if (file->f_op != &nvme_dev_fops)
4598 return NULL;
4599 return file->private_data;
4600 }
4601 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4602
4603 /*
4604 * Check we didn't inadvertently grow the command structure sizes:
4605 */
4606 static inline void _nvme_check_size(void)
4607 {
4608 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4609 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4610 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4611 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4612 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4613 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4614 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4615 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4616 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4617 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4618 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4619 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4620 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4621 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4622 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4623 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4624 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4625 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4626 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4627 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4628 }
4629
4630
4631 static int __init nvme_core_init(void)
4632 {
4633 int result = -ENOMEM;
4634
4635 _nvme_check_size();
4636
4637 nvme_wq = alloc_workqueue("nvme-wq",
4638 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4639 if (!nvme_wq)
4640 goto out;
4641
4642 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4643 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4644 if (!nvme_reset_wq)
4645 goto destroy_wq;
4646
4647 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4648 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4649 if (!nvme_delete_wq)
4650 goto destroy_reset_wq;
4651
4652 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4653 NVME_MINORS, "nvme");
4654 if (result < 0)
4655 goto destroy_delete_wq;
4656
4657 nvme_class = class_create(THIS_MODULE, "nvme");
4658 if (IS_ERR(nvme_class)) {
4659 result = PTR_ERR(nvme_class);
4660 goto unregister_chrdev;
4661 }
4662 nvme_class->dev_uevent = nvme_class_uevent;
4663
4664 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4665 if (IS_ERR(nvme_subsys_class)) {
4666 result = PTR_ERR(nvme_subsys_class);
4667 goto destroy_class;
4668 }
4669
4670 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4671 "nvme-generic");
4672 if (result < 0)
4673 goto destroy_subsys_class;
4674
4675 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4676 if (IS_ERR(nvme_ns_chr_class)) {
4677 result = PTR_ERR(nvme_ns_chr_class);
4678 goto unregister_generic_ns;
4679 }
4680
4681 return 0;
4682
4683 unregister_generic_ns:
4684 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4685 destroy_subsys_class:
4686 class_destroy(nvme_subsys_class);
4687 destroy_class:
4688 class_destroy(nvme_class);
4689 unregister_chrdev:
4690 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4691 destroy_delete_wq:
4692 destroy_workqueue(nvme_delete_wq);
4693 destroy_reset_wq:
4694 destroy_workqueue(nvme_reset_wq);
4695 destroy_wq:
4696 destroy_workqueue(nvme_wq);
4697 out:
4698 return result;
4699 }
4700
4701 static void __exit nvme_core_exit(void)
4702 {
4703 class_destroy(nvme_ns_chr_class);
4704 class_destroy(nvme_subsys_class);
4705 class_destroy(nvme_class);
4706 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4707 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4708 destroy_workqueue(nvme_delete_wq);
4709 destroy_workqueue(nvme_reset_wq);
4710 destroy_workqueue(nvme_wq);
4711 ida_destroy(&nvme_ns_chr_minor_ida);
4712 ida_destroy(&nvme_instance_ida);
4713 }
4714
4715 MODULE_LICENSE("GPL");
4716 MODULE_VERSION("1.0");
4717 module_init(nvme_core_init);
4718 module_exit(nvme_core_exit);