]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/fc.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / fc.c
1 /*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 /*
34 * We handle AEN commands ourselves and don't even let the
35 * block layer know about them.
36 */
37 #define NVME_FC_NR_AEN_COMMANDS 1
38 #define NVME_FC_AQ_BLKMQ_DEPTH \
39 (NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42 enum nvme_fc_queue_flags {
43 NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45
46 #define NVMEFC_QUEUE_DELAY 3 /* ms units */
47
48 struct nvme_fc_queue {
49 struct nvme_fc_ctrl *ctrl;
50 struct device *dev;
51 struct blk_mq_hw_ctx *hctx;
52 void *lldd_handle;
53 int queue_size;
54 size_t cmnd_capsule_len;
55 u32 qnum;
56 u32 rqcnt;
57 u32 seqno;
58
59 u64 connection_id;
60 atomic_t csn;
61
62 unsigned long flags;
63 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
64
65 enum nvme_fcop_flags {
66 FCOP_FLAGS_TERMIO = (1 << 0),
67 FCOP_FLAGS_RELEASED = (1 << 1),
68 FCOP_FLAGS_COMPLETE = (1 << 2),
69 FCOP_FLAGS_AEN = (1 << 3),
70 };
71
72 struct nvmefc_ls_req_op {
73 struct nvmefc_ls_req ls_req;
74
75 struct nvme_fc_rport *rport;
76 struct nvme_fc_queue *queue;
77 struct request *rq;
78 u32 flags;
79
80 int ls_error;
81 struct completion ls_done;
82 struct list_head lsreq_list; /* rport->ls_req_list */
83 bool req_queued;
84 };
85
86 enum nvme_fcpop_state {
87 FCPOP_STATE_UNINIT = 0,
88 FCPOP_STATE_IDLE = 1,
89 FCPOP_STATE_ACTIVE = 2,
90 FCPOP_STATE_ABORTED = 3,
91 FCPOP_STATE_COMPLETE = 4,
92 };
93
94 struct nvme_fc_fcp_op {
95 struct nvme_request nreq; /*
96 * nvme/host/core.c
97 * requires this to be
98 * the 1st element in the
99 * private structure
100 * associated with the
101 * request.
102 */
103 struct nvmefc_fcp_req fcp_req;
104
105 struct nvme_fc_ctrl *ctrl;
106 struct nvme_fc_queue *queue;
107 struct request *rq;
108
109 atomic_t state;
110 u32 flags;
111 u32 rqno;
112 u32 nents;
113
114 struct nvme_fc_cmd_iu cmd_iu;
115 struct nvme_fc_ersp_iu rsp_iu;
116 };
117
118 struct nvme_fc_lport {
119 struct nvme_fc_local_port localport;
120
121 struct ida endp_cnt;
122 struct list_head port_list; /* nvme_fc_port_list */
123 struct list_head endp_list;
124 struct device *dev; /* physical device for dma */
125 struct nvme_fc_port_template *ops;
126 struct kref ref;
127 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
128
129 struct nvme_fc_rport {
130 struct nvme_fc_remote_port remoteport;
131
132 struct list_head endp_list; /* for lport->endp_list */
133 struct list_head ctrl_list;
134 struct list_head ls_req_list;
135 struct device *dev; /* physical device for dma */
136 struct nvme_fc_lport *lport;
137 spinlock_t lock;
138 struct kref ref;
139 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
140
141 enum nvme_fcctrl_flags {
142 FCCTRL_TERMIO = (1 << 0),
143 };
144
145 struct nvme_fc_ctrl {
146 spinlock_t lock;
147 struct nvme_fc_queue *queues;
148 struct device *dev;
149 struct nvme_fc_lport *lport;
150 struct nvme_fc_rport *rport;
151 u32 cnum;
152
153 u64 association_id;
154
155 struct list_head ctrl_list; /* rport->ctrl_list */
156
157 struct blk_mq_tag_set admin_tag_set;
158 struct blk_mq_tag_set tag_set;
159
160 struct work_struct delete_work;
161 struct delayed_work connect_work;
162
163 struct kref ref;
164 u32 flags;
165 u32 iocnt;
166 wait_queue_head_t ioabort_wait;
167
168 struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS];
169
170 struct nvme_ctrl ctrl;
171 };
172
173 static inline struct nvme_fc_ctrl *
174 to_fc_ctrl(struct nvme_ctrl *ctrl)
175 {
176 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
177 }
178
179 static inline struct nvme_fc_lport *
180 localport_to_lport(struct nvme_fc_local_port *portptr)
181 {
182 return container_of(portptr, struct nvme_fc_lport, localport);
183 }
184
185 static inline struct nvme_fc_rport *
186 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
187 {
188 return container_of(portptr, struct nvme_fc_rport, remoteport);
189 }
190
191 static inline struct nvmefc_ls_req_op *
192 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
193 {
194 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
195 }
196
197 static inline struct nvme_fc_fcp_op *
198 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
199 {
200 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
201 }
202
203
204
205 /* *************************** Globals **************************** */
206
207
208 static DEFINE_SPINLOCK(nvme_fc_lock);
209
210 static LIST_HEAD(nvme_fc_lport_list);
211 static DEFINE_IDA(nvme_fc_local_port_cnt);
212 static DEFINE_IDA(nvme_fc_ctrl_cnt);
213
214
215
216
217 /* *********************** FC-NVME Port Management ************************ */
218
219 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
221 struct nvme_fc_queue *, unsigned int);
222
223
224 /**
225 * nvme_fc_register_localport - transport entry point called by an
226 * LLDD to register the existence of a NVME
227 * host FC port.
228 * @pinfo: pointer to information about the port to be registered
229 * @template: LLDD entrypoints and operational parameters for the port
230 * @dev: physical hardware device node port corresponds to. Will be
231 * used for DMA mappings
232 * @lport_p: pointer to a local port pointer. Upon success, the routine
233 * will allocate a nvme_fc_local_port structure and place its
234 * address in the local port pointer. Upon failure, local port
235 * pointer will be set to 0.
236 *
237 * Returns:
238 * a completion status. Must be 0 upon success; a negative errno
239 * (ex: -ENXIO) upon failure.
240 */
241 int
242 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
243 struct nvme_fc_port_template *template,
244 struct device *dev,
245 struct nvme_fc_local_port **portptr)
246 {
247 struct nvme_fc_lport *newrec;
248 unsigned long flags;
249 int ret, idx;
250
251 if (!template->localport_delete || !template->remoteport_delete ||
252 !template->ls_req || !template->fcp_io ||
253 !template->ls_abort || !template->fcp_abort ||
254 !template->max_hw_queues || !template->max_sgl_segments ||
255 !template->max_dif_sgl_segments || !template->dma_boundary) {
256 ret = -EINVAL;
257 goto out_reghost_failed;
258 }
259
260 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
261 GFP_KERNEL);
262 if (!newrec) {
263 ret = -ENOMEM;
264 goto out_reghost_failed;
265 }
266
267 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
268 if (idx < 0) {
269 ret = -ENOSPC;
270 goto out_fail_kfree;
271 }
272
273 if (!get_device(dev) && dev) {
274 ret = -ENODEV;
275 goto out_ida_put;
276 }
277
278 INIT_LIST_HEAD(&newrec->port_list);
279 INIT_LIST_HEAD(&newrec->endp_list);
280 kref_init(&newrec->ref);
281 newrec->ops = template;
282 newrec->dev = dev;
283 ida_init(&newrec->endp_cnt);
284 newrec->localport.private = &newrec[1];
285 newrec->localport.node_name = pinfo->node_name;
286 newrec->localport.port_name = pinfo->port_name;
287 newrec->localport.port_role = pinfo->port_role;
288 newrec->localport.port_id = pinfo->port_id;
289 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
290 newrec->localport.port_num = idx;
291
292 spin_lock_irqsave(&nvme_fc_lock, flags);
293 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
294 spin_unlock_irqrestore(&nvme_fc_lock, flags);
295
296 if (dev)
297 dma_set_seg_boundary(dev, template->dma_boundary);
298
299 *portptr = &newrec->localport;
300 return 0;
301
302 out_ida_put:
303 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
304 out_fail_kfree:
305 kfree(newrec);
306 out_reghost_failed:
307 *portptr = NULL;
308
309 return ret;
310 }
311 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
312
313 static void
314 nvme_fc_free_lport(struct kref *ref)
315 {
316 struct nvme_fc_lport *lport =
317 container_of(ref, struct nvme_fc_lport, ref);
318 unsigned long flags;
319
320 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
321 WARN_ON(!list_empty(&lport->endp_list));
322
323 /* remove from transport list */
324 spin_lock_irqsave(&nvme_fc_lock, flags);
325 list_del(&lport->port_list);
326 spin_unlock_irqrestore(&nvme_fc_lock, flags);
327
328 /* let the LLDD know we've finished tearing it down */
329 lport->ops->localport_delete(&lport->localport);
330
331 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
332 ida_destroy(&lport->endp_cnt);
333
334 put_device(lport->dev);
335
336 kfree(lport);
337 }
338
339 static void
340 nvme_fc_lport_put(struct nvme_fc_lport *lport)
341 {
342 kref_put(&lport->ref, nvme_fc_free_lport);
343 }
344
345 static int
346 nvme_fc_lport_get(struct nvme_fc_lport *lport)
347 {
348 return kref_get_unless_zero(&lport->ref);
349 }
350
351 /**
352 * nvme_fc_unregister_localport - transport entry point called by an
353 * LLDD to deregister/remove a previously
354 * registered a NVME host FC port.
355 * @localport: pointer to the (registered) local port that is to be
356 * deregistered.
357 *
358 * Returns:
359 * a completion status. Must be 0 upon success; a negative errno
360 * (ex: -ENXIO) upon failure.
361 */
362 int
363 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
364 {
365 struct nvme_fc_lport *lport = localport_to_lport(portptr);
366 unsigned long flags;
367
368 if (!portptr)
369 return -EINVAL;
370
371 spin_lock_irqsave(&nvme_fc_lock, flags);
372
373 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
374 spin_unlock_irqrestore(&nvme_fc_lock, flags);
375 return -EINVAL;
376 }
377 portptr->port_state = FC_OBJSTATE_DELETED;
378
379 spin_unlock_irqrestore(&nvme_fc_lock, flags);
380
381 nvme_fc_lport_put(lport);
382
383 return 0;
384 }
385 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
386
387 /**
388 * nvme_fc_register_remoteport - transport entry point called by an
389 * LLDD to register the existence of a NVME
390 * subsystem FC port on its fabric.
391 * @localport: pointer to the (registered) local port that the remote
392 * subsystem port is connected to.
