]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/fc.c
blk-mq: introduce BLK_STS_DEV_RESOURCE
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / fc.c
1 /*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 enum nvme_fc_queue_flags {
34 NVME_FC_Q_CONNECTED = 0,
35 NVME_FC_Q_LIVE,
36 };
37
38 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
39
40 struct nvme_fc_queue {
41 struct nvme_fc_ctrl *ctrl;
42 struct device *dev;
43 struct blk_mq_hw_ctx *hctx;
44 void *lldd_handle;
45 size_t cmnd_capsule_len;
46 u32 qnum;
47 u32 rqcnt;
48 u32 seqno;
49
50 u64 connection_id;
51 atomic_t csn;
52
53 unsigned long flags;
54 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
55
56 enum nvme_fcop_flags {
57 FCOP_FLAGS_TERMIO = (1 << 0),
58 FCOP_FLAGS_RELEASED = (1 << 1),
59 FCOP_FLAGS_COMPLETE = (1 << 2),
60 FCOP_FLAGS_AEN = (1 << 3),
61 };
62
63 struct nvmefc_ls_req_op {
64 struct nvmefc_ls_req ls_req;
65
66 struct nvme_fc_rport *rport;
67 struct nvme_fc_queue *queue;
68 struct request *rq;
69 u32 flags;
70
71 int ls_error;
72 struct completion ls_done;
73 struct list_head lsreq_list; /* rport->ls_req_list */
74 bool req_queued;
75 };
76
77 enum nvme_fcpop_state {
78 FCPOP_STATE_UNINIT = 0,
79 FCPOP_STATE_IDLE = 1,
80 FCPOP_STATE_ACTIVE = 2,
81 FCPOP_STATE_ABORTED = 3,
82 FCPOP_STATE_COMPLETE = 4,
83 };
84
85 struct nvme_fc_fcp_op {
86 struct nvme_request nreq; /*
87 * nvme/host/core.c
88 * requires this to be
89 * the 1st element in the
90 * private structure
91 * associated with the
92 * request.
93 */
94 struct nvmefc_fcp_req fcp_req;
95
96 struct nvme_fc_ctrl *ctrl;
97 struct nvme_fc_queue *queue;
98 struct request *rq;
99
100 atomic_t state;
101 u32 flags;
102 u32 rqno;
103 u32 nents;
104
105 struct nvme_fc_cmd_iu cmd_iu;
106 struct nvme_fc_ersp_iu rsp_iu;
107 };
108
109 struct nvme_fc_lport {
110 struct nvme_fc_local_port localport;
111
112 struct ida endp_cnt;
113 struct list_head port_list; /* nvme_fc_port_list */
114 struct list_head endp_list;
115 struct device *dev; /* physical device for dma */
116 struct nvme_fc_port_template *ops;
117 struct kref ref;
118 atomic_t act_rport_cnt;
119 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
120
121 struct nvme_fc_rport {
122 struct nvme_fc_remote_port remoteport;
123
124 struct list_head endp_list; /* for lport->endp_list */
125 struct list_head ctrl_list;
126 struct list_head ls_req_list;
127 struct device *dev; /* physical device for dma */
128 struct nvme_fc_lport *lport;
129 spinlock_t lock;
130 struct kref ref;
131 atomic_t act_ctrl_cnt;
132 unsigned long dev_loss_end;
133 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
134
135 enum nvme_fcctrl_flags {
136 FCCTRL_TERMIO = (1 << 0),
137 };
138
139 struct nvme_fc_ctrl {
140 spinlock_t lock;
141 struct nvme_fc_queue *queues;
142 struct device *dev;
143 struct nvme_fc_lport *lport;
144 struct nvme_fc_rport *rport;
145 u32 cnum;
146
147 bool assoc_active;
148 u64 association_id;
149
150 struct list_head ctrl_list; /* rport->ctrl_list */
151
152 struct blk_mq_tag_set admin_tag_set;
153 struct blk_mq_tag_set tag_set;
154
155 struct delayed_work connect_work;
156
157 struct kref ref;
158 u32 flags;
159 u32 iocnt;
160 wait_queue_head_t ioabort_wait;
161
162 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
163
164 struct nvme_ctrl ctrl;
165 };
166
167 static inline struct nvme_fc_ctrl *
168 to_fc_ctrl(struct nvme_ctrl *ctrl)
169 {
170 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
171 }
172
173 static inline struct nvme_fc_lport *
174 localport_to_lport(struct nvme_fc_local_port *portptr)
175 {
176 return container_of(portptr, struct nvme_fc_lport, localport);
177 }
178
179 static inline struct nvme_fc_rport *
180 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
181 {
182 return container_of(portptr, struct nvme_fc_rport, remoteport);
183 }
184
185 static inline struct nvmefc_ls_req_op *
186 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
187 {
188 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
189 }
190
191 static inline struct nvme_fc_fcp_op *
192 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
193 {
194 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
195 }
196
197
198
199 /* *************************** Globals **************************** */
200
201
202 static DEFINE_SPINLOCK(nvme_fc_lock);
203
204 static LIST_HEAD(nvme_fc_lport_list);
205 static DEFINE_IDA(nvme_fc_local_port_cnt);
206 static DEFINE_IDA(nvme_fc_ctrl_cnt);
207
208
209
210 /*
211 * These items are short-term. They will eventually be moved into
212 * a generic FC class. See comments in module init.
213 */
214 static struct class *fc_class;
215 static struct device *fc_udev_device;
216
217
218 /* *********************** FC-NVME Port Management ************************ */
219
220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
221 struct nvme_fc_queue *, unsigned int);
222
223 static void
224 nvme_fc_free_lport(struct kref *ref)
225 {
226 struct nvme_fc_lport *lport =
227 container_of(ref, struct nvme_fc_lport, ref);
228 unsigned long flags;
229
230 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
231 WARN_ON(!list_empty(&lport->endp_list));
232
233 /* remove from transport list */
234 spin_lock_irqsave(&nvme_fc_lock, flags);
235 list_del(&lport->port_list);
236 spin_unlock_irqrestore(&nvme_fc_lock, flags);
237
238 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
239 ida_destroy(&lport->endp_cnt);
240
241 put_device(lport->dev);
242
243 kfree(lport);
244 }
245
246 static void
247 nvme_fc_lport_put(struct nvme_fc_lport *lport)
248 {
249 kref_put(&lport->ref, nvme_fc_free_lport);
250 }
251
252 static int
253 nvme_fc_lport_get(struct nvme_fc_lport *lport)
254 {
255 return kref_get_unless_zero(&lport->ref);
256 }
257
258
259 static struct nvme_fc_lport *
260 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
261 struct nvme_fc_port_template *ops,
262 struct device *dev)
263 {
264 struct nvme_fc_lport *lport;
265 unsigned long flags;
266
267 spin_lock_irqsave(&nvme_fc_lock, flags);
268
269 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
270 if (lport->localport.node_name != pinfo->node_name ||
271 lport->localport.port_name != pinfo->port_name)
272 continue;
273
274 if (lport->dev != dev) {
275 lport = ERR_PTR(-EXDEV);
276 goto out_done;
277 }
278
279 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
280 lport = ERR_PTR(-EEXIST);
281 goto out_done;
282 }
283
284 if (!nvme_fc_lport_get(lport)) {
285 /*
286 * fails if ref cnt already 0. If so,
287 * act as if lport already deleted
288 */
289 lport = NULL;
290 goto out_done;
291 }
292
293 /* resume the lport */
294
295 lport->ops = ops;
296 lport->localport.port_role = pinfo->port_role;
297 lport->localport.port_id = pinfo->port_id;
298 lport->localport.port_state = FC_OBJSTATE_ONLINE;
299
300 spin_unlock_irqrestore(&nvme_fc_lock, flags);
301
302 return lport;
303 }
304
305 lport = NULL;
306
307 out_done:
308 spin_unlock_irqrestore(&nvme_fc_lock, flags);
309
310 return lport;
311 }
312
313 /**
314 * nvme_fc_register_localport - transport entry point called by an
315 * LLDD to register the existence of a NVME
316 * host FC port.
317 * @pinfo: pointer to information about the port to be registered
318 * @template: LLDD entrypoints and operational parameters for the port
319 * @dev: physical hardware device node port corresponds to. Will be
320 * used for DMA mappings
321 * @lport_p: pointer to a local port pointer. Upon success, the routine
322 * will allocate a nvme_fc_local_port structure and place its
323 * address in the local port pointer. Upon failure, local port
324 * pointer will be set to 0.
325 *
326 * Returns:
327 * a completion status. Must be 0 upon success; a negative errno
328 * (ex: -ENXIO) upon failure.
329 */
330 int
331 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
332 struct nvme_fc_port_template *template,
333 struct device *dev,
334 struct nvme_fc_local_port **portptr)
335 {
336 struct nvme_fc_lport *newrec;
337 unsigned long flags;
338 int ret, idx;
339
340 if (!template->localport_delete || !template->remoteport_delete ||
341 !template->ls_req || !template->fcp_io ||
342 !template->ls_abort || !template->fcp_abort ||
343 !template->max_hw_queues || !template->max_sgl_segments ||
344 !template->max_dif_sgl_segments || !template->dma_boundary) {
345 ret = -EINVAL;
346 goto out_reghost_failed;
347 }
348
349 /*
350 * look to see if there is already a localport that had been
351 * deregistered and in the process of waiting for all the
352 * references to fully be removed. If the references haven't
353 * expired, we can simply re-enable the localport. Remoteports
354 * and controller reconnections should resume naturally.
355 */
356 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
357
358 /* found an lport, but something about its state is bad */
359 if (IS_ERR(newrec)) {
360 ret = PTR_ERR(newrec);
361 goto out_reghost_failed;
362
363 /* found existing lport, which was resumed */
364 } else if (newrec) {
365 *portptr = &newrec->localport;
366 return 0;
367 }
368
369 /* nothing found - allocate a new localport struct */
370
371 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
372 GFP_KERNEL);
373 if (!newrec) {
374 ret = -ENOMEM;
375 goto out_reghost_failed;
376 }
377
378 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
379 if (idx < 0) {
380 ret = -ENOSPC;
381 goto out_fail_kfree;
382 }
383
384 if (!get_device(dev) && dev) {
385 ret = -ENODEV;
386 goto out_ida_put;
387 }
388
389 INIT_LIST_HEAD(&newrec->port_list);
390 INIT_LIST_HEAD(&newrec->endp_list);
391 kref_init(&newrec->ref);
392 atomic_set(&newrec->act_rport_cnt, 0);
393 newrec->ops = template;
394 newrec->dev = dev;
395 ida_init(&newrec->endp_cnt);
396 newrec->localport.private = &newrec[1];
397 newrec->localport.node_name = pinfo->node_name;
398 newrec->localport.port_name = pinfo->port_name;
399 newrec->localport.port_role = pinfo->port_role;
400 newrec->localport.port_id = pinfo->port_id;
401 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
402 newrec->localport.port_num = idx;
403
404 spin_lock_irqsave(&nvme_fc_lock, flags);
405 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
406 spin_unlock_irqrestore(&nvme_fc_lock, flags);
407
408 if (dev)
409 dma_set_seg_boundary(dev, template->dma_boundary);
410
411 *portptr = &newrec->localport;
412 return 0;
413
414 out_ida_put:
415 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
416 out_fail_kfree:
417 kfree(newrec);
418 out_reghost_failed:
419 *portptr = NULL;
420
421 return ret;
422 }
423 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
424
425 /**
426 * nvme_fc_unregister_localport - transport entry point called by an
427 * LLDD to deregister/remove a previously
428 * registered a NVME host FC port.
429 * @localport: pointer to the (registered) local port that is to be
430 * deregistered.
431 *
432 * Returns:
433 * a completion status. Must be 0 upon success; a negative errno
434 * (ex: -ENXIO) upon failure.
