]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/nvme/host/fc.c
Merge tag 'powerpc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-hirsute-kernel.git] / drivers / nvme / host / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include <scsi/scsi_transport_fc.h>
18
19 /* *************************** Data Structures/Defines ****************** */
20
21
22 enum nvme_fc_queue_flags {
23 NVME_FC_Q_CONNECTED = 0,
24 NVME_FC_Q_LIVE,
25 };
26
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
28
29 struct nvme_fc_queue {
30 struct nvme_fc_ctrl *ctrl;
31 struct device *dev;
32 struct blk_mq_hw_ctx *hctx;
33 void *lldd_handle;
34 size_t cmnd_capsule_len;
35 u32 qnum;
36 u32 rqcnt;
37 u32 seqno;
38
39 u64 connection_id;
40 atomic_t csn;
41
42 unsigned long flags;
43 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
44
45 enum nvme_fcop_flags {
46 FCOP_FLAGS_TERMIO = (1 << 0),
47 FCOP_FLAGS_AEN = (1 << 1),
48 };
49
50 struct nvmefc_ls_req_op {
51 struct nvmefc_ls_req ls_req;
52
53 struct nvme_fc_rport *rport;
54 struct nvme_fc_queue *queue;
55 struct request *rq;
56 u32 flags;
57
58 int ls_error;
59 struct completion ls_done;
60 struct list_head lsreq_list; /* rport->ls_req_list */
61 bool req_queued;
62 };
63
64 enum nvme_fcpop_state {
65 FCPOP_STATE_UNINIT = 0,
66 FCPOP_STATE_IDLE = 1,
67 FCPOP_STATE_ACTIVE = 2,
68 FCPOP_STATE_ABORTED = 3,
69 FCPOP_STATE_COMPLETE = 4,
70 };
71
72 struct nvme_fc_fcp_op {
73 struct nvme_request nreq; /*
74 * nvme/host/core.c
75 * requires this to be
76 * the 1st element in the
77 * private structure
78 * associated with the
79 * request.
80 */
81 struct nvmefc_fcp_req fcp_req;
82
83 struct nvme_fc_ctrl *ctrl;
84 struct nvme_fc_queue *queue;
85 struct request *rq;
86
87 atomic_t state;
88 u32 flags;
89 u32 rqno;
90 u32 nents;
91
92 struct nvme_fc_cmd_iu cmd_iu;
93 struct nvme_fc_ersp_iu rsp_iu;
94 };
95
96 struct nvme_fcp_op_w_sgl {
97 struct nvme_fc_fcp_op op;
98 struct scatterlist sgl[SG_CHUNK_SIZE];
99 uint8_t priv[0];
100 };
101
102 struct nvme_fc_lport {
103 struct nvme_fc_local_port localport;
104
105 struct ida endp_cnt;
106 struct list_head port_list; /* nvme_fc_port_list */
107 struct list_head endp_list;
108 struct device *dev; /* physical device for dma */
109 struct nvme_fc_port_template *ops;
110 struct kref ref;
111 atomic_t act_rport_cnt;
112 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
113
114 struct nvme_fc_rport {
115 struct nvme_fc_remote_port remoteport;
116
117 struct list_head endp_list; /* for lport->endp_list */
118 struct list_head ctrl_list;
119 struct list_head ls_req_list;
120 struct list_head disc_list;
121 struct device *dev; /* physical device for dma */
122 struct nvme_fc_lport *lport;
123 spinlock_t lock;
124 struct kref ref;
125 atomic_t act_ctrl_cnt;
126 unsigned long dev_loss_end;
127 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
128
129 enum nvme_fcctrl_flags {
130 FCCTRL_TERMIO = (1 << 0),
131 };
132
133 struct nvme_fc_ctrl {
134 spinlock_t lock;
135 struct nvme_fc_queue *queues;
136 struct device *dev;
137 struct nvme_fc_lport *lport;
138 struct nvme_fc_rport *rport;
139 u32 cnum;
140
141 bool ioq_live;
142 bool assoc_active;
143 atomic_t err_work_active;
144 u64 association_id;
145
146 struct list_head ctrl_list; /* rport->ctrl_list */
147
148 struct blk_mq_tag_set admin_tag_set;
149 struct blk_mq_tag_set tag_set;
150
151 struct delayed_work connect_work;
152 struct work_struct err_work;
153
154 struct kref ref;
155 u32 flags;
156 u32 iocnt;
157 wait_queue_head_t ioabort_wait;
158
159 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
160
161 struct nvme_ctrl ctrl;
162 };
163
164 static inline struct nvme_fc_ctrl *
165 to_fc_ctrl(struct nvme_ctrl *ctrl)
166 {
167 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
168 }
169
170 static inline struct nvme_fc_lport *
171 localport_to_lport(struct nvme_fc_local_port *portptr)
172 {
173 return container_of(portptr, struct nvme_fc_lport, localport);
174 }
175
176 static inline struct nvme_fc_rport *
177 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
178 {
179 return container_of(portptr, struct nvme_fc_rport, remoteport);
180 }
181
182 static inline struct nvmefc_ls_req_op *
183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
184 {
185 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
186 }
187
188 static inline struct nvme_fc_fcp_op *
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
190 {
191 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
192 }
193
194
195
196 /* *************************** Globals **************************** */
197
198
199 static DEFINE_SPINLOCK(nvme_fc_lock);
200
201 static LIST_HEAD(nvme_fc_lport_list);
202 static DEFINE_IDA(nvme_fc_local_port_cnt);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt);
204
205 static struct workqueue_struct *nvme_fc_wq;
206
207 /*
208 * These items are short-term. They will eventually be moved into
209 * a generic FC class. See comments in module init.
210 */
211 static struct device *fc_udev_device;
212
213
214 /* *********************** FC-NVME Port Management ************************ */
215
216 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
217 struct nvme_fc_queue *, unsigned int);
218
219 static void
220 nvme_fc_free_lport(struct kref *ref)
221 {
222 struct nvme_fc_lport *lport =
223 container_of(ref, struct nvme_fc_lport, ref);
224 unsigned long flags;
225
226 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
227 WARN_ON(!list_empty(&lport->endp_list));
228
229 /* remove from transport list */
230 spin_lock_irqsave(&nvme_fc_lock, flags);
231 list_del(&lport->port_list);
232 spin_unlock_irqrestore(&nvme_fc_lock, flags);
233
234 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
235 ida_destroy(&lport->endp_cnt);
236
237 put_device(lport->dev);
238
239 kfree(lport);
240 }
241
242 static void
243 nvme_fc_lport_put(struct nvme_fc_lport *lport)
244 {
245 kref_put(&lport->ref, nvme_fc_free_lport);
246 }
247
248 static int
249 nvme_fc_lport_get(struct nvme_fc_lport *lport)
250 {
251 return kref_get_unless_zero(&lport->ref);
252 }
253
254
255 static struct nvme_fc_lport *
256 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
257 struct nvme_fc_port_template *ops,
258 struct device *dev)
259 {
260 struct nvme_fc_lport *lport;
261 unsigned long flags;
262
263 spin_lock_irqsave(&nvme_fc_lock, flags);
264
265 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
266 if (lport->localport.node_name != pinfo->node_name ||
267 lport->localport.port_name != pinfo->port_name)
268 continue;
269
270 if (lport->dev != dev) {
271 lport = ERR_PTR(-EXDEV);
272 goto out_done;
273 }
274
275 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
276 lport = ERR_PTR(-EEXIST);
277 goto out_done;
278 }
279
280 if (!nvme_fc_lport_get(lport)) {
281 /*
282 * fails if ref cnt already 0. If so,
283 * act as if lport already deleted
284 */
285 lport = NULL;
286 goto out_done;
287 }
288
289 /* resume the lport */
290
291 lport->ops = ops;
292 lport->localport.port_role = pinfo->port_role;
293 lport->localport.port_id = pinfo->port_id;
294 lport->localport.port_state = FC_OBJSTATE_ONLINE;
295
296 spin_unlock_irqrestore(&nvme_fc_lock, flags);
297
298 return lport;
299 }
300
301 lport = NULL;
302
303 out_done:
304 spin_unlock_irqrestore(&nvme_fc_lock, flags);
305
306 return lport;
307 }
308
309 /**
310 * nvme_fc_register_localport - transport entry point called by an
311 * LLDD to register the existence of a NVME
312 * host FC port.
313 * @pinfo: pointer to information about the port to be registered
314 * @template: LLDD entrypoints and operational parameters for the port
315 * @dev: physical hardware device node port corresponds to. Will be
316 * used for DMA mappings
317 * @portptr: pointer to a local port pointer. Upon success, the routine
318 * will allocate a nvme_fc_local_port structure and place its
319 * address in the local port pointer. Upon failure, local port
320 * pointer will be set to 0.
321 *
322 * Returns:
323 * a completion status. Must be 0 upon success; a negative errno
324 * (ex: -ENXIO) upon failure.
325 */
326 int
327 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
328 struct nvme_fc_port_template *template,
329 struct device *dev,
330 struct nvme_fc_local_port **portptr)
331 {
332 struct nvme_fc_lport *newrec;
333 unsigned long flags;
334 int ret, idx;
335
336 if (!template->localport_delete || !template->remoteport_delete ||
337 !template->ls_req || !template->fcp_io ||
338 !template->ls_abort || !template->fcp_abort ||
339 !template->max_hw_queues || !template->max_sgl_segments ||
340 !template->max_dif_sgl_segments || !template->dma_boundary) {
341 ret = -EINVAL;
342 goto out_reghost_failed;
343 }
344
345 /*
346 * look to see if there is already a localport that had been
347 * deregistered and in the process of waiting for all the
348 * references to fully be removed. If the references haven't
349 * expired, we can simply re-enable the localport. Remoteports
350 * and controller reconnections should resume naturally.
351 */
352 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
353
354 /* found an lport, but something about its state is bad */
355 if (IS_ERR(newrec)) {
356 ret = PTR_ERR(newrec);
357 goto out_reghost_failed;
358
359 /* found existing lport, which was resumed */
360 } else if (newrec) {
361 *portptr = &newrec->localport;
362 return 0;
363 }
364
365 /* nothing found - allocate a new localport struct */
366
367 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
368 GFP_KERNEL);
369 if (!newrec) {
370 ret = -ENOMEM;
371 goto out_reghost_failed;
372 }
373
374 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
375 if (idx < 0) {
376 ret = -ENOSPC;
377 goto out_fail_kfree;
378 }
379
380 if (!get_device(dev) && dev) {
381 ret = -ENODEV;
382 goto out_ida_put;
383 }
384
385 INIT_LIST_HEAD(&newrec->port_list);
386 INIT_LIST_HEAD(&newrec->endp_list);
387 kref_init(&newrec->ref);
388 atomic_set(&newrec->act_rport_cnt, 0);
389 newrec->ops = template;
390 newrec->dev = dev;
391 ida_init(&newrec->endp_cnt);
392 newrec->localport.private = &newrec[1];
393 newrec->localport.node_name = pinfo->node_name;
394 newrec->localport.port_name = pinfo->port_name;
395 newrec->localport.port_role = pinfo->port_role;
396 newrec->localport.port_id = pinfo->port_id;
397 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
398 newrec->localport.port_num = idx;
399
400 spin_lock_irqsave(&nvme_fc_lock, flags);
401 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
402 spin_unlock_irqrestore(&nvme_fc_lock, flags);
403
404 if (dev)
405 dma_set_seg_boundary(dev, template->dma_boundary);
406
407 *portptr = &newrec->localport;
408 return 0;
409
410 out_ida_put:
411 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
412 out_fail_kfree:
413 kfree(newrec);
414 out_reghost_failed:
415 *portptr = NULL;
416
417 return ret;
418 }
419 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
420
421 /**
422 * nvme_fc_unregister_localport - transport entry point called by an
423 * LLDD to deregister/remove a previously
424 * registered a NVME host FC port.
425 * @portptr: pointer to the (registered) local port that is to be deregistered.
426 *
427 * Returns:
428 * a completion status. Must be 0 upon success; a negative errno
429 * (ex: -ENXIO) upon failure.