393 * @pinfo: pointer to information about the port to be registered
394 * @rport_p: pointer to a remote port pointer. Upon success, the routine
395 * will allocate a nvme_fc_remote_port structure and place its
396 * address in the remote port pointer. Upon failure, remote port
397 * pointer will be set to 0.
398 *
399 * Returns:
400 * a completion status. Must be 0 upon success; a negative errno
401 * (ex: -ENXIO) upon failure.
402 */
403 int
404 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
405 struct nvme_fc_port_info *pinfo,
406 struct nvme_fc_remote_port **portptr)
407 {
408 struct nvme_fc_lport *lport = localport_to_lport(localport);
409 struct nvme_fc_rport *newrec;
410 unsigned long flags;
411 int ret, idx;
412
413 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
414 GFP_KERNEL);
415 if (!newrec) {
416 ret = -ENOMEM;
417 goto out_reghost_failed;
418 }
419
420 if (!nvme_fc_lport_get(lport)) {
421 ret = -ESHUTDOWN;
422 goto out_kfree_rport;
423 }
424
425 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
426 if (idx < 0) {
427 ret = -ENOSPC;
428 goto out_lport_put;
429 }
430
431 INIT_LIST_HEAD(&newrec->endp_list);
432 INIT_LIST_HEAD(&newrec->ctrl_list);
433 INIT_LIST_HEAD(&newrec->ls_req_list);
434 kref_init(&newrec->ref);
435 spin_lock_init(&newrec->lock);
436 newrec->remoteport.localport = &lport->localport;
437 newrec->dev = lport->dev;
438 newrec->lport = lport;
439 newrec->remoteport.private = &newrec[1];
440 newrec->remoteport.port_role = pinfo->port_role;
441 newrec->remoteport.node_name = pinfo->node_name;
442 newrec->remoteport.port_name = pinfo->port_name;
443 newrec->remoteport.port_id = pinfo->port_id;
444 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
445 newrec->remoteport.port_num = idx;
446
447 spin_lock_irqsave(&nvme_fc_lock, flags);
448 list_add_tail(&newrec->endp_list, &lport->endp_list);
449 spin_unlock_irqrestore(&nvme_fc_lock, flags);
450
451 *portptr = &newrec->remoteport;
452 return 0;
453
454 out_lport_put:
455 nvme_fc_lport_put(lport);
456 out_kfree_rport:
457 kfree(newrec);
458 out_reghost_failed:
459 *portptr = NULL;
460 return ret;
461 }
462 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
463
464 static void
465 nvme_fc_free_rport(struct kref *ref)
466 {
467 struct nvme_fc_rport *rport =
468 container_of(ref, struct nvme_fc_rport, ref);
469 struct nvme_fc_lport *lport =
470 localport_to_lport(rport->remoteport.localport);
471 unsigned long flags;
472
473 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
474 WARN_ON(!list_empty(&rport->ctrl_list));
475
476 /* remove from lport list */
477 spin_lock_irqsave(&nvme_fc_lock, flags);
478 list_del(&rport->endp_list);
479 spin_unlock_irqrestore(&nvme_fc_lock, flags);
480
481 /* let the LLDD know we've finished tearing it down */
482 lport->ops->remoteport_delete(&rport->remoteport);
483
484 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
485
486 kfree(rport);
487
488 nvme_fc_lport_put(lport);
489 }
490
491 static void
492 nvme_fc_rport_put(struct nvme_fc_rport *rport)
493 {
494 kref_put(&rport->ref, nvme_fc_free_rport);
495 }
496
497 static int
498 nvme_fc_rport_get(struct nvme_fc_rport *rport)
499 {
500 return kref_get_unless_zero(&rport->ref);
501 }
502
503 static int
504 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
505 {
506 struct nvmefc_ls_req_op *lsop;
507 unsigned long flags;
508
509 restart:
510 spin_lock_irqsave(&rport->lock, flags);
511
512 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
513 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
514 lsop->flags |= FCOP_FLAGS_TERMIO;
515 spin_unlock_irqrestore(&rport->lock, flags);
516 rport->lport->ops->ls_abort(&rport->lport->localport,
517 &rport->remoteport,
518 &lsop->ls_req);
519 goto restart;
520 }
521 }
522 spin_unlock_irqrestore(&rport->lock, flags);
523
524 return 0;
525 }
526
527 /**
528 * nvme_fc_unregister_remoteport - transport entry point called by an
529 * LLDD to deregister/remove a previously
530 * registered a NVME subsystem FC port.
531 * @remoteport: pointer to the (registered) remote port that is to be
532 * deregistered.
533 *
534 * Returns:
535 * a completion status. Must be 0 upon success; a negative errno
536 * (ex: -ENXIO) upon failure.
537 */
538 int
539 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
540 {
541 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
542 struct nvme_fc_ctrl *ctrl;
543 unsigned long flags;
544
545 if (!portptr)
546 return -EINVAL;
547
548 spin_lock_irqsave(&rport->lock, flags);
549
550 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
551 spin_unlock_irqrestore(&rport->lock, flags);
552 return -EINVAL;
553 }
554 portptr->port_state = FC_OBJSTATE_DELETED;
555
556 /* tear down all associations to the remote port */
557 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
558 __nvme_fc_del_ctrl(ctrl);
559
560 spin_unlock_irqrestore(&rport->lock, flags);
561
562 nvme_fc_abort_lsops(rport);
563
564 nvme_fc_rport_put(rport);
565 return 0;
566 }
567 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
568
569
570 /* *********************** FC-NVME DMA Handling **************************** */
571
572 /*
573 * The fcloop device passes in a NULL device pointer. Real LLD's will
574 * pass in a valid device pointer. If NULL is passed to the dma mapping
575 * routines, depending on the platform, it may or may not succeed, and
576 * may crash.
577 *
578 * As such:
579 * Wrapper all the dma routines and check the dev pointer.
580 *
581 * If simple mappings (return just a dma address, we'll noop them,
582 * returning a dma address of 0.
583 *
584 * On more complex mappings (dma_map_sg), a pseudo routine fills
585 * in the scatter list, setting all dma addresses to 0.
586 */
587
588 static inline dma_addr_t
589 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
590 enum dma_data_direction dir)
591 {
592 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
593 }
594
595 static inline int
596 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
597 {
598 return dev ? dma_mapping_error(dev, dma_addr) : 0;
599 }
600
601 static inline void
602 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
603 enum dma_data_direction dir)
604 {
605 if (dev)
606 dma_unmap_single(dev, addr, size, dir);
607 }
608
609 static inline void
610 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
611 enum dma_data_direction dir)
612 {
613 if (dev)
614 dma_sync_single_for_cpu(dev, addr, size, dir);
615 }
616
617 static inline void
618 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
619 enum dma_data_direction dir)
620 {
621 if (dev)
622 dma_sync_single_for_device(dev, addr, size, dir);
623 }
624
625 /* pseudo dma_map_sg call */
626 static int
627 fc_map_sg(struct scatterlist *sg, int nents)
628 {
629 struct scatterlist *s;
630 int i;
631
632 WARN_ON(nents == 0 || sg[0].length == 0);
633
634 for_each_sg(sg, s, nents, i) {
635 s->dma_address = 0L;
636 #ifdef CONFIG_NEED_SG_DMA_LENGTH
637 s->dma_length = s->length;
638 #endif
639 }
640 return nents;
641 }
642
643 static inline int
644 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
645 enum dma_data_direction dir)
646 {
647 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
648 }
649
650 static inline void
651 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
652 enum dma_data_direction dir)
653 {
654 if (dev)
655 dma_unmap_sg(dev, sg, nents, dir);
656 }
657
658
659 /* *********************** FC-NVME LS Handling **************************** */
660
661 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
662 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
663
664
665 static void
666 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
667 {
668 struct nvme_fc_rport *rport = lsop->rport;
669 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
670 unsigned long flags;
671
672 spin_lock_irqsave(&rport->lock, flags);
673
674 if (!lsop->req_queued) {
675 spin_unlock_irqrestore(&rport->lock, flags);
676 return;
677 }
678
679 list_del(&lsop->lsreq_list);
680
681 lsop->req_queued = false;
682
683 spin_unlock_irqrestore(&rport->lock, flags);
684
685 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
686 (lsreq->rqstlen + lsreq->rsplen),
687 DMA_BIDIRECTIONAL);
688
689 nvme_fc_rport_put(rport);
690 }
691
692 static int
693 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
694 struct nvmefc_ls_req_op *lsop,
695 void (*done)(struct nvmefc_ls_req *req, int status))
696 {
697 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
698 unsigned long flags;
699 int ret = 0;
700
701 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
702 return -ECONNREFUSED;
703
704 if (!nvme_fc_rport_get(rport))
705 return -ESHUTDOWN;
706
707 lsreq->done = done;
708 lsop->rport = rport;
709 lsop->req_queued = false;
710 INIT_LIST_HEAD(&lsop->lsreq_list);
711 init_completion(&lsop->ls_done);
712
713 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
714 lsreq->rqstlen + lsreq->rsplen,
715 DMA_BIDIRECTIONAL);
716 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
717 ret = -EFAULT;
718 goto out_putrport;
719 }
720 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
721
722 spin_lock_irqsave(&rport->lock, flags);
723
724 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
725
726 lsop->req_queued = true;
727
728 spin_unlock_irqrestore(&rport->lock, flags);
729
730 ret = rport->lport->ops->ls_req(&rport->lport->localport,
731 &rport->remoteport, lsreq);
732 if (ret)
733 goto out_unlink;
734
735 return 0;
736
737 out_unlink:
738 lsop->ls_error = ret;
739 spin_lock_irqsave(&rport->lock, flags);
740 lsop->req_queued = false;
741 list_del(&lsop->lsreq_list);
742 spin_unlock_irqrestore(&rport->lock, flags);
743 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
744 (lsreq->rqstlen + lsreq->rsplen),
745 DMA_BIDIRECTIONAL);
746 out_putrport:
747 nvme_fc_rport_put(rport);
748
749 return ret;
750 }
751
752 static void
753 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
754 {
755 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
756
757 lsop->ls_error = status;
758 complete(&lsop->ls_done);
759 }
760
761 static int
762 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