435 */
436 int
437 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
438 {
439 struct nvme_fc_lport *lport = localport_to_lport(portptr);
440 unsigned long flags;
441
442 if (!portptr)
443 return -EINVAL;
444
445 spin_lock_irqsave(&nvme_fc_lock, flags);
446
447 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
448 spin_unlock_irqrestore(&nvme_fc_lock, flags);
449 return -EINVAL;
450 }
451 portptr->port_state = FC_OBJSTATE_DELETED;
452
453 spin_unlock_irqrestore(&nvme_fc_lock, flags);
454
455 if (atomic_read(&lport->act_rport_cnt) == 0)
456 lport->ops->localport_delete(&lport->localport);
457
458 nvme_fc_lport_put(lport);
459
460 return 0;
461 }
462 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
463
464 /*
465 * TRADDR strings, per FC-NVME are fixed format:
466 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
467 * udev event will only differ by prefix of what field is
468 * being specified:
469 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
470 * 19 + 43 + null_fudge = 64 characters
471 */
472 #define FCNVME_TRADDR_LENGTH 64
473
474 static void
475 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
476 struct nvme_fc_rport *rport)
477 {
478 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
479 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
480 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
481
482 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
483 return;
484
485 snprintf(hostaddr, sizeof(hostaddr),
486 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
487 lport->localport.node_name, lport->localport.port_name);
488 snprintf(tgtaddr, sizeof(tgtaddr),
489 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
490 rport->remoteport.node_name, rport->remoteport.port_name);
491 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
492 }
493
494 static void
495 nvme_fc_free_rport(struct kref *ref)
496 {
497 struct nvme_fc_rport *rport =
498 container_of(ref, struct nvme_fc_rport, ref);
499 struct nvme_fc_lport *lport =
500 localport_to_lport(rport->remoteport.localport);
501 unsigned long flags;
502
503 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
504 WARN_ON(!list_empty(&rport->ctrl_list));
505
506 /* remove from lport list */
507 spin_lock_irqsave(&nvme_fc_lock, flags);
508 list_del(&rport->endp_list);
509 spin_unlock_irqrestore(&nvme_fc_lock, flags);
510
511 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
512
513 kfree(rport);
514
515 nvme_fc_lport_put(lport);
516 }
517
518 static void
519 nvme_fc_rport_put(struct nvme_fc_rport *rport)
520 {
521 kref_put(&rport->ref, nvme_fc_free_rport);
522 }
523
524 static int
525 nvme_fc_rport_get(struct nvme_fc_rport *rport)
526 {
527 return kref_get_unless_zero(&rport->ref);
528 }
529
530 static void
531 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
532 {
533 switch (ctrl->ctrl.state) {
534 case NVME_CTRL_NEW:
535 case NVME_CTRL_RECONNECTING:
536 /*
537 * As all reconnects were suppressed, schedule a
538 * connect.
539 */
540 dev_info(ctrl->ctrl.device,
541 "NVME-FC{%d}: connectivity re-established. "
542 "Attempting reconnect\n", ctrl->cnum);
543
544 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
545 break;
546
547 case NVME_CTRL_RESETTING:
548 /*
549 * Controller is already in the process of terminating the
550 * association. No need to do anything further. The reconnect
551 * step will naturally occur after the reset completes.
552 */
553 break;
554
555 default:
556 /* no action to take - let it delete */
557 break;
558 }
559 }
560
561 static struct nvme_fc_rport *
562 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
563 struct nvme_fc_port_info *pinfo)
564 {
565 struct nvme_fc_rport *rport;
566 struct nvme_fc_ctrl *ctrl;
567 unsigned long flags;
568
569 spin_lock_irqsave(&nvme_fc_lock, flags);
570
571 list_for_each_entry(rport, &lport->endp_list, endp_list) {
572 if (rport->remoteport.node_name != pinfo->node_name ||
573 rport->remoteport.port_name != pinfo->port_name)
574 continue;
575
576 if (!nvme_fc_rport_get(rport)) {
577 rport = ERR_PTR(-ENOLCK);
578 goto out_done;
579 }
580
581 spin_unlock_irqrestore(&nvme_fc_lock, flags);
582
583 spin_lock_irqsave(&rport->lock, flags);
584
585 /* has it been unregistered */
586 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
587 /* means lldd called us twice */
588 spin_unlock_irqrestore(&rport->lock, flags);
589 nvme_fc_rport_put(rport);
590 return ERR_PTR(-ESTALE);
591 }
592
593 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
594 rport->dev_loss_end = 0;
595
596 /*
597 * kick off a reconnect attempt on all associations to the
598 * remote port. A successful reconnects will resume i/o.
599 */
600 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
601 nvme_fc_resume_controller(ctrl);
602
603 spin_unlock_irqrestore(&rport->lock, flags);
604
605 return rport;
606 }
607
608 rport = NULL;
609
610 out_done:
611 spin_unlock_irqrestore(&nvme_fc_lock, flags);
612
613 return rport;
614 }
615
616 static inline void
617 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
618 struct nvme_fc_port_info *pinfo)
619 {
620 if (pinfo->dev_loss_tmo)
621 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
622 else
623 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
624 }
625
626 /**
627 * nvme_fc_register_remoteport - transport entry point called by an
628 * LLDD to register the existence of a NVME
629 * subsystem FC port on its fabric.
630 * @localport: pointer to the (registered) local port that the remote
631 * subsystem port is connected to.
632 * @pinfo: pointer to information about the port to be registered
633 * @rport_p: pointer to a remote port pointer. Upon success, the routine
634 * will allocate a nvme_fc_remote_port structure and place its
635 * address in the remote port pointer. Upon failure, remote port
636 * pointer will be set to 0.
637 *
638 * Returns:
639 * a completion status. Must be 0 upon success; a negative errno
640 * (ex: -ENXIO) upon failure.
641 */
642 int
643 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
644 struct nvme_fc_port_info *pinfo,
645 struct nvme_fc_remote_port **portptr)
646 {
647 struct nvme_fc_lport *lport = localport_to_lport(localport);
648 struct nvme_fc_rport *newrec;
649 unsigned long flags;
650 int ret, idx;
651
652 if (!nvme_fc_lport_get(lport)) {
653 ret = -ESHUTDOWN;
654 goto out_reghost_failed;
655 }
656
657 /*
658 * look to see if there is already a remoteport that is waiting
659 * for a reconnect (within dev_loss_tmo) with the same WWN's.
660 * If so, transition to it and reconnect.
661 */
662 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
663
664 /* found an rport, but something about its state is bad */
665 if (IS_ERR(newrec)) {
666 ret = PTR_ERR(newrec);
667 goto out_lport_put;
668
669 /* found existing rport, which was resumed */
670 } else if (newrec) {
671 nvme_fc_lport_put(lport);
672 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
673 nvme_fc_signal_discovery_scan(lport, newrec);
674 *portptr = &newrec->remoteport;
675 return 0;
676 }
677
678 /* nothing found - allocate a new remoteport struct */
679
680 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
681 GFP_KERNEL);
682 if (!newrec) {
683 ret = -ENOMEM;
684 goto out_lport_put;
685 }
686
687 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
688 if (idx < 0) {
689 ret = -ENOSPC;
690 goto out_kfree_rport;
691 }
692
693 INIT_LIST_HEAD(&newrec->endp_list);
694 INIT_LIST_HEAD(&newrec->ctrl_list);
695 INIT_LIST_HEAD(&newrec->ls_req_list);
696 kref_init(&newrec->ref);
697 atomic_set(&newrec->act_ctrl_cnt, 0);
698 spin_lock_init(&newrec->lock);
699 newrec->remoteport.localport = &lport->localport;
700 newrec->dev = lport->dev;
701 newrec->lport = lport;
702 newrec->remoteport.private = &newrec[1];
703 newrec->remoteport.port_role = pinfo->port_role;
704 newrec->remoteport.node_name = pinfo->node_name;
705 newrec->remoteport.port_name = pinfo->port_name;
706 newrec->remoteport.port_id = pinfo->port_id;
707 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
708 newrec->remoteport.port_num = idx;
709 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
710
711 spin_lock_irqsave(&nvme_fc_lock, flags);
712 list_add_tail(&newrec->endp_list, &lport->endp_list);
713 spin_unlock_irqrestore(&nvme_fc_lock, flags);
714
715 nvme_fc_signal_discovery_scan(lport, newrec);
716
717 *portptr = &newrec->remoteport;
718 return 0;
719
720 out_kfree_rport:
721 kfree(newrec);
722 out_lport_put:
723 nvme_fc_lport_put(lport);
724 out_reghost_failed:
725 *portptr = NULL;
726 return ret;
727 }
728 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
729
730 static int
731 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
732 {
733 struct nvmefc_ls_req_op *lsop;
734 unsigned long flags;
735
736 restart:
737 spin_lock_irqsave(&rport->lock, flags);
738
739 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
740 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
741 lsop->flags |= FCOP_FLAGS_TERMIO;
742 spin_unlock_irqrestore(&rport->lock, flags);
743 rport->lport->ops->ls_abort(&rport->lport->localport,
744 &rport->remoteport,
745 &lsop->ls_req);
746 goto restart;
747 }
748 }
749 spin_unlock_irqrestore(&rport->lock, flags);
750
751 return 0;
752 }
753
754 static void
755 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
756 {
757 dev_info(ctrl->ctrl.device,
758 "NVME-FC{%d}: controller connectivity lost. Awaiting "
759 "Reconnect", ctrl->cnum);
760
761 switch (ctrl->ctrl.state) {
762 case NVME_CTRL_NEW:
763 case NVME_CTRL_LIVE:
764 /*
765 * Schedule a controller reset. The reset will terminate the
766 * association and schedule the reconnect timer. Reconnects
767 * will be attempted until either the ctlr_loss_tmo
768 * (max_retries * connect_delay) expires or the remoteport's
769 * dev_loss_tmo expires.
770 */
771 if (nvme_reset_ctrl(&ctrl->ctrl)) {
772 dev_warn(ctrl->ctrl.device,
773 "NVME-FC{%d}: Couldn't schedule reset. "
774 "Deleting controller.\n",
775 ctrl->cnum);
776 nvme_delete_ctrl(&ctrl->ctrl);
777 }
778 break;
779
780 case NVME_CTRL_RECONNECTING:
781 /*
782 * The association has already been terminated and the
783 * controller is attempting reconnects. No need to do anything
784 * futher. Reconnects will be attempted until either the
785 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
786 * remoteport's dev_loss_tmo expires.
787 */
788 break;
789
790 case NVME_CTRL_RESETTING:
791 /*
792 * Controller is already in the process of terminating the
793 * association. No need to do anything further. The reconnect
794 * step will kick in naturally after the association is
795 * terminated.
796 */
797 break;
798
799 case NVME_CTRL_DELETING:
800 default:
801 /* no action to take - let it delete */
802 break;
803 }
804 }
805
806 /**
807 * nvme_fc_unregister_remoteport - transport entry point called by an
808 * LLDD to deregister/remove a previously
809 * registered a NVME subsystem FC port.
810 * @remoteport: pointer to the (registered) remote port that is to be
811 * deregistered.
812 *
813 * Returns:
814 * a completion status. Must be 0 upon success; a negative errno
815 * (ex: -ENXIO) upon failure.
816 */
817 int
818 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
819 {
820 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
821 struct nvme_fc_ctrl *ctrl;
822 unsigned long flags;
823
824 if (!portptr)
825 return -EINVAL;
826
827 spin_lock_irqsave(&rport->lock, flags);
828
829 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
830 spin_unlock_irqrestore(&rport->lock, flags);
831 return -EINVAL;
832 }
833 portptr->port_state = FC_OBJSTATE_DELETED;
834
835 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
836
837 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
838 /* if dev_loss_tmo==0, dev loss is immediate */
839 if (!portptr->dev_loss_tmo) {
840 dev_warn(ctrl->ctrl.device,
841 "NVME-FC{%d}: controller connectivity lost. "
842 "Deleting controller.\n",
843 ctrl->cnum);
844 nvme_delete_ctrl(&ctrl->ctrl);
845 } else
846 nvme_fc_ctrl_connectivity_loss(ctrl);
847 }
848
849 spin_unlock_irqrestore(&rport->lock, flags);
850
851 nvme_fc_abort_lsops(rport);
852
853 if (atomic_read(&rport->act_ctrl_cnt) == 0)
854 rport->lport->ops->remoteport_delete(portptr);
855
856 /*
857 * release the reference, which will allow, if all controllers
858 * go away, which should only occur after dev_loss_tmo occurs,
859 * for the rport to be torn down.
860 */
861 nvme_fc_rport_put(rport);
862
863 return 0;
864 }
865 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
866
867 /**
868 * nvme_fc_rescan_remoteport - transport entry point called by an
869 * LLDD to request a nvme device rescan.
870 * @remoteport: pointer to the (registered) remote port that is to be
871 * rescanned.
