]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/fc.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / fc.c
1 /*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 enum nvme_fc_queue_flags {
34 NVME_FC_Q_CONNECTED = (1 << 0),
35 };
36
37 #define NVMEFC_QUEUE_DELAY 3 /* ms units */
38
39 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
40
41 struct nvme_fc_queue {
42 struct nvme_fc_ctrl *ctrl;
43 struct device *dev;
44 struct blk_mq_hw_ctx *hctx;
45 void *lldd_handle;
46 size_t cmnd_capsule_len;
47 u32 qnum;
48 u32 rqcnt;
49 u32 seqno;
50
51 u64 connection_id;
52 atomic_t csn;
53
54 unsigned long flags;
55 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
56
57 enum nvme_fcop_flags {
58 FCOP_FLAGS_TERMIO = (1 << 0),
59 FCOP_FLAGS_RELEASED = (1 << 1),
60 FCOP_FLAGS_COMPLETE = (1 << 2),
61 FCOP_FLAGS_AEN = (1 << 3),
62 };
63
64 struct nvmefc_ls_req_op {
65 struct nvmefc_ls_req ls_req;
66
67 struct nvme_fc_rport *rport;
68 struct nvme_fc_queue *queue;
69 struct request *rq;
70 u32 flags;
71
72 int ls_error;
73 struct completion ls_done;
74 struct list_head lsreq_list; /* rport->ls_req_list */
75 bool req_queued;
76 };
77
78 enum nvme_fcpop_state {
79 FCPOP_STATE_UNINIT = 0,
80 FCPOP_STATE_IDLE = 1,
81 FCPOP_STATE_ACTIVE = 2,
82 FCPOP_STATE_ABORTED = 3,
83 FCPOP_STATE_COMPLETE = 4,
84 };
85
86 struct nvme_fc_fcp_op {
87 struct nvme_request nreq; /*
88 * nvme/host/core.c
89 * requires this to be
90 * the 1st element in the
91 * private structure
92 * associated with the
93 * request.
94 */
95 struct nvmefc_fcp_req fcp_req;
96
97 struct nvme_fc_ctrl *ctrl;
98 struct nvme_fc_queue *queue;
99 struct request *rq;
100
101 atomic_t state;
102 u32 flags;
103 u32 rqno;
104 u32 nents;
105
106 struct nvme_fc_cmd_iu cmd_iu;
107 struct nvme_fc_ersp_iu rsp_iu;
108 };
109
110 struct nvme_fc_lport {
111 struct nvme_fc_local_port localport;
112
113 struct ida endp_cnt;
114 struct list_head port_list; /* nvme_fc_port_list */
115 struct list_head endp_list;
116 struct device *dev; /* physical device for dma */
117 struct nvme_fc_port_template *ops;
118 struct kref ref;
119 atomic_t act_rport_cnt;
120 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
121
122 struct nvme_fc_rport {
123 struct nvme_fc_remote_port remoteport;
124
125 struct list_head endp_list; /* for lport->endp_list */
126 struct list_head ctrl_list;
127 struct list_head ls_req_list;
128 struct device *dev; /* physical device for dma */
129 struct nvme_fc_lport *lport;
130 spinlock_t lock;
131 struct kref ref;
132 atomic_t act_ctrl_cnt;
133 unsigned long dev_loss_end;
134 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
135
136 enum nvme_fcctrl_flags {
137 FCCTRL_TERMIO = (1 << 0),
138 };
139
140 struct nvme_fc_ctrl {
141 spinlock_t lock;
142 struct nvme_fc_queue *queues;
143 struct device *dev;
144 struct nvme_fc_lport *lport;
145 struct nvme_fc_rport *rport;
146 u32 cnum;
147
148 bool assoc_active;
149 u64 association_id;
150
151 struct list_head ctrl_list; /* rport->ctrl_list */
152
153 struct blk_mq_tag_set admin_tag_set;
154 struct blk_mq_tag_set tag_set;
155
156 struct delayed_work connect_work;
157
158 struct kref ref;
159 u32 flags;
160 u32 iocnt;
161 wait_queue_head_t ioabort_wait;
162
163 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
164
165 struct nvme_ctrl ctrl;
166 };
167
168 static inline struct nvme_fc_ctrl *
169 to_fc_ctrl(struct nvme_ctrl *ctrl)
170 {
171 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
172 }
173
174 static inline struct nvme_fc_lport *
175 localport_to_lport(struct nvme_fc_local_port *portptr)
176 {
177 return container_of(portptr, struct nvme_fc_lport, localport);
178 }
179
180 static inline struct nvme_fc_rport *
181 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
182 {
183 return container_of(portptr, struct nvme_fc_rport, remoteport);
184 }
185
186 static inline struct nvmefc_ls_req_op *
187 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
188 {
189 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
190 }
191
192 static inline struct nvme_fc_fcp_op *
193 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
194 {
195 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
196 }
197
198
199
200 /* *************************** Globals **************************** */
201
202
203 static DEFINE_SPINLOCK(nvme_fc_lock);
204
205 static LIST_HEAD(nvme_fc_lport_list);
206 static DEFINE_IDA(nvme_fc_local_port_cnt);
207 static DEFINE_IDA(nvme_fc_ctrl_cnt);
208
209
210
211 /*
212 * These items are short-term. They will eventually be moved into
213 * a generic FC class. See comments in module init.
214 */
215 static struct class *fc_class;
216 static struct device *fc_udev_device;
217
218
219 /* *********************** FC-NVME Port Management ************************ */
220
221 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
222 struct nvme_fc_queue *, unsigned int);
223
224 static void
225 nvme_fc_free_lport(struct kref *ref)
226 {
227 struct nvme_fc_lport *lport =
228 container_of(ref, struct nvme_fc_lport, ref);
229 unsigned long flags;
230
231 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
232 WARN_ON(!list_empty(&lport->endp_list));
233
234 /* remove from transport list */
235 spin_lock_irqsave(&nvme_fc_lock, flags);
236 list_del(&lport->port_list);
237 spin_unlock_irqrestore(&nvme_fc_lock, flags);
238
239 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240 ida_destroy(&lport->endp_cnt);
241
242 put_device(lport->dev);
243
244 kfree(lport);
245 }
246
247 static void
248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
249 {
250 kref_put(&lport->ref, nvme_fc_free_lport);
251 }
252
253 static int
254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
255 {
256 return kref_get_unless_zero(&lport->ref);
257 }
258
259
260 static struct nvme_fc_lport *
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262 struct nvme_fc_port_template *ops,
263 struct device *dev)
264 {
265 struct nvme_fc_lport *lport;
266 unsigned long flags;
267
268 spin_lock_irqsave(&nvme_fc_lock, flags);
269
270 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271 if (lport->localport.node_name != pinfo->node_name ||
272 lport->localport.port_name != pinfo->port_name)
273 continue;
274
275 if (lport->dev != dev) {
276 lport = ERR_PTR(-EXDEV);
277 goto out_done;
278 }
279
280 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281 lport = ERR_PTR(-EEXIST);
282 goto out_done;
283 }
284
285 if (!nvme_fc_lport_get(lport)) {
286 /*
287 * fails if ref cnt already 0. If so,
288 * act as if lport already deleted
289 */
290 lport = NULL;
291 goto out_done;
292 }
293
294 /* resume the lport */
295
296 lport->ops = ops;
297 lport->localport.port_role = pinfo->port_role;
298 lport->localport.port_id = pinfo->port_id;
299 lport->localport.port_state = FC_OBJSTATE_ONLINE;
300
301 spin_unlock_irqrestore(&nvme_fc_lock, flags);
302
303 return lport;
304 }
305
306 lport = NULL;
307
308 out_done:
309 spin_unlock_irqrestore(&nvme_fc_lock, flags);
310
311 return lport;
312 }
313
314 /**
315 * nvme_fc_register_localport - transport entry point called by an
316 * LLDD to register the existence of a NVME
317 * host FC port.
318 * @pinfo: pointer to information about the port to be registered
319 * @template: LLDD entrypoints and operational parameters for the port
320 * @dev: physical hardware device node port corresponds to. Will be
321 * used for DMA mappings
322 * @lport_p: pointer to a local port pointer. Upon success, the routine
323 * will allocate a nvme_fc_local_port structure and place its
324 * address in the local port pointer. Upon failure, local port
325 * pointer will be set to 0.
326 *
327 * Returns:
328 * a completion status. Must be 0 upon success; a negative errno
329 * (ex: -ENXIO) upon failure.
330 */
331 int
332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333 struct nvme_fc_port_template *template,
334 struct device *dev,
335 struct nvme_fc_local_port **portptr)
336 {
337 struct nvme_fc_lport *newrec;
338 unsigned long flags;
339 int ret, idx;
340
341 if (!template->localport_delete || !template->remoteport_delete ||
342 !template->ls_req || !template->fcp_io ||
343 !template->ls_abort || !template->fcp_abort ||
344 !template->max_hw_queues || !template->max_sgl_segments ||
345 !template->max_dif_sgl_segments || !template->dma_boundary) {
346 ret = -EINVAL;
347 goto out_reghost_failed;
348 }
349
350 /*
351 * look to see if there is already a localport that had been
352 * deregistered and in the process of waiting for all the
353 * references to fully be removed. If the references haven't
354 * expired, we can simply re-enable the localport. Remoteports
355 * and controller reconnections should resume naturally.
356 */
357 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
358
359 /* found an lport, but something about its state is bad */
360 if (IS_ERR(newrec)) {
361 ret = PTR_ERR(newrec);
362 goto out_reghost_failed;
363
364 /* found existing lport, which was resumed */
365 } else if (newrec) {
366 *portptr = &newrec->localport;
367 return 0;
368 }
369
370 /* nothing found - allocate a new localport struct */
371
372 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
373 GFP_KERNEL);
374 if (!newrec) {
375 ret = -ENOMEM;
376 goto out_reghost_failed;
377 }
378
379 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
380 if (idx < 0) {
381 ret = -ENOSPC;
382 goto out_fail_kfree;
383 }
384
385 if (!get_device(dev) && dev) {
386 ret = -ENODEV;
387 goto out_ida_put;
388 }
389
390 INIT_LIST_HEAD(&newrec->port_list);
391 INIT_LIST_HEAD(&newrec->endp_list);
392 kref_init(&newrec->ref);
393 atomic_set(&newrec->act_rport_cnt, 0);
394 newrec->ops = template;
395 newrec->dev = dev;
396 ida_init(&newrec->endp_cnt);
397 newrec->localport.private = &newrec[1];
398 newrec->localport.node_name = pinfo->node_name;
399 newrec->localport.port_name = pinfo->port_name;
400 newrec->localport.port_role = pinfo->port_role;
401 newrec->localport.port_id = pinfo->port_id;
402 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
403 newrec->localport.port_num = idx;
404
405 spin_lock_irqsave(&nvme_fc_lock, flags);
406 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
407 spin_unlock_irqrestore(&nvme_fc_lock, flags);
408
409 if (dev)
410 dma_set_seg_boundary(dev, template->dma_boundary);
411
412 *portptr = &newrec->localport;
413 return 0;
414
415 out_ida_put:
416 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
417 out_fail_kfree:
418 kfree(newrec);
419 out_reghost_failed:
420 *portptr = NULL;
421
422 return ret;
423 }
424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
425
426 /**
427 * nvme_fc_unregister_localport - transport entry point called by an
428 * LLDD to deregister/remove a previously
429 * registered a NVME host FC port.
430 * @localport: pointer to the (registered) local port that is to be
431 * deregistered.
432 *
433 * Returns:
434 * a completion status. Must be 0 upon success; a negative errno
435 * (ex: -ENXIO) upon failure.