763 {
764 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
765 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
766 int ret;
767
768 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
769
770 if (!ret) {
771 /*
772 * No timeout/not interruptible as we need the struct
773 * to exist until the lldd calls us back. Thus mandate
774 * wait until driver calls back. lldd responsible for
775 * the timeout action
776 */
777 wait_for_completion(&lsop->ls_done);
778
779 __nvme_fc_finish_ls_req(lsop);
780
781 ret = lsop->ls_error;
782 }
783
784 if (ret)
785 return ret;
786
787 /* ACC or RJT payload ? */
788 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
789 return -ENXIO;
790
791 return 0;
792 }
793
794 static int
795 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
796 struct nvmefc_ls_req_op *lsop,
797 void (*done)(struct nvmefc_ls_req *req, int status))
798 {
799 /* don't wait for completion */
800
801 return __nvme_fc_send_ls_req(rport, lsop, done);
802 }
803
804 /* Validation Error indexes into the string table below */
805 enum {
806 VERR_NO_ERROR = 0,
807 VERR_LSACC = 1,
808 VERR_LSDESC_RQST = 2,
809 VERR_LSDESC_RQST_LEN = 3,
810 VERR_ASSOC_ID = 4,
811 VERR_ASSOC_ID_LEN = 5,
812 VERR_CONN_ID = 6,
813 VERR_CONN_ID_LEN = 7,
814 VERR_CR_ASSOC = 8,
815 VERR_CR_ASSOC_ACC_LEN = 9,
816 VERR_CR_CONN = 10,
817 VERR_CR_CONN_ACC_LEN = 11,
818 VERR_DISCONN = 12,
819 VERR_DISCONN_ACC_LEN = 13,
820 };
821
822 static char *validation_errors[] = {
823 "OK",
824 "Not LS_ACC",
825 "Not LSDESC_RQST",
826 "Bad LSDESC_RQST Length",
827 "Not Association ID",
828 "Bad Association ID Length",
829 "Not Connection ID",
830 "Bad Connection ID Length",
831 "Not CR_ASSOC Rqst",
832 "Bad CR_ASSOC ACC Length",
833 "Not CR_CONN Rqst",
834 "Bad CR_CONN ACC Length",
835 "Not Disconnect Rqst",
836 "Bad Disconnect ACC Length",
837 };
838
839 static int
840 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
841 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
842 {
843 struct nvmefc_ls_req_op *lsop;
844 struct nvmefc_ls_req *lsreq;
845 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
846 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
847 int ret, fcret = 0;
848
849 lsop = kzalloc((sizeof(*lsop) +
850 ctrl->lport->ops->lsrqst_priv_sz +
851 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
852 if (!lsop) {
853 ret = -ENOMEM;
854 goto out_no_memory;
855 }
856 lsreq = &lsop->ls_req;
857
858 lsreq->private = (void *)&lsop[1];
859 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
860 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
861 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
862
863 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
864 assoc_rqst->desc_list_len =
865 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
866
867 assoc_rqst->assoc_cmd.desc_tag =
868 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
869 assoc_rqst->assoc_cmd.desc_len =
870 fcnvme_lsdesc_len(
871 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
872
873 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
874 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
875 /* Linux supports only Dynamic controllers */
876 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
877 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
878 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
879 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
880 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
881 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
882
883 lsop->queue = queue;
884 lsreq->rqstaddr = assoc_rqst;
885 lsreq->rqstlen = sizeof(*assoc_rqst);
886 lsreq->rspaddr = assoc_acc;
887 lsreq->rsplen = sizeof(*assoc_acc);
888 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
889
890 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
891 if (ret)
892 goto out_free_buffer;
893
894 /* process connect LS completion */
895
896 /* validate the ACC response */
897 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
898 fcret = VERR_LSACC;
899 else if (assoc_acc->hdr.desc_list_len !=
900 fcnvme_lsdesc_len(
901 sizeof(struct fcnvme_ls_cr_assoc_acc)))
902 fcret = VERR_CR_ASSOC_ACC_LEN;
903 else if (assoc_acc->hdr.rqst.desc_tag !=
904 cpu_to_be32(FCNVME_LSDESC_RQST))
905 fcret = VERR_LSDESC_RQST;
906 else if (assoc_acc->hdr.rqst.desc_len !=
907 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
908 fcret = VERR_LSDESC_RQST_LEN;
909 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
910 fcret = VERR_CR_ASSOC;
911 else if (assoc_acc->associd.desc_tag !=
912 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
913 fcret = VERR_ASSOC_ID;
914 else if (assoc_acc->associd.desc_len !=
915 fcnvme_lsdesc_len(
916 sizeof(struct fcnvme_lsdesc_assoc_id)))
917 fcret = VERR_ASSOC_ID_LEN;
918 else if (assoc_acc->connectid.desc_tag !=
919 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
920 fcret = VERR_CONN_ID;
921 else if (assoc_acc->connectid.desc_len !=
922 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
923 fcret = VERR_CONN_ID_LEN;
924
925 if (fcret) {
926 ret = -EBADF;
927 dev_err(ctrl->dev,
928 "q %d connect failed: %s\n",
929 queue->qnum, validation_errors[fcret]);
930 } else {
931 ctrl->association_id =
932 be64_to_cpu(assoc_acc->associd.association_id);
933 queue->connection_id =
934 be64_to_cpu(assoc_acc->connectid.connection_id);
935 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
936 }
937
938 out_free_buffer:
939 kfree(lsop);
940 out_no_memory:
941 if (ret)
942 dev_err(ctrl->dev,
943 "queue %d connect admin queue failed (%d).\n",
944 queue->qnum, ret);
945 return ret;
946 }
947
948 static int
949 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
950 u16 qsize, u16 ersp_ratio)
951 {
952 struct nvmefc_ls_req_op *lsop;
953 struct nvmefc_ls_req *lsreq;
954 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
955 struct fcnvme_ls_cr_conn_acc *conn_acc;
956 int ret, fcret = 0;
957
958 lsop = kzalloc((sizeof(*lsop) +
959 ctrl->lport->ops->lsrqst_priv_sz +
960 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
961 if (!lsop) {
962 ret = -ENOMEM;
963 goto out_no_memory;
964 }
965 lsreq = &lsop->ls_req;
966
967 lsreq->private = (void *)&lsop[1];
968 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
969 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
970 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
971
972 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
973 conn_rqst->desc_list_len = cpu_to_be32(
974 sizeof(struct fcnvme_lsdesc_assoc_id) +
975 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
976
977 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
978 conn_rqst->associd.desc_len =
979 fcnvme_lsdesc_len(
980 sizeof(struct fcnvme_lsdesc_assoc_id));
981 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
982 conn_rqst->connect_cmd.desc_tag =
983 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
984 conn_rqst->connect_cmd.desc_len =
985 fcnvme_lsdesc_len(
986 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
987 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
988 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
989 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
990
991 lsop->queue = queue;
992 lsreq->rqstaddr = conn_rqst;
993 lsreq->rqstlen = sizeof(*conn_rqst);
994 lsreq->rspaddr = conn_acc;
995 lsreq->rsplen = sizeof(*conn_acc);
996 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
997
998 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
999 if (ret)
1000 goto out_free_buffer;
1001
1002 /* process connect LS completion */
1003
1004 /* validate the ACC response */
1005 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1006 fcret = VERR_LSACC;
1007 else if (conn_acc->hdr.desc_list_len !=
1008 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1009 fcret = VERR_CR_CONN_ACC_LEN;
1010 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1011 fcret = VERR_LSDESC_RQST;
1012 else if (conn_acc->hdr.rqst.desc_len !=
1013 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1014 fcret = VERR_LSDESC_RQST_LEN;
1015 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1016 fcret = VERR_CR_CONN;
1017 else if (conn_acc->connectid.desc_tag !=
1018 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1019 fcret = VERR_CONN_ID;
1020 else if (conn_acc->connectid.desc_len !=
1021 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1022 fcret = VERR_CONN_ID_LEN;
1023
1024 if (fcret) {
1025 ret = -EBADF;
1026 dev_err(ctrl->dev,
1027 "q %d connect failed: %s\n",
1028 queue->qnum, validation_errors[fcret]);
1029 } else {
1030 queue->connection_id =
1031 be64_to_cpu(conn_acc->connectid.connection_id);
1032 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1033 }
1034
1035 out_free_buffer:
1036 kfree(lsop);
1037 out_no_memory:
1038 if (ret)
1039 dev_err(ctrl->dev,
1040 "queue %d connect command failed (%d).\n",
1041 queue->qnum, ret);
1042 return ret;
1043 }
1044
1045 static void
1046 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1047 {
1048 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1049
1050 __nvme_fc_finish_ls_req(lsop);
1051
1052 /* fc-nvme iniator doesn't care about success or failure of cmd */
1053
1054 kfree(lsop);
1055 }
1056
1057 /*
1058 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1059 * the FC-NVME Association. Terminating the association also
1060 * terminates the FC-NVME connections (per queue, both admin and io
1061 * queues) that are part of the association. E.g. things are torn
1062 * down, and the related FC-NVME Association ID and Connection IDs
1063 * become invalid.
1064 *
1065 * The behavior of the fc-nvme initiator is such that it's
1066 * understanding of the association and connections will implicitly
1067 * be torn down. The action is implicit as it may be due to a loss of
1068 * connectivity with the fc-nvme target, so you may never get a
1069 * response even if you tried. As such, the action of this routine
1070 * is to asynchronously send the LS, ignore any results of the LS, and
1071 * continue on with terminating the association. If the fc-nvme target
1072 * is present and receives the LS, it too can tear down.