872 *
873 * Returns: N/A
874 */
875 void
876 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
877 {
878 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
879
880 nvme_fc_signal_discovery_scan(rport->lport, rport);
881 }
882 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
883
884 int
885 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
886 u32 dev_loss_tmo)
887 {
888 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
889 unsigned long flags;
890
891 spin_lock_irqsave(&rport->lock, flags);
892
893 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
894 spin_unlock_irqrestore(&rport->lock, flags);
895 return -EINVAL;
896 }
897
898 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
899 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
900
901 spin_unlock_irqrestore(&rport->lock, flags);
902
903 return 0;
904 }
905 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
906
907
908 /* *********************** FC-NVME DMA Handling **************************** */
909
910 /*
911 * The fcloop device passes in a NULL device pointer. Real LLD's will
912 * pass in a valid device pointer. If NULL is passed to the dma mapping
913 * routines, depending on the platform, it may or may not succeed, and
914 * may crash.
915 *
916 * As such:
917 * Wrapper all the dma routines and check the dev pointer.
918 *
919 * If simple mappings (return just a dma address, we'll noop them,
920 * returning a dma address of 0.
921 *
922 * On more complex mappings (dma_map_sg), a pseudo routine fills
923 * in the scatter list, setting all dma addresses to 0.
924 */
925
926 static inline dma_addr_t
927 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
928 enum dma_data_direction dir)
929 {
930 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
931 }
932
933 static inline int
934 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
935 {
936 return dev ? dma_mapping_error(dev, dma_addr) : 0;
937 }
938
939 static inline void
940 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
941 enum dma_data_direction dir)
942 {
943 if (dev)
944 dma_unmap_single(dev, addr, size, dir);
945 }
946
947 static inline void
948 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
949 enum dma_data_direction dir)
950 {
951 if (dev)
952 dma_sync_single_for_cpu(dev, addr, size, dir);
953 }
954
955 static inline void
956 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
957 enum dma_data_direction dir)
958 {
959 if (dev)
960 dma_sync_single_for_device(dev, addr, size, dir);
961 }
962
963 /* pseudo dma_map_sg call */
964 static int
965 fc_map_sg(struct scatterlist *sg, int nents)
966 {
967 struct scatterlist *s;
968 int i;
969
970 WARN_ON(nents == 0 || sg[0].length == 0);
971
972 for_each_sg(sg, s, nents, i) {
973 s->dma_address = 0L;
974 #ifdef CONFIG_NEED_SG_DMA_LENGTH
975 s->dma_length = s->length;
976 #endif
977 }
978 return nents;
979 }
980
981 static inline int
982 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
983 enum dma_data_direction dir)
984 {
985 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
986 }
987
988 static inline void
989 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
990 enum dma_data_direction dir)
991 {
992 if (dev)
993 dma_unmap_sg(dev, sg, nents, dir);
994 }
995
996 /* *********************** FC-NVME LS Handling **************************** */
997
998 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
999 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1000
1001
1002 static void
1003 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1004 {
1005 struct nvme_fc_rport *rport = lsop->rport;
1006 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1007 unsigned long flags;
1008
1009 spin_lock_irqsave(&rport->lock, flags);
1010
1011 if (!lsop->req_queued) {
1012 spin_unlock_irqrestore(&rport->lock, flags);
1013 return;
1014 }
1015
1016 list_del(&lsop->lsreq_list);
1017
1018 lsop->req_queued = false;
1019
1020 spin_unlock_irqrestore(&rport->lock, flags);
1021
1022 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1023 (lsreq->rqstlen + lsreq->rsplen),
1024 DMA_BIDIRECTIONAL);
1025
1026 nvme_fc_rport_put(rport);
1027 }
1028
1029 static int
1030 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1031 struct nvmefc_ls_req_op *lsop,
1032 void (*done)(struct nvmefc_ls_req *req, int status))
1033 {
1034 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1035 unsigned long flags;
1036 int ret = 0;
1037
1038 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1039 return -ECONNREFUSED;
1040
1041 if (!nvme_fc_rport_get(rport))
1042 return -ESHUTDOWN;
1043
1044 lsreq->done = done;
1045 lsop->rport = rport;
1046 lsop->req_queued = false;
1047 INIT_LIST_HEAD(&lsop->lsreq_list);
1048 init_completion(&lsop->ls_done);
1049
1050 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1051 lsreq->rqstlen + lsreq->rsplen,
1052 DMA_BIDIRECTIONAL);
1053 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1054 ret = -EFAULT;
1055 goto out_putrport;
1056 }
1057 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1058
1059 spin_lock_irqsave(&rport->lock, flags);
1060
1061 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1062
1063 lsop->req_queued = true;
1064
1065 spin_unlock_irqrestore(&rport->lock, flags);
1066
1067 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1068 &rport->remoteport, lsreq);
1069 if (ret)
1070 goto out_unlink;
1071
1072 return 0;
1073
1074 out_unlink:
1075 lsop->ls_error = ret;
1076 spin_lock_irqsave(&rport->lock, flags);
1077 lsop->req_queued = false;
1078 list_del(&lsop->lsreq_list);
1079 spin_unlock_irqrestore(&rport->lock, flags);
1080 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1081 (lsreq->rqstlen + lsreq->rsplen),
1082 DMA_BIDIRECTIONAL);
1083 out_putrport:
1084 nvme_fc_rport_put(rport);
1085
1086 return ret;
1087 }
1088
1089 static void
1090 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1091 {
1092 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1093
1094 lsop->ls_error = status;
1095 complete(&lsop->ls_done);
1096 }
1097
1098 static int
1099 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1100 {
1101 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1102 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1103 int ret;
1104
1105 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1106
1107 if (!ret) {
1108 /*
1109 * No timeout/not interruptible as we need the struct
1110 * to exist until the lldd calls us back. Thus mandate
1111 * wait until driver calls back. lldd responsible for
1112 * the timeout action
1113 */
1114 wait_for_completion(&lsop->ls_done);
1115
1116 __nvme_fc_finish_ls_req(lsop);
1117
1118 ret = lsop->ls_error;
1119 }
1120
1121 if (ret)
1122 return ret;
1123
1124 /* ACC or RJT payload ? */
1125 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1126 return -ENXIO;
1127
1128 return 0;
1129 }
1130
1131 static int
1132 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1133 struct nvmefc_ls_req_op *lsop,
1134 void (*done)(struct nvmefc_ls_req *req, int status))
1135 {
1136 /* don't wait for completion */
1137
1138 return __nvme_fc_send_ls_req(rport, lsop, done);
1139 }
1140
1141 /* Validation Error indexes into the string table below */
1142 enum {
1143 VERR_NO_ERROR = 0,
1144 VERR_LSACC = 1,
1145 VERR_LSDESC_RQST = 2,
1146 VERR_LSDESC_RQST_LEN = 3,
1147 VERR_ASSOC_ID = 4,
1148 VERR_ASSOC_ID_LEN = 5,
1149 VERR_CONN_ID = 6,
1150 VERR_CONN_ID_LEN = 7,
1151 VERR_CR_ASSOC = 8,
1152 VERR_CR_ASSOC_ACC_LEN = 9,
1153 VERR_CR_CONN = 10,
1154 VERR_CR_CONN_ACC_LEN = 11,
1155 VERR_DISCONN = 12,
1156 VERR_DISCONN_ACC_LEN = 13,
1157 };
1158
1159 static char *validation_errors[] = {
1160 "OK",
1161 "Not LS_ACC",
1162 "Not LSDESC_RQST",
1163 "Bad LSDESC_RQST Length",
1164 "Not Association ID",
1165 "Bad Association ID Length",
1166 "Not Connection ID",
1167 "Bad Connection ID Length",
1168 "Not CR_ASSOC Rqst",
1169 "Bad CR_ASSOC ACC Length",
1170 "Not CR_CONN Rqst",
1171 "Bad CR_CONN ACC Length",
1172 "Not Disconnect Rqst",
1173 "Bad Disconnect ACC Length",
1174 };
1175
1176 static int
1177 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1178 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1179 {
1180 struct nvmefc_ls_req_op *lsop;
1181 struct nvmefc_ls_req *lsreq;
1182 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1183 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1184 int ret, fcret = 0;
1185
1186 lsop = kzalloc((sizeof(*lsop) +
1187 ctrl->lport->ops->lsrqst_priv_sz +
1188 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1189 if (!lsop) {
1190 ret = -ENOMEM;
1191 goto out_no_memory;
1192 }
1193 lsreq = &lsop->ls_req;
1194
1195 lsreq->private = (void *)&lsop[1];
1196 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1197 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1198 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1199
1200 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1201 assoc_rqst->desc_list_len =
1202 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1203
1204 assoc_rqst->assoc_cmd.desc_tag =
1205 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1206 assoc_rqst->assoc_cmd.desc_len =
1207 fcnvme_lsdesc_len(
1208 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1209
1210 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1211 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
1212 /* Linux supports only Dynamic controllers */
1213 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1214 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1215 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1216 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1217 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1218 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1219
1220 lsop->queue = queue;
1221 lsreq->rqstaddr = assoc_rqst;
1222 lsreq->rqstlen = sizeof(*assoc_rqst);
1223 lsreq->rspaddr = assoc_acc;
1224 lsreq->rsplen = sizeof(*assoc_acc);
1225 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1226
1227 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1228 if (ret)
1229 goto out_free_buffer;
1230
1231 /* process connect LS completion */
1232
1233 /* validate the ACC response */
1234 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1235 fcret = VERR_LSACC;
1236 else if (assoc_acc->hdr.desc_list_len !=
1237 fcnvme_lsdesc_len(
1238 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1239 fcret = VERR_CR_ASSOC_ACC_LEN;
1240 else if (assoc_acc->hdr.rqst.desc_tag !=
1241 cpu_to_be32(FCNVME_LSDESC_RQST))
1242 fcret = VERR_LSDESC_RQST;
1243 else if (assoc_acc->hdr.rqst.desc_len !=
1244 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1245 fcret = VERR_LSDESC_RQST_LEN;
1246 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1247 fcret = VERR_CR_ASSOC;
1248 else if (assoc_acc->associd.desc_tag !=
1249 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1250 fcret = VERR_ASSOC_ID;
1251 else if (assoc_acc->associd.desc_len !=
1252 fcnvme_lsdesc_len(
1253 sizeof(struct fcnvme_lsdesc_assoc_id)))
1254 fcret = VERR_ASSOC_ID_LEN;
1255 else if (assoc_acc->connectid.desc_tag !=
1256 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1257 fcret = VERR_CONN_ID;
1258 else if (assoc_acc->connectid.desc_len !=
1259 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1260 fcret = VERR_CONN_ID_LEN;
1261
1262 if (fcret) {
1263 ret = -EBADF;
1264 dev_err(ctrl->dev,
1265 "q %d connect failed: %s\n",
1266 queue->qnum, validation_errors[fcret]);
1267 } else {
1268 ctrl->association_id =
1269 be64_to_cpu(assoc_acc->associd.association_id);
1270 queue->connection_id =
1271 be64_to_cpu(assoc_acc->connectid.connection_id);
1272 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1273 }
1274
1275 out_free_buffer:
1276 kfree(lsop);
1277 out_no_memory:
1278 if (ret)
1279 dev_err(ctrl->dev,
1280 "queue %d connect admin queue failed (%d).\n",
1281 queue->qnum, ret);
1282 return ret;
1283 }
1284
1285 static int
1286 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1287 u16 qsize, u16 ersp_ratio)
1288 {
1289 struct nvmefc_ls_req_op *lsop;
1290 struct nvmefc_ls_req *lsreq;
1291 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1292 struct fcnvme_ls_cr_conn_acc *conn_acc;
1293 int ret, fcret = 0;
1294
1295 lsop = kzalloc((sizeof(*lsop) +
1296 ctrl->lport->ops->lsrqst_priv_sz +
1297 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1298 if (!lsop) {
1299 ret = -ENOMEM;
1300 goto out_no_memory;
1301 }
1302 lsreq = &lsop->ls_req;
1303
1304 lsreq->private = (void *)&lsop[1];
1305 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1306 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1307 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1308
1309 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1310 conn_rqst->desc_list_len = cpu_to_be32(
1311 sizeof(struct fcnvme_lsdesc_assoc_id) +
1312 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1313
1314 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1315 conn_rqst->associd.desc_len =
1316 fcnvme_lsdesc_len(
1317 sizeof(struct fcnvme_lsdesc_assoc_id));
1318 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1319 conn_rqst->connect_cmd.desc_tag =
1320 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1321 conn_rqst->connect_cmd.desc_len =
1322 fcnvme_lsdesc_len(
1323 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1324 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1325 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1326 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1327
1328 lsop->queue = queue;
1329 lsreq->rqstaddr = conn_rqst;
1330 lsreq->rqstlen = sizeof(*conn_rqst);
1331 lsreq->rspaddr = conn_acc;
1332 lsreq->rsplen = sizeof(*conn_acc);
1333 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1334
1335 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1336 if (ret)
1337 goto out_free_buffer;
1338
1339 /* process connect LS completion */
1340
1341 /* validate the ACC response */
1342 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1343 fcret = VERR_LSACC;
1344 else if (conn_acc->hdr.desc_list_len !=
1345 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1346 fcret = VERR_CR_CONN_ACC_LEN;
1347 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1348 fcret = VERR_LSDESC_RQST;
1349 else if (conn_acc->hdr.rqst.desc_len !=
1350 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1351 fcret = VERR_LSDESC_RQST_LEN;
1352 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1353 fcret = VERR_CR_CONN;
1354 else if (conn_acc->connectid.desc_tag !=
1355 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1356 fcret = VERR_CONN_ID;
1357 else if (conn_acc->connectid.desc_len !=
1358 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1359 fcret = VERR_CONN_ID_LEN;
1360
1361 if (fcret) {
1362 ret = -EBADF;
1363 dev_err(ctrl->dev,
1364 "q %d connect failed: %s\n",
1365 queue->qnum, validation_errors[fcret]);
1366 } else {
1367 queue->connection_id =
1368 be64_to_cpu(conn_acc->connectid.connection_id);
1369 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1370 }
1371
1372 out_free_buffer:
1373 kfree(lsop);
1374 out_no_memory:
1375 if (ret)
1376 dev_err(ctrl->dev,
1377 "queue %d connect command failed (%d).\n",
1378 queue->qnum, ret);
1379 return ret;
1380 }
1381
1382 static void
1383 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1384 {
1385 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1386
1387 __nvme_fc_finish_ls_req(lsop);
1388
1389 /* fc-nvme iniator doesn't care about success or failure of cmd */
1390
1391 kfree(lsop);
1392 }
1393
1394 /*
1395 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1396 * the FC-NVME Association. Terminating the association also
1397 * terminates the FC-NVME connections (per queue, both admin and io
1398 * queues) that are part of the association. E.g. things are torn
1399 * down, and the related FC-NVME Association ID and Connection IDs
1400 * become invalid.