430 */
431 int
432 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
433 {
434 struct nvme_fc_lport *lport = localport_to_lport(portptr);
435 unsigned long flags;
436
437 if (!portptr)
438 return -EINVAL;
439
440 spin_lock_irqsave(&nvme_fc_lock, flags);
441
442 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
443 spin_unlock_irqrestore(&nvme_fc_lock, flags);
444 return -EINVAL;
445 }
446 portptr->port_state = FC_OBJSTATE_DELETED;
447
448 spin_unlock_irqrestore(&nvme_fc_lock, flags);
449
450 if (atomic_read(&lport->act_rport_cnt) == 0)
451 lport->ops->localport_delete(&lport->localport);
452
453 nvme_fc_lport_put(lport);
454
455 return 0;
456 }
457 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
458
459 /*
460 * TRADDR strings, per FC-NVME are fixed format:
461 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
462 * udev event will only differ by prefix of what field is
463 * being specified:
464 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
465 * 19 + 43 + null_fudge = 64 characters
466 */
467 #define FCNVME_TRADDR_LENGTH 64
468
469 static void
470 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
471 struct nvme_fc_rport *rport)
472 {
473 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
474 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
475 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
476
477 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
478 return;
479
480 snprintf(hostaddr, sizeof(hostaddr),
481 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
482 lport->localport.node_name, lport->localport.port_name);
483 snprintf(tgtaddr, sizeof(tgtaddr),
484 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
485 rport->remoteport.node_name, rport->remoteport.port_name);
486 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
487 }
488
489 static void
490 nvme_fc_free_rport(struct kref *ref)
491 {
492 struct nvme_fc_rport *rport =
493 container_of(ref, struct nvme_fc_rport, ref);
494 struct nvme_fc_lport *lport =
495 localport_to_lport(rport->remoteport.localport);
496 unsigned long flags;
497
498 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
499 WARN_ON(!list_empty(&rport->ctrl_list));
500
501 /* remove from lport list */
502 spin_lock_irqsave(&nvme_fc_lock, flags);
503 list_del(&rport->endp_list);
504 spin_unlock_irqrestore(&nvme_fc_lock, flags);
505
506 WARN_ON(!list_empty(&rport->disc_list));
507 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
508
509 kfree(rport);
510
511 nvme_fc_lport_put(lport);
512 }
513
514 static void
515 nvme_fc_rport_put(struct nvme_fc_rport *rport)
516 {
517 kref_put(&rport->ref, nvme_fc_free_rport);
518 }
519
520 static int
521 nvme_fc_rport_get(struct nvme_fc_rport *rport)
522 {
523 return kref_get_unless_zero(&rport->ref);
524 }
525
526 static void
527 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
528 {
529 switch (ctrl->ctrl.state) {
530 case NVME_CTRL_NEW:
531 case NVME_CTRL_CONNECTING:
532 /*
533 * As all reconnects were suppressed, schedule a
534 * connect.
535 */
536 dev_info(ctrl->ctrl.device,
537 "NVME-FC{%d}: connectivity re-established. "
538 "Attempting reconnect\n", ctrl->cnum);
539
540 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
541 break;
542
543 case NVME_CTRL_RESETTING:
544 /*
545 * Controller is already in the process of terminating the
546 * association. No need to do anything further. The reconnect
547 * step will naturally occur after the reset completes.
548 */
549 break;
550
551 default:
552 /* no action to take - let it delete */
553 break;
554 }
555 }
556
557 static struct nvme_fc_rport *
558 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
559 struct nvme_fc_port_info *pinfo)
560 {
561 struct nvme_fc_rport *rport;
562 struct nvme_fc_ctrl *ctrl;
563 unsigned long flags;
564
565 spin_lock_irqsave(&nvme_fc_lock, flags);
566
567 list_for_each_entry(rport, &lport->endp_list, endp_list) {
568 if (rport->remoteport.node_name != pinfo->node_name ||
569 rport->remoteport.port_name != pinfo->port_name)
570 continue;
571
572 if (!nvme_fc_rport_get(rport)) {
573 rport = ERR_PTR(-ENOLCK);
574 goto out_done;
575 }
576
577 spin_unlock_irqrestore(&nvme_fc_lock, flags);
578
579 spin_lock_irqsave(&rport->lock, flags);
580
581 /* has it been unregistered */
582 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
583 /* means lldd called us twice */
584 spin_unlock_irqrestore(&rport->lock, flags);
585 nvme_fc_rport_put(rport);
586 return ERR_PTR(-ESTALE);
587 }
588
589 rport->remoteport.port_role = pinfo->port_role;
590 rport->remoteport.port_id = pinfo->port_id;
591 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
592 rport->dev_loss_end = 0;
593
594 /*
595 * kick off a reconnect attempt on all associations to the
596 * remote port. A successful reconnects will resume i/o.
597 */
598 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
599 nvme_fc_resume_controller(ctrl);
600
601 spin_unlock_irqrestore(&rport->lock, flags);
602
603 return rport;
604 }
605
606 rport = NULL;
607
608 out_done:
609 spin_unlock_irqrestore(&nvme_fc_lock, flags);
610
611 return rport;
612 }
613
614 static inline void
615 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
616 struct nvme_fc_port_info *pinfo)
617 {
618 if (pinfo->dev_loss_tmo)
619 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
620 else
621 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
622 }
623
624 /**
625 * nvme_fc_register_remoteport - transport entry point called by an
626 * LLDD to register the existence of a NVME
627 * subsystem FC port on its fabric.
628 * @localport: pointer to the (registered) local port that the remote
629 * subsystem port is connected to.
630 * @pinfo: pointer to information about the port to be registered
631 * @portptr: pointer to a remote port pointer. Upon success, the routine
632 * will allocate a nvme_fc_remote_port structure and place its
633 * address in the remote port pointer. Upon failure, remote port
634 * pointer will be set to 0.
635 *
636 * Returns:
637 * a completion status. Must be 0 upon success; a negative errno
638 * (ex: -ENXIO) upon failure.
639 */
640 int
641 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
642 struct nvme_fc_port_info *pinfo,
643 struct nvme_fc_remote_port **portptr)
644 {
645 struct nvme_fc_lport *lport = localport_to_lport(localport);
646 struct nvme_fc_rport *newrec;
647 unsigned long flags;
648 int ret, idx;
649
650 if (!nvme_fc_lport_get(lport)) {
651 ret = -ESHUTDOWN;
652 goto out_reghost_failed;
653 }
654
655 /*
656 * look to see if there is already a remoteport that is waiting
657 * for a reconnect (within dev_loss_tmo) with the same WWN's.
658 * If so, transition to it and reconnect.
659 */
660 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
661
662 /* found an rport, but something about its state is bad */
663 if (IS_ERR(newrec)) {
664 ret = PTR_ERR(newrec);
665 goto out_lport_put;
666
667 /* found existing rport, which was resumed */
668 } else if (newrec) {
669 nvme_fc_lport_put(lport);
670 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
671 nvme_fc_signal_discovery_scan(lport, newrec);
672 *portptr = &newrec->remoteport;
673 return 0;
674 }
675
676 /* nothing found - allocate a new remoteport struct */
677
678 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
679 GFP_KERNEL);
680 if (!newrec) {
681 ret = -ENOMEM;
682 goto out_lport_put;
683 }
684
685 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
686 if (idx < 0) {
687 ret = -ENOSPC;
688 goto out_kfree_rport;
689 }
690
691 INIT_LIST_HEAD(&newrec->endp_list);
692 INIT_LIST_HEAD(&newrec->ctrl_list);
693 INIT_LIST_HEAD(&newrec->ls_req_list);
694 INIT_LIST_HEAD(&newrec->disc_list);
695 kref_init(&newrec->ref);
696 atomic_set(&newrec->act_ctrl_cnt, 0);
697 spin_lock_init(&newrec->lock);
698 newrec->remoteport.localport = &lport->localport;
699 newrec->dev = lport->dev;
700 newrec->lport = lport;
701 newrec->remoteport.private = &newrec[1];
702 newrec->remoteport.port_role = pinfo->port_role;
703 newrec->remoteport.node_name = pinfo->node_name;
704 newrec->remoteport.port_name = pinfo->port_name;
705 newrec->remoteport.port_id = pinfo->port_id;
706 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
707 newrec->remoteport.port_num = idx;
708 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
709
710 spin_lock_irqsave(&nvme_fc_lock, flags);
711 list_add_tail(&newrec->endp_list, &lport->endp_list);
712 spin_unlock_irqrestore(&nvme_fc_lock, flags);
713
714 nvme_fc_signal_discovery_scan(lport, newrec);
715
716 *portptr = &newrec->remoteport;
717 return 0;
718
719 out_kfree_rport:
720 kfree(newrec);
721 out_lport_put:
722 nvme_fc_lport_put(lport);
723 out_reghost_failed:
724 *portptr = NULL;
725 return ret;
726 }
727 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
728
729 static int
730 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
731 {
732 struct nvmefc_ls_req_op *lsop;
733 unsigned long flags;
734
735 restart:
736 spin_lock_irqsave(&rport->lock, flags);
737
738 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
739 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
740 lsop->flags |= FCOP_FLAGS_TERMIO;
741 spin_unlock_irqrestore(&rport->lock, flags);
742 rport->lport->ops->ls_abort(&rport->lport->localport,
743 &rport->remoteport,
744 &lsop->ls_req);
745 goto restart;
746 }
747 }
748 spin_unlock_irqrestore(&rport->lock, flags);
749
750 return 0;
751 }
752
753 static void
754 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
755 {
756 dev_info(ctrl->ctrl.device,
757 "NVME-FC{%d}: controller connectivity lost. Awaiting "
758 "Reconnect", ctrl->cnum);
759
760 switch (ctrl->ctrl.state) {
761 case NVME_CTRL_NEW:
762 case NVME_CTRL_LIVE:
763 /*
764 * Schedule a controller reset. The reset will terminate the
765 * association and schedule the reconnect timer. Reconnects
766 * will be attempted until either the ctlr_loss_tmo
767 * (max_retries * connect_delay) expires or the remoteport's
768 * dev_loss_tmo expires.
769 */
770 if (nvme_reset_ctrl(&ctrl->ctrl)) {
771 dev_warn(ctrl->ctrl.device,
772 "NVME-FC{%d}: Couldn't schedule reset.\n",
773 ctrl->cnum);
774 nvme_delete_ctrl(&ctrl->ctrl);
775 }
776 break;
777
778 case NVME_CTRL_CONNECTING:
779 /*
780 * The association has already been terminated and the
781 * controller is attempting reconnects. No need to do anything
782 * futher. Reconnects will be attempted until either the
783 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
784 * remoteport's dev_loss_tmo expires.
785 */
786 break;
787
788 case NVME_CTRL_RESETTING:
789 /*
790 * Controller is already in the process of terminating the
791 * association. No need to do anything further. The reconnect
792 * step will kick in naturally after the association is
793 * terminated.
794 */
795 break;
796
797 case NVME_CTRL_DELETING:
798 default:
799 /* no action to take - let it delete */
800 break;
801 }
802 }
803
804 /**
805 * nvme_fc_unregister_remoteport - transport entry point called by an
806 * LLDD to deregister/remove a previously
807 * registered a NVME subsystem FC port.
808 * @portptr: pointer to the (registered) remote port that is to be
809 * deregistered.
810 *
811 * Returns:
812 * a completion status. Must be 0 upon success; a negative errno
813 * (ex: -ENXIO) upon failure.
814 */
815 int
816 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
817 {
818 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
819 struct nvme_fc_ctrl *ctrl;
820 unsigned long flags;
821
822 if (!portptr)
823 return -EINVAL;
824
825 spin_lock_irqsave(&rport->lock, flags);
826
827 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
828 spin_unlock_irqrestore(&rport->lock, flags);
829 return -EINVAL;
830 }
831 portptr->port_state = FC_OBJSTATE_DELETED;
832
833 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
834
835 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
836 /* if dev_loss_tmo==0, dev loss is immediate */
837 if (!portptr->dev_loss_tmo) {
838 dev_warn(ctrl->ctrl.device,
839 "NVME-FC{%d}: controller connectivity lost.\n",
840 ctrl->cnum);
841 nvme_delete_ctrl(&ctrl->ctrl);
842 } else
843 nvme_fc_ctrl_connectivity_loss(ctrl);
844 }
845
846 spin_unlock_irqrestore(&rport->lock, flags);
847
848 nvme_fc_abort_lsops(rport);
849
850 if (atomic_read(&rport->act_ctrl_cnt) == 0)
851 rport->lport->ops->remoteport_delete(portptr);
852
853 /*
854 * release the reference, which will allow, if all controllers
855 * go away, which should only occur after dev_loss_tmo occurs,
856 * for the rport to be torn down.
857 */
858 nvme_fc_rport_put(rport);
859
860 return 0;
861 }
862 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
863
864 /**
865 * nvme_fc_rescan_remoteport - transport entry point called by an
866 * LLDD to request a nvme device rescan.
867 * @remoteport: pointer to the (registered) remote port that is to be
868 * rescanned.