1073 */
1074 static void
1075 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1076 {
1077 struct fcnvme_ls_disconnect_rqst *discon_rqst;
1078 struct fcnvme_ls_disconnect_acc *discon_acc;
1079 struct nvmefc_ls_req_op *lsop;
1080 struct nvmefc_ls_req *lsreq;
1081 int ret;
1082
1083 lsop = kzalloc((sizeof(*lsop) +
1084 ctrl->lport->ops->lsrqst_priv_sz +
1085 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1086 GFP_KERNEL);
1087 if (!lsop)
1088 /* couldn't sent it... too bad */
1089 return;
1090
1091 lsreq = &lsop->ls_req;
1092
1093 lsreq->private = (void *)&lsop[1];
1094 discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1095 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1096 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1097
1098 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1099 discon_rqst->desc_list_len = cpu_to_be32(
1100 sizeof(struct fcnvme_lsdesc_assoc_id) +
1101 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1102
1103 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1104 discon_rqst->associd.desc_len =
1105 fcnvme_lsdesc_len(
1106 sizeof(struct fcnvme_lsdesc_assoc_id));
1107
1108 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1109
1110 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1111 FCNVME_LSDESC_DISCONN_CMD);
1112 discon_rqst->discon_cmd.desc_len =
1113 fcnvme_lsdesc_len(
1114 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1115 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1116 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1117
1118 lsreq->rqstaddr = discon_rqst;
1119 lsreq->rqstlen = sizeof(*discon_rqst);
1120 lsreq->rspaddr = discon_acc;
1121 lsreq->rsplen = sizeof(*discon_acc);
1122 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1123
1124 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1125 nvme_fc_disconnect_assoc_done);
1126 if (ret)
1127 kfree(lsop);
1128
1129 /* only meaningful part to terminating the association */
1130 ctrl->association_id = 0;
1131 }
1132
1133
1134 /* *********************** NVME Ctrl Routines **************************** */
1135
1136 static void __nvme_fc_final_op_cleanup(struct request *rq);
1137 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1138
1139 static int
1140 nvme_fc_reinit_request(void *data, struct request *rq)
1141 {
1142 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1143 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1144
1145 memset(cmdiu, 0, sizeof(*cmdiu));
1146 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1147 cmdiu->fc_id = NVME_CMD_FC_ID;
1148 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1149 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1150
1151 return 0;
1152 }
1153
1154 static void
1155 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1156 struct nvme_fc_fcp_op *op)
1157 {
1158 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1159 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1160 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1161 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1162
1163 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1164 }
1165
1166 static void
1167 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1168 unsigned int hctx_idx)
1169 {
1170 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1171
1172 return __nvme_fc_exit_request(set->driver_data, op);
1173 }
1174
1175 static int
1176 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1177 {
1178 int state;
1179
1180 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1181 if (state != FCPOP_STATE_ACTIVE) {
1182 atomic_set(&op->state, state);
1183 return -ECANCELED;
1184 }
1185
1186 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1187 &ctrl->rport->remoteport,
1188 op->queue->lldd_handle,
1189 &op->fcp_req);
1190
1191 return 0;
1192 }
1193
1194 static void
1195 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1196 {
1197 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1198 unsigned long flags;
1199 int i, ret;
1200
1201 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1202 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1203 continue;
1204
1205 spin_lock_irqsave(&ctrl->lock, flags);
1206 if (ctrl->flags & FCCTRL_TERMIO) {
1207 ctrl->iocnt++;
1208 aen_op->flags |= FCOP_FLAGS_TERMIO;
1209 }
1210 spin_unlock_irqrestore(&ctrl->lock, flags);
1211
1212 ret = __nvme_fc_abort_op(ctrl, aen_op);
1213 if (ret) {
1214 /*
1215 * if __nvme_fc_abort_op failed the io wasn't
1216 * active. Thus this call path is running in
1217 * parallel to the io complete. Treat as non-error.
1218 */
1219
1220 /* back out the flags/counters */
1221 spin_lock_irqsave(&ctrl->lock, flags);
1222 if (ctrl->flags & FCCTRL_TERMIO)
1223 ctrl->iocnt--;
1224 aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1225 spin_unlock_irqrestore(&ctrl->lock, flags);
1226 return;
1227 }
1228 }
1229 }
1230
1231 static inline int
1232 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1233 struct nvme_fc_fcp_op *op)
1234 {
1235 unsigned long flags;
1236 bool complete_rq = false;
1237
1238 spin_lock_irqsave(&ctrl->lock, flags);
1239 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1240 if (ctrl->flags & FCCTRL_TERMIO) {
1241 if (!--ctrl->iocnt)
1242 wake_up(&ctrl->ioabort_wait);
1243 }
1244 }
1245 if (op->flags & FCOP_FLAGS_RELEASED)
1246 complete_rq = true;
1247 else
1248 op->flags |= FCOP_FLAGS_COMPLETE;
1249 spin_unlock_irqrestore(&ctrl->lock, flags);
1250
1251 return complete_rq;
1252 }
1253
1254 static void
1255 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1256 {
1257 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1258 struct request *rq = op->rq;
1259 struct nvmefc_fcp_req *freq = &op->fcp_req;
1260 struct nvme_fc_ctrl *ctrl = op->ctrl;
1261 struct nvme_fc_queue *queue = op->queue;
1262 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1263 struct nvme_command *sqe = &op->cmd_iu.sqe;
1264 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1265 union nvme_result result;
1266 bool complete_rq, terminate_assoc = true;
1267
1268 /*
1269 * WARNING:
1270 * The current linux implementation of a nvme controller
1271 * allocates a single tag set for all io queues and sizes
1272 * the io queues to fully hold all possible tags. Thus, the
1273 * implementation does not reference or care about the sqhd
1274 * value as it never needs to use the sqhd/sqtail pointers
1275 * for submission pacing.
1276 *
1277 * This affects the FC-NVME implementation in two ways:
1278 * 1) As the value doesn't matter, we don't need to waste
1279 * cycles extracting it from ERSPs and stamping it in the
1280 * cases where the transport fabricates CQEs on successful
1281 * completions.
1282 * 2) The FC-NVME implementation requires that delivery of
1283 * ERSP completions are to go back to the nvme layer in order
1284 * relative to the rsn, such that the sqhd value will always
1285 * be "in order" for the nvme layer. As the nvme layer in
1286 * linux doesn't care about sqhd, there's no need to return
1287 * them in order.
1288 *
1289 * Additionally:
1290 * As the core nvme layer in linux currently does not look at
1291 * every field in the cqe - in cases where the FC transport must
1292 * fabricate a CQE, the following fields will not be set as they
1293 * are not referenced:
1294 * cqe.sqid, cqe.sqhd, cqe.command_id
1295 *
1296 * Failure or error of an individual i/o, in a transport
1297 * detected fashion unrelated to the nvme completion status,
1298 * potentially cause the initiator and target sides to get out
1299 * of sync on SQ head/tail (aka outstanding io count allowed).
1300 * Per FC-NVME spec, failure of an individual command requires
1301 * the connection to be terminated, which in turn requires the
1302 * association to be terminated.
1303 */
1304
1305 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1306 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1307
1308 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1309 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1310 else if (freq->status)
1311 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1312
1313 /*
1314 * For the linux implementation, if we have an unsuccesful
1315 * status, they blk-mq layer can typically be called with the
1316 * non-zero status and the content of the cqe isn't important.
1317 */
1318 if (status)
1319 goto done;
1320
1321 /*
1322 * command completed successfully relative to the wire
1323 * protocol. However, validate anything received and
1324 * extract the status and result from the cqe (create it
1325 * where necessary).
1326 */
1327
1328 switch (freq->rcv_rsplen) {
1329
1330 case 0:
1331 case NVME_FC_SIZEOF_ZEROS_RSP:
1332 /*
1333 * No response payload or 12 bytes of payload (which
1334 * should all be zeros) are considered successful and
1335 * no payload in the CQE by the transport.
1336 */
1337 if (freq->transferred_length !=
1338 be32_to_cpu(op->cmd_iu.data_len)) {
1339 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1340 goto done;
1341 }
1342 result.u64 = 0;
1343 break;
1344
1345 case sizeof(struct nvme_fc_ersp_iu):
1346 /*
1347 * The ERSP IU contains a full completion with CQE.
1348 * Validate ERSP IU and look at cqe.
1349 */
1350 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1351 (freq->rcv_rsplen / 4) ||
1352 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1353 freq->transferred_length ||
1354 op->rsp_iu.status_code ||
1355 sqe->common.command_id != cqe->command_id)) {
1356 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1357 goto done;
1358 }
1359 result = cqe->result;
1360 status = cqe->status;
1361 break;
1362
1363 default:
1364 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1365 goto done;
1366 }
1367
1368 terminate_assoc = false;
1369
1370 done:
1371 if (op->flags & FCOP_FLAGS_AEN) {
1372 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1373 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1374 atomic_set(&op->state, FCPOP_STATE_IDLE);
1375 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
1376 nvme_fc_ctrl_put(ctrl);
1377 goto check_error;
1378 }
1379
1380 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1381 if (!complete_rq) {
1382 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1383 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1384 if (blk_queue_dying(rq->q))
1385 status |= cpu_to_le16(NVME_SC_DNR << 1);
1386 }
1387 nvme_end_request(rq, status, result);
1388 } else
1389 __nvme_fc_final_op_cleanup(rq);
1390
1391 check_error:
1392 if (terminate_assoc)
1393 nvme_fc_error_recovery(ctrl, "transport detected io error");
1394 }
1395
1396 static int
1397 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1398 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1399 struct request *rq, u32 rqno)
1400 {
1401 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1402 int ret = 0;
1403
1404 memset(op, 0, sizeof(*op));
1405 op->fcp_req.cmdaddr = &op->cmd_iu;
1406 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1407 op->fcp_req.rspaddr = &op->rsp_iu;
1408 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1409 op->fcp_req.done = nvme_fc_fcpio_done;
1410 op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1411 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1412 op->ctrl = ctrl;
1413 op->queue = queue;
1414 op->rq = rq;
1415 op->rqno = rqno;
1416
1417 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1418 cmdiu->fc_id = NVME_CMD_FC_ID;
1419 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1420
1421 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1422 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1423 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1424 dev_err(ctrl->dev,
1425 "FCP Op failed - cmdiu dma mapping failed.\n");
1426 ret = EFAULT;
1427 goto out_on_error;
1428 }
1429
1430 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1431 &op->rsp_iu, sizeof(op->rsp_iu),
1432 DMA_FROM_DEVICE);
1433 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1434 dev_err(ctrl->dev,
1435 "FCP Op failed - rspiu dma mapping failed.\n");
1436 ret = EFAULT;
1437 }
1438
1439 atomic_set(&op->state, FCPOP_STATE_IDLE);
1440 out_on_error:
1441 return ret;
1442 }
1443
1444 static int
1445 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1446 unsigned int hctx_idx, unsigned int numa_node)
1447 {
1448 struct nvme_fc_ctrl *ctrl = set->driver_data;
1449 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1450 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1451 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1452
1453 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1454 }
1455
1456 static int
1457 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1458 {
1459 struct nvme_fc_fcp_op *aen_op;
1460 struct nvme_fc_cmd_iu *cmdiu;
1461 struct nvme_command *sqe;
1462 void *private;
1463 int i, ret;
1464
1465 aen_op = ctrl->aen_ops;
1466 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1467 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1468 GFP_KERNEL);
1469 if (!private)
1470 return -ENOMEM;
1471
1472 cmdiu = &aen_op->cmd_iu;
1473 sqe = &cmdiu->sqe;
1474 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1475 aen_op, (struct request *)NULL,
1476 (AEN_CMDID_BASE + i));
1477 if (ret) {
1478 kfree(private);
1479 return ret;
1480 }
1481
1482 aen_op->flags = FCOP_FLAGS_AEN;
1483 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1484 aen_op->fcp_req.private = private;
1485
1486 memset(sqe, 0, sizeof(*sqe));
1487 sqe->common.opcode = nvme_admin_async_event;
1488 /* Note: core layer may overwrite the sqe.command_id value */
1489 sqe->common.command_id = AEN_CMDID_BASE + i;
1490 }
1491 return 0;
1492 }
1493
1494 static void
1495 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1496 {
1497 struct nvme_fc_fcp_op *aen_op;
1498 int i;
1499
1500 aen_op = ctrl->aen_ops;
1501 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1502 if (!aen_op->fcp_req.private)
1503 continue;
1504
1505 __nvme_fc_exit_request(ctrl, aen_op);
1506
1507 kfree(aen_op->fcp_req.private);
1508 aen_op->fcp_req.private = NULL;
1509 }
1510 }
1511
1512 static inline void
1513 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1514 unsigned int qidx)
1515 {
1516 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1517
1518 hctx->driver_data = queue;
1519 queue->hctx = hctx;
1520 }
1521
1522 static int
1523 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1524 unsigned int hctx_idx)
1525 {
1526 struct nvme_fc_ctrl *ctrl = data;
1527
1528 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1529
1530 return 0;
1531 }
1532
1533 static int
1534 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1535 unsigned int hctx_idx)
1536 {
1537 struct nvme_fc_ctrl *ctrl = data;
1538
1539 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1540
1541 return 0;
1542 }
1543
1544 static void
1545 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1546 {
1547 struct nvme_fc_queue *queue;
1548
1549 queue = &ctrl->queues[idx];
1550 memset(queue, 0, sizeof(*queue));
1551 queue->ctrl = ctrl;
1552 queue->qnum = idx;
1553 atomic_set(&queue->csn, 1);
1554 queue->dev = ctrl->dev;
1555
1556 if (idx > 0)
1557 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1558 else
1559 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1560
1561 queue->queue_size = queue_size;
1562
1563 /*
1564 * Considered whether we should allocate buffers for all SQEs
1565 * and CQEs and dma map them - mapping their respective entries
1566 * into the request structures (kernel vm addr and dma address)
1567 * thus the driver could use the buffers/mappings directly.