1401 *
1402 * The behavior of the fc-nvme initiator is such that it's
1403 * understanding of the association and connections will implicitly
1404 * be torn down. The action is implicit as it may be due to a loss of
1405 * connectivity with the fc-nvme target, so you may never get a
1406 * response even if you tried. As such, the action of this routine
1407 * is to asynchronously send the LS, ignore any results of the LS, and
1408 * continue on with terminating the association. If the fc-nvme target
1409 * is present and receives the LS, it too can tear down.
1410 */
1411 static void
1412 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1413 {
1414 struct fcnvme_ls_disconnect_rqst *discon_rqst;
1415 struct fcnvme_ls_disconnect_acc *discon_acc;
1416 struct nvmefc_ls_req_op *lsop;
1417 struct nvmefc_ls_req *lsreq;
1418 int ret;
1419
1420 lsop = kzalloc((sizeof(*lsop) +
1421 ctrl->lport->ops->lsrqst_priv_sz +
1422 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1423 GFP_KERNEL);
1424 if (!lsop)
1425 /* couldn't sent it... too bad */
1426 return;
1427
1428 lsreq = &lsop->ls_req;
1429
1430 lsreq->private = (void *)&lsop[1];
1431 discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1432 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1433 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1434
1435 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1436 discon_rqst->desc_list_len = cpu_to_be32(
1437 sizeof(struct fcnvme_lsdesc_assoc_id) +
1438 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1439
1440 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1441 discon_rqst->associd.desc_len =
1442 fcnvme_lsdesc_len(
1443 sizeof(struct fcnvme_lsdesc_assoc_id));
1444
1445 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1446
1447 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1448 FCNVME_LSDESC_DISCONN_CMD);
1449 discon_rqst->discon_cmd.desc_len =
1450 fcnvme_lsdesc_len(
1451 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1452 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1453 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1454
1455 lsreq->rqstaddr = discon_rqst;
1456 lsreq->rqstlen = sizeof(*discon_rqst);
1457 lsreq->rspaddr = discon_acc;
1458 lsreq->rsplen = sizeof(*discon_acc);
1459 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1460
1461 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1462 nvme_fc_disconnect_assoc_done);
1463 if (ret)
1464 kfree(lsop);
1465
1466 /* only meaningful part to terminating the association */
1467 ctrl->association_id = 0;
1468 }
1469
1470
1471 /* *********************** NVME Ctrl Routines **************************** */
1472
1473 static void __nvme_fc_final_op_cleanup(struct request *rq);
1474 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1475
1476 static int
1477 nvme_fc_reinit_request(void *data, struct request *rq)
1478 {
1479 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1480 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1481
1482 memset(cmdiu, 0, sizeof(*cmdiu));
1483 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1484 cmdiu->fc_id = NVME_CMD_FC_ID;
1485 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1486 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1487
1488 return 0;
1489 }
1490
1491 static void
1492 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1493 struct nvme_fc_fcp_op *op)
1494 {
1495 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1496 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1497 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1498 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1499
1500 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1501 }
1502
1503 static void
1504 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1505 unsigned int hctx_idx)
1506 {
1507 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1508
1509 return __nvme_fc_exit_request(set->driver_data, op);
1510 }
1511
1512 static int
1513 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1514 {
1515 int state;
1516
1517 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1518 if (state != FCPOP_STATE_ACTIVE) {
1519 atomic_set(&op->state, state);
1520 return -ECANCELED;
1521 }
1522
1523 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1524 &ctrl->rport->remoteport,
1525 op->queue->lldd_handle,
1526 &op->fcp_req);
1527
1528 return 0;
1529 }
1530
1531 static void
1532 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1533 {
1534 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1535 unsigned long flags;
1536 int i, ret;
1537
1538 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1539 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1540 continue;
1541
1542 spin_lock_irqsave(&ctrl->lock, flags);
1543 if (ctrl->flags & FCCTRL_TERMIO) {
1544 ctrl->iocnt++;
1545 aen_op->flags |= FCOP_FLAGS_TERMIO;
1546 }
1547 spin_unlock_irqrestore(&ctrl->lock, flags);
1548
1549 ret = __nvme_fc_abort_op(ctrl, aen_op);
1550 if (ret) {
1551 /*
1552 * if __nvme_fc_abort_op failed the io wasn't
1553 * active. Thus this call path is running in
1554 * parallel to the io complete. Treat as non-error.
1555 */
1556
1557 /* back out the flags/counters */
1558 spin_lock_irqsave(&ctrl->lock, flags);
1559 if (ctrl->flags & FCCTRL_TERMIO)
1560 ctrl->iocnt--;
1561 aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1562 spin_unlock_irqrestore(&ctrl->lock, flags);
1563 return;
1564 }
1565 }
1566 }
1567
1568 static inline int
1569 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1570 struct nvme_fc_fcp_op *op)
1571 {
1572 unsigned long flags;
1573 bool complete_rq = false;
1574
1575 spin_lock_irqsave(&ctrl->lock, flags);
1576 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1577 if (ctrl->flags & FCCTRL_TERMIO) {
1578 if (!--ctrl->iocnt)
1579 wake_up(&ctrl->ioabort_wait);
1580 }
1581 }
1582 if (op->flags & FCOP_FLAGS_RELEASED)
1583 complete_rq = true;
1584 else
1585 op->flags |= FCOP_FLAGS_COMPLETE;
1586 spin_unlock_irqrestore(&ctrl->lock, flags);
1587
1588 return complete_rq;
1589 }
1590
1591 static void
1592 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1593 {
1594 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1595 struct request *rq = op->rq;
1596 struct nvmefc_fcp_req *freq = &op->fcp_req;
1597 struct nvme_fc_ctrl *ctrl = op->ctrl;
1598 struct nvme_fc_queue *queue = op->queue;
1599 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1600 struct nvme_command *sqe = &op->cmd_iu.sqe;
1601 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1602 union nvme_result result;
1603 bool terminate_assoc = true;
1604
1605 /*
1606 * WARNING:
1607 * The current linux implementation of a nvme controller
1608 * allocates a single tag set for all io queues and sizes
1609 * the io queues to fully hold all possible tags. Thus, the
1610 * implementation does not reference or care about the sqhd
1611 * value as it never needs to use the sqhd/sqtail pointers
1612 * for submission pacing.
1613 *
1614 * This affects the FC-NVME implementation in two ways:
1615 * 1) As the value doesn't matter, we don't need to waste
1616 * cycles extracting it from ERSPs and stamping it in the
1617 * cases where the transport fabricates CQEs on successful
1618 * completions.
1619 * 2) The FC-NVME implementation requires that delivery of
1620 * ERSP completions are to go back to the nvme layer in order
1621 * relative to the rsn, such that the sqhd value will always
1622 * be "in order" for the nvme layer. As the nvme layer in
1623 * linux doesn't care about sqhd, there's no need to return
1624 * them in order.
1625 *
1626 * Additionally:
1627 * As the core nvme layer in linux currently does not look at
1628 * every field in the cqe - in cases where the FC transport must
1629 * fabricate a CQE, the following fields will not be set as they
1630 * are not referenced:
1631 * cqe.sqid, cqe.sqhd, cqe.command_id
1632 *
1633 * Failure or error of an individual i/o, in a transport
1634 * detected fashion unrelated to the nvme completion status,
1635 * potentially cause the initiator and target sides to get out
1636 * of sync on SQ head/tail (aka outstanding io count allowed).
1637 * Per FC-NVME spec, failure of an individual command requires
1638 * the connection to be terminated, which in turn requires the
1639 * association to be terminated.
1640 */
1641
1642 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1643 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1644
1645 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED ||
1646 op->flags & FCOP_FLAGS_TERMIO)
1647 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1648 else if (freq->status)
1649 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1650
1651 /*
1652 * For the linux implementation, if we have an unsuccesful
1653 * status, they blk-mq layer can typically be called with the
1654 * non-zero status and the content of the cqe isn't important.
1655 */
1656 if (status)
1657 goto done;
1658
1659 /*
1660 * command completed successfully relative to the wire
1661 * protocol. However, validate anything received and
1662 * extract the status and result from the cqe (create it
1663 * where necessary).
1664 */
1665
1666 switch (freq->rcv_rsplen) {
1667
1668 case 0:
1669 case NVME_FC_SIZEOF_ZEROS_RSP:
1670 /*
1671 * No response payload or 12 bytes of payload (which
1672 * should all be zeros) are considered successful and
1673 * no payload in the CQE by the transport.
1674 */
1675 if (freq->transferred_length !=
1676 be32_to_cpu(op->cmd_iu.data_len)) {
1677 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1678 goto done;
1679 }
1680 result.u64 = 0;
1681 break;
1682
1683 case sizeof(struct nvme_fc_ersp_iu):
1684 /*
1685 * The ERSP IU contains a full completion with CQE.
1686 * Validate ERSP IU and look at cqe.