869 *
870 * Returns: N/A
871 */
872 void
873 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
874 {
875 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
876
877 nvme_fc_signal_discovery_scan(rport->lport, rport);
878 }
879 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
880
881 int
882 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
883 u32 dev_loss_tmo)
884 {
885 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
886 unsigned long flags;
887
888 spin_lock_irqsave(&rport->lock, flags);
889
890 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
891 spin_unlock_irqrestore(&rport->lock, flags);
892 return -EINVAL;
893 }
894
895 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
896 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
897
898 spin_unlock_irqrestore(&rport->lock, flags);
899
900 return 0;
901 }
902 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
903
904
905 /* *********************** FC-NVME DMA Handling **************************** */
906
907 /*
908 * The fcloop device passes in a NULL device pointer. Real LLD's will
909 * pass in a valid device pointer. If NULL is passed to the dma mapping
910 * routines, depending on the platform, it may or may not succeed, and
911 * may crash.
912 *
913 * As such:
914 * Wrapper all the dma routines and check the dev pointer.
915 *
916 * If simple mappings (return just a dma address, we'll noop them,
917 * returning a dma address of 0.
918 *
919 * On more complex mappings (dma_map_sg), a pseudo routine fills
920 * in the scatter list, setting all dma addresses to 0.
921 */
922
923 static inline dma_addr_t
924 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
925 enum dma_data_direction dir)
926 {
927 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
928 }
929
930 static inline int
931 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
932 {
933 return dev ? dma_mapping_error(dev, dma_addr) : 0;
934 }
935
936 static inline void
937 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
938 enum dma_data_direction dir)
939 {
940 if (dev)
941 dma_unmap_single(dev, addr, size, dir);
942 }
943
944 static inline void
945 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
946 enum dma_data_direction dir)
947 {
948 if (dev)
949 dma_sync_single_for_cpu(dev, addr, size, dir);
950 }
951
952 static inline void
953 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
954 enum dma_data_direction dir)
955 {
956 if (dev)
957 dma_sync_single_for_device(dev, addr, size, dir);
958 }
959
960 /* pseudo dma_map_sg call */
961 static int
962 fc_map_sg(struct scatterlist *sg, int nents)
963 {
964 struct scatterlist *s;
965 int i;
966
967 WARN_ON(nents == 0 || sg[0].length == 0);
968
969 for_each_sg(sg, s, nents, i) {
970 s->dma_address = 0L;
971 #ifdef CONFIG_NEED_SG_DMA_LENGTH
972 s->dma_length = s->length;
973 #endif
974 }
975 return nents;
976 }
977
978 static inline int
979 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
980 enum dma_data_direction dir)
981 {
982 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
983 }
984
985 static inline void
986 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
987 enum dma_data_direction dir)
988 {
989 if (dev)
990 dma_unmap_sg(dev, sg, nents, dir);
991 }
992
993 /* *********************** FC-NVME LS Handling **************************** */
994
995 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
996 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
997
998
999 static void
1000 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1001 {
1002 struct nvme_fc_rport *rport = lsop->rport;
1003 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1004 unsigned long flags;
1005
1006 spin_lock_irqsave(&rport->lock, flags);
1007
1008 if (!lsop->req_queued) {
1009 spin_unlock_irqrestore(&rport->lock, flags);
1010 return;
1011 }
1012
1013 list_del(&lsop->lsreq_list);
1014
1015 lsop->req_queued = false;
1016
1017 spin_unlock_irqrestore(&rport->lock, flags);
1018
1019 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1020 (lsreq->rqstlen + lsreq->rsplen),
1021 DMA_BIDIRECTIONAL);
1022
1023 nvme_fc_rport_put(rport);
1024 }
1025
1026 static int
1027 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1028 struct nvmefc_ls_req_op *lsop,
1029 void (*done)(struct nvmefc_ls_req *req, int status))
1030 {
1031 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1032 unsigned long flags;
1033 int ret = 0;
1034
1035 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1036 return -ECONNREFUSED;
1037
1038 if (!nvme_fc_rport_get(rport))
1039 return -ESHUTDOWN;
1040
1041 lsreq->done = done;
1042 lsop->rport = rport;
1043 lsop->req_queued = false;
1044 INIT_LIST_HEAD(&lsop->lsreq_list);
1045 init_completion(&lsop->ls_done);
1046
1047 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1048 lsreq->rqstlen + lsreq->rsplen,
1049 DMA_BIDIRECTIONAL);
1050 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1051 ret = -EFAULT;
1052 goto out_putrport;
1053 }
1054 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1055
1056 spin_lock_irqsave(&rport->lock, flags);
1057
1058 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1059
1060 lsop->req_queued = true;
1061
1062 spin_unlock_irqrestore(&rport->lock, flags);
1063
1064 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1065 &rport->remoteport, lsreq);
1066 if (ret)
1067 goto out_unlink;
1068
1069 return 0;
1070
1071 out_unlink:
1072 lsop->ls_error = ret;
1073 spin_lock_irqsave(&rport->lock, flags);
1074 lsop->req_queued = false;
1075 list_del(&lsop->lsreq_list);
1076 spin_unlock_irqrestore(&rport->lock, flags);
1077 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1078 (lsreq->rqstlen + lsreq->rsplen),
1079 DMA_BIDIRECTIONAL);
1080 out_putrport:
1081 nvme_fc_rport_put(rport);
1082
1083 return ret;
1084 }
1085
1086 static void
1087 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1088 {
1089 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1090
1091 lsop->ls_error = status;
1092 complete(&lsop->ls_done);
1093 }
1094
1095 static int
1096 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1097 {
1098 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1099 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1100 int ret;
1101
1102 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1103
1104 if (!ret) {
1105 /*
1106 * No timeout/not interruptible as we need the struct
1107 * to exist until the lldd calls us back. Thus mandate
1108 * wait until driver calls back. lldd responsible for
1109 * the timeout action
1110 */
1111 wait_for_completion(&lsop->ls_done);
1112
1113 __nvme_fc_finish_ls_req(lsop);
1114
1115 ret = lsop->ls_error;
1116 }
1117
1118 if (ret)
1119 return ret;
1120
1121 /* ACC or RJT payload ? */
1122 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1123 return -ENXIO;
1124
1125 return 0;
1126 }
1127
1128 static int
1129 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1130 struct nvmefc_ls_req_op *lsop,
1131 void (*done)(struct nvmefc_ls_req *req, int status))
1132 {
1133 /* don't wait for completion */
1134
1135 return __nvme_fc_send_ls_req(rport, lsop, done);
1136 }
1137
1138 /* Validation Error indexes into the string table below */
1139 enum {
1140 VERR_NO_ERROR = 0,
1141 VERR_LSACC = 1,
1142 VERR_LSDESC_RQST = 2,
1143 VERR_LSDESC_RQST_LEN = 3,
1144 VERR_ASSOC_ID = 4,
1145 VERR_ASSOC_ID_LEN = 5,
1146 VERR_CONN_ID = 6,
1147 VERR_CONN_ID_LEN = 7,
1148 VERR_CR_ASSOC = 8,
1149 VERR_CR_ASSOC_ACC_LEN = 9,
1150 VERR_CR_CONN = 10,
1151 VERR_CR_CONN_ACC_LEN = 11,
1152 VERR_DISCONN = 12,
1153 VERR_DISCONN_ACC_LEN = 13,
1154 };
1155
1156 static char *validation_errors[] = {
1157 "OK",
1158 "Not LS_ACC",
1159 "Not LSDESC_RQST",
1160 "Bad LSDESC_RQST Length",
1161 "Not Association ID",
1162 "Bad Association ID Length",
1163 "Not Connection ID",
1164 "Bad Connection ID Length",
1165 "Not CR_ASSOC Rqst",
1166 "Bad CR_ASSOC ACC Length",
1167 "Not CR_CONN Rqst",
1168 "Bad CR_CONN ACC Length",
1169 "Not Disconnect Rqst",
1170 "Bad Disconnect ACC Length",
1171 };
1172
1173 static int
1174 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1175 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1176 {
1177 struct nvmefc_ls_req_op *lsop;
1178 struct nvmefc_ls_req *lsreq;
1179 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1180 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1181 int ret, fcret = 0;
1182
1183 lsop = kzalloc((sizeof(*lsop) +
1184 ctrl->lport->ops->lsrqst_priv_sz +
1185 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1186 if (!lsop) {
1187 ret = -ENOMEM;
1188 goto out_no_memory;
1189 }
1190 lsreq = &lsop->ls_req;
1191
1192 lsreq->private = (void *)&lsop[1];
1193 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1194 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1195 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1196
1197 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1198 assoc_rqst->desc_list_len =
1199 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1200
1201 assoc_rqst->assoc_cmd.desc_tag =
1202 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1203 assoc_rqst->assoc_cmd.desc_len =
1204 fcnvme_lsdesc_len(
1205 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1206
1207 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1208 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1209 /* Linux supports only Dynamic controllers */
1210 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1211 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1212 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1213 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1214 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1215 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1216
1217 lsop->queue = queue;
1218 lsreq->rqstaddr = assoc_rqst;
1219 lsreq->rqstlen = sizeof(*assoc_rqst);
1220 lsreq->rspaddr = assoc_acc;
1221 lsreq->rsplen = sizeof(*assoc_acc);
1222 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1223
1224 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1225 if (ret)
1226 goto out_free_buffer;
1227
1228 /* process connect LS completion */
1229
1230 /* validate the ACC response */
1231 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1232 fcret = VERR_LSACC;
1233 else if (assoc_acc->hdr.desc_list_len !=
1234 fcnvme_lsdesc_len(
1235 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1236 fcret = VERR_CR_ASSOC_ACC_LEN;
1237 else if (assoc_acc->hdr.rqst.desc_tag !=
1238 cpu_to_be32(FCNVME_LSDESC_RQST))
1239 fcret = VERR_LSDESC_RQST;
1240 else if (assoc_acc->hdr.rqst.desc_len !=
1241 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1242 fcret = VERR_LSDESC_RQST_LEN;
1243 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1244 fcret = VERR_CR_ASSOC;
1245 else if (assoc_acc->associd.desc_tag !=
1246 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1247 fcret = VERR_ASSOC_ID;
1248 else if (assoc_acc->associd.desc_len !=
1249 fcnvme_lsdesc_len(
1250 sizeof(struct fcnvme_lsdesc_assoc_id)))
1251 fcret = VERR_ASSOC_ID_LEN;
1252 else if (assoc_acc->connectid.desc_tag !=
1253 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1254 fcret = VERR_CONN_ID;
1255 else if (assoc_acc->connectid.desc_len !=
1256 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1257 fcret = VERR_CONN_ID_LEN;
1258
1259 if (fcret) {
1260 ret = -EBADF;
1261 dev_err(ctrl->dev,
1262 "q %d connect failed: %s\n",
1263 queue->qnum, validation_errors[fcret]);
1264 } else {
1265 ctrl->association_id =
1266 be64_to_cpu(assoc_acc->associd.association_id);
1267 queue->connection_id =
1268 be64_to_cpu(assoc_acc->connectid.connection_id);
1269 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1270 }
1271
1272 out_free_buffer:
1273 kfree(lsop);
1274 out_no_memory:
1275 if (ret)
1276 dev_err(ctrl->dev,
1277 "queue %d connect admin queue failed (%d).\n",
1278 queue->qnum, ret);
1279 return ret;
1280 }
1281
1282 static int
1283 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1284 u16 qsize, u16 ersp_ratio)
1285 {
1286 struct nvmefc_ls_req_op *lsop;
1287 struct nvmefc_ls_req *lsreq;
1288 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1289 struct fcnvme_ls_cr_conn_acc *conn_acc;
1290 int ret, fcret = 0;
1291
1292 lsop = kzalloc((sizeof(*lsop) +
1293 ctrl->lport->ops->lsrqst_priv_sz +
1294 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1295 if (!lsop) {
1296 ret = -ENOMEM;
1297 goto out_no_memory;
1298 }
1299 lsreq = &lsop->ls_req;
1300
1301 lsreq->private = (void *)&lsop[1];
1302 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1303 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1304 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1305
1306 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1307 conn_rqst->desc_list_len = cpu_to_be32(
1308 sizeof(struct fcnvme_lsdesc_assoc_id) +
1309 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1310
1311 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1312 conn_rqst->associd.desc_len =
1313 fcnvme_lsdesc_len(
1314 sizeof(struct fcnvme_lsdesc_assoc_id));
1315 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1316 conn_rqst->connect_cmd.desc_tag =
1317 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1318 conn_rqst->connect_cmd.desc_len =
1319 fcnvme_lsdesc_len(
1320 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1321 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1322 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1323 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1324
1325 lsop->queue = queue;
1326 lsreq->rqstaddr = conn_rqst;
1327 lsreq->rqstlen = sizeof(*conn_rqst);
1328 lsreq->rspaddr = conn_acc;
1329 lsreq->rsplen = sizeof(*conn_acc);
1330 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1331
1332 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1333 if (ret)
1334 goto out_free_buffer;
1335
1336 /* process connect LS completion */
1337
1338 /* validate the ACC response */
1339 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1340 fcret = VERR_LSACC;
1341 else if (conn_acc->hdr.desc_list_len !=
1342 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1343 fcret = VERR_CR_CONN_ACC_LEN;
1344 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1345 fcret = VERR_LSDESC_RQST;
1346 else if (conn_acc->hdr.rqst.desc_len !=
1347 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1348 fcret = VERR_LSDESC_RQST_LEN;
1349 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1350 fcret = VERR_CR_CONN;
1351 else if (conn_acc->connectid.desc_tag !=
1352 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1353 fcret = VERR_CONN_ID;
1354 else if (conn_acc->connectid.desc_len !=
1355 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1356 fcret = VERR_CONN_ID_LEN;
1357
1358 if (fcret) {
1359 ret = -EBADF;
1360 dev_err(ctrl->dev,
1361 "q %d connect failed: %s\n",
1362 queue->qnum, validation_errors[fcret]);
1363 } else {
1364 queue->connection_id =
1365 be64_to_cpu(conn_acc->connectid.connection_id);
1366 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1367 }
1368
1369 out_free_buffer:
1370 kfree(lsop);
1371 out_no_memory:
1372 if (ret)
1373 dev_err(ctrl->dev,
1374 "queue %d connect command failed (%d).\n",
1375 queue->qnum, ret);
1376 return ret;
1377 }
1378
1379 static void
1380 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1381 {
1382 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1383
1384 __nvme_fc_finish_ls_req(lsop);
1385
1386 /* fc-nvme initiator doesn't care about success or failure of cmd */
1387
1388 kfree(lsop);
1389 }
1390
1391 /*
1392 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1393 * the FC-NVME Association. Terminating the association also
1394 * terminates the FC-NVME connections (per queue, both admin and io
1395 * queues) that are part of the association. E.g. things are torn
1396 * down, and the related FC-NVME Association ID and Connection IDs
1397 * become invalid.