1568 * It only makes sense if the LLDD would use them for its
1569 * messaging api. It's very unlikely most adapter api's would use
1570 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1571 * structures were used instead.
1572 */
1573 }
1574
1575 /*
1576 * This routine terminates a queue at the transport level.
1577 * The transport has already ensured that all outstanding ios on
1578 * the queue have been terminated.
1579 * The transport will send a Disconnect LS request to terminate
1580 * the queue's connection. Termination of the admin queue will also
1581 * terminate the association at the target.
1582 */
1583 static void
1584 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1585 {
1586 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1587 return;
1588
1589 /*
1590 * Current implementation never disconnects a single queue.
1591 * It always terminates a whole association. So there is never
1592 * a disconnect(queue) LS sent to the target.
1593 */
1594
1595 queue->connection_id = 0;
1596 clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1597 }
1598
1599 static void
1600 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1601 struct nvme_fc_queue *queue, unsigned int qidx)
1602 {
1603 if (ctrl->lport->ops->delete_queue)
1604 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1605 queue->lldd_handle);
1606 queue->lldd_handle = NULL;
1607 }
1608
1609 static void
1610 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1611 {
1612 int i;
1613
1614 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1615 nvme_fc_free_queue(&ctrl->queues[i]);
1616 }
1617
1618 static int
1619 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1620 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1621 {
1622 int ret = 0;
1623
1624 queue->lldd_handle = NULL;
1625 if (ctrl->lport->ops->create_queue)
1626 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1627 qidx, qsize, &queue->lldd_handle);
1628
1629 return ret;
1630 }
1631
1632 static void
1633 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1634 {
1635 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1636 int i;
1637
1638 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1639 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1640 }
1641
1642 static int
1643 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1644 {
1645 struct nvme_fc_queue *queue = &ctrl->queues[1];
1646 int i, ret;
1647
1648 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1649 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1650 if (ret)
1651 goto delete_queues;
1652 }
1653
1654 return 0;
1655
1656 delete_queues:
1657 for (; i >= 0; i--)
1658 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1659 return ret;
1660 }
1661
1662 static int
1663 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1664 {
1665 int i, ret = 0;
1666
1667 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1668 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1669 (qsize / 5));
1670 if (ret)
1671 break;
1672 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1673 if (ret)
1674 break;
1675 }
1676
1677 return ret;
1678 }
1679
1680 static void
1681 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1682 {
1683 int i;
1684
1685 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1686 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1687 }
1688
1689 static void
1690 nvme_fc_ctrl_free(struct kref *ref)
1691 {
1692 struct nvme_fc_ctrl *ctrl =
1693 container_of(ref, struct nvme_fc_ctrl, ref);
1694 unsigned long flags;
1695
1696 if (ctrl->ctrl.tagset) {
1697 blk_cleanup_queue(ctrl->ctrl.connect_q);
1698 blk_mq_free_tag_set(&ctrl->tag_set);
1699 }
1700
1701 /* remove from rport list */
1702 spin_lock_irqsave(&ctrl->rport->lock, flags);
1703 list_del(&ctrl->ctrl_list);
1704 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1705
1706 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1707 blk_cleanup_queue(ctrl->ctrl.admin_q);
1708 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1709
1710 kfree(ctrl->queues);
1711
1712 put_device(ctrl->dev);
1713 nvme_fc_rport_put(ctrl->rport);
1714
1715 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1716 if (ctrl->ctrl.opts)
1717 nvmf_free_options(ctrl->ctrl.opts);
1718 kfree(ctrl);
1719 }
1720
1721 static void
1722 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1723 {
1724 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1725 }
1726
1727 static int
1728 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1729 {
1730 return kref_get_unless_zero(&ctrl->ref);
1731 }
1732
1733 /*
1734 * All accesses from nvme core layer done - can now free the
1735 * controller. Called after last nvme_put_ctrl() call
1736 */
1737 static void
1738 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1739 {
1740 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1741
1742 WARN_ON(nctrl != &ctrl->ctrl);
1743
1744 nvme_fc_ctrl_put(ctrl);
1745 }
1746
1747 static void
1748 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1749 {
1750 /* only proceed if in LIVE state - e.g. on first error */
1751 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
1752 return;
1753
1754 dev_warn(ctrl->ctrl.device,
1755 "NVME-FC{%d}: transport association error detected: %s\n",
1756 ctrl->cnum, errmsg);
1757 dev_warn(ctrl->ctrl.device,
1758 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1759
1760 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1761 dev_err(ctrl->ctrl.device,
1762 "NVME-FC{%d}: error_recovery: Couldn't change state "
1763 "to RECONNECTING\n", ctrl->cnum);
1764 return;
1765 }
1766
1767 nvme_reset_ctrl(&ctrl->ctrl);
1768 }
1769
1770 static enum blk_eh_timer_return
1771 nvme_fc_timeout(struct request *rq, bool reserved)
1772 {
1773 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1774 struct nvme_fc_ctrl *ctrl = op->ctrl;
1775 int ret;
1776
1777 if (reserved)
1778 return BLK_EH_RESET_TIMER;
1779
1780 ret = __nvme_fc_abort_op(ctrl, op);
1781 if (ret)
1782 /* io wasn't active to abort consider it done */
1783 return BLK_EH_HANDLED;
1784
1785 /*
1786 * we can't individually ABTS an io without affecting the queue,
1787 * thus killing the queue, adn thus the association.
1788 * So resolve by performing a controller reset, which will stop
1789 * the host/io stack, terminate the association on the link,
1790 * and recreate an association on the link.
1791 */
1792 nvme_fc_error_recovery(ctrl, "io timeout error");
1793
1794 return BLK_EH_HANDLED;
1795 }
1796
1797 static int
1798 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1799 struct nvme_fc_fcp_op *op)
1800 {
1801 struct nvmefc_fcp_req *freq = &op->fcp_req;
1802 enum dma_data_direction dir;
1803 int ret;
1804
1805 freq->sg_cnt = 0;
1806
1807 if (!blk_rq_payload_bytes(rq))
1808 return 0;
1809
1810 freq->sg_table.sgl = freq->first_sgl;
1811 ret = sg_alloc_table_chained(&freq->sg_table,
1812 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1813 if (ret)
1814 return -ENOMEM;
1815
1816 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1817 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1818 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1819 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1820 op->nents, dir);
1821 if (unlikely(freq->sg_cnt <= 0)) {
1822 sg_free_table_chained(&freq->sg_table, true);
1823 freq->sg_cnt = 0;
1824 return -EFAULT;
1825 }
1826
1827 /*
1828 * TODO: blk_integrity_rq(rq) for DIF
1829 */
1830 return 0;
1831 }
1832
1833 static void
1834 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1835 struct nvme_fc_fcp_op *op)
1836 {
1837 struct nvmefc_fcp_req *freq = &op->fcp_req;
1838
1839 if (!freq->sg_cnt)
1840 return;
1841
1842 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1843 ((rq_data_dir(rq) == WRITE) ?
1844 DMA_TO_DEVICE : DMA_FROM_DEVICE));
1845
1846 nvme_cleanup_cmd(rq);
1847
1848 sg_free_table_chained(&freq->sg_table, true);
1849
1850 freq->sg_cnt = 0;
1851 }
1852
1853 /*
1854 * In FC, the queue is a logical thing. At transport connect, the target
1855 * creates its "queue" and returns a handle that is to be given to the
1856 * target whenever it posts something to the corresponding SQ. When an
1857 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1858 * command contained within the SQE, an io, and assigns a FC exchange
1859 * to it. The SQE and the associated SQ handle are sent in the initial
1860 * CMD IU sents on the exchange. All transfers relative to the io occur
1861 * as part of the exchange. The CQE is the last thing for the io,
1862 * which is transferred (explicitly or implicitly) with the RSP IU
1863 * sent on the exchange. After the CQE is received, the FC exchange is
1864 * terminaed and the Exchange may be used on a different io.
1865 *
1866 * The transport to LLDD api has the transport making a request for a
1867 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1868 * resource and transfers the command. The LLDD will then process all
1869 * steps to complete the io. Upon completion, the transport done routine
1870 * is called.
1871 *
1872 * So - while the operation is outstanding to the LLDD, there is a link
1873 * level FC exchange resource that is also outstanding. This must be
1874 * considered in all cleanup operations.
1875 */
1876 static blk_status_t
1877 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1878 struct nvme_fc_fcp_op *op, u32 data_len,
1879 enum nvmefc_fcp_datadir io_dir)
1880 {
1881 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1882 struct nvme_command *sqe = &cmdiu->sqe;
1883 u32 csn;
1884 int ret;
1885
1886 /*
1887 * before attempting to send the io, check to see if we believe
1888 * the target device is present
1889 */
1890 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1891 goto busy;
1892
1893 if (!nvme_fc_ctrl_get(ctrl))
1894 return BLK_STS_IOERR;
1895
1896 /* format the FC-NVME CMD IU and fcp_req */
1897 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1898 csn = atomic_inc_return(&queue->csn);
1899 cmdiu->csn = cpu_to_be32(csn);
1900 cmdiu->data_len = cpu_to_be32(data_len);
1901 switch (io_dir) {
1902 case NVMEFC_FCP_WRITE:
1903 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1904 break;
1905 case NVMEFC_FCP_READ:
1906 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1907 break;
1908 case NVMEFC_FCP_NODATA:
1909 cmdiu->flags = 0;
1910 break;
1911 }
1912 op->fcp_req.payload_length = data_len;
1913 op->fcp_req.io_dir = io_dir;
1914 op->fcp_req.transferred_length = 0;
1915 op->fcp_req.rcv_rsplen = 0;
1916 op->fcp_req.status = NVME_SC_SUCCESS;
1917 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1918
1919 /*
1920 * validate per fabric rules, set fields mandated by fabric spec
1921 * as well as those by FC-NVME spec.