436 */
437 int
438 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
439 {
440 struct nvme_fc_lport *lport = localport_to_lport(portptr);
441 unsigned long flags;
442
443 if (!portptr)
444 return -EINVAL;
445
446 spin_lock_irqsave(&nvme_fc_lock, flags);
447
448 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
449 spin_unlock_irqrestore(&nvme_fc_lock, flags);
450 return -EINVAL;
451 }
452 portptr->port_state = FC_OBJSTATE_DELETED;
453
454 spin_unlock_irqrestore(&nvme_fc_lock, flags);
455
456 if (atomic_read(&lport->act_rport_cnt) == 0)
457 lport->ops->localport_delete(&lport->localport);
458
459 nvme_fc_lport_put(lport);
460
461 return 0;
462 }
463 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
464
465 /*
466 * TRADDR strings, per FC-NVME are fixed format:
467 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
468 * udev event will only differ by prefix of what field is
469 * being specified:
470 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
471 * 19 + 43 + null_fudge = 64 characters
472 */
473 #define FCNVME_TRADDR_LENGTH 64
474
475 static void
476 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
477 struct nvme_fc_rport *rport)
478 {
479 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
480 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
481 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
482
483 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
484 return;
485
486 snprintf(hostaddr, sizeof(hostaddr),
487 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
488 lport->localport.node_name, lport->localport.port_name);
489 snprintf(tgtaddr, sizeof(tgtaddr),
490 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
491 rport->remoteport.node_name, rport->remoteport.port_name);
492 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
493 }
494
495 static void
496 nvme_fc_free_rport(struct kref *ref)
497 {
498 struct nvme_fc_rport *rport =
499 container_of(ref, struct nvme_fc_rport, ref);
500 struct nvme_fc_lport *lport =
501 localport_to_lport(rport->remoteport.localport);
502 unsigned long flags;
503
504 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
505 WARN_ON(!list_empty(&rport->ctrl_list));
506
507 /* remove from lport list */
508 spin_lock_irqsave(&nvme_fc_lock, flags);
509 list_del(&rport->endp_list);
510 spin_unlock_irqrestore(&nvme_fc_lock, flags);
511
512 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
513
514 kfree(rport);
515
516 nvme_fc_lport_put(lport);
517 }
518
519 static void
520 nvme_fc_rport_put(struct nvme_fc_rport *rport)
521 {
522 kref_put(&rport->ref, nvme_fc_free_rport);
523 }
524
525 static int
526 nvme_fc_rport_get(struct nvme_fc_rport *rport)
527 {
528 return kref_get_unless_zero(&rport->ref);
529 }
530
531 static void
532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
533 {
534 switch (ctrl->ctrl.state) {
535 case NVME_CTRL_NEW:
536 case NVME_CTRL_RECONNECTING:
537 /*
538 * As all reconnects were suppressed, schedule a
539 * connect.
540 */
541 dev_info(ctrl->ctrl.device,
542 "NVME-FC{%d}: connectivity re-established. "
543 "Attempting reconnect\n", ctrl->cnum);
544
545 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
546 break;
547
548 case NVME_CTRL_RESETTING:
549 /*
550 * Controller is already in the process of terminating the
551 * association. No need to do anything further. The reconnect
552 * step will naturally occur after the reset completes.
553 */
554 break;
555
556 default:
557 /* no action to take - let it delete */
558 break;
559 }
560 }
561
562 static struct nvme_fc_rport *
563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
564 struct nvme_fc_port_info *pinfo)
565 {
566 struct nvme_fc_rport *rport;
567 struct nvme_fc_ctrl *ctrl;
568 unsigned long flags;
569
570 spin_lock_irqsave(&nvme_fc_lock, flags);
571
572 list_for_each_entry(rport, &lport->endp_list, endp_list) {
573 if (rport->remoteport.node_name != pinfo->node_name ||
574 rport->remoteport.port_name != pinfo->port_name)
575 continue;
576
577 if (!nvme_fc_rport_get(rport)) {
578 rport = ERR_PTR(-ENOLCK);
579 goto out_done;
580 }
581
582 spin_unlock_irqrestore(&nvme_fc_lock, flags);
583
584 spin_lock_irqsave(&rport->lock, flags);
585
586 /* has it been unregistered */
587 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
588 /* means lldd called us twice */
589 spin_unlock_irqrestore(&rport->lock, flags);
590 nvme_fc_rport_put(rport);
591 return ERR_PTR(-ESTALE);
592 }
593
594 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
595 rport->dev_loss_end = 0;
596
597 /*
598 * kick off a reconnect attempt on all associations to the
599 * remote port. A successful reconnects will resume i/o.
600 */
601 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
602 nvme_fc_resume_controller(ctrl);
603
604 spin_unlock_irqrestore(&rport->lock, flags);
605
606 return rport;
607 }
608
609 rport = NULL;
610
611 out_done:
612 spin_unlock_irqrestore(&nvme_fc_lock, flags);
613
614 return rport;
615 }
616
617 static inline void
618 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
619 struct nvme_fc_port_info *pinfo)
620 {
621 if (pinfo->dev_loss_tmo)
622 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
623 else
624 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
625 }
626
627 /**
628 * nvme_fc_register_remoteport - transport entry point called by an
629 * LLDD to register the existence of a NVME
630 * subsystem FC port on its fabric.
631 * @localport: pointer to the (registered) local port that the remote
632 * subsystem port is connected to.
633 * @pinfo: pointer to information about the port to be registered
634 * @rport_p: pointer to a remote port pointer. Upon success, the routine
635 * will allocate a nvme_fc_remote_port structure and place its
636 * address in the remote port pointer. Upon failure, remote port
637 * pointer will be set to 0.
638 *
639 * Returns:
640 * a completion status. Must be 0 upon success; a negative errno
641 * (ex: -ENXIO) upon failure.
642 */
643 int
644 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
645 struct nvme_fc_port_info *pinfo,
646 struct nvme_fc_remote_port **portptr)
647 {
648 struct nvme_fc_lport *lport = localport_to_lport(localport);
649 struct nvme_fc_rport *newrec;
650 unsigned long flags;
651 int ret, idx;
652
653 if (!nvme_fc_lport_get(lport)) {
654 ret = -ESHUTDOWN;
655 goto out_reghost_failed;
656 }
657
658 /*
659 * look to see if there is already a remoteport that is waiting
660 * for a reconnect (within dev_loss_tmo) with the same WWN's.
661 * If so, transition to it and reconnect.
662 */
663 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
664
665 /* found an rport, but something about its state is bad */
666 if (IS_ERR(newrec)) {
667 ret = PTR_ERR(newrec);
668 goto out_lport_put;
669
670 /* found existing rport, which was resumed */
671 } else if (newrec) {
672 nvme_fc_lport_put(lport);
673 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
674 nvme_fc_signal_discovery_scan(lport, newrec);
675 *portptr = &newrec->remoteport;
676 return 0;
677 }
678
679 /* nothing found - allocate a new remoteport struct */
680
681 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
682 GFP_KERNEL);
683 if (!newrec) {
684 ret = -ENOMEM;
685 goto out_lport_put;
686 }
687
688 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
689 if (idx < 0) {
690 ret = -ENOSPC;
691 goto out_kfree_rport;
692 }
693
694 INIT_LIST_HEAD(&newrec->endp_list);
695 INIT_LIST_HEAD(&newrec->ctrl_list);
696 INIT_LIST_HEAD(&newrec->ls_req_list);
697 kref_init(&newrec->ref);
698 atomic_set(&newrec->act_ctrl_cnt, 0);
699 spin_lock_init(&newrec->lock);
700 newrec->remoteport.localport = &lport->localport;
701 newrec->dev = lport->dev;
702 newrec->lport = lport;
703 newrec->remoteport.private = &newrec[1];
704 newrec->remoteport.port_role = pinfo->port_role;
705 newrec->remoteport.node_name = pinfo->node_name;
706 newrec->remoteport.port_name = pinfo->port_name;
707 newrec->remoteport.port_id = pinfo->port_id;
708 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
709 newrec->remoteport.port_num = idx;
710 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
711
712 spin_lock_irqsave(&nvme_fc_lock, flags);
713 list_add_tail(&newrec->endp_list, &lport->endp_list);
714 spin_unlock_irqrestore(&nvme_fc_lock, flags);
715
716 nvme_fc_signal_discovery_scan(lport, newrec);
717
718 *portptr = &newrec->remoteport;
719 return 0;
720
721 out_kfree_rport:
722 kfree(newrec);
723 out_lport_put:
724 nvme_fc_lport_put(lport);
725 out_reghost_failed:
726 *portptr = NULL;
727 return ret;
728 }
729 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
730
731 static int
732 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
733 {
734 struct nvmefc_ls_req_op *lsop;
735 unsigned long flags;
736
737 restart:
738 spin_lock_irqsave(&rport->lock, flags);
739
740 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
741 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
742 lsop->flags |= FCOP_FLAGS_TERMIO;
743 spin_unlock_irqrestore(&rport->lock, flags);
744 rport->lport->ops->ls_abort(&rport->lport->localport,
745 &rport->remoteport,
746 &lsop->ls_req);
747 goto restart;
748 }
749 }
750 spin_unlock_irqrestore(&rport->lock, flags);
751
752 return 0;
753 }
754
755 static void
756 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
757 {
758 dev_info(ctrl->ctrl.device,
759 "NVME-FC{%d}: controller connectivity lost. Awaiting "
760 "Reconnect", ctrl->cnum);
761
762 switch (ctrl->ctrl.state) {
763 case NVME_CTRL_NEW:
764 case NVME_CTRL_LIVE:
765 /*
766 * Schedule a controller reset. The reset will terminate the
767 * association and schedule the reconnect timer. Reconnects
768 * will be attempted until either the ctlr_loss_tmo
769 * (max_retries * connect_delay) expires or the remoteport's
770 * dev_loss_tmo expires.
771 */
772 if (nvme_reset_ctrl(&ctrl->ctrl)) {
773 dev_warn(ctrl->ctrl.device,
774 "NVME-FC{%d}: Couldn't schedule reset. "
775 "Deleting controller.\n",
776 ctrl->cnum);
777 nvme_delete_ctrl(&ctrl->ctrl);
778 }
779 break;
780
781 case NVME_CTRL_RECONNECTING:
782 /*
783 * The association has already been terminated and the
784 * controller is attempting reconnects. No need to do anything
785 * futher. Reconnects will be attempted until either the
786 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
787 * remoteport's dev_loss_tmo expires.
788 */
789 break;
790
791 case NVME_CTRL_RESETTING:
792 /*
793 * Controller is already in the process of terminating the
794 * association. No need to do anything further. The reconnect
795 * step will kick in naturally after the association is
796 * terminated.
797 */
798 break;
799
800 case NVME_CTRL_DELETING:
801 default:
802 /* no action to take - let it delete */
803 break;
804 }
805 }
806
807 /**
808 * nvme_fc_unregister_remoteport - transport entry point called by an
809 * LLDD to deregister/remove a previously
810 * registered a NVME subsystem FC port.
811 * @remoteport: pointer to the (registered) remote port that is to be
812 * deregistered.
813 *
814 * Returns:
815 * a completion status. Must be 0 upon success; a negative errno
816 * (ex: -ENXIO) upon failure.
817 */
818 int
819 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
820 {
821 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
822 struct nvme_fc_ctrl *ctrl;
823 unsigned long flags;
824
825 if (!portptr)
826 return -EINVAL;
827
828 spin_lock_irqsave(&rport->lock, flags);
829
830 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
831 spin_unlock_irqrestore(&rport->lock, flags);
832 return -EINVAL;
833 }
834 portptr->port_state = FC_OBJSTATE_DELETED;
835
836 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
837
838 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
839 /* if dev_loss_tmo==0, dev loss is immediate */
840 if (!portptr->dev_loss_tmo) {
841 dev_warn(ctrl->ctrl.device,
842 "NVME-FC{%d}: controller connectivity lost. "
843 "Deleting controller.\n",
844 ctrl->cnum);
845 nvme_delete_ctrl(&ctrl->ctrl);
846 } else
847 nvme_fc_ctrl_connectivity_loss(ctrl);
848 }
849
850 spin_unlock_irqrestore(&rport->lock, flags);
851
852 nvme_fc_abort_lsops(rport);
853
854 if (atomic_read(&rport->act_ctrl_cnt) == 0)
855 rport->lport->ops->remoteport_delete(portptr);
856
857 /*
858 * release the reference, which will allow, if all controllers
859 * go away, which should only occur after dev_loss_tmo occurs,
860 * for the rport to be torn down.
861 */
862 nvme_fc_rport_put(rport);
863
864 return 0;
865 }
866 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
867
868 /**
869 * nvme_fc_rescan_remoteport - transport entry point called by an
870 * LLDD to request a nvme device rescan.
871 * @remoteport: pointer to the (registered) remote port that is to be
872 * rescanned.