1398 *
1399 * The behavior of the fc-nvme initiator is such that it's
1400 * understanding of the association and connections will implicitly
1401 * be torn down. The action is implicit as it may be due to a loss of
1402 * connectivity with the fc-nvme target, so you may never get a
1403 * response even if you tried. As such, the action of this routine
1404 * is to asynchronously send the LS, ignore any results of the LS, and
1405 * continue on with terminating the association. If the fc-nvme target
1406 * is present and receives the LS, it too can tear down.
1407 */
1408 static void
1409 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1410 {
1411 struct fcnvme_ls_disconnect_rqst *discon_rqst;
1412 struct fcnvme_ls_disconnect_acc *discon_acc;
1413 struct nvmefc_ls_req_op *lsop;
1414 struct nvmefc_ls_req *lsreq;
1415 int ret;
1416
1417 lsop = kzalloc((sizeof(*lsop) +
1418 ctrl->lport->ops->lsrqst_priv_sz +
1419 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1420 GFP_KERNEL);
1421 if (!lsop)
1422 /* couldn't sent it... too bad */
1423 return;
1424
1425 lsreq = &lsop->ls_req;
1426
1427 lsreq->private = (void *)&lsop[1];
1428 discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1429 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1430 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1431
1432 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1433 discon_rqst->desc_list_len = cpu_to_be32(
1434 sizeof(struct fcnvme_lsdesc_assoc_id) +
1435 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1436
1437 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1438 discon_rqst->associd.desc_len =
1439 fcnvme_lsdesc_len(
1440 sizeof(struct fcnvme_lsdesc_assoc_id));
1441
1442 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1443
1444 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1445 FCNVME_LSDESC_DISCONN_CMD);
1446 discon_rqst->discon_cmd.desc_len =
1447 fcnvme_lsdesc_len(
1448 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1449 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1450 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1451
1452 lsreq->rqstaddr = discon_rqst;
1453 lsreq->rqstlen = sizeof(*discon_rqst);
1454 lsreq->rspaddr = discon_acc;
1455 lsreq->rsplen = sizeof(*discon_acc);
1456 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1457
1458 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1459 nvme_fc_disconnect_assoc_done);
1460 if (ret)
1461 kfree(lsop);
1462
1463 /* only meaningful part to terminating the association */
1464 ctrl->association_id = 0;
1465 }
1466
1467
1468 /* *********************** NVME Ctrl Routines **************************** */
1469
1470 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1471
1472 static void
1473 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1474 struct nvme_fc_fcp_op *op)
1475 {
1476 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1477 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1478 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1479 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1480
1481 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1482 }
1483
1484 static void
1485 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1486 unsigned int hctx_idx)
1487 {
1488 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1489
1490 return __nvme_fc_exit_request(set->driver_data, op);
1491 }
1492
1493 static int
1494 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1495 {
1496 unsigned long flags;
1497 int opstate;
1498
1499 spin_lock_irqsave(&ctrl->lock, flags);
1500 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1501 if (opstate != FCPOP_STATE_ACTIVE)
1502 atomic_set(&op->state, opstate);
1503 else if (ctrl->flags & FCCTRL_TERMIO)
1504 ctrl->iocnt++;
1505 spin_unlock_irqrestore(&ctrl->lock, flags);
1506
1507 if (opstate != FCPOP_STATE_ACTIVE)
1508 return -ECANCELED;
1509
1510 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1511 &ctrl->rport->remoteport,
1512 op->queue->lldd_handle,
1513 &op->fcp_req);
1514
1515 return 0;
1516 }
1517
1518 static void
1519 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1520 {
1521 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1522 int i;
1523
1524 /* ensure we've initialized the ops once */
1525 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1526 return;
1527
1528 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1529 __nvme_fc_abort_op(ctrl, aen_op);
1530 }
1531
1532 static inline void
1533 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1534 struct nvme_fc_fcp_op *op, int opstate)
1535 {
1536 unsigned long flags;
1537
1538 if (opstate == FCPOP_STATE_ABORTED) {
1539 spin_lock_irqsave(&ctrl->lock, flags);
1540 if (ctrl->flags & FCCTRL_TERMIO) {
1541 if (!--ctrl->iocnt)
1542 wake_up(&ctrl->ioabort_wait);
1543 }
1544 spin_unlock_irqrestore(&ctrl->lock, flags);
1545 }
1546 }
1547
1548 static void
1549 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1550 {
1551 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1552 struct request *rq = op->rq;
1553 struct nvmefc_fcp_req *freq = &op->fcp_req;
1554 struct nvme_fc_ctrl *ctrl = op->ctrl;
1555 struct nvme_fc_queue *queue = op->queue;
1556 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1557 struct nvme_command *sqe = &op->cmd_iu.sqe;
1558 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1559 union nvme_result result;
1560 bool terminate_assoc = true;
1561 int opstate;
1562
1563 /*
1564 * WARNING:
1565 * The current linux implementation of a nvme controller
1566 * allocates a single tag set for all io queues and sizes
1567 * the io queues to fully hold all possible tags. Thus, the
1568 * implementation does not reference or care about the sqhd
1569 * value as it never needs to use the sqhd/sqtail pointers
1570 * for submission pacing.
1571 *
1572 * This affects the FC-NVME implementation in two ways:
1573 * 1) As the value doesn't matter, we don't need to waste
1574 * cycles extracting it from ERSPs and stamping it in the
1575 * cases where the transport fabricates CQEs on successful
1576 * completions.
1577 * 2) The FC-NVME implementation requires that delivery of
1578 * ERSP completions are to go back to the nvme layer in order
1579 * relative to the rsn, such that the sqhd value will always
1580 * be "in order" for the nvme layer. As the nvme layer in
1581 * linux doesn't care about sqhd, there's no need to return
1582 * them in order.
1583 *
1584 * Additionally:
1585 * As the core nvme layer in linux currently does not look at
1586 * every field in the cqe - in cases where the FC transport must
1587 * fabricate a CQE, the following fields will not be set as they
1588 * are not referenced:
1589 * cqe.sqid, cqe.sqhd, cqe.command_id
1590 *
1591 * Failure or error of an individual i/o, in a transport
1592 * detected fashion unrelated to the nvme completion status,
1593 * potentially cause the initiator and target sides to get out
1594 * of sync on SQ head/tail (aka outstanding io count allowed).
1595 * Per FC-NVME spec, failure of an individual command requires
1596 * the connection to be terminated, which in turn requires the
1597 * association to be terminated.
1598 */
1599
1600 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1601
1602 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1603 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1604
1605 if (opstate == FCPOP_STATE_ABORTED)
1606 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1607 else if (freq->status)
1608 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1609
1610 /*
1611 * For the linux implementation, if we have an unsuccesful
1612 * status, they blk-mq layer can typically be called with the
1613 * non-zero status and the content of the cqe isn't important.
1614 */
1615 if (status)
1616 goto done;
1617
1618 /*
1619 * command completed successfully relative to the wire
1620 * protocol. However, validate anything received and
1621 * extract the status and result from the cqe (create it
1622 * where necessary).
1623 */
1624
1625 switch (freq->rcv_rsplen) {
1626
1627 case 0:
1628 case NVME_FC_SIZEOF_ZEROS_RSP:
1629 /*
1630 * No response payload or 12 bytes of payload (which
1631 * should all be zeros) are considered successful and
1632 * no payload in the CQE by the transport.
1633 */
1634 if (freq->transferred_length !=
1635 be32_to_cpu(op->cmd_iu.data_len)) {
1636 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1637 goto done;
1638 }
1639 result.u64 = 0;
1640 break;
1641
1642 case sizeof(struct nvme_fc_ersp_iu):
1643 /*
1644 * The ERSP IU contains a full completion with CQE.
1645 * Validate ERSP IU and look at cqe.
1646 */
1647 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1648 (freq->rcv_rsplen / 4) ||
1649 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1650 freq->transferred_length ||
1651 op->rsp_iu.status_code ||
1652 sqe->common.command_id != cqe->command_id)) {
1653 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1654 goto done;
1655 }
1656 result = cqe->result;
1657 status = cqe->status;
1658 break;
1659
1660 default:
1661 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1662 goto done;
1663 }
1664
1665 terminate_assoc = false;
1666
1667 done:
1668 if (op->flags & FCOP_FLAGS_AEN) {
1669 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1670 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1671 atomic_set(&op->state, FCPOP_STATE_IDLE);
1672 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
1673 nvme_fc_ctrl_put(ctrl);
1674 goto check_error;
1675 }
1676
1677 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1678 nvme_end_request(rq, status, result);
1679
1680 check_error:
1681 if (terminate_assoc)
1682 nvme_fc_error_recovery(ctrl, "transport detected io error");
1683 }
1684
1685 static int
1686 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1687 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1688 struct request *rq, u32 rqno)
1689 {
1690 struct nvme_fcp_op_w_sgl *op_w_sgl =
1691 container_of(op, typeof(*op_w_sgl), op);
1692 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1693 int ret = 0;
1694
1695 memset(op, 0, sizeof(*op));
1696 op->fcp_req.cmdaddr = &op->cmd_iu;
1697 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1698 op->fcp_req.rspaddr = &op->rsp_iu;
1699 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1700 op->fcp_req.done = nvme_fc_fcpio_done;
1701 op->ctrl = ctrl;
1702 op->queue = queue;
1703 op->rq = rq;
1704 op->rqno = rqno;
1705
1706 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1707 cmdiu->fc_id = NVME_CMD_FC_ID;
1708 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1709
1710 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1711 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1712 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1713 dev_err(ctrl->dev,
1714 "FCP Op failed - cmdiu dma mapping failed.\n");
1715 ret = EFAULT;
1716 goto out_on_error;
1717 }
1718
1719 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1720 &op->rsp_iu, sizeof(op->rsp_iu),
1721 DMA_FROM_DEVICE);
1722 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1723 dev_err(ctrl->dev,
1724 "FCP Op failed - rspiu dma mapping failed.\n");
1725 ret = EFAULT;
1726 }
1727
1728 atomic_set(&op->state, FCPOP_STATE_IDLE);
1729 out_on_error:
1730 return ret;
1731 }
1732
1733 static int
1734 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1735 unsigned int hctx_idx, unsigned int numa_node)
1736 {
1737 struct nvme_fc_ctrl *ctrl = set->driver_data;
1738 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1739 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1740 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1741 int res;
1742
1743 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1744 if (res)
1745 return res;
1746 op->op.fcp_req.first_sgl = &op->sgl[0];
1747 op->op.fcp_req.private = &op->priv[0];
1748 nvme_req(rq)->ctrl = &ctrl->ctrl;
1749 return res;
1750 }
1751
1752 static int
1753 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1754 {
1755 struct nvme_fc_fcp_op *aen_op;
1756 struct nvme_fc_cmd_iu *cmdiu;
1757 struct nvme_command *sqe;
1758 void *private;
1759 int i, ret;
1760
1761 aen_op = ctrl->aen_ops;
1762 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1763 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1764 GFP_KERNEL);
1765 if (!private)
1766 return -ENOMEM;
1767
1768 cmdiu = &aen_op->cmd_iu;
1769 sqe = &cmdiu->sqe;
1770 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1771 aen_op, (struct request *)NULL,
1772 (NVME_AQ_BLK_MQ_DEPTH + i));
1773 if (ret) {
1774 kfree(private);
1775 return ret;
1776 }
1777
1778 aen_op->flags = FCOP_FLAGS_AEN;
1779 aen_op->fcp_req.private = private;
1780
1781 memset(sqe, 0, sizeof(*sqe));
1782 sqe->common.opcode = nvme_admin_async_event;
1783 /* Note: core layer may overwrite the sqe.command_id value */
1784 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1785 }
1786 return 0;
1787 }
1788
1789 static void
1790 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1791 {
1792 struct nvme_fc_fcp_op *aen_op;
1793 int i;
1794
1795 aen_op = ctrl->aen_ops;
1796 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1797 if (!aen_op->fcp_req.private)
1798 continue;
1799
1800 __nvme_fc_exit_request(ctrl, aen_op);
1801
1802 kfree(aen_op->fcp_req.private);
1803 aen_op->fcp_req.private = NULL;
1804 }
1805 }
1806
1807 static inline void
1808 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1809 unsigned int qidx)
1810 {
1811 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1812
1813 hctx->driver_data = queue;
1814 queue->hctx = hctx;
1815 }
1816
1817 static int
1818 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1819 unsigned int hctx_idx)
1820 {
1821 struct nvme_fc_ctrl *ctrl = data;
1822
1823 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1824
1825 return 0;
1826 }
1827
1828 static int
1829 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1830 unsigned int hctx_idx)
1831 {
1832 struct nvme_fc_ctrl *ctrl = data;
1833
1834 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1835
1836 return 0;
1837 }
1838
1839 static void
1840 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1841 {
1842 struct nvme_fc_queue *queue;
1843
1844 queue = &ctrl->queues[idx];
1845 memset(queue, 0, sizeof(*queue));
1846 queue->ctrl = ctrl;
1847 queue->qnum = idx;
1848 atomic_set(&queue->csn, 0);
1849 queue->dev = ctrl->dev;
1850
1851 if (idx > 0)
1852 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1853 else
1854 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1855
1856 /*
1857 * Considered whether we should allocate buffers for all SQEs
1858 * and CQEs and dma map them - mapping their respective entries
1859 * into the request structures (kernel vm addr and dma address)
1860 * thus the driver could use the buffers/mappings directly.