1687 */
1688 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1689 (freq->rcv_rsplen / 4) ||
1690 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1691 freq->transferred_length ||
1692 op->rsp_iu.status_code ||
1693 sqe->common.command_id != cqe->command_id)) {
1694 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1695 goto done;
1696 }
1697 result = cqe->result;
1698 status = cqe->status;
1699 break;
1700
1701 default:
1702 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1703 goto done;
1704 }
1705
1706 terminate_assoc = false;
1707
1708 done:
1709 if (op->flags & FCOP_FLAGS_AEN) {
1710 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1711 __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1712 atomic_set(&op->state, FCPOP_STATE_IDLE);
1713 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
1714 nvme_fc_ctrl_put(ctrl);
1715 goto check_error;
1716 }
1717
1718 /*
1719 * Force failures of commands if we're killing the controller
1720 * or have an error on a command used to create an new association
1721 */
1722 if (status &&
1723 (blk_queue_dying(rq->q) ||
1724 ctrl->ctrl.state == NVME_CTRL_NEW ||
1725 ctrl->ctrl.state == NVME_CTRL_RECONNECTING))
1726 status |= cpu_to_le16(NVME_SC_DNR << 1);
1727
1728 if (__nvme_fc_fcpop_chk_teardowns(ctrl, op))
1729 __nvme_fc_final_op_cleanup(rq);
1730 else
1731 nvme_end_request(rq, status, result);
1732
1733 check_error:
1734 if (terminate_assoc)
1735 nvme_fc_error_recovery(ctrl, "transport detected io error");
1736 }
1737
1738 static int
1739 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1740 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1741 struct request *rq, u32 rqno)
1742 {
1743 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1744 int ret = 0;
1745
1746 memset(op, 0, sizeof(*op));
1747 op->fcp_req.cmdaddr = &op->cmd_iu;
1748 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1749 op->fcp_req.rspaddr = &op->rsp_iu;
1750 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1751 op->fcp_req.done = nvme_fc_fcpio_done;
1752 op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1753 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1754 op->ctrl = ctrl;
1755 op->queue = queue;
1756 op->rq = rq;
1757 op->rqno = rqno;
1758
1759 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1760 cmdiu->fc_id = NVME_CMD_FC_ID;
1761 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1762
1763 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1764 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1765 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1766 dev_err(ctrl->dev,
1767 "FCP Op failed - cmdiu dma mapping failed.\n");
1768 ret = EFAULT;
1769 goto out_on_error;
1770 }
1771
1772 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1773 &op->rsp_iu, sizeof(op->rsp_iu),
1774 DMA_FROM_DEVICE);
1775 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1776 dev_err(ctrl->dev,
1777 "FCP Op failed - rspiu dma mapping failed.\n");
1778 ret = EFAULT;
1779 }
1780
1781 atomic_set(&op->state, FCPOP_STATE_IDLE);
1782 out_on_error:
1783 return ret;
1784 }
1785
1786 static int
1787 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1788 unsigned int hctx_idx, unsigned int numa_node)
1789 {
1790 struct nvme_fc_ctrl *ctrl = set->driver_data;
1791 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1792 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1793 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1794
1795 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1796 }
1797
1798 static int
1799 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1800 {
1801 struct nvme_fc_fcp_op *aen_op;
1802 struct nvme_fc_cmd_iu *cmdiu;
1803 struct nvme_command *sqe;
1804 void *private;
1805 int i, ret;
1806
1807 aen_op = ctrl->aen_ops;
1808 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1809 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1810 GFP_KERNEL);
1811 if (!private)
1812 return -ENOMEM;
1813
1814 cmdiu = &aen_op->cmd_iu;
1815 sqe = &cmdiu->sqe;
1816 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1817 aen_op, (struct request *)NULL,
1818 (NVME_AQ_BLK_MQ_DEPTH + i));
1819 if (ret) {
1820 kfree(private);
1821 return ret;
1822 }
1823
1824 aen_op->flags = FCOP_FLAGS_AEN;
1825 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1826 aen_op->fcp_req.private = private;
1827
1828 memset(sqe, 0, sizeof(*sqe));
1829 sqe->common.opcode = nvme_admin_async_event;
1830 /* Note: core layer may overwrite the sqe.command_id value */
1831 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1832 }
1833 return 0;
1834 }
1835
1836 static void
1837 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1838 {
1839 struct nvme_fc_fcp_op *aen_op;
1840 int i;
1841
1842 aen_op = ctrl->aen_ops;
1843 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1844 if (!aen_op->fcp_req.private)
1845 continue;
1846
1847 __nvme_fc_exit_request(ctrl, aen_op);
1848
1849 kfree(aen_op->fcp_req.private);
1850 aen_op->fcp_req.private = NULL;
1851 }
1852 }
1853
1854 static inline void
1855 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1856 unsigned int qidx)
1857 {
1858 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1859
1860 hctx->driver_data = queue;
1861 queue->hctx = hctx;
1862 }
1863
1864 static int
1865 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1866 unsigned int hctx_idx)
1867 {
1868 struct nvme_fc_ctrl *ctrl = data;
1869
1870 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1871
1872 return 0;
1873 }
1874
1875 static int
1876 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1877 unsigned int hctx_idx)
1878 {
1879 struct nvme_fc_ctrl *ctrl = data;
1880
1881 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1882
1883 return 0;
1884 }
1885
1886 static void
1887 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1888 {
1889 struct nvme_fc_queue *queue;
1890
1891 queue = &ctrl->queues[idx];
1892 memset(queue, 0, sizeof(*queue));
1893 queue->ctrl = ctrl;
1894 queue->qnum = idx;
1895 atomic_set(&queue->csn, 1);
1896 queue->dev = ctrl->dev;
1897
1898 if (idx > 0)
1899 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1900 else
1901 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1902
1903 /*
1904 * Considered whether we should allocate buffers for all SQEs
1905 * and CQEs and dma map them - mapping their respective entries
1906 * into the request structures (kernel vm addr and dma address)
1907 * thus the driver could use the buffers/mappings directly.
1908 * It only makes sense if the LLDD would use them for its
1909 * messaging api. It's very unlikely most adapter api's would use
1910 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1911 * structures were used instead.
1912 */
1913 }
1914
1915 /*
1916 * This routine terminates a queue at the transport level.
1917 * The transport has already ensured that all outstanding ios on
1918 * the queue have been terminated.
1919 * The transport will send a Disconnect LS request to terminate
1920 * the queue's connection. Termination of the admin queue will also
1921 * terminate the association at the target.
1922 */
1923 static void
1924 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1925 {
1926 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1927 return;
1928
1929 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1930 /*
1931 * Current implementation never disconnects a single queue.
1932 * It always terminates a whole association. So there is never
1933 * a disconnect(queue) LS sent to the target.
1934 */
1935
1936 queue->connection_id = 0;
1937 }
1938
1939 static void
1940 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1941 struct nvme_fc_queue *queue, unsigned int qidx)
1942 {
1943 if (ctrl->lport->ops->delete_queue)
1944 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1945 queue->lldd_handle);
1946 queue->lldd_handle = NULL;
1947 }
1948
1949 static void
1950 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1951 {
1952 int i;
1953
1954 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1955 nvme_fc_free_queue(&ctrl->queues[i]);
1956 }
1957
1958 static int
1959 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1960 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1961 {
1962 int ret = 0;
1963
1964 queue->lldd_handle = NULL;
1965 if (ctrl->lport->ops->create_queue)
1966 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1967 qidx, qsize, &queue->lldd_handle);
1968
1969 return ret;
1970 }
1971
1972 static void
1973 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1974 {
1975 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1976 int i;
1977
1978 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1979 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1980 }
1981
1982 static int
1983 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1984 {
1985 struct nvme_fc_queue *queue = &ctrl->queues[1];
1986 int i, ret;
1987
1988 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1989 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1990 if (ret)
1991 goto delete_queues;
1992 }
1993
1994 return 0;
1995
1996 delete_queues:
1997 for (; i >= 0; i--)
1998 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1999 return ret;
2000 }
2001
2002 static int
2003 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2004 {
2005 int i, ret = 0;
2006
2007 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2008 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2009 (qsize / 5));
2010 if (ret)
2011 break;
2012 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2013 if (ret)
2014 break;
2015
2016 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2017 }
2018
2019 return ret;
2020 }
2021
2022 static void
2023 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2024 {
2025 int i;
2026
2027 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2028 nvme_fc_init_queue(ctrl, i);
2029 }
2030
2031 static void
2032 nvme_fc_ctrl_free(struct kref *ref)
2033 {
2034 struct nvme_fc_ctrl *ctrl =
2035 container_of(ref, struct nvme_fc_ctrl, ref);
2036 unsigned long flags;
2037
2038 if (ctrl->ctrl.tagset) {
2039 blk_cleanup_queue(ctrl->ctrl.connect_q);
2040 blk_mq_free_tag_set(&ctrl->tag_set);
2041 }
2042
2043 /* remove from rport list */
2044 spin_lock_irqsave(&ctrl->rport->lock, flags);
2045 list_del(&ctrl->ctrl_list);
2046 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2047
2048 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2049 blk_cleanup_queue(ctrl->ctrl.admin_q);
2050 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2051
2052 kfree(ctrl->queues);
2053
2054 put_device(ctrl->dev);
2055 nvme_fc_rport_put(ctrl->rport);
2056
2057 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2058 if (ctrl->ctrl.opts)
2059 nvmf_free_options(ctrl->ctrl.opts);
2060 kfree(ctrl);
2061 }
2062
2063 static void
2064 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2065 {
2066 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2067 }
2068
2069 static int
2070 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2071 {
2072 return kref_get_unless_zero(&ctrl->ref);
2073 }
2074
2075 /*
2076 * All accesses from nvme core layer done - can now free the
2077 * controller. Called after last nvme_put_ctrl() call
2078 */
2079 static void
2080 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2081 {
2082 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2083
2084 WARN_ON(nctrl != &ctrl->ctrl);
2085
2086 nvme_fc_ctrl_put(ctrl);
2087 }
2088
2089 static void
2090 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2091 {
2092 /* only proceed if in LIVE state - e.g. on first error */
2093 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2094 return;
2095
2096 dev_warn(ctrl->ctrl.device,
2097 "NVME-FC{%d}: transport association error detected: %s\n",
2098 ctrl->cnum, errmsg);
2099 dev_warn(ctrl->ctrl.device,
2100 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2101
2102 nvme_reset_ctrl(&ctrl->ctrl);
2103 }
2104
2105 static enum blk_eh_timer_return
2106 nvme_fc_timeout(struct request *rq, bool reserved)
2107 {
2108 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2109 struct nvme_fc_ctrl *ctrl = op->ctrl;
2110 int ret;
2111
2112 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2113 atomic_read(&op->state) == FCPOP_STATE_ABORTED)
2114 return BLK_EH_RESET_TIMER;
2115
2116 ret = __nvme_fc_abort_op(ctrl, op);
2117 if (ret)
2118 /* io wasn't active to abort */
2119 return BLK_EH_NOT_HANDLED;
2120
2121 /*
2122 * we can't individually ABTS an io without affecting the queue,
2123 * thus killing the queue, adn thus the association.
2124 * So resolve by performing a controller reset, which will stop
2125 * the host/io stack, terminate the association on the link,
2126 * and recreate an association on the link.
2127 */
2128 nvme_fc_error_recovery(ctrl, "io timeout error");
2129
2130 /*
2131 * the io abort has been initiated. Have the reset timer
2132 * restarted and the abort completion will complete the io
2133 * shortly. Avoids a synchronous wait while the abort finishes.
2134 */
2135 return BLK_EH_RESET_TIMER;
2136 }
2137
2138 static int
2139 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2140 struct nvme_fc_fcp_op *op)
2141 {
2142 struct nvmefc_fcp_req *freq = &op->fcp_req;
2143 enum dma_data_direction dir;
2144 int ret;
2145
2146 freq->sg_cnt = 0;
2147
2148 if (!blk_rq_payload_bytes(rq))
2149 return 0;
2150
2151 freq->sg_table.sgl = freq->first_sgl;
2152 ret = sg_alloc_table_chained(&freq->sg_table,
2153 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2154 if (ret)
2155 return -ENOMEM;
2156
2157 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2158 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2159 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2160 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2161 op->nents, dir);
2162 if (unlikely(freq->sg_cnt <= 0)) {
2163 sg_free_table_chained(&freq->sg_table, true);
2164 freq->sg_cnt = 0;
2165 return -EFAULT;
2166 }
2167
2168 /*
2169 * TODO: blk_integrity_rq(rq) for DIF
2170 */
2171 return 0;
2172 }
2173
2174 static void
2175 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2176 struct nvme_fc_fcp_op *op)
2177 {
2178 struct nvmefc_fcp_req *freq = &op->fcp_req;
2179
2180 if (!freq->sg_cnt)
2181 return;
2182
2183 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2184 ((rq_data_dir(rq) == WRITE) ?
2185 DMA_TO_DEVICE : DMA_FROM_DEVICE));
2186
2187 nvme_cleanup_cmd(rq);
2188
2189 sg_free_table_chained(&freq->sg_table, true);
2190
2191 freq->sg_cnt = 0;
2192 }
2193
2194 /*
2195 * In FC, the queue is a logical thing. At transport connect, the target
2196 * creates its "queue" and returns a handle that is to be given to the
2197 * target whenever it posts something to the corresponding SQ. When an
2198 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2199 * command contained within the SQE, an io, and assigns a FC exchange
2200 * to it. The SQE and the associated SQ handle are sent in the initial
2201 * CMD IU sents on the exchange. All transfers relative to the io occur
2202 * as part of the exchange. The CQE is the last thing for the io,
2203 * which is transferred (explicitly or implicitly) with the RSP IU
2204 * sent on the exchange. After the CQE is received, the FC exchange is
2205 * terminaed and the Exchange may be used on a different io.
2206 *
2207 * The transport to LLDD api has the transport making a request for a
2208 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2209 * resource and transfers the command. The LLDD will then process all
2210 * steps to complete the io. Upon completion, the transport done routine
2211 * is called.
2212 *
2213 * So - while the operation is outstanding to the LLDD, there is a link
2214 * level FC exchange resource that is also outstanding. This must be
2215 * considered in all cleanup operations.