873 *
874 * Returns: N/A
875 */
876 void
877 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
878 {
879 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
880
881 nvme_fc_signal_discovery_scan(rport->lport, rport);
882 }
883 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
884
885 int
886 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
887 u32 dev_loss_tmo)
888 {
889 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
890 unsigned long flags;
891
892 spin_lock_irqsave(&rport->lock, flags);
893
894 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
895 spin_unlock_irqrestore(&rport->lock, flags);
896 return -EINVAL;
897 }
898
899 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
900 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
901
902 spin_unlock_irqrestore(&rport->lock, flags);
903
904 return 0;
905 }
906 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
907
908
909 /* *********************** FC-NVME DMA Handling **************************** */
910
911 /*
912 * The fcloop device passes in a NULL device pointer. Real LLD's will
913 * pass in a valid device pointer. If NULL is passed to the dma mapping
914 * routines, depending on the platform, it may or may not succeed, and
915 * may crash.
916 *
917 * As such:
918 * Wrapper all the dma routines and check the dev pointer.
919 *
920 * If simple mappings (return just a dma address, we'll noop them,
921 * returning a dma address of 0.
922 *
923 * On more complex mappings (dma_map_sg), a pseudo routine fills
924 * in the scatter list, setting all dma addresses to 0.
925 */
926
927 static inline dma_addr_t
928 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
929 enum dma_data_direction dir)
930 {
931 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
932 }
933
934 static inline int
935 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
936 {
937 return dev ? dma_mapping_error(dev, dma_addr) : 0;
938 }
939
940 static inline void
941 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
942 enum dma_data_direction dir)
943 {
944 if (dev)
945 dma_unmap_single(dev, addr, size, dir);
946 }
947
948 static inline void
949 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
950 enum dma_data_direction dir)
951 {
952 if (dev)
953 dma_sync_single_for_cpu(dev, addr, size, dir);
954 }
955
956 static inline void
957 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
958 enum dma_data_direction dir)
959 {
960 if (dev)
961 dma_sync_single_for_device(dev, addr, size, dir);
962 }
963
964 /* pseudo dma_map_sg call */
965 static int
966 fc_map_sg(struct scatterlist *sg, int nents)
967 {
968 struct scatterlist *s;
969 int i;
970
971 WARN_ON(nents == 0 || sg[0].length == 0);
972
973 for_each_sg(sg, s, nents, i) {
974 s->dma_address = 0L;
975 #ifdef CONFIG_NEED_SG_DMA_LENGTH
976 s->dma_length = s->length;
977 #endif
978 }
979 return nents;
980 }
981
982 static inline int
983 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
984 enum dma_data_direction dir)
985 {
986 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
987 }
988
989 static inline void
990 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
991 enum dma_data_direction dir)
992 {
993 if (dev)
994 dma_unmap_sg(dev, sg, nents, dir);
995 }
996
997 /* *********************** FC-NVME LS Handling **************************** */
998
999 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1000 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1001
1002
1003 static void
1004 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1005 {
1006 struct nvme_fc_rport *rport = lsop->rport;
1007 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1008 unsigned long flags;
1009
1010 spin_lock_irqsave(&rport->lock, flags);
1011
1012 if (!lsop->req_queued) {
1013 spin_unlock_irqrestore(&rport->lock, flags);
1014 return;
1015 }
1016
1017 list_del(&lsop->lsreq_list);
1018
1019 lsop->req_queued = false;
1020
1021 spin_unlock_irqrestore(&rport->lock, flags);
1022
1023 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1024 (lsreq->rqstlen + lsreq->rsplen),
1025 DMA_BIDIRECTIONAL);
1026
1027 nvme_fc_rport_put(rport);
1028 }
1029
1030 static int
1031 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1032 struct nvmefc_ls_req_op *lsop,
1033 void (*done)(struct nvmefc_ls_req *req, int status))
1034 {
1035 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1036 unsigned long flags;
1037 int ret = 0;
1038
1039 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1040 return -ECONNREFUSED;
1041
1042 if (!nvme_fc_rport_get(rport))
1043 return -ESHUTDOWN;
1044
1045 lsreq->done = done;
1046 lsop->rport = rport;
1047 lsop->req_queued = false;
1048 INIT_LIST_HEAD(&lsop->lsreq_list);
1049 init_completion(&lsop->ls_done);
1050
1051 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1052 lsreq->rqstlen + lsreq->rsplen,
1053 DMA_BIDIRECTIONAL);
1054 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1055 ret = -EFAULT;
1056 goto out_putrport;
1057 }
1058 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1059
1060 spin_lock_irqsave(&rport->lock, flags);
1061
1062 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1063
1064 lsop->req_queued = true;
1065
1066 spin_unlock_irqrestore(&rport->lock, flags);
1067
1068 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1069 &rport->remoteport, lsreq);
1070 if (ret)
1071 goto out_unlink;
1072
1073 return 0;
1074
1075 out_unlink:
1076 lsop->ls_error = ret;
1077 spin_lock_irqsave(&rport->lock, flags);
1078 lsop->req_queued = false;
1079 list_del(&lsop->lsreq_list);
1080 spin_unlock_irqrestore(&rport->lock, flags);
1081 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1082 (lsreq->rqstlen + lsreq->rsplen),
1083 DMA_BIDIRECTIONAL);
1084 out_putrport:
1085 nvme_fc_rport_put(rport);
1086
1087 return ret;
1088 }
1089
1090 static void
1091 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1092 {
1093 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1094
1095 lsop->ls_error = status;
1096 complete(&lsop->ls_done);
1097 }
1098
1099 static int
1100 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1101 {
1102 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1103 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1104 int ret;
1105
1106 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1107
1108 if (!ret) {
1109 /*
1110 * No timeout/not interruptible as we need the struct
1111 * to exist until the lldd calls us back. Thus mandate
1112 * wait until driver calls back. lldd responsible for
1113 * the timeout action
1114 */
1115 wait_for_completion(&lsop->ls_done);
1116
1117 __nvme_fc_finish_ls_req(lsop);
1118
1119 ret = lsop->ls_error;
1120 }
1121
1122 if (ret)
1123 return ret;
1124
1125 /* ACC or RJT payload ? */
1126 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1127 return -ENXIO;
1128
1129 return 0;
1130 }
1131
1132 static int
1133 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1134 struct nvmefc_ls_req_op *lsop,
1135 void (*done)(struct nvmefc_ls_req *req, int status))
1136 {
1137 /* don't wait for completion */
1138
1139 return __nvme_fc_send_ls_req(rport, lsop, done);
1140 }
1141
1142 /* Validation Error indexes into the string table below */
1143 enum {
1144 VERR_NO_ERROR = 0,
1145 VERR_LSACC = 1,
1146 VERR_LSDESC_RQST = 2,
1147 VERR_LSDESC_RQST_LEN = 3,
1148 VERR_ASSOC_ID = 4,
1149 VERR_ASSOC_ID_LEN = 5,
1150 VERR_CONN_ID = 6,
1151 VERR_CONN_ID_LEN = 7,
1152 VERR_CR_ASSOC = 8,
1153 VERR_CR_ASSOC_ACC_LEN = 9,
1154 VERR_CR_CONN = 10,
1155 VERR_CR_CONN_ACC_LEN = 11,
1156 VERR_DISCONN = 12,
1157 VERR_DISCONN_ACC_LEN = 13,
1158 };
1159
1160 static char *validation_errors[] = {
1161 "OK",
1162 "Not LS_ACC",
1163 "Not LSDESC_RQST",
1164 "Bad LSDESC_RQST Length",
1165 "Not Association ID",
1166 "Bad Association ID Length",
1167 "Not Connection ID",
1168 "Bad Connection ID Length",
1169 "Not CR_ASSOC Rqst",
1170 "Bad CR_ASSOC ACC Length",
1171 "Not CR_CONN Rqst",
1172 "Bad CR_CONN ACC Length",
1173 "Not Disconnect Rqst",
1174 "Bad Disconnect ACC Length",
1175 };
1176
1177 static int
1178 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1179 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1180 {
1181 struct nvmefc_ls_req_op *lsop;
1182 struct nvmefc_ls_req *lsreq;
1183 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1184 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1185 int ret, fcret = 0;
1186
1187 lsop = kzalloc((sizeof(*lsop) +
1188 ctrl->lport->ops->lsrqst_priv_sz +
1189 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1190 if (!lsop) {
1191 ret = -ENOMEM;
1192 goto out_no_memory;
1193 }
1194 lsreq = &lsop->ls_req;
1195
1196 lsreq->private = (void *)&lsop[1];
1197 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1198 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1199 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200
1201 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1202 assoc_rqst->desc_list_len =
1203 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1204
1205 assoc_rqst->assoc_cmd.desc_tag =
1206 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1207 assoc_rqst->assoc_cmd.desc_len =
1208 fcnvme_lsdesc_len(
1209 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1210
1211 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1212 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
1213 /* Linux supports only Dynamic controllers */
1214 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1215 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1216 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1217 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1218 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1219 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1220
1221 lsop->queue = queue;
1222 lsreq->rqstaddr = assoc_rqst;
1223 lsreq->rqstlen = sizeof(*assoc_rqst);
1224 lsreq->rspaddr = assoc_acc;
1225 lsreq->rsplen = sizeof(*assoc_acc);
1226 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1227
1228 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1229 if (ret)
1230 goto out_free_buffer;
1231
1232 /* process connect LS completion */
1233
1234 /* validate the ACC response */
1235 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1236 fcret = VERR_LSACC;
1237 else if (assoc_acc->hdr.desc_list_len !=
1238 fcnvme_lsdesc_len(
1239 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1240 fcret = VERR_CR_ASSOC_ACC_LEN;
1241 else if (assoc_acc->hdr.rqst.desc_tag !=
1242 cpu_to_be32(FCNVME_LSDESC_RQST))
1243 fcret = VERR_LSDESC_RQST;
1244 else if (assoc_acc->hdr.rqst.desc_len !=
1245 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1246 fcret = VERR_LSDESC_RQST_LEN;
1247 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1248 fcret = VERR_CR_ASSOC;
1249 else if (assoc_acc->associd.desc_tag !=
1250 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1251 fcret = VERR_ASSOC_ID;
1252 else if (assoc_acc->associd.desc_len !=
1253 fcnvme_lsdesc_len(
1254 sizeof(struct fcnvme_lsdesc_assoc_id)))
1255 fcret = VERR_ASSOC_ID_LEN;
1256 else if (assoc_acc->connectid.desc_tag !=
1257 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1258 fcret = VERR_CONN_ID;
1259 else if (assoc_acc->connectid.desc_len !=
1260 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1261 fcret = VERR_CONN_ID_LEN;
1262
1263 if (fcret) {
1264 ret = -EBADF;
1265 dev_err(ctrl->dev,
1266 "q %d connect failed: %s\n",
1267 queue->qnum, validation_errors[fcret]);
1268 } else {
1269 ctrl->association_id =
1270 be64_to_cpu(assoc_acc->associd.association_id);
1271 queue->connection_id =
1272 be64_to_cpu(assoc_acc->connectid.connection_id);
1273 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1274 }
1275
1276 out_free_buffer:
1277 kfree(lsop);
1278 out_no_memory:
1279 if (ret)
1280 dev_err(ctrl->dev,
1281 "queue %d connect admin queue failed (%d).\n",
1282 queue->qnum, ret);
1283 return ret;
1284 }
1285
1286 static int
1287 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1288 u16 qsize, u16 ersp_ratio)
1289 {
1290 struct nvmefc_ls_req_op *lsop;
1291 struct nvmefc_ls_req *lsreq;
1292 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1293 struct fcnvme_ls_cr_conn_acc *conn_acc;
1294 int ret, fcret = 0;
1295
1296 lsop = kzalloc((sizeof(*lsop) +
1297 ctrl->lport->ops->lsrqst_priv_sz +
1298 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1299 if (!lsop) {
1300 ret = -ENOMEM;
1301 goto out_no_memory;
1302 }
1303 lsreq = &lsop->ls_req;
1304
1305 lsreq->private = (void *)&lsop[1];
1306 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1307 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1308 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1309
1310 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1311 conn_rqst->desc_list_len = cpu_to_be32(
1312 sizeof(struct fcnvme_lsdesc_assoc_id) +
1313 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1314
1315 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1316 conn_rqst->associd.desc_len =
1317 fcnvme_lsdesc_len(
1318 sizeof(struct fcnvme_lsdesc_assoc_id));
1319 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1320 conn_rqst->connect_cmd.desc_tag =
1321 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1322 conn_rqst->connect_cmd.desc_len =
1323 fcnvme_lsdesc_len(
1324 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1325 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1326 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1327 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1328
1329 lsop->queue = queue;
1330 lsreq->rqstaddr = conn_rqst;
1331 lsreq->rqstlen = sizeof(*conn_rqst);
1332 lsreq->rspaddr = conn_acc;
1333 lsreq->rsplen = sizeof(*conn_acc);
1334 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1335
1336 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1337 if (ret)
1338 goto out_free_buffer;
1339
1340 /* process connect LS completion */
1341
1342 /* validate the ACC response */
1343 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1344 fcret = VERR_LSACC;
1345 else if (conn_acc->hdr.desc_list_len !=
1346 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1347 fcret = VERR_CR_CONN_ACC_LEN;
1348 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1349 fcret = VERR_LSDESC_RQST;
1350 else if (conn_acc->hdr.rqst.desc_len !=
1351 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1352 fcret = VERR_LSDESC_RQST_LEN;
1353 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1354 fcret = VERR_CR_CONN;
1355 else if (conn_acc->connectid.desc_tag !=
1356 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1357 fcret = VERR_CONN_ID;
1358 else if (conn_acc->connectid.desc_len !=
1359 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1360 fcret = VERR_CONN_ID_LEN;
1361
1362 if (fcret) {
1363 ret = -EBADF;
1364 dev_err(ctrl->dev,
1365 "q %d connect failed: %s\n",
1366 queue->qnum, validation_errors[fcret]);
1367 } else {
1368 queue->connection_id =
1369 be64_to_cpu(conn_acc->connectid.connection_id);
1370 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1371 }
1372
1373 out_free_buffer:
1374 kfree(lsop);
1375 out_no_memory:
1376 if (ret)
1377 dev_err(ctrl->dev,
1378 "queue %d connect command failed (%d).\n",
1379 queue->qnum, ret);
1380 return ret;
1381 }
1382
1383 static void
1384 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1385 {
1386 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1387
1388 __nvme_fc_finish_ls_req(lsop);
1389
1390 /* fc-nvme iniator doesn't care about success or failure of cmd */
1391
1392 kfree(lsop);
1393 }
1394
1395 /*
1396 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1397 * the FC-NVME Association. Terminating the association also
1398 * terminates the FC-NVME connections (per queue, both admin and io
1399 * queues) that are part of the association. E.g. things are torn
1400 * down, and the related FC-NVME Association ID and Connection IDs
1401 * become invalid.
