]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/nvme/host/lightnvm.c
regulator: pv88060: fix error handling in probe
[mirror_ubuntu-zesty-kernel.git] / drivers / nvme / host / lightnvm.c
1 /*
2 * nvme-lightnvm.c - LightNVM NVMe device
3 *
4 * Copyright (C) 2014-2015 IT University of Copenhagen
5 * Initial release: Matias Bjorling <mb@lightnvm.io>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License version
9 * 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; see the file COPYING. If not, write to
18 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
19 * USA.
20 *
21 */
22
23 #include "nvme.h"
24
25 #ifdef CONFIG_NVM
26
27 #include <linux/nvme.h>
28 #include <linux/bitops.h>
29 #include <linux/lightnvm.h>
30 #include <linux/vmalloc.h>
31
32 enum nvme_nvm_admin_opcode {
33 nvme_nvm_admin_identity = 0xe2,
34 nvme_nvm_admin_get_l2p_tbl = 0xea,
35 nvme_nvm_admin_get_bb_tbl = 0xf2,
36 nvme_nvm_admin_set_bb_tbl = 0xf1,
37 };
38
39 struct nvme_nvm_hb_rw {
40 __u8 opcode;
41 __u8 flags;
42 __u16 command_id;
43 __le32 nsid;
44 __u64 rsvd2;
45 __le64 metadata;
46 __le64 prp1;
47 __le64 prp2;
48 __le64 spba;
49 __le16 length;
50 __le16 control;
51 __le32 dsmgmt;
52 __le64 slba;
53 };
54
55 struct nvme_nvm_ph_rw {
56 __u8 opcode;
57 __u8 flags;
58 __u16 command_id;
59 __le32 nsid;
60 __u64 rsvd2;
61 __le64 metadata;
62 __le64 prp1;
63 __le64 prp2;
64 __le64 spba;
65 __le16 length;
66 __le16 control;
67 __le32 dsmgmt;
68 __le64 resv;
69 };
70
71 struct nvme_nvm_identity {
72 __u8 opcode;
73 __u8 flags;
74 __u16 command_id;
75 __le32 nsid;
76 __u64 rsvd[2];
77 __le64 prp1;
78 __le64 prp2;
79 __le32 chnl_off;
80 __u32 rsvd11[5];
81 };
82
83 struct nvme_nvm_l2ptbl {
84 __u8 opcode;
85 __u8 flags;
86 __u16 command_id;
87 __le32 nsid;
88 __le32 cdw2[4];
89 __le64 prp1;
90 __le64 prp2;
91 __le64 slba;
92 __le32 nlb;
93 __le16 cdw14[6];
94 };
95
96 struct nvme_nvm_bbtbl {
97 __u8 opcode;
98 __u8 flags;
99 __u16 command_id;
100 __le32 nsid;
101 __u64 rsvd[2];
102 __le64 prp1;
103 __le64 prp2;
104 __le32 prp1_len;
105 __le32 prp2_len;
106 __le32 lbb;
107 __u32 rsvd11[3];
108 };
109
110 struct nvme_nvm_erase_blk {
111 __u8 opcode;
112 __u8 flags;
113 __u16 command_id;
114 __le32 nsid;
115 __u64 rsvd[2];
116 __le64 prp1;
117 __le64 prp2;
118 __le64 spba;
119 __le16 length;
120 __le16 control;
121 __le32 dsmgmt;
122 __le64 resv;
123 };
124
125 struct nvme_nvm_command {
126 union {
127 struct nvme_common_command common;
128 struct nvme_nvm_identity identity;
129 struct nvme_nvm_hb_rw hb_rw;
130 struct nvme_nvm_ph_rw ph_rw;
131 struct nvme_nvm_l2ptbl l2p;
132 struct nvme_nvm_bbtbl get_bb;
133 struct nvme_nvm_bbtbl set_bb;
134 struct nvme_nvm_erase_blk erase;
135 };
136 };
137
138 struct nvme_nvm_id_group {
139 __u8 mtype;
140 __u8 fmtype;
141 __le16 res16;
142 __u8 num_ch;
143 __u8 num_lun;
144 __u8 num_pln;
145 __le16 num_blk;
146 __le16 num_pg;