2216 */
2217 static blk_status_t
2218 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2219 struct nvme_fc_fcp_op *op, u32 data_len,
2220 enum nvmefc_fcp_datadir io_dir)
2221 {
2222 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2223 struct nvme_command *sqe = &cmdiu->sqe;
2224 u32 csn;
2225 int ret;
2226
2227 /*
2228 * before attempting to send the io, check to see if we believe
2229 * the target device is present
2230 */
2231 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2232 return BLK_STS_RESOURCE;
2233
2234 if (!nvme_fc_ctrl_get(ctrl))
2235 return BLK_STS_IOERR;
2236
2237 /* format the FC-NVME CMD IU and fcp_req */
2238 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2239 csn = atomic_inc_return(&queue->csn);
2240 cmdiu->csn = cpu_to_be32(csn);
2241 cmdiu->data_len = cpu_to_be32(data_len);
2242 switch (io_dir) {
2243 case NVMEFC_FCP_WRITE:
2244 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2245 break;
2246 case NVMEFC_FCP_READ:
2247 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2248 break;
2249 case NVMEFC_FCP_NODATA:
2250 cmdiu->flags = 0;
2251 break;
2252 }
2253 op->fcp_req.payload_length = data_len;
2254 op->fcp_req.io_dir = io_dir;
2255 op->fcp_req.transferred_length = 0;
2256 op->fcp_req.rcv_rsplen = 0;
2257 op->fcp_req.status = NVME_SC_SUCCESS;
2258 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2259
2260 /*
2261 * validate per fabric rules, set fields mandated by fabric spec
2262 * as well as those by FC-NVME spec.
2263 */
2264 WARN_ON_ONCE(sqe->common.metadata);
2265 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2266
2267 /*
2268 * format SQE DPTR field per FC-NVME rules:
2269 * type=0x5 Transport SGL Data Block Descriptor
2270 * subtype=0xA Transport-specific value
2271 * address=0
2272 * length=length of the data series
2273 */
2274 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2275 NVME_SGL_FMT_TRANSPORT_A;
2276 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2277 sqe->rw.dptr.sgl.addr = 0;
2278
2279 if (!(op->flags & FCOP_FLAGS_AEN)) {
2280 ret = nvme_fc_map_data(ctrl, op->rq, op);
2281 if (ret < 0) {
2282 nvme_cleanup_cmd(op->rq);
2283 nvme_fc_ctrl_put(ctrl);
2284 if (ret == -ENOMEM || ret == -EAGAIN)
2285 return BLK_STS_RESOURCE;
2286 return BLK_STS_IOERR;
2287 }
2288 }
2289
2290 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2291 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2292
2293 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2294
2295 if (!(op->flags & FCOP_FLAGS_AEN))
2296 blk_mq_start_request(op->rq);
2297
2298 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2299 &ctrl->rport->remoteport,
2300 queue->lldd_handle, &op->fcp_req);
2301
2302 if (ret) {
2303 if (!(op->flags & FCOP_FLAGS_AEN))
2304 nvme_fc_unmap_data(ctrl, op->rq, op);
2305
2306 nvme_fc_ctrl_put(ctrl);
2307
2308 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2309 ret != -EBUSY)
2310 return BLK_STS_IOERR;
2311
2312 return BLK_STS_RESOURCE;
2313 }
2314
2315 return BLK_STS_OK;
2316 }
2317
2318 static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue,
2319 struct request *rq)
2320 {
2321 if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags)))
2322 return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
2323 return BLK_STS_OK;
2324 }
2325
2326 static blk_status_t
2327 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2328 const struct blk_mq_queue_data *bd)
2329 {
2330 struct nvme_ns *ns = hctx->queue->queuedata;
2331 struct nvme_fc_queue *queue = hctx->driver_data;
2332 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2333 struct request *rq = bd->rq;
2334 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2335 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2336 struct nvme_command *sqe = &cmdiu->sqe;
2337 enum nvmefc_fcp_datadir io_dir;
2338 u32 data_len;
2339 blk_status_t ret;
2340
2341 ret = nvme_fc_is_ready(queue, rq);
2342 if (unlikely(ret))
2343 return ret;
2344
2345 ret = nvme_setup_cmd(ns, rq, sqe);
2346 if (ret)
2347 return ret;
2348
2349 data_len = blk_rq_payload_bytes(rq);
2350 if (data_len)
2351 io_dir = ((rq_data_dir(rq) == WRITE) ?
2352 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2353 else
2354 io_dir = NVMEFC_FCP_NODATA;
2355
2356 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2357 }
2358
2359 static struct blk_mq_tags *
2360 nvme_fc_tagset(struct nvme_fc_queue *queue)
2361 {
2362 if (queue->qnum == 0)
2363 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2364
2365 return queue->ctrl->tag_set.tags[queue->qnum - 1];
2366 }
2367
2368 static int
2369 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2370
2371 {
2372 struct nvme_fc_queue *queue = hctx->driver_data;
2373 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2374 struct request *req;
2375 struct nvme_fc_fcp_op *op;
2376
2377 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2378 if (!req)
2379 return 0;
2380
2381 op = blk_mq_rq_to_pdu(req);
2382
2383 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2384 (ctrl->lport->ops->poll_queue))
2385 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2386 queue->lldd_handle);
2387
2388 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2389 }
2390
2391 static void
2392 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2393 {
2394 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2395 struct nvme_fc_fcp_op *aen_op;
2396 unsigned long flags;
2397 bool terminating = false;
2398 blk_status_t ret;
2399
2400 spin_lock_irqsave(&ctrl->lock, flags);
2401 if (ctrl->flags & FCCTRL_TERMIO)
2402 terminating = true;
2403 spin_unlock_irqrestore(&ctrl->lock, flags);
2404
2405 if (terminating)
2406 return;
2407
2408 aen_op = &ctrl->aen_ops[0];
2409
2410 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2411 NVMEFC_FCP_NODATA);
2412 if (ret)
2413 dev_err(ctrl->ctrl.device,
2414 "failed async event work\n");
2415 }
2416
2417 static void
2418 __nvme_fc_final_op_cleanup(struct request *rq)
2419 {
2420 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2421 struct nvme_fc_ctrl *ctrl = op->ctrl;
2422
2423 atomic_set(&op->state, FCPOP_STATE_IDLE);
2424 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2425 FCOP_FLAGS_COMPLETE);
2426
2427 nvme_fc_unmap_data(ctrl, rq, op);
2428 nvme_complete_rq(rq);
2429 nvme_fc_ctrl_put(ctrl);
2430
2431 }
2432
2433 static void
2434 nvme_fc_complete_rq(struct request *rq)
2435 {
2436 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2437 struct nvme_fc_ctrl *ctrl = op->ctrl;
2438 unsigned long flags;
2439 bool completed = false;
2440
2441 /*
2442 * the core layer, on controller resets after calling
2443 * nvme_shutdown_ctrl(), calls complete_rq without our
2444 * calling blk_mq_complete_request(), thus there may still
2445 * be live i/o outstanding with the LLDD. Means transport has
2446 * to track complete calls vs fcpio_done calls to know what
2447 * path to take on completes and dones.
2448 */
2449 spin_lock_irqsave(&ctrl->lock, flags);
2450 if (op->flags & FCOP_FLAGS_COMPLETE)
2451 completed = true;
2452 else
2453 op->flags |= FCOP_FLAGS_RELEASED;
2454 spin_unlock_irqrestore(&ctrl->lock, flags);
2455
2456 if (completed)
2457 __nvme_fc_final_op_cleanup(rq);
2458 }
2459
2460 /*
2461 * This routine is used by the transport when it needs to find active
2462 * io on a queue that is to be terminated. The transport uses
2463 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2464 * this routine to kill them on a 1 by 1 basis.
2465 *
2466 * As FC allocates FC exchange for each io, the transport must contact
2467 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2468 * After terminating the exchange the LLDD will call the transport's
2469 * normal io done path for the request, but it will have an aborted
2470 * status. The done path will return the io request back to the block
2471 * layer with an error status.
2472 */
2473 static void
2474 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2475 {
2476 struct nvme_ctrl *nctrl = data;
2477 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2478 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2479 unsigned long flags;
2480 int status;
2481
2482 if (!blk_mq_request_started(req))
2483 return;
2484
2485 spin_lock_irqsave(&ctrl->lock, flags);
2486 if (ctrl->flags & FCCTRL_TERMIO) {
2487 ctrl->iocnt++;
2488 op->flags |= FCOP_FLAGS_TERMIO;
2489 }
2490 spin_unlock_irqrestore(&ctrl->lock, flags);
2491
2492 status = __nvme_fc_abort_op(ctrl, op);
2493 if (status) {
2494 /*
2495 * if __nvme_fc_abort_op failed the io wasn't
2496 * active. Thus this call path is running in
2497 * parallel to the io complete. Treat as non-error.
2498 */
2499
2500 /* back out the flags/counters */
2501 spin_lock_irqsave(&ctrl->lock, flags);
2502 if (ctrl->flags & FCCTRL_TERMIO)
2503 ctrl->iocnt--;
2504 op->flags &= ~FCOP_FLAGS_TERMIO;
2505 spin_unlock_irqrestore(&ctrl->lock, flags);
2506 return;
2507 }
2508 }
2509
2510
2511 static const struct blk_mq_ops nvme_fc_mq_ops = {
2512 .queue_rq = nvme_fc_queue_rq,
2513 .complete = nvme_fc_complete_rq,
2514 .init_request = nvme_fc_init_request,
2515 .exit_request = nvme_fc_exit_request,
2516 .init_hctx = nvme_fc_init_hctx,
2517 .poll = nvme_fc_poll,
2518 .timeout = nvme_fc_timeout,
2519 };
2520
2521 static int
2522 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2523 {
2524 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2525 unsigned int nr_io_queues;
2526 int ret;
2527
2528 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2529 ctrl->lport->ops->max_hw_queues);
2530 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2531 if (ret) {
2532 dev_info(ctrl->ctrl.device,
2533 "set_queue_count failed: %d\n", ret);
2534 return ret;
2535 }
2536
2537 ctrl->ctrl.queue_count = nr_io_queues + 1;
2538 if (!nr_io_queues)
2539 return 0;
2540
2541 nvme_fc_init_io_queues(ctrl);
2542
2543 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2544 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2545 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2546 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2547 ctrl->tag_set.numa_node = NUMA_NO_NODE;
2548 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2549 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2550 (SG_CHUNK_SIZE *
2551 sizeof(struct scatterlist)) +
2552 ctrl->lport->ops->fcprqst_priv_sz;
2553 ctrl->tag_set.driver_data = ctrl;
2554 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2555 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2556
2557 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2558 if (ret)
2559 return ret;
2560
2561 ctrl->ctrl.tagset = &ctrl->tag_set;
2562
2563 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2564 if (IS_ERR(ctrl->ctrl.connect_q)) {
2565 ret = PTR_ERR(ctrl->ctrl.connect_q);
2566 goto out_free_tag_set;
2567 }
2568
2569 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2570 if (ret)
2571 goto out_cleanup_blk_queue;
2572
2573 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2574 if (ret)
2575 goto out_delete_hw_queues;
2576
2577 return 0;
2578
2579 out_delete_hw_queues:
2580 nvme_fc_delete_hw_io_queues(ctrl);
2581 out_cleanup_blk_queue:
2582 blk_cleanup_queue(ctrl->ctrl.connect_q);
2583 out_free_tag_set:
2584 blk_mq_free_tag_set(&ctrl->tag_set);
2585 nvme_fc_free_io_queues(ctrl);
2586
2587 /* force put free routine to ignore io queues */
2588 ctrl->ctrl.tagset = NULL;
2589
2590 return ret;
2591 }
2592
2593 static int
2594 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2595 {
2596 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2597 unsigned int nr_io_queues;
2598 int ret;
2599
2600 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2601 ctrl->lport->ops->max_hw_queues);
2602 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2603 if (ret) {
2604 dev_info(ctrl->ctrl.device,
2605 "set_queue_count failed: %d\n", ret);
2606 return ret;
2607 }
2608
2609 ctrl->ctrl.queue_count = nr_io_queues + 1;
2610 /* check for io queues existing */
2611 if (ctrl->ctrl.queue_count == 1)
2612 return 0;
2613
2614 nvme_fc_init_io_queues(ctrl);
2615
2616 ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
2617 if (ret)
2618 goto out_free_io_queues;
2619
2620 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2621 if (ret)
2622 goto out_free_io_queues;
2623
2624 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2625 if (ret)
2626 goto out_delete_hw_queues;
2627
2628 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2629
2630 return 0;
2631
2632 out_delete_hw_queues:
2633 nvme_fc_delete_hw_io_queues(ctrl);
2634 out_free_io_queues:
2635 nvme_fc_free_io_queues(ctrl);
2636 return ret;
2637 }
2638
2639 static void
2640 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2641 {
2642 struct nvme_fc_lport *lport = rport->lport;
2643
2644 atomic_inc(&lport->act_rport_cnt);
2645 }
2646
2647 static void
2648 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2649 {
2650 struct nvme_fc_lport *lport = rport->lport;
2651 u32 cnt;
2652
2653 cnt = atomic_dec_return(&lport->act_rport_cnt);
2654 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2655 lport->ops->localport_delete(&lport->localport);
2656 }
2657
2658 static int
2659 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2660 {
2661 struct nvme_fc_rport *rport = ctrl->rport;
2662 u32 cnt;
2663
2664 if (ctrl->assoc_active)
2665 return 1;
2666
2667 ctrl->assoc_active = true;
2668 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2669 if (cnt == 1)
2670 nvme_fc_rport_active_on_lport(rport);
2671
2672 return 0;
2673 }
2674
2675 static int
2676 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2677 {
2678 struct nvme_fc_rport *rport = ctrl->rport;
2679 struct nvme_fc_lport *lport = rport->lport;
2680 u32 cnt;
2681
2682 /* ctrl->assoc_active=false will be set independently */
2683
2684 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2685 if (cnt == 0) {
2686 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2687 lport->ops->remoteport_delete(&rport->remoteport);
2688 nvme_fc_rport_inactive_on_lport(rport);
2689 }
2690
2691 return 0;
2692 }
2693
2694 /*
2695 * This routine restarts the controller on the host side, and
2696 * on the link side, recreates the controller association.