1402 *
1403 * The behavior of the fc-nvme initiator is such that it's
1404 * understanding of the association and connections will implicitly
1405 * be torn down. The action is implicit as it may be due to a loss of
1406 * connectivity with the fc-nvme target, so you may never get a
1407 * response even if you tried. As such, the action of this routine
1408 * is to asynchronously send the LS, ignore any results of the LS, and
1409 * continue on with terminating the association. If the fc-nvme target
1410 * is present and receives the LS, it too can tear down.
1411 */
1412 static void
1413 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1414 {
1415 struct fcnvme_ls_disconnect_rqst *discon_rqst;
1416 struct fcnvme_ls_disconnect_acc *discon_acc;
1417 struct nvmefc_ls_req_op *lsop;
1418 struct nvmefc_ls_req *lsreq;
1419 int ret;
1420
1421 lsop = kzalloc((sizeof(*lsop) +
1422 ctrl->lport->ops->lsrqst_priv_sz +
1423 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1424 GFP_KERNEL);
1425 if (!lsop)
1426 /* couldn't sent it... too bad */
1427 return;
1428
1429 lsreq = &lsop->ls_req;
1430
1431 lsreq->private = (void *)&lsop[1];
1432 discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1433 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1434 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1435
1436 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1437 discon_rqst->desc_list_len = cpu_to_be32(
1438 sizeof(struct fcnvme_lsdesc_assoc_id) +
1439 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1440
1441 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1442 discon_rqst->associd.desc_len =
1443 fcnvme_lsdesc_len(
1444 sizeof(struct fcnvme_lsdesc_assoc_id));
1445
1446 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1447
1448 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1449 FCNVME_LSDESC_DISCONN_CMD);
1450 discon_rqst->discon_cmd.desc_len =
1451 fcnvme_lsdesc_len(
1452 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1453 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1454 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1455
1456 lsreq->rqstaddr = discon_rqst;
1457 lsreq->rqstlen = sizeof(*discon_rqst);
1458 lsreq->rspaddr = discon_acc;
1459 lsreq->rsplen = sizeof(*discon_acc);
1460 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1461
1462 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1463 nvme_fc_disconnect_assoc_done);
1464 if (ret)
1465 kfree(lsop);
1466
1467 /* only meaningful part to terminating the association */
1468 ctrl->association_id = 0;
1469 }
1470
1471
1472 /* *********************** NVME Ctrl Routines **************************** */
1473
1474 static void __nvme_fc_final_op_cleanup(struct request *rq);
1475 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1476
1477 static int
1478 nvme_fc_reinit_request(void *data, struct request *rq)
1479 {
1480 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1481 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1482
1483 memset(cmdiu, 0, sizeof(*cmdiu));
1484 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1485 cmdiu->fc_id = NVME_CMD_FC_ID;
1486 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1487 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1488
1489 return 0;
1490 }
1491
1492 static void
1493 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1494 struct nvme_fc_fcp_op *op)
1495 {
1496 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1497 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1498 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1499 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1500
1501 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1502 }
1503
1504 static void
1505 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1506 unsigned int hctx_idx)
1507 {
1508 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1509
1510 return __nvme_fc_exit_request(set->driver_data, op);
1511 }
1512
1513 static int
1514 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1515 {
1516 int state;
1517
1518 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1519 if (state != FCPOP_STATE_ACTIVE) {
1520 atomic_set(&op->state, state);
1521 return -ECANCELED;
1522 }
1523
1524 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1525 &ctrl->rport->remoteport,
1526 op->queue->lldd_handle,
1527 &op->fcp_req);
1528
1529 return 0;
1530 }
1531
1532 static void
1533 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1534 {
1535 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1536 unsigned long flags;
1537 int i, ret;
1538
1539 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1540 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1541 continue;
1542
1543 spin_lock_irqsave(&ctrl->lock, flags);
1544 if (ctrl->flags & FCCTRL_TERMIO) {
1545 ctrl->iocnt++;
1546 aen_op->flags |= FCOP_FLAGS_TERMIO;
1547 }
1548 spin_unlock_irqrestore(&ctrl->lock, flags);
1549
1550 ret = __nvme_fc_abort_op(ctrl, aen_op);
1551 if (ret) {
1552 /*
1553 * if __nvme_fc_abort_op failed the io wasn't
1554 * active. Thus this call path is running in
1555 * parallel to the io complete. Treat as non-error.
1556 */
1557
1558 /* back out the flags/counters */
1559 spin_lock_irqsave(&ctrl->lock, flags);
1560 if (ctrl->flags & FCCTRL_TERMIO)
1561 ctrl->iocnt--;
1562 aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1563 spin_unlock_irqrestore(&ctrl->lock, flags);
1564 return;
1565 }
1566 }
1567 }
1568
1569 static inline int
1570 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1571 struct nvme_fc_fcp_op *op)
1572 {
1573 unsigned long flags;
1574 bool complete_rq = false;
1575
1576 spin_lock_irqsave(&ctrl->lock, flags);
1577 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1578 if (ctrl->flags & FCCTRL_TERMIO) {
1579 if (!--ctrl->iocnt)
1580 wake_up(&ctrl->ioabort_wait);
1581 }
1582 }
1583 if (op->flags & FCOP_FLAGS_RELEASED)
1584 complete_rq = true;
1585 else
1586 op->flags |= FCOP_FLAGS_COMPLETE;
1587 spin_unlock_irqrestore(&ctrl->lock, flags);
1588
1589 return complete_rq;
1590 }
1591
1592 static void
1593 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1594 {
1595 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1596 struct request *rq = op->rq;
1597 struct nvmefc_fcp_req *freq = &op->fcp_req;
1598 struct nvme_fc_ctrl *ctrl = op->ctrl;
1599 struct nvme_fc_queue *queue = op->queue;
1600 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1601 struct nvme_command *sqe = &op->cmd_iu.sqe;
1602 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1603 union nvme_result result;
1604 bool terminate_assoc = true;
1605
1606 /*
1607 * WARNING:
1608 * The current linux implementation of a nvme controller
1609 * allocates a single tag set for all io queues and sizes
1610 * the io queues to fully hold all possible tags. Thus, the
1611 * implementation does not reference or care about the sqhd
1612 * value as it never needs to use the sqhd/sqtail pointers
1613 * for submission pacing.
1614 *
1615 * This affects the FC-NVME implementation in two ways:
1616 * 1) As the value doesn't matter, we don't need to waste
1617 * cycles extracting it from ERSPs and stamping it in the
1618 * cases where the transport fabricates CQEs on successful
1619 * completions.
1620 * 2) The FC-NVME implementation requires that delivery of
1621 * ERSP completions are to go back to the nvme layer in order
1622 * relative to the rsn, such that the sqhd value will always
1623 * be "in order" for the nvme layer. As the nvme layer in
1624 * linux doesn't care about sqhd, there's no need to return
1625 * them in order.
1626 *
1627 * Additionally:
1628 * As the core nvme layer in linux currently does not look at
1629 * every field in the cqe - in cases where the FC transport must
1630 * fabricate a CQE, the following fields will not be set as they
1631 * are not referenced:
1632 * cqe.sqid, cqe.sqhd, cqe.command_id
1633 *
1634 * Failure or error of an individual i/o, in a transport
1635 * detected fashion unrelated to the nvme completion status,
1636 * potentially cause the initiator and target sides to get out
1637 * of sync on SQ head/tail (aka outstanding io count allowed).
1638 * Per FC-NVME spec, failure of an individual command requires
1639 * the connection to be terminated, which in turn requires the
1640 * association to be terminated.
1641 */
1642
1643 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1644 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1645
1646 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED ||
1647 op->flags & FCOP_FLAGS_TERMIO)
1648 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1649 else if (freq->status)
1650 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1651
1652 /*
1653 * For the linux implementation, if we have an unsuccesful
1654 * status, they blk-mq layer can typically be called with the
1655 * non-zero status and the content of the cqe isn't important.
1656 */
1657 if (status)
1658 goto done;
1659
1660 /*
1661 * command completed successfully relative to the wire
1662 * protocol. However, validate anything received and
1663 * extract the status and result from the cqe (create it
1664 * where necessary).
1665 */
1666
1667 switch (freq->rcv_rsplen) {
1668
1669 case 0:
1670 case NVME_FC_SIZEOF_ZEROS_RSP:
1671 /*
1672 * No response payload or 12 bytes of payload (which
1673 * should all be zeros) are considered successful and
1674 * no payload in the CQE by the transport.
1675 */
1676 if (freq->transferred_length !=
1677 be32_to_cpu(op->cmd_iu.data_len)) {
1678 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1679 goto done;
1680 }
1681 result.u64 = 0;
1682 break;
1683
1684 case sizeof(struct nvme_fc_ersp_iu):
1685 /*
1686 * The ERSP IU contains a full completion with CQE.
1687 * Validate ERSP IU and look at cqe.