1861 * It only makes sense if the LLDD would use them for its
1862 * messaging api. It's very unlikely most adapter api's would use
1863 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1864 * structures were used instead.
1865 */
1866 }
1867
1868 /*
1869 * This routine terminates a queue at the transport level.
1870 * The transport has already ensured that all outstanding ios on
1871 * the queue have been terminated.
1872 * The transport will send a Disconnect LS request to terminate
1873 * the queue's connection. Termination of the admin queue will also
1874 * terminate the association at the target.
1875 */
1876 static void
1877 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1878 {
1879 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1880 return;
1881
1882 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1883 /*
1884 * Current implementation never disconnects a single queue.
1885 * It always terminates a whole association. So there is never
1886 * a disconnect(queue) LS sent to the target.
1887 */
1888
1889 queue->connection_id = 0;
1890 atomic_set(&queue->csn, 0);
1891 }
1892
1893 static void
1894 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1895 struct nvme_fc_queue *queue, unsigned int qidx)
1896 {
1897 if (ctrl->lport->ops->delete_queue)
1898 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1899 queue->lldd_handle);
1900 queue->lldd_handle = NULL;
1901 }
1902
1903 static void
1904 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1905 {
1906 int i;
1907
1908 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1909 nvme_fc_free_queue(&ctrl->queues[i]);
1910 }
1911
1912 static int
1913 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1914 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1915 {
1916 int ret = 0;
1917
1918 queue->lldd_handle = NULL;
1919 if (ctrl->lport->ops->create_queue)
1920 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1921 qidx, qsize, &queue->lldd_handle);
1922
1923 return ret;
1924 }
1925
1926 static void
1927 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1928 {
1929 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1930 int i;
1931
1932 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1933 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1934 }
1935
1936 static int
1937 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1938 {
1939 struct nvme_fc_queue *queue = &ctrl->queues[1];
1940 int i, ret;
1941
1942 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1943 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1944 if (ret)
1945 goto delete_queues;
1946 }
1947
1948 return 0;
1949
1950 delete_queues:
1951 for (; i >= 0; i--)
1952 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1953 return ret;
1954 }
1955
1956 static int
1957 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1958 {
1959 int i, ret = 0;
1960
1961 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1962 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1963 (qsize / 5));
1964 if (ret)
1965 break;
1966 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1967 if (ret)
1968 break;
1969
1970 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1971 }
1972
1973 return ret;
1974 }
1975
1976 static void
1977 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1978 {
1979 int i;
1980
1981 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1982 nvme_fc_init_queue(ctrl, i);
1983 }
1984
1985 static void
1986 nvme_fc_ctrl_free(struct kref *ref)
1987 {
1988 struct nvme_fc_ctrl *ctrl =
1989 container_of(ref, struct nvme_fc_ctrl, ref);
1990 unsigned long flags;
1991
1992 if (ctrl->ctrl.tagset) {
1993 blk_cleanup_queue(ctrl->ctrl.connect_q);
1994 blk_mq_free_tag_set(&ctrl->tag_set);
1995 }
1996
1997 /* remove from rport list */
1998 spin_lock_irqsave(&ctrl->rport->lock, flags);
1999 list_del(&ctrl->ctrl_list);
2000 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2001
2002 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2003 blk_cleanup_queue(ctrl->ctrl.admin_q);
2004 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2005
2006 kfree(ctrl->queues);
2007
2008 put_device(ctrl->dev);
2009 nvme_fc_rport_put(ctrl->rport);
2010
2011 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2012 if (ctrl->ctrl.opts)
2013 nvmf_free_options(ctrl->ctrl.opts);
2014 kfree(ctrl);
2015 }
2016
2017 static void
2018 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2019 {
2020 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2021 }
2022
2023 static int
2024 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2025 {
2026 return kref_get_unless_zero(&ctrl->ref);
2027 }
2028
2029 /*
2030 * All accesses from nvme core layer done - can now free the
2031 * controller. Called after last nvme_put_ctrl() call
2032 */
2033 static void
2034 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2035 {
2036 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2037
2038 WARN_ON(nctrl != &ctrl->ctrl);
2039
2040 nvme_fc_ctrl_put(ctrl);
2041 }
2042
2043 static void
2044 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2045 {
2046 int active;
2047
2048 /*
2049 * if an error (io timeout, etc) while (re)connecting,
2050 * it's an error on creating the new association.
2051 * Start the error recovery thread if it hasn't already
2052 * been started. It is expected there could be multiple
2053 * ios hitting this path before things are cleaned up.
2054 */
2055 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2056 active = atomic_xchg(&ctrl->err_work_active, 1);
2057 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2058 atomic_set(&ctrl->err_work_active, 0);
2059 WARN_ON(1);
2060 }
2061 return;
2062 }
2063
2064 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2065 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2066 return;
2067
2068 dev_warn(ctrl->ctrl.device,
2069 "NVME-FC{%d}: transport association error detected: %s\n",
2070 ctrl->cnum, errmsg);
2071 dev_warn(ctrl->ctrl.device,
2072 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2073
2074 nvme_reset_ctrl(&ctrl->ctrl);
2075 }
2076
2077 static enum blk_eh_timer_return
2078 nvme_fc_timeout(struct request *rq, bool reserved)
2079 {
2080 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2081 struct nvme_fc_ctrl *ctrl = op->ctrl;
2082
2083 /*
2084 * we can't individually ABTS an io without affecting the queue,
2085 * thus killing the queue, and thus the association.
2086 * So resolve by performing a controller reset, which will stop
2087 * the host/io stack, terminate the association on the link,
2088 * and recreate an association on the link.
2089 */
2090 nvme_fc_error_recovery(ctrl, "io timeout error");
2091
2092 /*
2093 * the io abort has been initiated. Have the reset timer
2094 * restarted and the abort completion will complete the io
2095 * shortly. Avoids a synchronous wait while the abort finishes.
2096 */
2097 return BLK_EH_RESET_TIMER;
2098 }
2099
2100 static int
2101 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2102 struct nvme_fc_fcp_op *op)
2103 {
2104 struct nvmefc_fcp_req *freq = &op->fcp_req;
2105 enum dma_data_direction dir;
2106 int ret;
2107
2108 freq->sg_cnt = 0;
2109
2110 if (!blk_rq_nr_phys_segments(rq))
2111 return 0;
2112
2113 freq->sg_table.sgl = freq->first_sgl;
2114 ret = sg_alloc_table_chained(&freq->sg_table,
2115 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2116 if (ret)
2117 return -ENOMEM;
2118
2119 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2120 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2121 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2122 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2123 op->nents, dir);
2124 if (unlikely(freq->sg_cnt <= 0)) {
2125 sg_free_table_chained(&freq->sg_table, true);
2126 freq->sg_cnt = 0;
2127 return -EFAULT;
2128 }
2129
2130 /*
2131 * TODO: blk_integrity_rq(rq) for DIF
2132 */
2133 return 0;
2134 }
2135
2136 static void
2137 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2138 struct nvme_fc_fcp_op *op)
2139 {
2140 struct nvmefc_fcp_req *freq = &op->fcp_req;
2141
2142 if (!freq->sg_cnt)
2143 return;
2144
2145 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2146 ((rq_data_dir(rq) == WRITE) ?
2147 DMA_TO_DEVICE : DMA_FROM_DEVICE));
2148
2149 nvme_cleanup_cmd(rq);
2150
2151 sg_free_table_chained(&freq->sg_table, true);
2152
2153 freq->sg_cnt = 0;
2154 }
2155
2156 /*
2157 * In FC, the queue is a logical thing. At transport connect, the target
2158 * creates its "queue" and returns a handle that is to be given to the
2159 * target whenever it posts something to the corresponding SQ. When an
2160 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2161 * command contained within the SQE, an io, and assigns a FC exchange
2162 * to it. The SQE and the associated SQ handle are sent in the initial
2163 * CMD IU sents on the exchange. All transfers relative to the io occur
2164 * as part of the exchange. The CQE is the last thing for the io,
2165 * which is transferred (explicitly or implicitly) with the RSP IU
2166 * sent on the exchange. After the CQE is received, the FC exchange is
2167 * terminaed and the Exchange may be used on a different io.
2168 *
2169 * The transport to LLDD api has the transport making a request for a
2170 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2171 * resource and transfers the command. The LLDD will then process all
2172 * steps to complete the io. Upon completion, the transport done routine
2173 * is called.
2174 *
2175 * So - while the operation is outstanding to the LLDD, there is a link
2176 * level FC exchange resource that is also outstanding. This must be
2177 * considered in all cleanup operations.
2178 */
2179 static blk_status_t
2180 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2181 struct nvme_fc_fcp_op *op, u32 data_len,
2182 enum nvmefc_fcp_datadir io_dir)
2183 {
2184 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2185 struct nvme_command *sqe = &cmdiu->sqe;
2186 int ret, opstate;
2187
2188 /*
2189 * before attempting to send the io, check to see if we believe
2190 * the target device is present
2191 */
2192 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2193 return BLK_STS_RESOURCE;
2194
2195 if (!nvme_fc_ctrl_get(ctrl))
2196 return BLK_STS_IOERR;
2197
2198 /* format the FC-NVME CMD IU and fcp_req */
2199 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2200 cmdiu->data_len = cpu_to_be32(data_len);
2201 switch (io_dir) {
2202 case NVMEFC_FCP_WRITE:
2203 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2204 break;
2205 case NVMEFC_FCP_READ:
2206 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2207 break;
2208 case NVMEFC_FCP_NODATA:
2209 cmdiu->flags = 0;
2210 break;
2211 }
2212 op->fcp_req.payload_length = data_len;
2213 op->fcp_req.io_dir = io_dir;
2214 op->fcp_req.transferred_length = 0;
2215 op->fcp_req.rcv_rsplen = 0;
2216 op->fcp_req.status = NVME_SC_SUCCESS;
2217 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2218
2219 /*
2220 * validate per fabric rules, set fields mandated by fabric spec
2221 * as well as those by FC-NVME spec.