2697 */
2698 static int
2699 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2700 {
2701 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2702 int ret;
2703 bool changed;
2704
2705 ++ctrl->ctrl.nr_reconnects;
2706
2707 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2708 return -ENODEV;
2709
2710 if (nvme_fc_ctlr_active_on_rport(ctrl))
2711 return -ENOTUNIQ;
2712
2713 /*
2714 * Create the admin queue
2715 */
2716
2717 nvme_fc_init_queue(ctrl, 0);
2718
2719 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2720 NVME_AQ_BLK_MQ_DEPTH);
2721 if (ret)
2722 goto out_free_queue;
2723
2724 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2725 NVME_AQ_BLK_MQ_DEPTH,
2726 (NVME_AQ_BLK_MQ_DEPTH / 4));
2727 if (ret)
2728 goto out_delete_hw_queue;
2729
2730 if (ctrl->ctrl.state != NVME_CTRL_NEW)
2731 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2732
2733 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2734 if (ret)
2735 goto out_disconnect_admin_queue;
2736
2737 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2738
2739 /*
2740 * Check controller capabilities
2741 *
2742 * todo:- add code to check if ctrl attributes changed from
2743 * prior connection values
2744 */
2745
2746 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2747 if (ret) {
2748 dev_err(ctrl->ctrl.device,
2749 "prop_get NVME_REG_CAP failed\n");
2750 goto out_disconnect_admin_queue;
2751 }
2752
2753 ctrl->ctrl.sqsize =
2754 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2755
2756 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2757 if (ret)
2758 goto out_disconnect_admin_queue;
2759
2760 ctrl->ctrl.max_hw_sectors =
2761 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2762
2763 ret = nvme_init_identify(&ctrl->ctrl);
2764 if (ret)
2765 goto out_disconnect_admin_queue;
2766
2767 /* sanity checks */
2768
2769 /* FC-NVME does not have other data in the capsule */
2770 if (ctrl->ctrl.icdoff) {
2771 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2772 ctrl->ctrl.icdoff);
2773 goto out_disconnect_admin_queue;
2774 }
2775
2776 /* FC-NVME supports normal SGL Data Block Descriptors */
2777
2778 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2779 /* warn if maxcmd is lower than queue_size */
2780 dev_warn(ctrl->ctrl.device,
2781 "queue_size %zu > ctrl maxcmd %u, reducing "
2782 "to queue_size\n",
2783 opts->queue_size, ctrl->ctrl.maxcmd);
2784 opts->queue_size = ctrl->ctrl.maxcmd;
2785 }
2786
2787 ret = nvme_fc_init_aen_ops(ctrl);
2788 if (ret)
2789 goto out_term_aen_ops;
2790
2791 /*
2792 * Create the io queues
2793 */
2794
2795 if (ctrl->ctrl.queue_count > 1) {
2796 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2797 ret = nvme_fc_create_io_queues(ctrl);
2798 else
2799 ret = nvme_fc_reinit_io_queues(ctrl);
2800 if (ret)
2801 goto out_term_aen_ops;
2802 }
2803
2804 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2805
2806 ctrl->ctrl.nr_reconnects = 0;
2807
2808 if (changed)
2809 nvme_start_ctrl(&ctrl->ctrl);
2810
2811 return 0; /* Success */
2812
2813 out_term_aen_ops:
2814 nvme_fc_term_aen_ops(ctrl);
2815 out_disconnect_admin_queue:
2816 /* send a Disconnect(association) LS to fc-nvme target */
2817 nvme_fc_xmt_disconnect_assoc(ctrl);
2818 out_delete_hw_queue:
2819 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2820 out_free_queue:
2821 nvme_fc_free_queue(&ctrl->queues[0]);
2822 ctrl->assoc_active = false;
2823 nvme_fc_ctlr_inactive_on_rport(ctrl);
2824
2825 return ret;
2826 }
2827
2828 /*
2829 * This routine stops operation of the controller on the host side.
2830 * On the host os stack side: Admin and IO queues are stopped,
2831 * outstanding ios on them terminated via FC ABTS.
2832 * On the link side: the association is terminated.
2833 */
2834 static void
2835 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2836 {
2837 unsigned long flags;
2838
2839 if (!ctrl->assoc_active)
2840 return;
2841 ctrl->assoc_active = false;
2842
2843 spin_lock_irqsave(&ctrl->lock, flags);
2844 ctrl->flags |= FCCTRL_TERMIO;
2845 ctrl->iocnt = 0;
2846 spin_unlock_irqrestore(&ctrl->lock, flags);
2847
2848 /*
2849 * If io queues are present, stop them and terminate all outstanding
2850 * ios on them. As FC allocates FC exchange for each io, the
2851 * transport must contact the LLDD to terminate the exchange,
2852 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2853 * to tell us what io's are busy and invoke a transport routine
2854 * to kill them with the LLDD. After terminating the exchange
2855 * the LLDD will call the transport's normal io done path, but it
2856 * will have an aborted status. The done path will return the
2857 * io requests back to the block layer as part of normal completions
2858 * (but with error status).
2859 */
2860 if (ctrl->ctrl.queue_count > 1) {
2861 nvme_stop_queues(&ctrl->ctrl);
2862 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2863 nvme_fc_terminate_exchange, &ctrl->ctrl);
2864 }
2865
2866 /*
2867 * Other transports, which don't have link-level contexts bound
2868 * to sqe's, would try to gracefully shutdown the controller by
2869 * writing the registers for shutdown and polling (call
2870 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2871 * just aborted and we will wait on those contexts, and given
2872 * there was no indication of how live the controlelr is on the
2873 * link, don't send more io to create more contexts for the
2874 * shutdown. Let the controller fail via keepalive failure if
2875 * its still present.
2876 */
2877
2878 /*
2879 * clean up the admin queue. Same thing as above.
2880 * use blk_mq_tagset_busy_itr() and the transport routine to
2881 * terminate the exchanges.
2882 */
2883 if (ctrl->ctrl.state != NVME_CTRL_NEW)
2884 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2885 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2886 nvme_fc_terminate_exchange, &ctrl->ctrl);
2887
2888 /* kill the aens as they are a separate path */
2889 nvme_fc_abort_aen_ops(ctrl);
2890
2891 /* wait for all io that had to be aborted */
2892 spin_lock_irq(&ctrl->lock);
2893 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2894 ctrl->flags &= ~FCCTRL_TERMIO;
2895 spin_unlock_irq(&ctrl->lock);
2896
2897 nvme_fc_term_aen_ops(ctrl);
2898
2899 /*
2900 * send a Disconnect(association) LS to fc-nvme target
2901 * Note: could have been sent at top of process, but
2902 * cleaner on link traffic if after the aborts complete.
2903 * Note: if association doesn't exist, association_id will be 0
2904 */
2905 if (ctrl->association_id)
2906 nvme_fc_xmt_disconnect_assoc(ctrl);
2907
2908 if (ctrl->ctrl.tagset) {
2909 nvme_fc_delete_hw_io_queues(ctrl);
2910 nvme_fc_free_io_queues(ctrl);
2911 }
2912
2913 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2914 nvme_fc_free_queue(&ctrl->queues[0]);
2915
2916 nvme_fc_ctlr_inactive_on_rport(ctrl);
2917 }
2918
2919 static void
2920 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2921 {
2922 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2923
2924 cancel_delayed_work_sync(&ctrl->connect_work);
2925 /*
2926 * kill the association on the link side. this will block
2927 * waiting for io to terminate
2928 */
2929 nvme_fc_delete_association(ctrl);
2930 }
2931
2932 static void
2933 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2934 {
2935 struct nvme_fc_rport *rport = ctrl->rport;
2936 struct nvme_fc_remote_port *portptr = &rport->remoteport;
2937 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2938 bool recon = true;
2939
2940 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING)
2941 return;
2942
2943 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2944 dev_info(ctrl->ctrl.device,
2945 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2946 ctrl->cnum, status);
2947 else if (time_after_eq(jiffies, rport->dev_loss_end))
2948 recon = false;
2949
2950 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2951 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2952 dev_info(ctrl->ctrl.device,
2953 "NVME-FC{%d}: Reconnect attempt in %ld "
2954 "seconds\n",
2955 ctrl->cnum, recon_delay / HZ);
2956 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2957 recon_delay = rport->dev_loss_end - jiffies;
2958
2959 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2960 } else {
2961 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2962 dev_warn(ctrl->ctrl.device,
2963 "NVME-FC{%d}: Max reconnect attempts (%d) "
2964 "reached. Removing controller\n",
2965 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2966 else
2967 dev_warn(ctrl->ctrl.device,
2968 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2969 "while waiting for remoteport connectivity. "
2970 "Removing controller\n", ctrl->cnum,
2971 portptr->dev_loss_tmo);
2972 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2973 }
2974 }
2975
2976 static void
2977 nvme_fc_reset_ctrl_work(struct work_struct *work)
2978 {
2979 struct nvme_fc_ctrl *ctrl =
2980 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2981 int ret;
2982
2983 nvme_stop_ctrl(&ctrl->ctrl);
2984
2985 /* will block will waiting for io to terminate */
2986 nvme_fc_delete_association(ctrl);
2987
2988 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
2989 dev_err(ctrl->ctrl.device,
2990 "NVME-FC{%d}: error_recovery: Couldn't change state "
2991 "to RECONNECTING\n", ctrl->cnum);
2992 return;
2993 }
2994
2995 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2996 ret = nvme_fc_create_association(ctrl);
2997 else
2998 ret = -ENOTCONN;
2999
3000 if (ret)
3001 nvme_fc_reconnect_or_delete(ctrl, ret);
3002 else
3003 dev_info(ctrl->ctrl.device,
3004 "NVME-FC{%d}: controller reset complete\n",
3005 ctrl->cnum);
3006 }
3007
3008 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3009 .name = "fc",
3010 .module = THIS_MODULE,
3011 .flags = NVME_F_FABRICS,
3012 .reg_read32 = nvmf_reg_read32,
3013 .reg_read64 = nvmf_reg_read64,
3014 .reg_write32 = nvmf_reg_write32,
3015 .free_ctrl = nvme_fc_nvme_ctrl_freed,
3016 .submit_async_event = nvme_fc_submit_async_event,
3017 .delete_ctrl = nvme_fc_delete_ctrl,
3018 .get_address = nvmf_get_address,
3019 .reinit_request = nvme_fc_reinit_request,
3020 };
3021
3022 static void
3023 nvme_fc_connect_ctrl_work(struct work_struct *work)
3024 {
3025 int ret;
3026
3027 struct nvme_fc_ctrl *ctrl =
3028 container_of(to_delayed_work(work),
3029 struct nvme_fc_ctrl, connect_work);
3030
3031 ret = nvme_fc_create_association(ctrl);
3032 if (ret)
3033 nvme_fc_reconnect_or_delete(ctrl, ret);
3034 else
3035 dev_info(ctrl->ctrl.device,
3036 "NVME-FC{%d}: controller reconnect complete\n",
3037 ctrl->cnum);
3038 }
3039
3040
3041 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3042 .queue_rq = nvme_fc_queue_rq,
3043 .complete = nvme_fc_complete_rq,
3044 .init_request = nvme_fc_init_request,
3045 .exit_request = nvme_fc_exit_request,
3046 .init_hctx = nvme_fc_init_admin_hctx,
3047 .timeout = nvme_fc_timeout,
3048 };
3049
3050
3051 /*
3052 * Fails a controller request if it matches an existing controller
3053 * (association) with the same tuple:
3054 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3055 *
3056 * The ports don't need to be compared as they are intrinsically
3057 * already matched by the port pointers supplied.