1688 */
1689 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1690 (freq->rcv_rsplen / 4) ||
1691 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1692 freq->transferred_length ||
1693 op->rsp_iu.status_code ||
1694 sqe->common.command_id != cqe->command_id)) {
1695 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1696 goto done;
1697 }
1698 result = cqe->result;
1699 status = cqe->status;
1700 break;
1701
1702 default:
1703 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1704 goto done;
1705 }
1706
1707 terminate_assoc = false;
1708
1709 done:
1710 if (op->flags & FCOP_FLAGS_AEN) {
1711 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1712 __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1713 atomic_set(&op->state, FCPOP_STATE_IDLE);
1714 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
1715 nvme_fc_ctrl_put(ctrl);
1716 goto check_error;
1717 }
1718
1719 /*
1720 * Force failures of commands if we're killing the controller
1721 * or have an error on a command used to create an new association
1722 */
1723 if (status &&
1724 (blk_queue_dying(rq->q) ||
1725 ctrl->ctrl.state == NVME_CTRL_NEW ||
1726 ctrl->ctrl.state == NVME_CTRL_RECONNECTING))
1727 status |= cpu_to_le16(NVME_SC_DNR << 1);
1728
1729 if (__nvme_fc_fcpop_chk_teardowns(ctrl, op))
1730 __nvme_fc_final_op_cleanup(rq);
1731 else
1732 nvme_end_request(rq, status, result);
1733
1734 check_error:
1735 if (terminate_assoc)
1736 nvme_fc_error_recovery(ctrl, "transport detected io error");
1737 }
1738
1739 static int
1740 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1741 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1742 struct request *rq, u32 rqno)
1743 {
1744 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1745 int ret = 0;
1746
1747 memset(op, 0, sizeof(*op));
1748 op->fcp_req.cmdaddr = &op->cmd_iu;
1749 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1750 op->fcp_req.rspaddr = &op->rsp_iu;
1751 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1752 op->fcp_req.done = nvme_fc_fcpio_done;
1753 op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1754 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1755 op->ctrl = ctrl;
1756 op->queue = queue;
1757 op->rq = rq;
1758 op->rqno = rqno;
1759
1760 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1761 cmdiu->fc_id = NVME_CMD_FC_ID;
1762 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1763
1764 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1765 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1766 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1767 dev_err(ctrl->dev,
1768 "FCP Op failed - cmdiu dma mapping failed.\n");
1769 ret = EFAULT;
1770 goto out_on_error;
1771 }
1772
1773 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1774 &op->rsp_iu, sizeof(op->rsp_iu),
1775 DMA_FROM_DEVICE);
1776 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1777 dev_err(ctrl->dev,
1778 "FCP Op failed - rspiu dma mapping failed.\n");
1779 ret = EFAULT;
1780 }
1781
1782 atomic_set(&op->state, FCPOP_STATE_IDLE);
1783 out_on_error:
1784 return ret;
1785 }
1786
1787 static int
1788 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1789 unsigned int hctx_idx, unsigned int numa_node)
1790 {
1791 struct nvme_fc_ctrl *ctrl = set->driver_data;
1792 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1793 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1794 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1795
1796 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1797 }
1798
1799 static int
1800 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1801 {
1802 struct nvme_fc_fcp_op *aen_op;
1803 struct nvme_fc_cmd_iu *cmdiu;
1804 struct nvme_command *sqe;
1805 void *private;
1806 int i, ret;
1807
1808 aen_op = ctrl->aen_ops;
1809 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1810 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1811 GFP_KERNEL);
1812 if (!private)
1813 return -ENOMEM;
1814
1815 cmdiu = &aen_op->cmd_iu;
1816 sqe = &cmdiu->sqe;
1817 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1818 aen_op, (struct request *)NULL,
1819 (NVME_AQ_BLK_MQ_DEPTH + i));
1820 if (ret) {
1821 kfree(private);
1822 return ret;
1823 }
1824
1825 aen_op->flags = FCOP_FLAGS_AEN;
1826 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1827 aen_op->fcp_req.private = private;
1828
1829 memset(sqe, 0, sizeof(*sqe));
1830 sqe->common.opcode = nvme_admin_async_event;
1831 /* Note: core layer may overwrite the sqe.command_id value */
1832 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1833 }
1834 return 0;
1835 }
1836
1837 static void
1838 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1839 {
1840 struct nvme_fc_fcp_op *aen_op;
1841 int i;
1842
1843 aen_op = ctrl->aen_ops;
1844 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1845 if (!aen_op->fcp_req.private)
1846 continue;
1847
1848 __nvme_fc_exit_request(ctrl, aen_op);
1849
1850 kfree(aen_op->fcp_req.private);
1851 aen_op->fcp_req.private = NULL;
1852 }
1853 }
1854
1855 static inline void
1856 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1857 unsigned int qidx)
1858 {
1859 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1860
1861 hctx->driver_data = queue;
1862 queue->hctx = hctx;
1863 }
1864
1865 static int
1866 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1867 unsigned int hctx_idx)
1868 {
1869 struct nvme_fc_ctrl *ctrl = data;
1870
1871 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1872
1873 return 0;
1874 }
1875
1876 static int
1877 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1878 unsigned int hctx_idx)
1879 {
1880 struct nvme_fc_ctrl *ctrl = data;
1881
1882 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1883
1884 return 0;
1885 }
1886
1887 static void
1888 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1889 {
1890 struct nvme_fc_queue *queue;
1891
1892 queue = &ctrl->queues[idx];
1893 memset(queue, 0, sizeof(*queue));
1894 queue->ctrl = ctrl;
1895 queue->qnum = idx;
1896 atomic_set(&queue->csn, 1);
1897 queue->dev = ctrl->dev;
1898
1899 if (idx > 0)
1900 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1901 else
1902 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1903
1904 /*
1905 * Considered whether we should allocate buffers for all SQEs
1906 * and CQEs and dma map them - mapping their respective entries
1907 * into the request structures (kernel vm addr and dma address)
1908 * thus the driver could use the buffers/mappings directly.
1909 * It only makes sense if the LLDD would use them for its
1910 * messaging api. It's very unlikely most adapter api's would use
1911 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1912 * structures were used instead.
1913 */
1914 }
1915
1916 /*
1917 * This routine terminates a queue at the transport level.
1918 * The transport has already ensured that all outstanding ios on
1919 * the queue have been terminated.
1920 * The transport will send a Disconnect LS request to terminate
1921 * the queue's connection. Termination of the admin queue will also
1922 * terminate the association at the target.
1923 */
1924 static void
1925 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1926 {
1927 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1928 return;
1929
1930 /*
1931 * Current implementation never disconnects a single queue.
1932 * It always terminates a whole association. So there is never
1933 * a disconnect(queue) LS sent to the target.
1934 */
1935
1936 queue->connection_id = 0;
1937 clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1938 }
1939
1940 static void
1941 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1942 struct nvme_fc_queue *queue, unsigned int qidx)
1943 {
1944 if (ctrl->lport->ops->delete_queue)
1945 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1946 queue->lldd_handle);
1947 queue->lldd_handle = NULL;
1948 }
1949
1950 static void
1951 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1952 {
1953 int i;
1954
1955 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1956 nvme_fc_free_queue(&ctrl->queues[i]);
1957 }
1958
1959 static int
1960 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1961 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1962 {
1963 int ret = 0;
1964
1965 queue->lldd_handle = NULL;
1966 if (ctrl->lport->ops->create_queue)
1967 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1968 qidx, qsize, &queue->lldd_handle);
1969
1970 return ret;
1971 }
1972
1973 static void
1974 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1975 {
1976 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1977 int i;
1978
1979 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1980 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1981 }
1982
1983 static int
1984 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1985 {
1986 struct nvme_fc_queue *queue = &ctrl->queues[1];
1987 int i, ret;
1988
1989 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1990 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1991 if (ret)
1992 goto delete_queues;
1993 }
1994
1995 return 0;
1996
1997 delete_queues:
1998 for (; i >= 0; i--)
1999 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2000 return ret;
2001 }
2002
2003 static int
2004 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2005 {
2006 int i, ret = 0;
2007
2008 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2009 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2010 (qsize / 5));
2011 if (ret)
2012 break;
2013 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2014 if (ret)
2015 break;
2016 }
2017
2018 return ret;
2019 }
2020
2021 static void
2022 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2023 {
2024 int i;
2025
2026 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2027 nvme_fc_init_queue(ctrl, i);
2028 }
2029
2030 static void
2031 nvme_fc_ctrl_free(struct kref *ref)
2032 {
2033 struct nvme_fc_ctrl *ctrl =
2034 container_of(ref, struct nvme_fc_ctrl, ref);
2035 unsigned long flags;
2036
2037 if (ctrl->ctrl.tagset) {
2038 blk_cleanup_queue(ctrl->ctrl.connect_q);
2039 blk_mq_free_tag_set(&ctrl->tag_set);
2040 }
2041
2042 /* remove from rport list */
2043 spin_lock_irqsave(&ctrl->rport->lock, flags);
2044 list_del(&ctrl->ctrl_list);
2045 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2046
2047 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2048 blk_cleanup_queue(ctrl->ctrl.admin_q);
2049 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2050
2051 kfree(ctrl->queues);
2052
2053 put_device(ctrl->dev);
2054 nvme_fc_rport_put(ctrl->rport);
2055
2056 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2057 if (ctrl->ctrl.opts)
2058 nvmf_free_options(ctrl->ctrl.opts);
2059 kfree(ctrl);
2060 }
2061
2062 static void
2063 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2064 {
2065 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2066 }
2067
2068 static int
2069 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2070 {
2071 return kref_get_unless_zero(&ctrl->ref);
2072 }
2073
2074 /*
2075 * All accesses from nvme core layer done - can now free the
2076 * controller. Called after last nvme_put_ctrl() call
2077 */
2078 static void
2079 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2080 {
2081 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2082
2083 WARN_ON(nctrl != &ctrl->ctrl);
2084
2085 nvme_fc_ctrl_put(ctrl);
2086 }
2087
2088 static void
2089 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2090 {
2091 /* only proceed if in LIVE state - e.g. on first error */
2092 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2093 return;
2094
2095 dev_warn(ctrl->ctrl.device,
2096 "NVME-FC{%d}: transport association error detected: %s\n",
2097 ctrl->cnum, errmsg);
2098 dev_warn(ctrl->ctrl.device,
2099 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2100
2101 nvme_reset_ctrl(&ctrl->ctrl);
2102 }
2103
2104 static enum blk_eh_timer_return
2105 nvme_fc_timeout(struct request *rq, bool reserved)
2106 {
2107 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2108 struct nvme_fc_ctrl *ctrl = op->ctrl;
2109 int ret;
2110
2111 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2112 atomic_read(&op->state) == FCPOP_STATE_ABORTED)
2113 return BLK_EH_RESET_TIMER;
2114
2115 ret = __nvme_fc_abort_op(ctrl, op);
2116 if (ret)
2117 /* io wasn't active to abort */
2118 return BLK_EH_NOT_HANDLED;
2119
2120 /*
2121 * we can't individually ABTS an io without affecting the queue,
2122 * thus killing the queue, adn thus the association.
2123 * So resolve by performing a controller reset, which will stop
2124 * the host/io stack, terminate the association on the link,
2125 * and recreate an association on the link.
2126 */
2127 nvme_fc_error_recovery(ctrl, "io timeout error");
2128
2129 /*
2130 * the io abort has been initiated. Have the reset timer
2131 * restarted and the abort completion will complete the io
2132 * shortly. Avoids a synchronous wait while the abort finishes.
2133 */
2134 return BLK_EH_RESET_TIMER;
2135 }
2136
2137 static int
2138 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2139 struct nvme_fc_fcp_op *op)
2140 {
2141 struct nvmefc_fcp_req *freq = &op->fcp_req;
2142 enum dma_data_direction dir;
2143 int ret;
2144
2145 freq->sg_cnt = 0;
2146
2147 if (!blk_rq_payload_bytes(rq))
2148 return 0;
2149
2150 freq->sg_table.sgl = freq->first_sgl;
2151 ret = sg_alloc_table_chained(&freq->sg_table,
2152 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2153 if (ret)
2154 return -ENOMEM;
2155
2156 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2157 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2158 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2159 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2160 op->nents, dir);
2161 if (unlikely(freq->sg_cnt <= 0)) {
2162 sg_free_table_chained(&freq->sg_table, true);
2163 freq->sg_cnt = 0;
2164 return -EFAULT;
2165 }
2166
2167 /*
2168 * TODO: blk_integrity_rq(rq) for DIF
2169 */
2170 return 0;
2171 }
2172
2173 static void
2174 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2175 struct nvme_fc_fcp_op *op)
2176 {
2177 struct nvmefc_fcp_req *freq = &op->fcp_req;
2178
2179 if (!freq->sg_cnt)
2180 return;
2181
2182 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2183 ((rq_data_dir(rq) == WRITE) ?
2184 DMA_TO_DEVICE : DMA_FROM_DEVICE));
2185
2186 nvme_cleanup_cmd(rq);
2187
2188 sg_free_table_chained(&freq->sg_table, true);
2189
2190 freq->sg_cnt = 0;
2191 }
2192
2193 /*
2194 * In FC, the queue is a logical thing. At transport connect, the target
2195 * creates its "queue" and returns a handle that is to be given to the
2196 * target whenever it posts something to the corresponding SQ. When an
2197 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2198 * command contained within the SQE, an io, and assigns a FC exchange
2199 * to it. The SQE and the associated SQ handle are sent in the initial
2200 * CMD IU sents on the exchange. All transfers relative to the io occur
2201 * as part of the exchange. The CQE is the last thing for the io,
2202 * which is transferred (explicitly or implicitly) with the RSP IU
2203 * sent on the exchange. After the CQE is received, the FC exchange is
2204 * terminaed and the Exchange may be used on a different io.
2205 *
2206 * The transport to LLDD api has the transport making a request for a
2207 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2208 * resource and transfers the command. The LLDD will then process all
2209 * steps to complete the io. Upon completion, the transport done routine
2210 * is called.