2222 */
2223 WARN_ON_ONCE(sqe->common.metadata);
2224 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2225
2226 /*
2227 * format SQE DPTR field per FC-NVME rules:
2228 * type=0x5 Transport SGL Data Block Descriptor
2229 * subtype=0xA Transport-specific value
2230 * address=0
2231 * length=length of the data series
2232 */
2233 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2234 NVME_SGL_FMT_TRANSPORT_A;
2235 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2236 sqe->rw.dptr.sgl.addr = 0;
2237
2238 if (!(op->flags & FCOP_FLAGS_AEN)) {
2239 ret = nvme_fc_map_data(ctrl, op->rq, op);
2240 if (ret < 0) {
2241 nvme_cleanup_cmd(op->rq);
2242 nvme_fc_ctrl_put(ctrl);
2243 if (ret == -ENOMEM || ret == -EAGAIN)
2244 return BLK_STS_RESOURCE;
2245 return BLK_STS_IOERR;
2246 }
2247 }
2248
2249 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2250 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2251
2252 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2253
2254 if (!(op->flags & FCOP_FLAGS_AEN))
2255 blk_mq_start_request(op->rq);
2256
2257 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2258 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2259 &ctrl->rport->remoteport,
2260 queue->lldd_handle, &op->fcp_req);
2261
2262 if (ret) {
2263 /*
2264 * If the lld fails to send the command is there an issue with
2265 * the csn value? If the command that fails is the Connect,
2266 * no - as the connection won't be live. If it is a command
2267 * post-connect, it's possible a gap in csn may be created.
2268 * Does this matter? As Linux initiators don't send fused
2269 * commands, no. The gap would exist, but as there's nothing
2270 * that depends on csn order to be delivered on the target
2271 * side, it shouldn't hurt. It would be difficult for a
2272 * target to even detect the csn gap as it has no idea when the
2273 * cmd with the csn was supposed to arrive.
2274 */
2275 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2276 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2277
2278 if (!(op->flags & FCOP_FLAGS_AEN))
2279 nvme_fc_unmap_data(ctrl, op->rq, op);
2280
2281 nvme_fc_ctrl_put(ctrl);
2282
2283 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2284 ret != -EBUSY)
2285 return BLK_STS_IOERR;
2286
2287 return BLK_STS_RESOURCE;
2288 }
2289
2290 return BLK_STS_OK;
2291 }
2292
2293 static blk_status_t
2294 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2295 const struct blk_mq_queue_data *bd)
2296 {
2297 struct nvme_ns *ns = hctx->queue->queuedata;
2298 struct nvme_fc_queue *queue = hctx->driver_data;
2299 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2300 struct request *rq = bd->rq;
2301 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2302 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2303 struct nvme_command *sqe = &cmdiu->sqe;
2304 enum nvmefc_fcp_datadir io_dir;
2305 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2306 u32 data_len;
2307 blk_status_t ret;
2308
2309 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2310 !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2311 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2312
2313 ret = nvme_setup_cmd(ns, rq, sqe);
2314 if (ret)
2315 return ret;
2316
2317 /*
2318 * nvme core doesn't quite treat the rq opaquely. Commands such
2319 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2320 * there is no actual payload to be transferred.
2321 * To get it right, key data transmission on there being 1 or
2322 * more physical segments in the sg list. If there is no
2323 * physical segments, there is no payload.
2324 */
2325 if (blk_rq_nr_phys_segments(rq)) {
2326 data_len = blk_rq_payload_bytes(rq);
2327 io_dir = ((rq_data_dir(rq) == WRITE) ?
2328 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2329 } else {
2330 data_len = 0;
2331 io_dir = NVMEFC_FCP_NODATA;
2332 }
2333
2334
2335 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2336 }
2337
2338 static void
2339 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2340 {
2341 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2342 struct nvme_fc_fcp_op *aen_op;
2343 unsigned long flags;
2344 bool terminating = false;
2345 blk_status_t ret;
2346
2347 spin_lock_irqsave(&ctrl->lock, flags);
2348 if (ctrl->flags & FCCTRL_TERMIO)
2349 terminating = true;
2350 spin_unlock_irqrestore(&ctrl->lock, flags);
2351
2352 if (terminating)
2353 return;
2354
2355 aen_op = &ctrl->aen_ops[0];
2356
2357 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2358 NVMEFC_FCP_NODATA);
2359 if (ret)
2360 dev_err(ctrl->ctrl.device,
2361 "failed async event work\n");
2362 }
2363
2364 static void
2365 nvme_fc_complete_rq(struct request *rq)
2366 {
2367 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2368 struct nvme_fc_ctrl *ctrl = op->ctrl;
2369
2370 atomic_set(&op->state, FCPOP_STATE_IDLE);
2371
2372 nvme_fc_unmap_data(ctrl, rq, op);
2373 nvme_complete_rq(rq);
2374 nvme_fc_ctrl_put(ctrl);
2375 }
2376
2377 /*
2378 * This routine is used by the transport when it needs to find active
2379 * io on a queue that is to be terminated. The transport uses
2380 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2381 * this routine to kill them on a 1 by 1 basis.
2382 *
2383 * As FC allocates FC exchange for each io, the transport must contact
2384 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2385 * After terminating the exchange the LLDD will call the transport's
2386 * normal io done path for the request, but it will have an aborted
2387 * status. The done path will return the io request back to the block
2388 * layer with an error status.
2389 */
2390 static bool
2391 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2392 {
2393 struct nvme_ctrl *nctrl = data;
2394 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2395 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2396
2397 __nvme_fc_abort_op(ctrl, op);
2398 return true;
2399 }
2400
2401
2402 static const struct blk_mq_ops nvme_fc_mq_ops = {
2403 .queue_rq = nvme_fc_queue_rq,
2404 .complete = nvme_fc_complete_rq,
2405 .init_request = nvme_fc_init_request,
2406 .exit_request = nvme_fc_exit_request,
2407 .init_hctx = nvme_fc_init_hctx,
2408 .timeout = nvme_fc_timeout,
2409 };
2410
2411 static int
2412 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2413 {
2414 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2415 unsigned int nr_io_queues;
2416 int ret;
2417
2418 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2419 ctrl->lport->ops->max_hw_queues);
2420 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2421 if (ret) {
2422 dev_info(ctrl->ctrl.device,
2423 "set_queue_count failed: %d\n", ret);
2424 return ret;
2425 }
2426
2427 ctrl->ctrl.queue_count = nr_io_queues + 1;
2428 if (!nr_io_queues)
2429 return 0;
2430
2431 nvme_fc_init_io_queues(ctrl);
2432
2433 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2434 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2435 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2436 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2437 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2438 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2439 ctrl->tag_set.cmd_size =
2440 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2441 ctrl->lport->ops->fcprqst_priv_sz);
2442 ctrl->tag_set.driver_data = ctrl;
2443 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2444 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2445
2446 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2447 if (ret)
2448 return ret;
2449
2450 ctrl->ctrl.tagset = &ctrl->tag_set;
2451
2452 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2453 if (IS_ERR(ctrl->ctrl.connect_q)) {
2454 ret = PTR_ERR(ctrl->ctrl.connect_q);
2455 goto out_free_tag_set;
2456 }
2457
2458 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2459 if (ret)
2460 goto out_cleanup_blk_queue;
2461
2462 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2463 if (ret)
2464 goto out_delete_hw_queues;
2465
2466 ctrl->ioq_live = true;
2467
2468 return 0;
2469
2470 out_delete_hw_queues:
2471 nvme_fc_delete_hw_io_queues(ctrl);
2472 out_cleanup_blk_queue:
2473 blk_cleanup_queue(ctrl->ctrl.connect_q);
2474 out_free_tag_set:
2475 blk_mq_free_tag_set(&ctrl->tag_set);
2476 nvme_fc_free_io_queues(ctrl);
2477
2478 /* force put free routine to ignore io queues */
2479 ctrl->ctrl.tagset = NULL;
2480
2481 return ret;
2482 }
2483
2484 static int
2485 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2486 {
2487 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2488 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2489 unsigned int nr_io_queues;
2490 int ret;
2491
2492 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2493 ctrl->lport->ops->max_hw_queues);
2494 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2495 if (ret) {
2496 dev_info(ctrl->ctrl.device,
2497 "set_queue_count failed: %d\n", ret);
2498 return ret;
2499 }
2500
2501 if (!nr_io_queues && prior_ioq_cnt) {
2502 dev_info(ctrl->ctrl.device,
2503 "Fail Reconnect: At least 1 io queue "
2504 "required (was %d)\n", prior_ioq_cnt);
2505 return -ENOSPC;
2506 }
2507
2508 ctrl->ctrl.queue_count = nr_io_queues + 1;
2509 /* check for io queues existing */
2510 if (ctrl->ctrl.queue_count == 1)
2511 return 0;
2512
2513 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2514 if (ret)
2515 goto out_free_io_queues;
2516
2517 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2518 if (ret)
2519 goto out_delete_hw_queues;
2520
2521 if (prior_ioq_cnt != nr_io_queues)
2522 dev_info(ctrl->ctrl.device,
2523 "reconnect: revising io queue count from %d to %d\n",
2524 prior_ioq_cnt, nr_io_queues);
2525 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2526
2527 return 0;
2528
2529 out_delete_hw_queues:
2530 nvme_fc_delete_hw_io_queues(ctrl);
2531 out_free_io_queues:
2532 nvme_fc_free_io_queues(ctrl);
2533 return ret;
2534 }
2535
2536 static void
2537 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2538 {
2539 struct nvme_fc_lport *lport = rport->lport;
2540
2541 atomic_inc(&lport->act_rport_cnt);
2542 }
2543
2544 static void
2545 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2546 {
2547 struct nvme_fc_lport *lport = rport->lport;
2548 u32 cnt;
2549
2550 cnt = atomic_dec_return(&lport->act_rport_cnt);
2551 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2552 lport->ops->localport_delete(&lport->localport);
2553 }
2554
2555 static int
2556 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2557 {
2558 struct nvme_fc_rport *rport = ctrl->rport;
2559 u32 cnt;
2560
2561 if (ctrl->assoc_active)
2562 return 1;
2563
2564 ctrl->assoc_active = true;
2565 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2566 if (cnt == 1)
2567 nvme_fc_rport_active_on_lport(rport);
2568
2569 return 0;
2570 }
2571
2572 static int
2573 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2574 {
2575 struct nvme_fc_rport *rport = ctrl->rport;
2576 struct nvme_fc_lport *lport = rport->lport;
2577 u32 cnt;
2578
2579 /* ctrl->assoc_active=false will be set independently */
2580
2581 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2582 if (cnt == 0) {
2583 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2584 lport->ops->remoteport_delete(&rport->remoteport);
2585 nvme_fc_rport_inactive_on_lport(rport);
2586 }
2587
2588 return 0;
2589 }
2590
2591 /*
2592 * This routine restarts the controller on the host side, and
2593 * on the link side, recreates the controller association.