1922 */
1923 WARN_ON_ONCE(sqe->common.metadata);
1924 WARN_ON_ONCE(sqe->common.dptr.prp1);
1925 WARN_ON_ONCE(sqe->common.dptr.prp2);
1926 sqe->common.flags |= NVME_CMD_SGL_METABUF;
1927
1928 /*
1929 * format SQE DPTR field per FC-NVME rules
1930 * type=data block descr; subtype=offset;
1931 * offset is currently 0.
1932 */
1933 sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1934 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1935 sqe->rw.dptr.sgl.addr = 0;
1936
1937 if (!(op->flags & FCOP_FLAGS_AEN)) {
1938 ret = nvme_fc_map_data(ctrl, op->rq, op);
1939 if (ret < 0) {
1940 nvme_cleanup_cmd(op->rq);
1941 nvme_fc_ctrl_put(ctrl);
1942 if (ret == -ENOMEM || ret == -EAGAIN)
1943 return BLK_STS_RESOURCE;
1944 return BLK_STS_IOERR;
1945 }
1946 }
1947
1948 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1949 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1950
1951 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1952
1953 if (!(op->flags & FCOP_FLAGS_AEN))
1954 blk_mq_start_request(op->rq);
1955
1956 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1957 &ctrl->rport->remoteport,
1958 queue->lldd_handle, &op->fcp_req);
1959
1960 if (ret) {
1961 if (!(op->flags & FCOP_FLAGS_AEN))
1962 nvme_fc_unmap_data(ctrl, op->rq, op);
1963
1964 nvme_fc_ctrl_put(ctrl);
1965
1966 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
1967 ret != -EBUSY)
1968 return BLK_STS_IOERR;
1969
1970 goto busy;
1971 }
1972
1973 return BLK_STS_OK;
1974
1975 busy:
1976 if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
1977 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1978
1979 return BLK_STS_RESOURCE;
1980 }
1981
1982 static blk_status_t
1983 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1984 const struct blk_mq_queue_data *bd)
1985 {
1986 struct nvme_ns *ns = hctx->queue->queuedata;
1987 struct nvme_fc_queue *queue = hctx->driver_data;
1988 struct nvme_fc_ctrl *ctrl = queue->ctrl;
1989 struct request *rq = bd->rq;
1990 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1991 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1992 struct nvme_command *sqe = &cmdiu->sqe;
1993 enum nvmefc_fcp_datadir io_dir;
1994 u32 data_len;
1995 blk_status_t ret;
1996
1997 ret = nvme_setup_cmd(ns, rq, sqe);
1998 if (ret)
1999 return ret;
2000
2001 data_len = blk_rq_payload_bytes(rq);
2002 if (data_len)
2003 io_dir = ((rq_data_dir(rq) == WRITE) ?
2004 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2005 else
2006 io_dir = NVMEFC_FCP_NODATA;
2007
2008 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2009 }
2010
2011 static struct blk_mq_tags *
2012 nvme_fc_tagset(struct nvme_fc_queue *queue)
2013 {
2014 if (queue->qnum == 0)
2015 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2016
2017 return queue->ctrl->tag_set.tags[queue->qnum - 1];
2018 }
2019
2020 static int
2021 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2022
2023 {
2024 struct nvme_fc_queue *queue = hctx->driver_data;
2025 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2026 struct request *req;
2027 struct nvme_fc_fcp_op *op;
2028
2029 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2030 if (!req)
2031 return 0;
2032
2033 op = blk_mq_rq_to_pdu(req);
2034
2035 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2036 (ctrl->lport->ops->poll_queue))
2037 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2038 queue->lldd_handle);
2039
2040 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2041 }
2042
2043 static void
2044 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2045 {
2046 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2047 struct nvme_fc_fcp_op *aen_op;
2048 unsigned long flags;
2049 bool terminating = false;
2050 blk_status_t ret;
2051
2052 if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2053 return;
2054
2055 spin_lock_irqsave(&ctrl->lock, flags);
2056 if (ctrl->flags & FCCTRL_TERMIO)
2057 terminating = true;
2058 spin_unlock_irqrestore(&ctrl->lock, flags);
2059
2060 if (terminating)
2061 return;
2062
2063 aen_op = &ctrl->aen_ops[aer_idx];
2064
2065 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2066 NVMEFC_FCP_NODATA);
2067 if (ret)
2068 dev_err(ctrl->ctrl.device,
2069 "failed async event work [%d]\n", aer_idx);
2070 }
2071
2072 static void
2073 __nvme_fc_final_op_cleanup(struct request *rq)
2074 {
2075 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2076 struct nvme_fc_ctrl *ctrl = op->ctrl;
2077
2078 atomic_set(&op->state, FCPOP_STATE_IDLE);
2079 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2080 FCOP_FLAGS_COMPLETE);
2081
2082 nvme_fc_unmap_data(ctrl, rq, op);
2083 nvme_complete_rq(rq);
2084 nvme_fc_ctrl_put(ctrl);
2085
2086 }
2087
2088 static void
2089 nvme_fc_complete_rq(struct request *rq)
2090 {
2091 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2092 struct nvme_fc_ctrl *ctrl = op->ctrl;
2093 unsigned long flags;
2094 bool completed = false;
2095
2096 /*
2097 * the core layer, on controller resets after calling
2098 * nvme_shutdown_ctrl(), calls complete_rq without our
2099 * calling blk_mq_complete_request(), thus there may still
2100 * be live i/o outstanding with the LLDD. Means transport has
2101 * to track complete calls vs fcpio_done calls to know what
2102 * path to take on completes and dones.
2103 */
2104 spin_lock_irqsave(&ctrl->lock, flags);
2105 if (op->flags & FCOP_FLAGS_COMPLETE)
2106 completed = true;
2107 else
2108 op->flags |= FCOP_FLAGS_RELEASED;
2109 spin_unlock_irqrestore(&ctrl->lock, flags);
2110
2111 if (completed)
2112 __nvme_fc_final_op_cleanup(rq);
2113 }
2114
2115 /*
2116 * This routine is used by the transport when it needs to find active
2117 * io on a queue that is to be terminated. The transport uses
2118 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2119 * this routine to kill them on a 1 by 1 basis.
2120 *
2121 * As FC allocates FC exchange for each io, the transport must contact
2122 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2123 * After terminating the exchange the LLDD will call the transport's
2124 * normal io done path for the request, but it will have an aborted
2125 * status. The done path will return the io request back to the block
2126 * layer with an error status.
2127 */
2128 static void
2129 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2130 {
2131 struct nvme_ctrl *nctrl = data;
2132 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2133 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2134 unsigned long flags;
2135 int status;
2136
2137 if (!blk_mq_request_started(req))
2138 return;
2139
2140 spin_lock_irqsave(&ctrl->lock, flags);
2141 if (ctrl->flags & FCCTRL_TERMIO) {
2142 ctrl->iocnt++;
2143 op->flags |= FCOP_FLAGS_TERMIO;
2144 }
2145 spin_unlock_irqrestore(&ctrl->lock, flags);
2146
2147 status = __nvme_fc_abort_op(ctrl, op);
2148 if (status) {
2149 /*
2150 * if __nvme_fc_abort_op failed the io wasn't
2151 * active. Thus this call path is running in
2152 * parallel to the io complete. Treat as non-error.
2153 */
2154
2155 /* back out the flags/counters */
2156 spin_lock_irqsave(&ctrl->lock, flags);
2157 if (ctrl->flags & FCCTRL_TERMIO)
2158 ctrl->iocnt--;
2159 op->flags &= ~FCOP_FLAGS_TERMIO;
2160 spin_unlock_irqrestore(&ctrl->lock, flags);
2161 return;
2162 }
2163 }
2164
2165
2166 static const struct blk_mq_ops nvme_fc_mq_ops = {
2167 .queue_rq = nvme_fc_queue_rq,
2168 .complete = nvme_fc_complete_rq,
2169 .init_request = nvme_fc_init_request,
2170 .exit_request = nvme_fc_exit_request,
2171 .reinit_request = nvme_fc_reinit_request,
2172 .init_hctx = nvme_fc_init_hctx,
2173 .poll = nvme_fc_poll,
2174 .timeout = nvme_fc_timeout,
2175 };
2176
2177 static int
2178 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2179 {
2180 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2181 unsigned int nr_io_queues;
2182 int ret;
2183
2184 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2185 ctrl->lport->ops->max_hw_queues);
2186 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2187 if (ret) {
2188 dev_info(ctrl->ctrl.device,
2189 "set_queue_count failed: %d\n", ret);
2190 return ret;
2191 }
2192
2193 ctrl->ctrl.queue_count = nr_io_queues + 1;
2194 if (!nr_io_queues)
2195 return 0;
2196
2197 nvme_fc_init_io_queues(ctrl);
2198
2199 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2200 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2201 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2202 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2203 ctrl->tag_set.numa_node = NUMA_NO_NODE;
2204 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2205 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2206 (SG_CHUNK_SIZE *
2207 sizeof(struct scatterlist)) +
2208 ctrl->lport->ops->fcprqst_priv_sz;
2209 ctrl->tag_set.driver_data = ctrl;
2210 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2211 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2212
2213 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2214 if (ret)
2215 return ret;
2216
2217 ctrl->ctrl.tagset = &ctrl->tag_set;
2218
2219 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2220 if (IS_ERR(ctrl->ctrl.connect_q)) {
2221 ret = PTR_ERR(ctrl->ctrl.connect_q);
2222 goto out_free_tag_set;
2223 }
2224
2225 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2226 if (ret)
2227 goto out_cleanup_blk_queue;
2228
2229 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2230 if (ret)
2231 goto out_delete_hw_queues;
2232
2233 return 0;
2234
2235 out_delete_hw_queues:
2236 nvme_fc_delete_hw_io_queues(ctrl);
2237 out_cleanup_blk_queue:
2238 blk_cleanup_queue(ctrl->ctrl.connect_q);
2239 out_free_tag_set:
2240 blk_mq_free_tag_set(&ctrl->tag_set);
2241 nvme_fc_free_io_queues(ctrl);
2242
2243 /* force put free routine to ignore io queues */
2244 ctrl->ctrl.tagset = NULL;
2245
2246 return ret;
2247 }
2248
2249 static int
2250 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2251 {
2252 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2253 unsigned int nr_io_queues;
2254 int ret;
2255
2256 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2257 ctrl->lport->ops->max_hw_queues);
2258 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2259 if (ret) {
2260 dev_info(ctrl->ctrl.device,
2261 "set_queue_count failed: %d\n", ret);
2262 return ret;
2263 }
2264
2265 ctrl->ctrl.queue_count = nr_io_queues + 1;
2266 /* check for io queues existing */
2267 if (ctrl->ctrl.queue_count == 1)
2268 return 0;
2269
2270 nvme_fc_init_io_queues(ctrl);
2271
2272 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2273 if (ret)
2274 goto out_free_io_queues;
2275
2276 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2277 if (ret)
2278 goto out_free_io_queues;
2279
2280 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2281 if (ret)
2282 goto out_delete_hw_queues;
2283
2284 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2285
2286 return 0;
2287
2288 out_delete_hw_queues:
2289 nvme_fc_delete_hw_io_queues(ctrl);
2290 out_free_io_queues:
2291 nvme_fc_free_io_queues(ctrl);
2292 return ret;
2293 }
2294
2295 /*
2296 * This routine restarts the controller on the host side, and
2297 * on the link side, recreates the controller association.