2211 *
2212 * So - while the operation is outstanding to the LLDD, there is a link
2213 * level FC exchange resource that is also outstanding. This must be
2214 * considered in all cleanup operations.
2215 */
2216 static blk_status_t
2217 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2218 struct nvme_fc_fcp_op *op, u32 data_len,
2219 enum nvmefc_fcp_datadir io_dir)
2220 {
2221 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2222 struct nvme_command *sqe = &cmdiu->sqe;
2223 u32 csn;
2224 int ret;
2225
2226 /*
2227 * before attempting to send the io, check to see if we believe
2228 * the target device is present
2229 */
2230 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2231 goto busy;
2232
2233 if (!nvme_fc_ctrl_get(ctrl))
2234 return BLK_STS_IOERR;
2235
2236 /* format the FC-NVME CMD IU and fcp_req */
2237 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2238 csn = atomic_inc_return(&queue->csn);
2239 cmdiu->csn = cpu_to_be32(csn);
2240 cmdiu->data_len = cpu_to_be32(data_len);
2241 switch (io_dir) {
2242 case NVMEFC_FCP_WRITE:
2243 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2244 break;
2245 case NVMEFC_FCP_READ:
2246 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2247 break;
2248 case NVMEFC_FCP_NODATA:
2249 cmdiu->flags = 0;
2250 break;
2251 }
2252 op->fcp_req.payload_length = data_len;
2253 op->fcp_req.io_dir = io_dir;
2254 op->fcp_req.transferred_length = 0;
2255 op->fcp_req.rcv_rsplen = 0;
2256 op->fcp_req.status = NVME_SC_SUCCESS;
2257 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2258
2259 /*
2260 * validate per fabric rules, set fields mandated by fabric spec
2261 * as well as those by FC-NVME spec.
2262 */
2263 WARN_ON_ONCE(sqe->common.metadata);
2264 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2265
2266 /*
2267 * format SQE DPTR field per FC-NVME rules:
2268 * type=0x5 Transport SGL Data Block Descriptor
2269 * subtype=0xA Transport-specific value
2270 * address=0
2271 * length=length of the data series
2272 */
2273 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2274 NVME_SGL_FMT_TRANSPORT_A;
2275 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2276 sqe->rw.dptr.sgl.addr = 0;
2277
2278 if (!(op->flags & FCOP_FLAGS_AEN)) {
2279 ret = nvme_fc_map_data(ctrl, op->rq, op);
2280 if (ret < 0) {
2281 nvme_cleanup_cmd(op->rq);
2282 nvme_fc_ctrl_put(ctrl);
2283 if (ret == -ENOMEM || ret == -EAGAIN)
2284 return BLK_STS_RESOURCE;
2285 return BLK_STS_IOERR;
2286 }
2287 }
2288
2289 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2290 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2291
2292 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2293
2294 if (!(op->flags & FCOP_FLAGS_AEN))
2295 blk_mq_start_request(op->rq);
2296
2297 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2298 &ctrl->rport->remoteport,
2299 queue->lldd_handle, &op->fcp_req);
2300
2301 if (ret) {
2302 if (!(op->flags & FCOP_FLAGS_AEN))
2303 nvme_fc_unmap_data(ctrl, op->rq, op);
2304
2305 nvme_fc_ctrl_put(ctrl);
2306
2307 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2308 ret != -EBUSY)
2309 return BLK_STS_IOERR;
2310
2311 goto busy;
2312 }
2313
2314 return BLK_STS_OK;
2315
2316 busy:
2317 if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
2318 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
2319
2320 return BLK_STS_RESOURCE;
2321 }
2322
2323 static blk_status_t
2324 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2325 const struct blk_mq_queue_data *bd)
2326 {
2327 struct nvme_ns *ns = hctx->queue->queuedata;
2328 struct nvme_fc_queue *queue = hctx->driver_data;
2329 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2330 struct request *rq = bd->rq;
2331 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2332 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2333 struct nvme_command *sqe = &cmdiu->sqe;
2334 enum nvmefc_fcp_datadir io_dir;
2335 u32 data_len;
2336 blk_status_t ret;
2337
2338 ret = nvme_setup_cmd(ns, rq, sqe);
2339 if (ret)
2340 return ret;
2341
2342 data_len = blk_rq_payload_bytes(rq);
2343 if (data_len)
2344 io_dir = ((rq_data_dir(rq) == WRITE) ?
2345 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2346 else
2347 io_dir = NVMEFC_FCP_NODATA;
2348
2349 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2350 }
2351
2352 static struct blk_mq_tags *
2353 nvme_fc_tagset(struct nvme_fc_queue *queue)
2354 {
2355 if (queue->qnum == 0)
2356 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2357
2358 return queue->ctrl->tag_set.tags[queue->qnum - 1];
2359 }
2360
2361 static int
2362 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2363
2364 {
2365 struct nvme_fc_queue *queue = hctx->driver_data;
2366 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2367 struct request *req;
2368 struct nvme_fc_fcp_op *op;
2369
2370 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2371 if (!req)
2372 return 0;
2373
2374 op = blk_mq_rq_to_pdu(req);
2375
2376 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2377 (ctrl->lport->ops->poll_queue))
2378 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2379 queue->lldd_handle);
2380
2381 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2382 }
2383
2384 static void
2385 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2386 {
2387 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2388 struct nvme_fc_fcp_op *aen_op;
2389 unsigned long flags;
2390 bool terminating = false;
2391 blk_status_t ret;
2392
2393 spin_lock_irqsave(&ctrl->lock, flags);
2394 if (ctrl->flags & FCCTRL_TERMIO)
2395 terminating = true;
2396 spin_unlock_irqrestore(&ctrl->lock, flags);
2397
2398 if (terminating)
2399 return;
2400
2401 aen_op = &ctrl->aen_ops[0];
2402
2403 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2404 NVMEFC_FCP_NODATA);
2405 if (ret)
2406 dev_err(ctrl->ctrl.device,
2407 "failed async event work\n");
2408 }
2409
2410 static void
2411 __nvme_fc_final_op_cleanup(struct request *rq)
2412 {
2413 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2414 struct nvme_fc_ctrl *ctrl = op->ctrl;
2415
2416 atomic_set(&op->state, FCPOP_STATE_IDLE);
2417 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2418 FCOP_FLAGS_COMPLETE);
2419
2420 nvme_fc_unmap_data(ctrl, rq, op);
2421 nvme_complete_rq(rq);
2422 nvme_fc_ctrl_put(ctrl);
2423
2424 }
2425
2426 static void
2427 nvme_fc_complete_rq(struct request *rq)
2428 {
2429 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2430 struct nvme_fc_ctrl *ctrl = op->ctrl;
2431 unsigned long flags;
2432 bool completed = false;
2433
2434 /*
2435 * the core layer, on controller resets after calling
2436 * nvme_shutdown_ctrl(), calls complete_rq without our
2437 * calling blk_mq_complete_request(), thus there may still
2438 * be live i/o outstanding with the LLDD. Means transport has
2439 * to track complete calls vs fcpio_done calls to know what
2440 * path to take on completes and dones.
2441 */
2442 spin_lock_irqsave(&ctrl->lock, flags);
2443 if (op->flags & FCOP_FLAGS_COMPLETE)
2444 completed = true;
2445 else
2446 op->flags |= FCOP_FLAGS_RELEASED;
2447 spin_unlock_irqrestore(&ctrl->lock, flags);
2448
2449 if (completed)
2450 __nvme_fc_final_op_cleanup(rq);
2451 }
2452
2453 /*
2454 * This routine is used by the transport when it needs to find active
2455 * io on a queue that is to be terminated. The transport uses
2456 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2457 * this routine to kill them on a 1 by 1 basis.
2458 *
2459 * As FC allocates FC exchange for each io, the transport must contact
2460 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2461 * After terminating the exchange the LLDD will call the transport's
2462 * normal io done path for the request, but it will have an aborted
2463 * status. The done path will return the io request back to the block
2464 * layer with an error status.
2465 */
2466 static void
2467 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2468 {
2469 struct nvme_ctrl *nctrl = data;
2470 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2471 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2472 unsigned long flags;
2473 int status;
2474
2475 if (!blk_mq_request_started(req))
2476 return;
2477
2478 spin_lock_irqsave(&ctrl->lock, flags);
2479 if (ctrl->flags & FCCTRL_TERMIO) {
2480 ctrl->iocnt++;
2481 op->flags |= FCOP_FLAGS_TERMIO;
2482 }
2483 spin_unlock_irqrestore(&ctrl->lock, flags);
2484
2485 status = __nvme_fc_abort_op(ctrl, op);
2486 if (status) {
2487 /*
2488 * if __nvme_fc_abort_op failed the io wasn't
2489 * active. Thus this call path is running in
2490 * parallel to the io complete. Treat as non-error.
2491 */
2492
2493 /* back out the flags/counters */
2494 spin_lock_irqsave(&ctrl->lock, flags);
2495 if (ctrl->flags & FCCTRL_TERMIO)
2496 ctrl->iocnt--;
2497 op->flags &= ~FCOP_FLAGS_TERMIO;
2498 spin_unlock_irqrestore(&ctrl->lock, flags);
2499 return;
2500 }
2501 }
2502
2503
2504 static const struct blk_mq_ops nvme_fc_mq_ops = {
2505 .queue_rq = nvme_fc_queue_rq,
2506 .complete = nvme_fc_complete_rq,
2507 .init_request = nvme_fc_init_request,
2508 .exit_request = nvme_fc_exit_request,
2509 .init_hctx = nvme_fc_init_hctx,
2510 .poll = nvme_fc_poll,
2511 .timeout = nvme_fc_timeout,
2512 };
2513
2514 static int
2515 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2516 {
2517 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2518 unsigned int nr_io_queues;
2519 int ret;
2520
2521 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2522 ctrl->lport->ops->max_hw_queues);
2523 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2524 if (ret) {
2525 dev_info(ctrl->ctrl.device,
2526 "set_queue_count failed: %d\n", ret);
2527 return ret;
2528 }
2529
2530 ctrl->ctrl.queue_count = nr_io_queues + 1;
2531 if (!nr_io_queues)
2532 return 0;
2533
2534 nvme_fc_init_io_queues(ctrl);
2535
2536 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2537 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2538 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2539 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2540 ctrl->tag_set.numa_node = NUMA_NO_NODE;
2541 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2542 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2543 (SG_CHUNK_SIZE *
2544 sizeof(struct scatterlist)) +
2545 ctrl->lport->ops->fcprqst_priv_sz;
2546 ctrl->tag_set.driver_data = ctrl;
2547 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2548 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2549
2550 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2551 if (ret)
2552 return ret;
2553
2554 ctrl->ctrl.tagset = &ctrl->tag_set;
2555
2556 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2557 if (IS_ERR(ctrl->ctrl.connect_q)) {
2558 ret = PTR_ERR(ctrl->ctrl.connect_q);
2559 goto out_free_tag_set;
2560 }
2561
2562 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2563 if (ret)
2564 goto out_cleanup_blk_queue;
2565
2566 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2567 if (ret)
2568 goto out_delete_hw_queues;
2569
2570 return 0;
2571
2572 out_delete_hw_queues:
2573 nvme_fc_delete_hw_io_queues(ctrl);
2574 out_cleanup_blk_queue:
2575 blk_cleanup_queue(ctrl->ctrl.connect_q);
2576 out_free_tag_set:
2577 blk_mq_free_tag_set(&ctrl->tag_set);
2578 nvme_fc_free_io_queues(ctrl);
2579
2580 /* force put free routine to ignore io queues */
2581 ctrl->ctrl.tagset = NULL;
2582
2583 return ret;
2584 }
2585
2586 static int
2587 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2588 {
2589 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2590 unsigned int nr_io_queues;
2591 int ret;
2592
2593 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2594 ctrl->lport->ops->max_hw_queues);
2595 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2596 if (ret) {
2597 dev_info(ctrl->ctrl.device,
2598 "set_queue_count failed: %d\n", ret);
2599 return ret;
2600 }
2601
2602 ctrl->ctrl.queue_count = nr_io_queues + 1;
2603 /* check for io queues existing */
2604 if (ctrl->ctrl.queue_count == 1)
2605 return 0;
2606
2607 nvme_fc_init_io_queues(ctrl);
2608
2609 ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
2610 if (ret)
2611 goto out_free_io_queues;
2612
2613 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2614 if (ret)
2615 goto out_free_io_queues;
2616
2617 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2618 if (ret)
2619 goto out_delete_hw_queues;
2620
2621 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2622
2623 return 0;
2624
2625 out_delete_hw_queues:
2626 nvme_fc_delete_hw_io_queues(ctrl);
2627 out_free_io_queues:
2628 nvme_fc_free_io_queues(ctrl);
2629 return ret;
2630 }
2631
2632 static void
2633 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2634 {
2635 struct nvme_fc_lport *lport = rport->lport;
2636
2637 atomic_inc(&lport->act_rport_cnt);
2638 }
2639
2640 static void
2641 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2642 {
2643 struct nvme_fc_lport *lport = rport->lport;
2644 u32 cnt;
2645
2646 cnt = atomic_dec_return(&lport->act_rport_cnt);
2647 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2648 lport->ops->localport_delete(&lport->localport);
2649 }
2650
2651 static int
2652 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2653 {
2654 struct nvme_fc_rport *rport = ctrl->rport;
2655 u32 cnt;
2656
2657 if (ctrl->assoc_active)
2658 return 1;
2659
2660 ctrl->assoc_active = true;
2661 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2662 if (cnt == 1)
2663 nvme_fc_rport_active_on_lport(rport);
2664
2665 return 0;
2666 }
2667
2668 static int
2669 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2670 {
2671 struct nvme_fc_rport *rport = ctrl->rport;
2672 struct nvme_fc_lport *lport = rport->lport;
2673 u32 cnt;
2674
2675 /* ctrl->assoc_active=false will be set independently */
2676
2677 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2678 if (cnt == 0) {
2679 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2680 lport->ops->remoteport_delete(&rport->remoteport);
2681 nvme_fc_rport_inactive_on_lport(rport);
2682 }
2683
2684 return 0;
2685 }
2686
2687 /*
2688 * This routine restarts the controller on the host side, and
2689 * on the link side, recreates the controller association.