2594 */
2595 static int
2596 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2597 {
2598 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2599 int ret;
2600 bool changed;
2601
2602 ++ctrl->ctrl.nr_reconnects;
2603
2604 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2605 return -ENODEV;
2606
2607 if (nvme_fc_ctlr_active_on_rport(ctrl))
2608 return -ENOTUNIQ;
2609
2610 /*
2611 * Create the admin queue
2612 */
2613
2614 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2615 NVME_AQ_DEPTH);
2616 if (ret)
2617 goto out_free_queue;
2618
2619 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2620 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2621 if (ret)
2622 goto out_delete_hw_queue;
2623
2624 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2625
2626 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2627 if (ret)
2628 goto out_disconnect_admin_queue;
2629
2630 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2631
2632 /*
2633 * Check controller capabilities
2634 *
2635 * todo:- add code to check if ctrl attributes changed from
2636 * prior connection values
2637 */
2638
2639 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2640 if (ret) {
2641 dev_err(ctrl->ctrl.device,
2642 "prop_get NVME_REG_CAP failed\n");
2643 goto out_disconnect_admin_queue;
2644 }
2645
2646 ctrl->ctrl.sqsize =
2647 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2648
2649 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2650 if (ret)
2651 goto out_disconnect_admin_queue;
2652
2653 ctrl->ctrl.max_hw_sectors =
2654 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2655
2656 ret = nvme_init_identify(&ctrl->ctrl);
2657 if (ret)
2658 goto out_disconnect_admin_queue;
2659
2660 /* sanity checks */
2661
2662 /* FC-NVME does not have other data in the capsule */
2663 if (ctrl->ctrl.icdoff) {
2664 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2665 ctrl->ctrl.icdoff);
2666 goto out_disconnect_admin_queue;
2667 }
2668
2669 /* FC-NVME supports normal SGL Data Block Descriptors */
2670
2671 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2672 /* warn if maxcmd is lower than queue_size */
2673 dev_warn(ctrl->ctrl.device,
2674 "queue_size %zu > ctrl maxcmd %u, reducing "
2675 "to queue_size\n",
2676 opts->queue_size, ctrl->ctrl.maxcmd);
2677 opts->queue_size = ctrl->ctrl.maxcmd;
2678 }
2679
2680 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2681 /* warn if sqsize is lower than queue_size */
2682 dev_warn(ctrl->ctrl.device,
2683 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2684 opts->queue_size, ctrl->ctrl.sqsize + 1);
2685 opts->queue_size = ctrl->ctrl.sqsize + 1;
2686 }
2687
2688 ret = nvme_fc_init_aen_ops(ctrl);
2689 if (ret)
2690 goto out_term_aen_ops;
2691
2692 /*
2693 * Create the io queues
2694 */
2695
2696 if (ctrl->ctrl.queue_count > 1) {
2697 if (!ctrl->ioq_live)
2698 ret = nvme_fc_create_io_queues(ctrl);
2699 else
2700 ret = nvme_fc_recreate_io_queues(ctrl);
2701 if (ret)
2702 goto out_term_aen_ops;
2703 }
2704
2705 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2706
2707 ctrl->ctrl.nr_reconnects = 0;
2708
2709 if (changed)
2710 nvme_start_ctrl(&ctrl->ctrl);
2711
2712 return 0; /* Success */
2713
2714 out_term_aen_ops:
2715 nvme_fc_term_aen_ops(ctrl);
2716 out_disconnect_admin_queue:
2717 /* send a Disconnect(association) LS to fc-nvme target */
2718 nvme_fc_xmt_disconnect_assoc(ctrl);
2719 out_delete_hw_queue:
2720 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2721 out_free_queue:
2722 nvme_fc_free_queue(&ctrl->queues[0]);
2723 ctrl->assoc_active = false;
2724 nvme_fc_ctlr_inactive_on_rport(ctrl);
2725
2726 return ret;
2727 }
2728
2729 /*
2730 * This routine stops operation of the controller on the host side.
2731 * On the host os stack side: Admin and IO queues are stopped,
2732 * outstanding ios on them terminated via FC ABTS.
2733 * On the link side: the association is terminated.
2734 */
2735 static void
2736 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2737 {
2738 unsigned long flags;
2739
2740 if (!ctrl->assoc_active)
2741 return;
2742 ctrl->assoc_active = false;
2743
2744 spin_lock_irqsave(&ctrl->lock, flags);
2745 ctrl->flags |= FCCTRL_TERMIO;
2746 ctrl->iocnt = 0;
2747 spin_unlock_irqrestore(&ctrl->lock, flags);
2748
2749 /*
2750 * If io queues are present, stop them and terminate all outstanding
2751 * ios on them. As FC allocates FC exchange for each io, the
2752 * transport must contact the LLDD to terminate the exchange,
2753 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2754 * to tell us what io's are busy and invoke a transport routine
2755 * to kill them with the LLDD. After terminating the exchange
2756 * the LLDD will call the transport's normal io done path, but it
2757 * will have an aborted status. The done path will return the
2758 * io requests back to the block layer as part of normal completions
2759 * (but with error status).
2760 */
2761 if (ctrl->ctrl.queue_count > 1) {
2762 nvme_stop_queues(&ctrl->ctrl);
2763 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2764 nvme_fc_terminate_exchange, &ctrl->ctrl);
2765 }
2766
2767 /*
2768 * Other transports, which don't have link-level contexts bound
2769 * to sqe's, would try to gracefully shutdown the controller by
2770 * writing the registers for shutdown and polling (call
2771 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2772 * just aborted and we will wait on those contexts, and given
2773 * there was no indication of how live the controlelr is on the
2774 * link, don't send more io to create more contexts for the
2775 * shutdown. Let the controller fail via keepalive failure if
2776 * its still present.
2777 */
2778
2779 /*
2780 * clean up the admin queue. Same thing as above.
2781 * use blk_mq_tagset_busy_itr() and the transport routine to
2782 * terminate the exchanges.
2783 */
2784 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2785 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2786 nvme_fc_terminate_exchange, &ctrl->ctrl);
2787
2788 /* kill the aens as they are a separate path */
2789 nvme_fc_abort_aen_ops(ctrl);
2790
2791 /* wait for all io that had to be aborted */
2792 spin_lock_irq(&ctrl->lock);
2793 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2794 ctrl->flags &= ~FCCTRL_TERMIO;
2795 spin_unlock_irq(&ctrl->lock);
2796
2797 nvme_fc_term_aen_ops(ctrl);
2798
2799 /*
2800 * send a Disconnect(association) LS to fc-nvme target
2801 * Note: could have been sent at top of process, but
2802 * cleaner on link traffic if after the aborts complete.
2803 * Note: if association doesn't exist, association_id will be 0
2804 */
2805 if (ctrl->association_id)
2806 nvme_fc_xmt_disconnect_assoc(ctrl);
2807
2808 if (ctrl->ctrl.tagset) {
2809 nvme_fc_delete_hw_io_queues(ctrl);
2810 nvme_fc_free_io_queues(ctrl);
2811 }
2812
2813 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2814 nvme_fc_free_queue(&ctrl->queues[0]);
2815
2816 /* re-enable the admin_q so anything new can fast fail */
2817 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2818
2819 /* resume the io queues so that things will fast fail */
2820 nvme_start_queues(&ctrl->ctrl);
2821
2822 nvme_fc_ctlr_inactive_on_rport(ctrl);
2823 }
2824
2825 static void
2826 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2827 {
2828 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2829
2830 cancel_work_sync(&ctrl->err_work);
2831 cancel_delayed_work_sync(&ctrl->connect_work);
2832 /*
2833 * kill the association on the link side. this will block
2834 * waiting for io to terminate
2835 */
2836 nvme_fc_delete_association(ctrl);
2837 }
2838
2839 static void
2840 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2841 {
2842 struct nvme_fc_rport *rport = ctrl->rport;
2843 struct nvme_fc_remote_port *portptr = &rport->remoteport;
2844 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2845 bool recon = true;
2846
2847 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2848 return;
2849
2850 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2851 dev_info(ctrl->ctrl.device,
2852 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2853 ctrl->cnum, status);
2854 else if (time_after_eq(jiffies, rport->dev_loss_end))
2855 recon = false;
2856
2857 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2858 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2859 dev_info(ctrl->ctrl.device,
2860 "NVME-FC{%d}: Reconnect attempt in %ld "
2861 "seconds\n",
2862 ctrl->cnum, recon_delay / HZ);
2863 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2864 recon_delay = rport->dev_loss_end - jiffies;
2865
2866 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2867 } else {
2868 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2869 dev_warn(ctrl->ctrl.device,
2870 "NVME-FC{%d}: Max reconnect attempts (%d) "
2871 "reached.\n",
2872 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2873 else
2874 dev_warn(ctrl->ctrl.device,
2875 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2876 "while waiting for remoteport connectivity.\n",
2877 ctrl->cnum, portptr->dev_loss_tmo);
2878 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2879 }
2880 }
2881
2882 static void
2883 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2884 {
2885 nvme_stop_keep_alive(&ctrl->ctrl);
2886
2887 /* will block will waiting for io to terminate */
2888 nvme_fc_delete_association(ctrl);
2889
2890 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2891 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2892 dev_err(ctrl->ctrl.device,
2893 "NVME-FC{%d}: error_recovery: Couldn't change state "
2894 "to CONNECTING\n", ctrl->cnum);
2895 }
2896
2897 static void
2898 nvme_fc_reset_ctrl_work(struct work_struct *work)
2899 {
2900 struct nvme_fc_ctrl *ctrl =
2901 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2902 int ret;
2903
2904 __nvme_fc_terminate_io(ctrl);
2905
2906 nvme_stop_ctrl(&ctrl->ctrl);
2907
2908 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2909 ret = nvme_fc_create_association(ctrl);
2910 else
2911 ret = -ENOTCONN;
2912
2913 if (ret)
2914 nvme_fc_reconnect_or_delete(ctrl, ret);
2915 else
2916 dev_info(ctrl->ctrl.device,
2917 "NVME-FC{%d}: controller reset complete\n",
2918 ctrl->cnum);
2919 }
2920
2921 static void
2922 nvme_fc_connect_err_work(struct work_struct *work)
2923 {
2924 struct nvme_fc_ctrl *ctrl =
2925 container_of(work, struct nvme_fc_ctrl, err_work);
2926
2927 __nvme_fc_terminate_io(ctrl);
2928
2929 atomic_set(&ctrl->err_work_active, 0);
2930
2931 /*
2932 * Rescheduling the connection after recovering
2933 * from the io error is left to the reconnect work
2934 * item, which is what should have stalled waiting on
2935 * the io that had the error that scheduled this work.
2936 */
2937 }
2938
2939 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2940 .name = "fc",
2941 .module = THIS_MODULE,
2942 .flags = NVME_F_FABRICS,
2943 .reg_read32 = nvmf_reg_read32,
2944 .reg_read64 = nvmf_reg_read64,
2945 .reg_write32 = nvmf_reg_write32,
2946 .free_ctrl = nvme_fc_nvme_ctrl_freed,
2947 .submit_async_event = nvme_fc_submit_async_event,
2948 .delete_ctrl = nvme_fc_delete_ctrl,
2949 .get_address = nvmf_get_address,
2950 };
2951
2952 static void
2953 nvme_fc_connect_ctrl_work(struct work_struct *work)
2954 {
2955 int ret;
2956
2957 struct nvme_fc_ctrl *ctrl =
2958 container_of(to_delayed_work(work),
2959 struct nvme_fc_ctrl, connect_work);
2960
2961 ret = nvme_fc_create_association(ctrl);
2962 if (ret)
2963 nvme_fc_reconnect_or_delete(ctrl, ret);
2964 else
2965 dev_info(ctrl->ctrl.device,
2966 "NVME-FC{%d}: controller connect complete\n",
2967 ctrl->cnum);
2968 }
2969
2970
2971 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2972 .queue_rq = nvme_fc_queue_rq,
2973 .complete = nvme_fc_complete_rq,
2974 .init_request = nvme_fc_init_request,
2975 .exit_request = nvme_fc_exit_request,
2976 .init_hctx = nvme_fc_init_admin_hctx,
2977 .timeout = nvme_fc_timeout,
2978 };
2979
2980
2981 /*
2982 * Fails a controller request if it matches an existing controller
2983 * (association) with the same tuple:
2984 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2985 *
2986 * The ports don't need to be compared as they are intrinsically
2987 * already matched by the port pointers supplied.
2988 */
2989 static bool
2990 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
2991 struct nvmf_ctrl_options *opts)
2992 {
2993 struct nvme_fc_ctrl *ctrl;
2994 unsigned long flags;
2995 bool found = false;
2996
2997 spin_lock_irqsave(&rport->lock, flags);
2998 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
2999 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3000 if (found)
3001 break;
3002 }
3003 spin_unlock_irqrestore(&rport->lock, flags);
3004
3005 return found;
3006 }
3007
3008 static struct nvme_ctrl *
3009 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3010 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3011 {
3012 struct nvme_fc_ctrl *ctrl;
3013 unsigned long flags;
3014 int ret, idx;
3015
3016 if (!(rport->remoteport.port_role &
3017 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3018 ret = -EBADR;
3019 goto out_fail;
3020 }
3021
3022 if (!opts->duplicate_connect &&
3023 nvme_fc_existing_controller(rport, opts)) {
3024 ret = -EALREADY;
3025 goto out_fail;
3026 }
3027
3028 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3029 if (!ctrl) {
3030 ret = -ENOMEM;
3031 goto out_fail;
3032 }
3033
3034 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3035 if (idx < 0) {
3036 ret = -ENOSPC;
3037 goto out_free_ctrl;
3038 }
3039
3040 ctrl->ctrl.opts = opts;
3041 ctrl->ctrl.nr_reconnects = 0;
3042 if (lport->dev)
3043 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3044 else
3045 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3046 INIT_LIST_HEAD(&ctrl->ctrl_list);
3047 ctrl->lport = lport;
3048 ctrl->rport = rport;
3049 ctrl->dev = lport->dev;
3050 ctrl->cnum = idx;
3051 ctrl->ioq_live = false;
3052 ctrl->assoc_active = false;
3053 atomic_set(&ctrl->err_work_active, 0);
3054 init_waitqueue_head(&ctrl->ioabort_wait);
3055
3056 get_device(ctrl->dev);
3057 kref_init(&ctrl->ref);
3058
3059 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3060 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3061 INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3062 spin_lock_init(&ctrl->lock);
3063
3064 /* io queue count */
3065 ctrl->ctrl.queue_count = min_t(unsigned int,
3066 opts->nr_io_queues,
3067 lport->ops->max_hw_queues);
3068 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3069
3070 ctrl->ctrl.sqsize = opts->queue_size - 1;
3071 ctrl->ctrl.kato = opts->kato;
3072 ctrl->ctrl.cntlid = 0xffff;
3073
3074 ret = -ENOMEM;
3075 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3076 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3077 if (!ctrl->queues)
3078 goto out_free_ida;
3079
3080 nvme_fc_init_queue(ctrl, 0);
3081
3082 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3083 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3084 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3085 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3086 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3087 ctrl->admin_tag_set.cmd_size =
3088 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3089 ctrl->lport->ops->fcprqst_priv_sz);
3090 ctrl->admin_tag_set.driver_data = ctrl;
3091 ctrl->admin_tag_set.nr_hw_queues = 1;
3092 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3093 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3094
3095 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3096 if (ret)
3097 goto out_free_queues;
3098 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3099
3100 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3101 if (IS_ERR(ctrl->ctrl.admin_q)) {
3102 ret = PTR_ERR(ctrl->ctrl.admin_q);
3103 goto out_free_admin_tag_set;
3104 }
3105
3106 /*
3107 * Would have been nice to init io queues tag set as well.