2298 */
2299 static int
2300 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2301 {
2302 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2303 u32 segs;
2304 int ret;
2305 bool changed;
2306
2307 ++ctrl->ctrl.nr_reconnects;
2308
2309 /*
2310 * Create the admin queue
2311 */
2312
2313 nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2314
2315 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2316 NVME_FC_AQ_BLKMQ_DEPTH);
2317 if (ret)
2318 goto out_free_queue;
2319
2320 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2321 NVME_FC_AQ_BLKMQ_DEPTH,
2322 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2323 if (ret)
2324 goto out_delete_hw_queue;
2325
2326 if (ctrl->ctrl.state != NVME_CTRL_NEW)
2327 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2328
2329 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2330 if (ret)
2331 goto out_disconnect_admin_queue;
2332
2333 /*
2334 * Check controller capabilities
2335 *
2336 * todo:- add code to check if ctrl attributes changed from
2337 * prior connection values
2338 */
2339
2340 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2341 if (ret) {
2342 dev_err(ctrl->ctrl.device,
2343 "prop_get NVME_REG_CAP failed\n");
2344 goto out_disconnect_admin_queue;
2345 }
2346
2347 ctrl->ctrl.sqsize =
2348 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2349
2350 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2351 if (ret)
2352 goto out_disconnect_admin_queue;
2353
2354 segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2355 ctrl->lport->ops->max_sgl_segments);
2356 ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2357
2358 ret = nvme_init_identify(&ctrl->ctrl);
2359 if (ret)
2360 goto out_disconnect_admin_queue;
2361
2362 /* sanity checks */
2363
2364 /* FC-NVME does not have other data in the capsule */
2365 if (ctrl->ctrl.icdoff) {
2366 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2367 ctrl->ctrl.icdoff);
2368 goto out_disconnect_admin_queue;
2369 }
2370
2371 /* FC-NVME supports normal SGL Data Block Descriptors */
2372
2373 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2374 /* warn if maxcmd is lower than queue_size */
2375 dev_warn(ctrl->ctrl.device,
2376 "queue_size %zu > ctrl maxcmd %u, reducing "
2377 "to queue_size\n",
2378 opts->queue_size, ctrl->ctrl.maxcmd);
2379 opts->queue_size = ctrl->ctrl.maxcmd;
2380 }
2381
2382 ret = nvme_fc_init_aen_ops(ctrl);
2383 if (ret)
2384 goto out_term_aen_ops;
2385
2386 /*
2387 * Create the io queues
2388 */
2389
2390 if (ctrl->ctrl.queue_count > 1) {
2391 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2392 ret = nvme_fc_create_io_queues(ctrl);
2393 else
2394 ret = nvme_fc_reinit_io_queues(ctrl);
2395 if (ret)
2396 goto out_term_aen_ops;
2397 }
2398
2399 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2400 WARN_ON_ONCE(!changed);
2401
2402 ctrl->ctrl.nr_reconnects = 0;
2403
2404 nvme_start_ctrl(&ctrl->ctrl);
2405
2406 return 0; /* Success */
2407
2408 out_term_aen_ops:
2409 nvme_fc_term_aen_ops(ctrl);
2410 out_disconnect_admin_queue:
2411 /* send a Disconnect(association) LS to fc-nvme target */
2412 nvme_fc_xmt_disconnect_assoc(ctrl);
2413 out_delete_hw_queue:
2414 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2415 out_free_queue:
2416 nvme_fc_free_queue(&ctrl->queues[0]);
2417
2418 return ret;
2419 }
2420
2421 /*
2422 * This routine stops operation of the controller on the host side.
2423 * On the host os stack side: Admin and IO queues are stopped,
2424 * outstanding ios on them terminated via FC ABTS.
2425 * On the link side: the association is terminated.
2426 */
2427 static void
2428 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2429 {
2430 unsigned long flags;
2431
2432 spin_lock_irqsave(&ctrl->lock, flags);
2433 ctrl->flags |= FCCTRL_TERMIO;
2434 ctrl->iocnt = 0;
2435 spin_unlock_irqrestore(&ctrl->lock, flags);
2436
2437 /*
2438 * If io queues are present, stop them and terminate all outstanding
2439 * ios on them. As FC allocates FC exchange for each io, the
2440 * transport must contact the LLDD to terminate the exchange,
2441 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2442 * to tell us what io's are busy and invoke a transport routine
2443 * to kill them with the LLDD. After terminating the exchange
2444 * the LLDD will call the transport's normal io done path, but it
2445 * will have an aborted status. The done path will return the
2446 * io requests back to the block layer as part of normal completions
2447 * (but with error status).
2448 */
2449 if (ctrl->ctrl.queue_count > 1) {
2450 nvme_stop_queues(&ctrl->ctrl);
2451 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2452 nvme_fc_terminate_exchange, &ctrl->ctrl);
2453 }
2454
2455 /*
2456 * Other transports, which don't have link-level contexts bound
2457 * to sqe's, would try to gracefully shutdown the controller by
2458 * writing the registers for shutdown and polling (call
2459 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2460 * just aborted and we will wait on those contexts, and given
2461 * there was no indication of how live the controlelr is on the
2462 * link, don't send more io to create more contexts for the
2463 * shutdown. Let the controller fail via keepalive failure if
2464 * its still present.
2465 */
2466
2467 /*
2468 * clean up the admin queue. Same thing as above.
2469 * use blk_mq_tagset_busy_itr() and the transport routine to
2470 * terminate the exchanges.
2471 */
2472 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2473 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2474 nvme_fc_terminate_exchange, &ctrl->ctrl);
2475
2476 /* kill the aens as they are a separate path */
2477 nvme_fc_abort_aen_ops(ctrl);
2478
2479 /* wait for all io that had to be aborted */
2480 spin_lock_irqsave(&ctrl->lock, flags);
2481 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2482 ctrl->flags &= ~FCCTRL_TERMIO;
2483 spin_unlock_irqrestore(&ctrl->lock, flags);
2484
2485 nvme_fc_term_aen_ops(ctrl);
2486
2487 /*
2488 * send a Disconnect(association) LS to fc-nvme target
2489 * Note: could have been sent at top of process, but
2490 * cleaner on link traffic if after the aborts complete.
2491 * Note: if association doesn't exist, association_id will be 0
2492 */
2493 if (ctrl->association_id)
2494 nvme_fc_xmt_disconnect_assoc(ctrl);
2495
2496 if (ctrl->ctrl.tagset) {
2497 nvme_fc_delete_hw_io_queues(ctrl);
2498 nvme_fc_free_io_queues(ctrl);
2499 }
2500
2501 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2502 nvme_fc_free_queue(&ctrl->queues[0]);
2503 }
2504
2505 static void
2506 nvme_fc_delete_ctrl_work(struct work_struct *work)
2507 {
2508 struct nvme_fc_ctrl *ctrl =
2509 container_of(work, struct nvme_fc_ctrl, delete_work);
2510
2511 cancel_work_sync(&ctrl->ctrl.reset_work);
2512 cancel_delayed_work_sync(&ctrl->connect_work);
2513 nvme_stop_ctrl(&ctrl->ctrl);
2514 nvme_remove_namespaces(&ctrl->ctrl);
2515 /*
2516 * kill the association on the link side. this will block
2517 * waiting for io to terminate
2518 */
2519 nvme_fc_delete_association(ctrl);
2520
2521 /*
2522 * tear down the controller
2523 * After the last reference on the nvme ctrl is removed,
2524 * the transport nvme_fc_nvme_ctrl_freed() callback will be
2525 * invoked. From there, the transport will tear down it's
2526 * logical queues and association.