2690 */
2691 static int
2692 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2693 {
2694 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2695 int ret;
2696 bool changed;
2697
2698 ++ctrl->ctrl.nr_reconnects;
2699
2700 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2701 return -ENODEV;
2702
2703 if (nvme_fc_ctlr_active_on_rport(ctrl))
2704 return -ENOTUNIQ;
2705
2706 /*
2707 * Create the admin queue
2708 */
2709
2710 nvme_fc_init_queue(ctrl, 0);
2711
2712 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2713 NVME_AQ_BLK_MQ_DEPTH);
2714 if (ret)
2715 goto out_free_queue;
2716
2717 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2718 NVME_AQ_BLK_MQ_DEPTH,
2719 (NVME_AQ_BLK_MQ_DEPTH / 4));
2720 if (ret)
2721 goto out_delete_hw_queue;
2722
2723 if (ctrl->ctrl.state != NVME_CTRL_NEW)
2724 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2725
2726 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2727 if (ret)
2728 goto out_disconnect_admin_queue;
2729
2730 /*
2731 * Check controller capabilities
2732 *
2733 * todo:- add code to check if ctrl attributes changed from
2734 * prior connection values
2735 */
2736
2737 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2738 if (ret) {
2739 dev_err(ctrl->ctrl.device,
2740 "prop_get NVME_REG_CAP failed\n");
2741 goto out_disconnect_admin_queue;
2742 }
2743
2744 ctrl->ctrl.sqsize =
2745 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2746
2747 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2748 if (ret)
2749 goto out_disconnect_admin_queue;
2750
2751 ctrl->ctrl.max_hw_sectors =
2752 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2753
2754 ret = nvme_init_identify(&ctrl->ctrl);
2755 if (ret)
2756 goto out_disconnect_admin_queue;
2757
2758 /* sanity checks */
2759
2760 /* FC-NVME does not have other data in the capsule */
2761 if (ctrl->ctrl.icdoff) {
2762 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2763 ctrl->ctrl.icdoff);
2764 goto out_disconnect_admin_queue;
2765 }
2766
2767 /* FC-NVME supports normal SGL Data Block Descriptors */
2768
2769 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2770 /* warn if maxcmd is lower than queue_size */
2771 dev_warn(ctrl->ctrl.device,
2772 "queue_size %zu > ctrl maxcmd %u, reducing "
2773 "to queue_size\n",
2774 opts->queue_size, ctrl->ctrl.maxcmd);
2775 opts->queue_size = ctrl->ctrl.maxcmd;
2776 }
2777
2778 ret = nvme_fc_init_aen_ops(ctrl);
2779 if (ret)
2780 goto out_term_aen_ops;
2781
2782 /*
2783 * Create the io queues
2784 */
2785
2786 if (ctrl->ctrl.queue_count > 1) {
2787 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2788 ret = nvme_fc_create_io_queues(ctrl);
2789 else
2790 ret = nvme_fc_reinit_io_queues(ctrl);
2791 if (ret)
2792 goto out_term_aen_ops;
2793 }
2794
2795 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2796
2797 ctrl->ctrl.nr_reconnects = 0;
2798
2799 if (changed)
2800 nvme_start_ctrl(&ctrl->ctrl);
2801
2802 return 0; /* Success */
2803
2804 out_term_aen_ops:
2805 nvme_fc_term_aen_ops(ctrl);
2806 out_disconnect_admin_queue:
2807 /* send a Disconnect(association) LS to fc-nvme target */
2808 nvme_fc_xmt_disconnect_assoc(ctrl);
2809 out_delete_hw_queue:
2810 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2811 out_free_queue:
2812 nvme_fc_free_queue(&ctrl->queues[0]);
2813 ctrl->assoc_active = false;
2814 nvme_fc_ctlr_inactive_on_rport(ctrl);
2815
2816 return ret;
2817 }
2818
2819 /*
2820 * This routine stops operation of the controller on the host side.
2821 * On the host os stack side: Admin and IO queues are stopped,
2822 * outstanding ios on them terminated via FC ABTS.
2823 * On the link side: the association is terminated.
2824 */
2825 static void
2826 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2827 {
2828 unsigned long flags;
2829
2830 if (!ctrl->assoc_active)
2831 return;
2832 ctrl->assoc_active = false;
2833
2834 spin_lock_irqsave(&ctrl->lock, flags);
2835 ctrl->flags |= FCCTRL_TERMIO;
2836 ctrl->iocnt = 0;
2837 spin_unlock_irqrestore(&ctrl->lock, flags);
2838
2839 /*
2840 * If io queues are present, stop them and terminate all outstanding
2841 * ios on them. As FC allocates FC exchange for each io, the
2842 * transport must contact the LLDD to terminate the exchange,
2843 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2844 * to tell us what io's are busy and invoke a transport routine
2845 * to kill them with the LLDD. After terminating the exchange
2846 * the LLDD will call the transport's normal io done path, but it
2847 * will have an aborted status. The done path will return the
2848 * io requests back to the block layer as part of normal completions
2849 * (but with error status).
2850 */
2851 if (ctrl->ctrl.queue_count > 1) {
2852 nvme_stop_queues(&ctrl->ctrl);
2853 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2854 nvme_fc_terminate_exchange, &ctrl->ctrl);
2855 }
2856
2857 /*
2858 * Other transports, which don't have link-level contexts bound
2859 * to sqe's, would try to gracefully shutdown the controller by
2860 * writing the registers for shutdown and polling (call
2861 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2862 * just aborted and we will wait on those contexts, and given
2863 * there was no indication of how live the controlelr is on the
2864 * link, don't send more io to create more contexts for the
2865 * shutdown. Let the controller fail via keepalive failure if
2866 * its still present.
2867 */
2868
2869 /*
2870 * clean up the admin queue. Same thing as above.
2871 * use blk_mq_tagset_busy_itr() and the transport routine to
2872 * terminate the exchanges.
2873 */
2874 if (ctrl->ctrl.state != NVME_CTRL_NEW)
2875 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2876 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2877 nvme_fc_terminate_exchange, &ctrl->ctrl);
2878
2879 /* kill the aens as they are a separate path */
2880 nvme_fc_abort_aen_ops(ctrl);
2881
2882 /* wait for all io that had to be aborted */
2883 spin_lock_irq(&ctrl->lock);
2884 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2885 ctrl->flags &= ~FCCTRL_TERMIO;
2886 spin_unlock_irq(&ctrl->lock);
2887
2888 nvme_fc_term_aen_ops(ctrl);
2889
2890 /*
2891 * send a Disconnect(association) LS to fc-nvme target
2892 * Note: could have been sent at top of process, but
2893 * cleaner on link traffic if after the aborts complete.
2894 * Note: if association doesn't exist, association_id will be 0
2895 */
2896 if (ctrl->association_id)
2897 nvme_fc_xmt_disconnect_assoc(ctrl);
2898
2899 if (ctrl->ctrl.tagset) {
2900 nvme_fc_delete_hw_io_queues(ctrl);
2901 nvme_fc_free_io_queues(ctrl);
2902 }
2903
2904 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2905 nvme_fc_free_queue(&ctrl->queues[0]);
2906
2907 nvme_fc_ctlr_inactive_on_rport(ctrl);
2908 }
2909
2910 static void
2911 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2912 {
2913 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2914
2915 cancel_delayed_work_sync(&ctrl->connect_work);
2916 /*
2917 * kill the association on the link side. this will block
2918 * waiting for io to terminate
2919 */
2920 nvme_fc_delete_association(ctrl);
2921 }
2922
2923 static void
2924 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2925 {
2926 struct nvme_fc_rport *rport = ctrl->rport;
2927 struct nvme_fc_remote_port *portptr = &rport->remoteport;
2928 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2929 bool recon = true;
2930
2931 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING)
2932 return;
2933
2934 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2935 dev_info(ctrl->ctrl.device,
2936 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2937 ctrl->cnum, status);
2938 else if (time_after_eq(jiffies, rport->dev_loss_end))
2939 recon = false;
2940
2941 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2942 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2943 dev_info(ctrl->ctrl.device,
2944 "NVME-FC{%d}: Reconnect attempt in %ld "
2945 "seconds\n",
2946 ctrl->cnum, recon_delay / HZ);
2947 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2948 recon_delay = rport->dev_loss_end - jiffies;
2949
2950 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2951 } else {
2952 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2953 dev_warn(ctrl->ctrl.device,
2954 "NVME-FC{%d}: Max reconnect attempts (%d) "
2955 "reached. Removing controller\n",
2956 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2957 else
2958 dev_warn(ctrl->ctrl.device,
2959 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2960 "while waiting for remoteport connectivity. "
2961 "Removing controller\n", ctrl->cnum,
2962 portptr->dev_loss_tmo);
2963 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2964 }
2965 }
2966
2967 static void
2968 nvme_fc_reset_ctrl_work(struct work_struct *work)
2969 {
2970 struct nvme_fc_ctrl *ctrl =
2971 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2972 int ret;
2973
2974 nvme_stop_ctrl(&ctrl->ctrl);
2975
2976 /* will block will waiting for io to terminate */
2977 nvme_fc_delete_association(ctrl);
2978
2979 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
2980 dev_err(ctrl->ctrl.device,
2981 "NVME-FC{%d}: error_recovery: Couldn't change state "
2982 "to RECONNECTING\n", ctrl->cnum);
2983 return;
2984 }
2985
2986 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2987 ret = nvme_fc_create_association(ctrl);
2988 else
2989 ret = -ENOTCONN;
2990
2991 if (ret)
2992 nvme_fc_reconnect_or_delete(ctrl, ret);
2993 else
2994 dev_info(ctrl->ctrl.device,
2995 "NVME-FC{%d}: controller reset complete\n",
2996 ctrl->cnum);
2997 }
2998
2999 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3000 .name = "fc",
3001 .module = THIS_MODULE,
3002 .flags = NVME_F_FABRICS,
3003 .reg_read32 = nvmf_reg_read32,
3004 .reg_read64 = nvmf_reg_read64,
3005 .reg_write32 = nvmf_reg_write32,
3006 .free_ctrl = nvme_fc_nvme_ctrl_freed,
3007 .submit_async_event = nvme_fc_submit_async_event,
3008 .delete_ctrl = nvme_fc_delete_ctrl,
3009 .get_address = nvmf_get_address,
3010 .reinit_request = nvme_fc_reinit_request,
3011 };
3012
3013 static void
3014 nvme_fc_connect_ctrl_work(struct work_struct *work)
3015 {
3016 int ret;
3017
3018 struct nvme_fc_ctrl *ctrl =
3019 container_of(to_delayed_work(work),
3020 struct nvme_fc_ctrl, connect_work);
3021
3022 ret = nvme_fc_create_association(ctrl);
3023 if (ret)
3024 nvme_fc_reconnect_or_delete(ctrl, ret);
3025 else
3026 dev_info(ctrl->ctrl.device,
3027 "NVME-FC{%d}: controller reconnect complete\n",
3028 ctrl->cnum);
3029 }
3030
3031
3032 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3033 .queue_rq = nvme_fc_queue_rq,
3034 .complete = nvme_fc_complete_rq,
3035 .init_request = nvme_fc_init_request,
3036 .exit_request = nvme_fc_exit_request,
3037 .init_hctx = nvme_fc_init_admin_hctx,
3038 .timeout = nvme_fc_timeout,
3039 };
3040
3041
3042 /*
3043 * Fails a controller request if it matches an existing controller
3044 * (association) with the same tuple:
3045 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3046 *
3047 * The ports don't need to be compared as they are intrinsically
3048 * already matched by the port pointers supplied.