3108 * However, we require interaction from the controller
3109 * for max io queue count before we can do so.
3110 * Defer this to the connect path.
3111 */
3112
3113 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3114 if (ret)
3115 goto out_cleanup_admin_q;
3116
3117 /* at this point, teardown path changes to ref counting on nvme ctrl */
3118
3119 spin_lock_irqsave(&rport->lock, flags);
3120 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3121 spin_unlock_irqrestore(&rport->lock, flags);
3122
3123 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3124 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3125 dev_err(ctrl->ctrl.device,
3126 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3127 goto fail_ctrl;
3128 }
3129
3130 nvme_get_ctrl(&ctrl->ctrl);
3131
3132 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3133 nvme_put_ctrl(&ctrl->ctrl);
3134 dev_err(ctrl->ctrl.device,
3135 "NVME-FC{%d}: failed to schedule initial connect\n",
3136 ctrl->cnum);
3137 goto fail_ctrl;
3138 }
3139
3140 flush_delayed_work(&ctrl->connect_work);
3141
3142 dev_info(ctrl->ctrl.device,
3143 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3144 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3145
3146 return &ctrl->ctrl;
3147
3148 fail_ctrl:
3149 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3150 cancel_work_sync(&ctrl->ctrl.reset_work);
3151 cancel_work_sync(&ctrl->err_work);
3152 cancel_delayed_work_sync(&ctrl->connect_work);
3153
3154 ctrl->ctrl.opts = NULL;
3155
3156 /* initiate nvme ctrl ref counting teardown */
3157 nvme_uninit_ctrl(&ctrl->ctrl);
3158
3159 /* Remove core ctrl ref. */
3160 nvme_put_ctrl(&ctrl->ctrl);
3161
3162 /* as we're past the point where we transition to the ref
3163 * counting teardown path, if we return a bad pointer here,
3164 * the calling routine, thinking it's prior to the
3165 * transition, will do an rport put. Since the teardown
3166 * path also does a rport put, we do an extra get here to
3167 * so proper order/teardown happens.
3168 */
3169 nvme_fc_rport_get(rport);
3170
3171 return ERR_PTR(-EIO);
3172
3173 out_cleanup_admin_q:
3174 blk_cleanup_queue(ctrl->ctrl.admin_q);
3175 out_free_admin_tag_set:
3176 blk_mq_free_tag_set(&ctrl->admin_tag_set);
3177 out_free_queues:
3178 kfree(ctrl->queues);
3179 out_free_ida:
3180 put_device(ctrl->dev);
3181 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3182 out_free_ctrl:
3183 kfree(ctrl);
3184 out_fail:
3185 /* exit via here doesn't follow ctlr ref points */
3186 return ERR_PTR(ret);
3187 }
3188
3189
3190 struct nvmet_fc_traddr {
3191 u64 nn;
3192 u64 pn;
3193 };
3194
3195 static int
3196 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3197 {
3198 u64 token64;
3199
3200 if (match_u64(sstr, &token64))
3201 return -EINVAL;
3202 *val = token64;
3203
3204 return 0;
3205 }
3206
3207 /*
3208 * This routine validates and extracts the WWN's from the TRADDR string.
3209 * As kernel parsers need the 0x to determine number base, universally
3210 * build string to parse with 0x prefix before parsing name strings.
3211 */
3212 static int
3213 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3214 {
3215 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3216 substring_t wwn = { name, &name[sizeof(name)-1] };
3217 int nnoffset, pnoffset;
3218
3219 /* validate if string is one of the 2 allowed formats */
3220 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3221 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3222 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3223 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3224 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3225 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3226 NVME_FC_TRADDR_OXNNLEN;
3227 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3228 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3229 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3230 "pn-", NVME_FC_TRADDR_NNLEN))) {
3231 nnoffset = NVME_FC_TRADDR_NNLEN;
3232 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3233 } else
3234 goto out_einval;
3235
3236 name[0] = '0';
3237 name[1] = 'x';
3238 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3239
3240 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3241 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3242 goto out_einval;
3243
3244 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3245 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3246 goto out_einval;
3247
3248 return 0;
3249
3250 out_einval:
3251 pr_warn("%s: bad traddr string\n", __func__);
3252 return -EINVAL;
3253 }
3254
3255 static struct nvme_ctrl *
3256 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3257 {
3258 struct nvme_fc_lport *lport;
3259 struct nvme_fc_rport *rport;
3260 struct nvme_ctrl *ctrl;
3261 struct nvmet_fc_traddr laddr = { 0L, 0L };
3262 struct nvmet_fc_traddr raddr = { 0L, 0L };
3263 unsigned long flags;
3264 int ret;
3265
3266 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3267 if (ret || !raddr.nn || !raddr.pn)
3268 return ERR_PTR(-EINVAL);
3269
3270 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3271 if (ret || !laddr.nn || !laddr.pn)
3272 return ERR_PTR(-EINVAL);
3273
3274 /* find the host and remote ports to connect together */
3275 spin_lock_irqsave(&nvme_fc_lock, flags);
3276 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3277 if (lport->localport.node_name != laddr.nn ||
3278 lport->localport.port_name != laddr.pn)
3279 continue;
3280
3281 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3282 if (rport->remoteport.node_name != raddr.nn ||
3283 rport->remoteport.port_name != raddr.pn)
3284 continue;
3285
3286 /* if fail to get reference fall through. Will error */
3287 if (!nvme_fc_rport_get(rport))
3288 break;
3289
3290 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3291
3292 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3293 if (IS_ERR(ctrl))
3294 nvme_fc_rport_put(rport);
3295 return ctrl;
3296 }
3297 }
3298 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3299
3300 pr_warn("%s: %s - %s combination not found\n",
3301 __func__, opts->traddr, opts->host_traddr);
3302 return ERR_PTR(-ENOENT);
3303 }
3304
3305
3306 static struct nvmf_transport_ops nvme_fc_transport = {
3307 .name = "fc",
3308 .module = THIS_MODULE,
3309 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3310 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3311 .create_ctrl = nvme_fc_create_ctrl,
3312 };
3313
3314 /* Arbitrary successive failures max. With lots of subsystems could be high */
3315 #define DISCOVERY_MAX_FAIL 20
3316
3317 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3318 struct device_attribute *attr, const char *buf, size_t count)
3319 {
3320 unsigned long flags;
3321 LIST_HEAD(local_disc_list);
3322 struct nvme_fc_lport *lport;
3323 struct nvme_fc_rport *rport;
3324 int failcnt = 0;
3325
3326 spin_lock_irqsave(&nvme_fc_lock, flags);
3327 restart:
3328 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3329 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3330 if (!nvme_fc_lport_get(lport))
3331 continue;
3332 if (!nvme_fc_rport_get(rport)) {
3333 /*
3334 * This is a temporary condition. Upon restart
3335 * this rport will be gone from the list.
3336 *
3337 * Revert the lport put and retry. Anything
3338 * added to the list already will be skipped (as
3339 * they are no longer list_empty). Loops should
3340 * resume at rports that were not yet seen.
3341 */
3342 nvme_fc_lport_put(lport);
3343
3344 if (failcnt++ < DISCOVERY_MAX_FAIL)
3345 goto restart;
3346
3347 pr_err("nvme_discovery: too many reference "
3348 "failures\n");
3349 goto process_local_list;
3350 }
3351 if (list_empty(&rport->disc_list))
3352 list_add_tail(&rport->disc_list,
3353 &local_disc_list);
3354 }
3355 }
3356
3357 process_local_list:
3358 while (!list_empty(&local_disc_list)) {
3359 rport = list_first_entry(&local_disc_list,
3360 struct nvme_fc_rport, disc_list);
3361 list_del_init(&rport->disc_list);
3362 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3363
3364 lport = rport->lport;
3365 /* signal discovery. Won't hurt if it repeats */
3366 nvme_fc_signal_discovery_scan(lport, rport);
3367 nvme_fc_rport_put(rport);
3368 nvme_fc_lport_put(lport);
3369
3370 spin_lock_irqsave(&nvme_fc_lock, flags);
3371 }
3372 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3373
3374 return count;
3375 }
3376 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3377
3378 static struct attribute *nvme_fc_attrs[] = {
3379 &dev_attr_nvme_discovery.attr,
3380 NULL
3381 };
3382
3383 static struct attribute_group nvme_fc_attr_group = {
3384 .attrs = nvme_fc_attrs,
3385 };
3386
3387 static const struct attribute_group *nvme_fc_attr_groups[] = {
3388 &nvme_fc_attr_group,
3389 NULL
3390 };
3391
3392 static struct class fc_class = {
3393 .name = "fc",
3394 .dev_groups = nvme_fc_attr_groups,
3395 .owner = THIS_MODULE,
3396 };
3397
3398 static int __init nvme_fc_init_module(void)
3399 {
3400 int ret;
3401
3402 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3403 if (!nvme_fc_wq)
3404 return -ENOMEM;
3405
3406 /*
3407 * NOTE:
3408 * It is expected that in the future the kernel will combine
3409 * the FC-isms that are currently under scsi and now being
3410 * added to by NVME into a new standalone FC class. The SCSI
3411 * and NVME protocols and their devices would be under this
3412 * new FC class.
3413 *
3414 * As we need something to post FC-specific udev events to,
3415 * specifically for nvme probe events, start by creating the
3416 * new device class. When the new standalone FC class is
3417 * put in place, this code will move to a more generic
3418 * location for the class.
3419 */
3420 ret = class_register(&fc_class);
3421 if (ret) {
3422 pr_err("couldn't register class fc\n");
3423 goto out_destroy_wq;
3424 }
3425
3426 /*
3427 * Create a device for the FC-centric udev events
3428 */
3429 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3430 "fc_udev_device");
3431 if (IS_ERR(fc_udev_device)) {
3432 pr_err("couldn't create fc_udev device!\n");
3433 ret = PTR_ERR(fc_udev_device);
3434 goto out_destroy_class;
3435 }
3436
3437 ret = nvmf_register_transport(&nvme_fc_transport);
3438 if (ret)
3439 goto out_destroy_device;
3440
3441 return 0;
3442
3443 out_destroy_device:
3444 device_destroy(&fc_class, MKDEV(0, 0));
3445 out_destroy_class:
3446 class_unregister(&fc_class);
3447 out_destroy_wq:
3448 destroy_workqueue(nvme_fc_wq);
3449
3450 return ret;
3451 }
3452
3453 static void __exit nvme_fc_exit_module(void)
3454 {
3455 /* sanity check - all lports should be removed */
3456 if (!list_empty(&nvme_fc_lport_list))
3457 pr_warn("%s: localport list not empty\n", __func__);
3458
3459 nvmf_unregister_transport(&nvme_fc_transport);
3460
3461 ida_destroy(&nvme_fc_local_port_cnt);
3462 ida_destroy(&nvme_fc_ctrl_cnt);
3463
3464 device_destroy(&fc_class, MKDEV(0, 0));
3465 class_unregister(&fc_class);
3466 destroy_workqueue(nvme_fc_wq);
3467 }
3468
3469 module_init(nvme_fc_init_module);
3470 module_exit(nvme_fc_exit_module);
3471
3472 MODULE_LICENSE("GPL v2");