2527 */
2528 nvme_uninit_ctrl(&ctrl->ctrl);
2529
2530 nvme_put_ctrl(&ctrl->ctrl);
2531 }
2532
2533 static bool
2534 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2535 {
2536 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2537 return true;
2538
2539 if (!queue_work(nvme_wq, &ctrl->delete_work))
2540 return true;
2541
2542 return false;
2543 }
2544
2545 static int
2546 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2547 {
2548 return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2549 }
2550
2551 /*
2552 * Request from nvme core layer to delete the controller
2553 */
2554 static int
2555 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2556 {
2557 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2558 int ret;
2559
2560 if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2561 return -EBUSY;
2562
2563 ret = __nvme_fc_del_ctrl(ctrl);
2564
2565 if (!ret)
2566 flush_workqueue(nvme_wq);
2567
2568 nvme_put_ctrl(&ctrl->ctrl);
2569
2570 return ret;
2571 }
2572
2573 static void
2574 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2575 {
2576 /* If we are resetting/deleting then do nothing */
2577 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2578 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2579 ctrl->ctrl.state == NVME_CTRL_LIVE);
2580 return;
2581 }
2582
2583 dev_info(ctrl->ctrl.device,
2584 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2585 ctrl->cnum, status);
2586
2587 if (nvmf_should_reconnect(&ctrl->ctrl)) {
2588 dev_info(ctrl->ctrl.device,
2589 "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2590 ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2591 queue_delayed_work(nvme_wq, &ctrl->connect_work,
2592 ctrl->ctrl.opts->reconnect_delay * HZ);
2593 } else {
2594 dev_warn(ctrl->ctrl.device,
2595 "NVME-FC{%d}: Max reconnect attempts (%d) "
2596 "reached. Removing controller\n",
2597 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2598 WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2599 }
2600 }
2601
2602 static void
2603 nvme_fc_reset_ctrl_work(struct work_struct *work)
2604 {
2605 struct nvme_fc_ctrl *ctrl =
2606 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2607 int ret;
2608
2609 nvme_stop_ctrl(&ctrl->ctrl);
2610 /* will block will waiting for io to terminate */
2611 nvme_fc_delete_association(ctrl);
2612
2613 ret = nvme_fc_create_association(ctrl);
2614 if (ret)
2615 nvme_fc_reconnect_or_delete(ctrl, ret);
2616 else
2617 dev_info(ctrl->ctrl.device,
2618 "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2619 }
2620
2621 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2622 .name = "fc",
2623 .module = THIS_MODULE,
2624 .flags = NVME_F_FABRICS,
2625 .reg_read32 = nvmf_reg_read32,
2626 .reg_read64 = nvmf_reg_read64,
2627 .reg_write32 = nvmf_reg_write32,
2628 .free_ctrl = nvme_fc_nvme_ctrl_freed,
2629 .submit_async_event = nvme_fc_submit_async_event,
2630 .delete_ctrl = nvme_fc_del_nvme_ctrl,
2631 .get_address = nvmf_get_address,
2632 };
2633
2634 static void
2635 nvme_fc_connect_ctrl_work(struct work_struct *work)
2636 {
2637 int ret;
2638
2639 struct nvme_fc_ctrl *ctrl =
2640 container_of(to_delayed_work(work),
2641 struct nvme_fc_ctrl, connect_work);
2642
2643 ret = nvme_fc_create_association(ctrl);
2644 if (ret)
2645 nvme_fc_reconnect_or_delete(ctrl, ret);
2646 else
2647 dev_info(ctrl->ctrl.device,
2648 "NVME-FC{%d}: controller reconnect complete\n",
2649 ctrl->cnum);
2650 }
2651
2652
2653 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2654 .queue_rq = nvme_fc_queue_rq,
2655 .complete = nvme_fc_complete_rq,
2656 .init_request = nvme_fc_init_request,
2657 .exit_request = nvme_fc_exit_request,
2658 .reinit_request = nvme_fc_reinit_request,
2659 .init_hctx = nvme_fc_init_admin_hctx,
2660 .timeout = nvme_fc_timeout,
2661 };
2662
2663
2664 static struct nvme_ctrl *
2665 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2666 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2667 {
2668 struct nvme_fc_ctrl *ctrl;
2669 unsigned long flags;
2670 int ret, idx;
2671
2672 if (!(rport->remoteport.port_role &
2673 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2674 ret = -EBADR;
2675 goto out_fail;
2676 }
2677
2678 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2679 if (!ctrl) {
2680 ret = -ENOMEM;
2681 goto out_fail;
2682 }
2683
2684 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2685 if (idx < 0) {
2686 ret = -ENOSPC;
2687 goto out_free_ctrl;
2688 }
2689
2690 ctrl->ctrl.opts = opts;
2691 INIT_LIST_HEAD(&ctrl->ctrl_list);
2692 ctrl->lport = lport;
2693 ctrl->rport = rport;
2694 ctrl->dev = lport->dev;
2695 ctrl->cnum = idx;
2696
2697 get_device(ctrl->dev);
2698 kref_init(&ctrl->ref);
2699
2700 INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2701 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
2702 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2703 spin_lock_init(&ctrl->lock);
2704
2705 /* io queue count */
2706 ctrl->ctrl.queue_count = min_t(unsigned int,
2707 opts->nr_io_queues,
2708 lport->ops->max_hw_queues);
2709 ctrl->ctrl.queue_count++; /* +1 for admin queue */
2710
2711 ctrl->ctrl.sqsize = opts->queue_size - 1;
2712 ctrl->ctrl.kato = opts->kato;
2713
2714 ret = -ENOMEM;
2715 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
2716 sizeof(struct nvme_fc_queue), GFP_KERNEL);
2717 if (!ctrl->queues)
2718 goto out_free_ida;
2719
2720 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2721 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2722 ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2723 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2724 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2725 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2726 (SG_CHUNK_SIZE *
2727 sizeof(struct scatterlist)) +
2728 ctrl->lport->ops->fcprqst_priv_sz;
2729 ctrl->admin_tag_set.driver_data = ctrl;
2730 ctrl->admin_tag_set.nr_hw_queues = 1;
2731 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2732
2733 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2734 if (ret)
2735 goto out_free_queues;
2736
2737 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2738 if (IS_ERR(ctrl->ctrl.admin_q)) {
2739 ret = PTR_ERR(ctrl->ctrl.admin_q);
2740 goto out_free_admin_tag_set;
2741 }
2742
2743 /*
2744 * Would have been nice to init io queues tag set as well.
2745 * However, we require interaction from the controller
2746 * for max io queue count before we can do so.
2747 * Defer this to the connect path.
2748 */
2749
2750 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2751 if (ret)
2752 goto out_cleanup_admin_q;
2753
2754 /* at this point, teardown path changes to ref counting on nvme ctrl */
2755
2756 spin_lock_irqsave(&rport->lock, flags);
2757 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2758 spin_unlock_irqrestore(&rport->lock, flags);
2759
2760 ret = nvme_fc_create_association(ctrl);
2761 if (ret) {
2762 ctrl->ctrl.opts = NULL;
2763 /* initiate nvme ctrl ref counting teardown */
2764 nvme_uninit_ctrl(&ctrl->ctrl);
2765 nvme_put_ctrl(&ctrl->ctrl);
2766
2767 /* Remove core ctrl ref. */
2768 nvme_put_ctrl(&ctrl->ctrl);
2769
2770 /* as we're past the point where we transition to the ref
2771 * counting teardown path, if we return a bad pointer here,
2772 * the calling routine, thinking it's prior to the
2773 * transition, will do an rport put. Since the teardown
2774 * path also does a rport put, we do an extra get here to
2775 * so proper order/teardown happens.
2776 */
2777 nvme_fc_rport_get(rport);
2778
2779 if (ret > 0)
2780 ret = -EIO;
2781 return ERR_PTR(ret);
2782 }
2783
2784 kref_get(&ctrl->ctrl.kref);
2785
2786 dev_info(ctrl->ctrl.device,
2787 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2788 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2789
2790 return &ctrl->ctrl;
2791
2792 out_cleanup_admin_q:
2793 blk_cleanup_queue(ctrl->ctrl.admin_q);
2794 out_free_admin_tag_set:
2795 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2796 out_free_queues:
2797 kfree(ctrl->queues);
2798 out_free_ida:
2799 put_device(ctrl->dev);
2800 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2801 out_free_ctrl:
2802 kfree(ctrl);
2803 out_fail:
2804 /* exit via here doesn't follow ctlr ref points */
2805 return ERR_PTR(ret);
2806 }
2807
2808
2809 struct nvmet_fc_traddr {
2810 u64 nn;
2811 u64 pn;
2812 };
2813
2814 static int
2815 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2816 {
2817 u64 token64;
2818
2819 if (match_u64(sstr, &token64))
2820 return -EINVAL;
2821 *val = token64;
2822
2823 return 0;
2824 }
2825
2826 /*
2827 * This routine validates and extracts the WWN's from the TRADDR string.
2828 * As kernel parsers need the 0x to determine number base, universally
2829 * build string to parse with 0x prefix before parsing name strings.
2830 */
2831 static int
2832 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2833 {
2834 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2835 substring_t wwn = { name, &name[sizeof(name)-1] };
2836 int nnoffset, pnoffset;
2837
2838 /* validate it string one of the 2 allowed formats */
2839 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2840 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2841 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2842 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2843 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2844 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2845 NVME_FC_TRADDR_OXNNLEN;
2846 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2847 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2848 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2849 "pn-", NVME_FC_TRADDR_NNLEN))) {
2850 nnoffset = NVME_FC_TRADDR_NNLEN;
2851 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2852 } else
2853 goto out_einval;
2854
2855 name[0] = '0';
2856 name[1] = 'x';
2857 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2858
2859 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2860 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2861 goto out_einval;
2862
2863 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2864 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2865 goto out_einval;
2866
2867 return 0;
2868
2869 out_einval:
2870 pr_warn("%s: bad traddr string\n", __func__);
2871 return -EINVAL;
2872 }
2873
2874 static struct nvme_ctrl *
2875 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2876 {
2877 struct nvme_fc_lport *lport;
2878 struct nvme_fc_rport *rport;
2879 struct nvme_ctrl *ctrl;
2880 struct nvmet_fc_traddr laddr = { 0L, 0L };
2881 struct nvmet_fc_traddr raddr = { 0L, 0L };
2882 unsigned long flags;
2883 int ret;
2884
2885 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
2886 if (ret || !raddr.nn || !raddr.pn)
2887 return ERR_PTR(-EINVAL);
2888
2889 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
2890 if (ret || !laddr.nn || !laddr.pn)
2891 return ERR_PTR(-EINVAL);
2892
2893 /* find the host and remote ports to connect together */
2894 spin_lock_irqsave(&nvme_fc_lock, flags);
2895 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2896 if (lport->localport.node_name != laddr.nn ||
2897 lport->localport.port_name != laddr.pn)
2898 continue;
2899
2900 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2901 if (rport->remoteport.node_name != raddr.nn ||
2902 rport->remoteport.port_name != raddr.pn)
2903 continue;
2904
2905 /* if fail to get reference fall through. Will error */
2906 if (!nvme_fc_rport_get(rport))
2907 break;
2908
2909 spin_unlock_irqrestore(&nvme_fc_lock, flags);
2910
2911 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2912 if (IS_ERR(ctrl))
2913 nvme_fc_rport_put(rport);
2914 return ctrl;
2915 }
2916 }
2917 spin_unlock_irqrestore(&nvme_fc_lock, flags);
2918
2919 return ERR_PTR(-ENOENT);
2920 }
2921
2922
2923 static struct nvmf_transport_ops nvme_fc_transport = {
2924 .name = "fc",
2925 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2926 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2927 .create_ctrl = nvme_fc_create_ctrl,
2928 };
2929
2930 static int __init nvme_fc_init_module(void)
2931 {
2932 return nvmf_register_transport(&nvme_fc_transport);
2933 }
2934
2935 static void __exit nvme_fc_exit_module(void)
2936 {
2937 /* sanity check - all lports should be removed */
2938 if (!list_empty(&nvme_fc_lport_list))
2939 pr_warn("%s: localport list not empty\n", __func__);
2940
2941 nvmf_unregister_transport(&nvme_fc_transport);
2942
2943 ida_destroy(&nvme_fc_local_port_cnt);
2944 ida_destroy(&nvme_fc_ctrl_cnt);
2945 }
2946
2947 module_init(nvme_fc_init_module);
2948 module_exit(nvme_fc_exit_module);
2949
2950 MODULE_LICENSE("GPL v2");