3049 */
3050 static bool
3051 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3052 struct nvmf_ctrl_options *opts)
3053 {
3054 struct nvme_fc_ctrl *ctrl;
3055 unsigned long flags;
3056 bool found = false;
3057
3058 spin_lock_irqsave(&rport->lock, flags);
3059 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3060 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3061 if (found)
3062 break;
3063 }
3064 spin_unlock_irqrestore(&rport->lock, flags);
3065
3066 return found;
3067 }
3068
3069 static struct nvme_ctrl *
3070 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3071 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3072 {
3073 struct nvme_fc_ctrl *ctrl;
3074 unsigned long flags;
3075 int ret, idx, retry;
3076
3077 if (!(rport->remoteport.port_role &
3078 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3079 ret = -EBADR;
3080 goto out_fail;
3081 }
3082
3083 if (!opts->duplicate_connect &&
3084 nvme_fc_existing_controller(rport, opts)) {
3085 ret = -EALREADY;
3086 goto out_fail;
3087 }
3088
3089 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3090 if (!ctrl) {
3091 ret = -ENOMEM;
3092 goto out_fail;
3093 }
3094
3095 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3096 if (idx < 0) {
3097 ret = -ENOSPC;
3098 goto out_free_ctrl;
3099 }
3100
3101 ctrl->ctrl.opts = opts;
3102 INIT_LIST_HEAD(&ctrl->ctrl_list);
3103 ctrl->lport = lport;
3104 ctrl->rport = rport;
3105 ctrl->dev = lport->dev;
3106 ctrl->cnum = idx;
3107 ctrl->assoc_active = false;
3108 init_waitqueue_head(&ctrl->ioabort_wait);
3109
3110 get_device(ctrl->dev);
3111 kref_init(&ctrl->ref);
3112
3113 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3114 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3115 spin_lock_init(&ctrl->lock);
3116
3117 /* io queue count */
3118 ctrl->ctrl.queue_count = min_t(unsigned int,
3119 opts->nr_io_queues,
3120 lport->ops->max_hw_queues);
3121 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3122
3123 ctrl->ctrl.sqsize = opts->queue_size - 1;
3124 ctrl->ctrl.kato = opts->kato;
3125
3126 ret = -ENOMEM;
3127 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3128 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3129 if (!ctrl->queues)
3130 goto out_free_ida;
3131
3132 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3133 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3134 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3135 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3136 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3137 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3138 (SG_CHUNK_SIZE *
3139 sizeof(struct scatterlist)) +
3140 ctrl->lport->ops->fcprqst_priv_sz;
3141 ctrl->admin_tag_set.driver_data = ctrl;
3142 ctrl->admin_tag_set.nr_hw_queues = 1;
3143 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3144 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3145
3146 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3147 if (ret)
3148 goto out_free_queues;
3149 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3150
3151 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3152 if (IS_ERR(ctrl->ctrl.admin_q)) {
3153 ret = PTR_ERR(ctrl->ctrl.admin_q);
3154 goto out_free_admin_tag_set;
3155 }
3156
3157 /*
3158 * Would have been nice to init io queues tag set as well.
3159 * However, we require interaction from the controller
3160 * for max io queue count before we can do so.
3161 * Defer this to the connect path.
3162 */
3163
3164 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3165 if (ret)
3166 goto out_cleanup_admin_q;
3167
3168 /* at this point, teardown path changes to ref counting on nvme ctrl */
3169
3170 spin_lock_irqsave(&rport->lock, flags);
3171 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3172 spin_unlock_irqrestore(&rport->lock, flags);
3173
3174 /*
3175 * It's possible that transactions used to create the association
3176 * may fail. Examples: CreateAssociation LS or CreateIOConnection
3177 * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3178 * command times out for one of the actions to init the controller
3179 * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3180 * transport errors (frame drop, LS failure) inherently must kill
3181 * the association. The transport is coded so that any command used
3182 * to create the association (prior to a LIVE state transition
3183 * while NEW or RECONNECTING) will fail if it completes in error or
3184 * times out.
3185 *
3186 * As such: as the connect request was mostly likely due to a
3187 * udev event that discovered the remote port, meaning there is
3188 * not an admin or script there to restart if the connect
3189 * request fails, retry the initial connection creation up to
3190 * three times before giving up and declaring failure.
3191 */
3192 for (retry = 0; retry < 3; retry++) {
3193 ret = nvme_fc_create_association(ctrl);
3194 if (!ret)
3195 break;
3196 }
3197
3198 if (ret) {
3199 /* couldn't schedule retry - fail out */
3200 dev_err(ctrl->ctrl.device,
3201 "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
3202
3203 ctrl->ctrl.opts = NULL;
3204
3205 /* initiate nvme ctrl ref counting teardown */
3206 nvme_uninit_ctrl(&ctrl->ctrl);
3207 nvme_put_ctrl(&ctrl->ctrl);
3208
3209 /* Remove core ctrl ref. */
3210 nvme_put_ctrl(&ctrl->ctrl);
3211
3212 /* as we're past the point where we transition to the ref
3213 * counting teardown path, if we return a bad pointer here,
3214 * the calling routine, thinking it's prior to the
3215 * transition, will do an rport put. Since the teardown
3216 * path also does a rport put, we do an extra get here to
3217 * so proper order/teardown happens.
3218 */
3219 nvme_fc_rport_get(rport);
3220
3221 if (ret > 0)
3222 ret = -EIO;
3223 return ERR_PTR(ret);
3224 }
3225
3226 nvme_get_ctrl(&ctrl->ctrl);
3227
3228 dev_info(ctrl->ctrl.device,
3229 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3230 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3231
3232 return &ctrl->ctrl;
3233
3234 out_cleanup_admin_q:
3235 blk_cleanup_queue(ctrl->ctrl.admin_q);
3236 out_free_admin_tag_set:
3237 blk_mq_free_tag_set(&ctrl->admin_tag_set);
3238 out_free_queues:
3239 kfree(ctrl->queues);
3240 out_free_ida:
3241 put_device(ctrl->dev);
3242 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3243 out_free_ctrl:
3244 kfree(ctrl);
3245 out_fail:
3246 /* exit via here doesn't follow ctlr ref points */
3247 return ERR_PTR(ret);
3248 }
3249
3250
3251 struct nvmet_fc_traddr {
3252 u64 nn;
3253 u64 pn;
3254 };
3255
3256 static int
3257 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3258 {
3259 u64 token64;
3260
3261 if (match_u64(sstr, &token64))
3262 return -EINVAL;
3263 *val = token64;
3264
3265 return 0;
3266 }
3267
3268 /*
3269 * This routine validates and extracts the WWN's from the TRADDR string.
3270 * As kernel parsers need the 0x to determine number base, universally
3271 * build string to parse with 0x prefix before parsing name strings.
3272 */
3273 static int
3274 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3275 {
3276 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3277 substring_t wwn = { name, &name[sizeof(name)-1] };
3278 int nnoffset, pnoffset;
3279
3280 /* validate it string one of the 2 allowed formats */
3281 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3282 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3283 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3284 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3285 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3286 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3287 NVME_FC_TRADDR_OXNNLEN;
3288 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3289 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3290 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3291 "pn-", NVME_FC_TRADDR_NNLEN))) {
3292 nnoffset = NVME_FC_TRADDR_NNLEN;
3293 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3294 } else
3295 goto out_einval;
3296
3297 name[0] = '0';
3298 name[1] = 'x';
3299 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3300
3301 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3302 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3303 goto out_einval;
3304
3305 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3306 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3307 goto out_einval;
3308
3309 return 0;
3310
3311 out_einval:
3312 pr_warn("%s: bad traddr string\n", __func__);
3313 return -EINVAL;
3314 }
3315
3316 static struct nvme_ctrl *
3317 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3318 {
3319 struct nvme_fc_lport *lport;
3320 struct nvme_fc_rport *rport;
3321 struct nvme_ctrl *ctrl;
3322 struct nvmet_fc_traddr laddr = { 0L, 0L };
3323 struct nvmet_fc_traddr raddr = { 0L, 0L };
3324 unsigned long flags;
3325 int ret;
3326
3327 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3328 if (ret || !raddr.nn || !raddr.pn)
3329 return ERR_PTR(-EINVAL);
3330
3331 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3332 if (ret || !laddr.nn || !laddr.pn)
3333 return ERR_PTR(-EINVAL);
3334
3335 /* find the host and remote ports to connect together */
3336 spin_lock_irqsave(&nvme_fc_lock, flags);
3337 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3338 if (lport->localport.node_name != laddr.nn ||
3339 lport->localport.port_name != laddr.pn)
3340 continue;
3341
3342 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3343 if (rport->remoteport.node_name != raddr.nn ||
3344 rport->remoteport.port_name != raddr.pn)
3345 continue;
3346
3347 /* if fail to get reference fall through. Will error */
3348 if (!nvme_fc_rport_get(rport))
3349 break;
3350
3351 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3352
3353 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3354 if (IS_ERR(ctrl))
3355 nvme_fc_rport_put(rport);
3356 return ctrl;
3357 }
3358 }
3359 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3360
3361 return ERR_PTR(-ENOENT);
3362 }
3363
3364
3365 static struct nvmf_transport_ops nvme_fc_transport = {
3366 .name = "fc",
3367 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3368 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3369 .create_ctrl = nvme_fc_create_ctrl,
3370 };
3371
3372 static int __init nvme_fc_init_module(void)
3373 {
3374 int ret;
3375
3376 /*
3377 * NOTE:
3378 * It is expected that in the future the kernel will combine
3379 * the FC-isms that are currently under scsi and now being
3380 * added to by NVME into a new standalone FC class. The SCSI
3381 * and NVME protocols and their devices would be under this
3382 * new FC class.
3383 *
3384 * As we need something to post FC-specific udev events to,
3385 * specifically for nvme probe events, start by creating the
3386 * new device class. When the new standalone FC class is
3387 * put in place, this code will move to a more generic
3388 * location for the class.
3389 */
3390 fc_class = class_create(THIS_MODULE, "fc");
3391 if (IS_ERR(fc_class)) {
3392 pr_err("couldn't register class fc\n");
3393 return PTR_ERR(fc_class);
3394 }
3395
3396 /*
3397 * Create a device for the FC-centric udev events
3398 */
3399 fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3400 "fc_udev_device");
3401 if (IS_ERR(fc_udev_device)) {
3402 pr_err("couldn't create fc_udev device!\n");
3403 ret = PTR_ERR(fc_udev_device);
3404 goto out_destroy_class;
3405 }
3406
3407 ret = nvmf_register_transport(&nvme_fc_transport);
3408 if (ret)
3409 goto out_destroy_device;
3410
3411 return 0;
3412
3413 out_destroy_device:
3414 device_destroy(fc_class, MKDEV(0, 0));
3415 out_destroy_class:
3416 class_destroy(fc_class);
3417 return ret;
3418 }
3419
3420 static void __exit nvme_fc_exit_module(void)
3421 {
3422 /* sanity check - all lports should be removed */
3423 if (!list_empty(&nvme_fc_lport_list))
3424 pr_warn("%s: localport list not empty\n", __func__);
3425
3426 nvmf_unregister_transport(&nvme_fc_transport);
3427
3428 ida_destroy(&nvme_fc_local_port_cnt);
3429 ida_destroy(&nvme_fc_ctrl_cnt);
3430
3431 device_destroy(fc_class, MKDEV(0, 0));
3432 class_destroy(fc_class);
3433 }
3434
3435 module_init(nvme_fc_init_module);
3436 module_exit(nvme_fc_exit_module);
3437
3438 MODULE_LICENSE("GPL v2");