3058 */
3059 static bool
3060 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3061 struct nvmf_ctrl_options *opts)
3062 {
3063 struct nvme_fc_ctrl *ctrl;
3064 unsigned long flags;
3065 bool found = false;
3066
3067 spin_lock_irqsave(&rport->lock, flags);
3068 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3069 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3070 if (found)
3071 break;
3072 }
3073 spin_unlock_irqrestore(&rport->lock, flags);
3074
3075 return found;
3076 }
3077
3078 static struct nvme_ctrl *
3079 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3080 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3081 {
3082 struct nvme_fc_ctrl *ctrl;
3083 unsigned long flags;
3084 int ret, idx, retry;
3085
3086 if (!(rport->remoteport.port_role &
3087 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3088 ret = -EBADR;
3089 goto out_fail;
3090 }
3091
3092 if (!opts->duplicate_connect &&
3093 nvme_fc_existing_controller(rport, opts)) {
3094 ret = -EALREADY;
3095 goto out_fail;
3096 }
3097
3098 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3099 if (!ctrl) {
3100 ret = -ENOMEM;
3101 goto out_fail;
3102 }
3103
3104 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3105 if (idx < 0) {
3106 ret = -ENOSPC;
3107 goto out_free_ctrl;
3108 }
3109
3110 ctrl->ctrl.opts = opts;
3111 INIT_LIST_HEAD(&ctrl->ctrl_list);
3112 ctrl->lport = lport;
3113 ctrl->rport = rport;
3114 ctrl->dev = lport->dev;
3115 ctrl->cnum = idx;
3116 ctrl->assoc_active = false;
3117 init_waitqueue_head(&ctrl->ioabort_wait);
3118
3119 get_device(ctrl->dev);
3120 kref_init(&ctrl->ref);
3121
3122 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3123 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3124 spin_lock_init(&ctrl->lock);
3125
3126 /* io queue count */
3127 ctrl->ctrl.queue_count = min_t(unsigned int,
3128 opts->nr_io_queues,
3129 lport->ops->max_hw_queues);
3130 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3131
3132 ctrl->ctrl.sqsize = opts->queue_size - 1;
3133 ctrl->ctrl.kato = opts->kato;
3134
3135 ret = -ENOMEM;
3136 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3137 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3138 if (!ctrl->queues)
3139 goto out_free_ida;
3140
3141 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3142 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3143 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3144 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3145 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3146 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3147 (SG_CHUNK_SIZE *
3148 sizeof(struct scatterlist)) +
3149 ctrl->lport->ops->fcprqst_priv_sz;
3150 ctrl->admin_tag_set.driver_data = ctrl;
3151 ctrl->admin_tag_set.nr_hw_queues = 1;
3152 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3153 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3154
3155 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3156 if (ret)
3157 goto out_free_queues;
3158 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3159
3160 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3161 if (IS_ERR(ctrl->ctrl.admin_q)) {
3162 ret = PTR_ERR(ctrl->ctrl.admin_q);
3163 goto out_free_admin_tag_set;
3164 }
3165
3166 /*
3167 * Would have been nice to init io queues tag set as well.
3168 * However, we require interaction from the controller
3169 * for max io queue count before we can do so.
3170 * Defer this to the connect path.
3171 */
3172
3173 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3174 if (ret)
3175 goto out_cleanup_admin_q;
3176
3177 /* at this point, teardown path changes to ref counting on nvme ctrl */
3178
3179 spin_lock_irqsave(&rport->lock, flags);
3180 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3181 spin_unlock_irqrestore(&rport->lock, flags);
3182
3183 /*
3184 * It's possible that transactions used to create the association
3185 * may fail. Examples: CreateAssociation LS or CreateIOConnection
3186 * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3187 * command times out for one of the actions to init the controller
3188 * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3189 * transport errors (frame drop, LS failure) inherently must kill
3190 * the association. The transport is coded so that any command used
3191 * to create the association (prior to a LIVE state transition
3192 * while NEW or RECONNECTING) will fail if it completes in error or
3193 * times out.
3194 *
3195 * As such: as the connect request was mostly likely due to a
3196 * udev event that discovered the remote port, meaning there is
3197 * not an admin or script there to restart if the connect
3198 * request fails, retry the initial connection creation up to
3199 * three times before giving up and declaring failure.
3200 */
3201 for (retry = 0; retry < 3; retry++) {
3202 ret = nvme_fc_create_association(ctrl);
3203 if (!ret)
3204 break;
3205 }
3206
3207 if (ret) {
3208 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3209 cancel_work_sync(&ctrl->ctrl.reset_work);
3210 cancel_delayed_work_sync(&ctrl->connect_work);
3211
3212 /* couldn't schedule retry - fail out */
3213 dev_err(ctrl->ctrl.device,
3214 "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
3215
3216 ctrl->ctrl.opts = NULL;
3217
3218 /* initiate nvme ctrl ref counting teardown */
3219 nvme_uninit_ctrl(&ctrl->ctrl);
3220
3221 /* Remove core ctrl ref. */
3222 nvme_put_ctrl(&ctrl->ctrl);
3223
3224 /* as we're past the point where we transition to the ref
3225 * counting teardown path, if we return a bad pointer here,
3226 * the calling routine, thinking it's prior to the
3227 * transition, will do an rport put. Since the teardown
3228 * path also does a rport put, we do an extra get here to
3229 * so proper order/teardown happens.
3230 */
3231 nvme_fc_rport_get(rport);
3232
3233 if (ret > 0)
3234 ret = -EIO;
3235 return ERR_PTR(ret);
3236 }
3237
3238 nvme_get_ctrl(&ctrl->ctrl);
3239
3240 dev_info(ctrl->ctrl.device,
3241 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3242 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3243
3244 return &ctrl->ctrl;
3245
3246 out_cleanup_admin_q:
3247 blk_cleanup_queue(ctrl->ctrl.admin_q);
3248 out_free_admin_tag_set:
3249 blk_mq_free_tag_set(&ctrl->admin_tag_set);
3250 out_free_queues:
3251 kfree(ctrl->queues);
3252 out_free_ida:
3253 put_device(ctrl->dev);
3254 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3255 out_free_ctrl:
3256 kfree(ctrl);
3257 out_fail:
3258 /* exit via here doesn't follow ctlr ref points */
3259 return ERR_PTR(ret);
3260 }
3261
3262
3263 struct nvmet_fc_traddr {
3264 u64 nn;
3265 u64 pn;
3266 };
3267
3268 static int
3269 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3270 {
3271 u64 token64;
3272
3273 if (match_u64(sstr, &token64))
3274 return -EINVAL;
3275 *val = token64;
3276
3277 return 0;
3278 }
3279
3280 /*
3281 * This routine validates and extracts the WWN's from the TRADDR string.
3282 * As kernel parsers need the 0x to determine number base, universally
3283 * build string to parse with 0x prefix before parsing name strings.
3284 */
3285 static int
3286 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3287 {
3288 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3289 substring_t wwn = { name, &name[sizeof(name)-1] };
3290 int nnoffset, pnoffset;
3291
3292 /* validate it string one of the 2 allowed formats */
3293 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3294 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3295 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3296 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3297 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3298 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3299 NVME_FC_TRADDR_OXNNLEN;
3300 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3301 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3302 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3303 "pn-", NVME_FC_TRADDR_NNLEN))) {
3304 nnoffset = NVME_FC_TRADDR_NNLEN;
3305 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3306 } else
3307 goto out_einval;
3308
3309 name[0] = '0';
3310 name[1] = 'x';
3311 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3312
3313 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3314 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3315 goto out_einval;
3316
3317 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3318 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3319 goto out_einval;
3320
3321 return 0;
3322
3323 out_einval:
3324 pr_warn("%s: bad traddr string\n", __func__);
3325 return -EINVAL;
3326 }
3327
3328 static struct nvme_ctrl *
3329 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3330 {
3331 struct nvme_fc_lport *lport;
3332 struct nvme_fc_rport *rport;
3333 struct nvme_ctrl *ctrl;
3334 struct nvmet_fc_traddr laddr = { 0L, 0L };
3335 struct nvmet_fc_traddr raddr = { 0L, 0L };
3336 unsigned long flags;
3337 int ret;
3338
3339 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3340 if (ret || !raddr.nn || !raddr.pn)
3341 return ERR_PTR(-EINVAL);
3342
3343 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3344 if (ret || !laddr.nn || !laddr.pn)
3345 return ERR_PTR(-EINVAL);
3346
3347 /* find the host and remote ports to connect together */
3348 spin_lock_irqsave(&nvme_fc_lock, flags);
3349 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3350 if (lport->localport.node_name != laddr.nn ||
3351 lport->localport.port_name != laddr.pn)
3352 continue;
3353
3354 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3355 if (rport->remoteport.node_name != raddr.nn ||
3356 rport->remoteport.port_name != raddr.pn)
3357 continue;
3358
3359 /* if fail to get reference fall through. Will error */
3360 if (!nvme_fc_rport_get(rport))
3361 break;
3362
3363 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3364
3365 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3366 if (IS_ERR(ctrl))
3367 nvme_fc_rport_put(rport);
3368 return ctrl;
3369 }
3370 }
3371 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3372
3373 return ERR_PTR(-ENOENT);
3374 }
3375
3376
3377 static struct nvmf_transport_ops nvme_fc_transport = {
3378 .name = "fc",
3379 .module = THIS_MODULE,
3380 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3381 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3382 .create_ctrl = nvme_fc_create_ctrl,
3383 };
3384
3385 static int __init nvme_fc_init_module(void)
3386 {
3387 int ret;
3388
3389 /*
3390 * NOTE:
3391 * It is expected that in the future the kernel will combine
3392 * the FC-isms that are currently under scsi and now being
3393 * added to by NVME into a new standalone FC class. The SCSI
3394 * and NVME protocols and their devices would be under this
3395 * new FC class.
3396 *
3397 * As we need something to post FC-specific udev events to,
3398 * specifically for nvme probe events, start by creating the
3399 * new device class. When the new standalone FC class is
3400 * put in place, this code will move to a more generic
3401 * location for the class.
3402 */
3403 fc_class = class_create(THIS_MODULE, "fc");
3404 if (IS_ERR(fc_class)) {
3405 pr_err("couldn't register class fc\n");
3406 return PTR_ERR(fc_class);
3407 }
3408
3409 /*
3410 * Create a device for the FC-centric udev events
3411 */
3412 fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3413 "fc_udev_device");
3414 if (IS_ERR(fc_udev_device)) {
3415 pr_err("couldn't create fc_udev device!\n");
3416 ret = PTR_ERR(fc_udev_device);
3417 goto out_destroy_class;
3418 }
3419
3420 ret = nvmf_register_transport(&nvme_fc_transport);
3421 if (ret)
3422 goto out_destroy_device;
3423
3424 return 0;
3425
3426 out_destroy_device:
3427 device_destroy(fc_class, MKDEV(0, 0));
3428 out_destroy_class:
3429 class_destroy(fc_class);
3430 return ret;
3431 }
3432
3433 static void __exit nvme_fc_exit_module(void)
3434 {
3435 /* sanity check - all lports should be removed */
3436 if (!list_empty(&nvme_fc_lport_list))
3437 pr_warn("%s: localport list not empty\n", __func__);
3438
3439 nvmf_unregister_transport(&nvme_fc_transport);
3440
3441 ida_destroy(&nvme_fc_local_port_cnt);
3442 ida_destroy(&nvme_fc_ctrl_cnt);
3443
3444 device_destroy(fc_class, MKDEV(0, 0));
3445 class_destroy(fc_class);
3446 }
3447
3448 module_init(nvme_fc_init_module);
3449 module_exit(nvme_fc_exit_module);
3450
3451 MODULE_LICENSE("GPL v2");