147 __le16 fpg_sz;
148 __le16 csecs;
149 __le16 sos;
150 __le32 trdt;
151 __le32 trdm;
152 __le32 tprt;
153 __le32 tprm;
154 __le32 tbet;
155 __le32 tbem;
156 __le32 mpos;
157 __le16 cpar;
158 __u8 reserved[913];
159 } __packed;
160
161 struct nvme_nvm_addr_format {
162 __u8 ch_offset;
163 __u8 ch_len;
164 __u8 lun_offset;
165 __u8 lun_len;
166 __u8 pln_offset;
167 __u8 pln_len;
168 __u8 blk_offset;
169 __u8 blk_len;
170 __u8 pg_offset;
171 __u8 pg_len;
172 __u8 sect_offset;
173 __u8 sect_len;
174 __u8 res[4];
175 } __packed;
176
177 struct nvme_nvm_id {
178 __u8 ver_id;
179 __u8 vmnt;
180 __u8 cgrps;
181 __u8 res[5];
182 __le32 cap;
183 __le32 dom;
184 struct nvme_nvm_addr_format ppaf;
185 __u8 ppat;
186 __u8 resv[223];
187 struct nvme_nvm_id_group groups[4];
188 } __packed;
189
190 /*
191 * Check we didn't inadvertently grow the command struct
192 */
193 static inline void _nvme_nvm_check_size(void)
194 {
195 BUILD_BUG_ON(sizeof(struct nvme_nvm_identity) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_nvm_hb_rw) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_nvm_ph_rw) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_nvm_bbtbl) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_nvm_l2ptbl) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_nvm_erase_blk) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_nvm_id_group) != 960);
202 BUILD_BUG_ON(sizeof(struct nvme_nvm_addr_format) != 128);
203 BUILD_BUG_ON(sizeof(struct nvme_nvm_id) != 4096);
204 }
205
206 static int init_grps(struct nvm_id *nvm_id, struct nvme_nvm_id *nvme_nvm_id)
207 {
208 struct nvme_nvm_id_group *src;
209 struct nvm_id_group *dst;
210 int i, end;
211
212 end = min_t(u32, 4, nvm_id->cgrps);
213
214 for (i = 0; i < end; i++) {
215 src = &nvme_nvm_id->groups[i];
216 dst = &nvm_id->groups[i];
217
218 dst->mtype = src->mtype;
219 dst->fmtype = src->fmtype;
220 dst->num_ch = src->num_ch;
221 dst->num_lun = src->num_lun;
222 dst->num_pln = src->num_pln;
223
224 dst->num_pg = le16_to_cpu(src->num_pg);
225 dst->num_blk = le16_to_cpu(src->num_blk);
226 dst->fpg_sz = le16_to_cpu(src->fpg_sz);
227 dst->csecs = le16_to_cpu(src->csecs);
228 dst->sos = le16_to_cpu(src->sos);
229
230 dst->trdt = le32_to_cpu(src->trdt);
231 dst->trdm = le32_to_cpu(src->trdm);
232 dst->tprt = le32_to_cpu(src->tprt);
233 dst->tprm = le32_to_cpu(src->tprm);
234 dst->tbet = le32_to_cpu(src->tbet);
235 dst->tbem = le32_to_cpu(src->tbem);
236 dst->mpos = le32_to_cpu(src->mpos);
237
238 dst->cpar = le16_to_cpu(src->cpar);
239 }
240
241 return 0;
242 }
243
244 static int nvme_nvm_identity(struct request_queue *q, struct nvm_id *nvm_id)
245 {
246 struct nvme_ns *ns = q->queuedata;
247 struct nvme_nvm_id *nvme_nvm_id;
248 struct nvme_nvm_command c = {};
249 int ret;
250
251 c.identity.opcode = nvme_nvm_admin_identity;
252 c.identity.nsid = cpu_to_le32(ns->ns_id);
253 c.identity.chnl_off = 0;
254
255 nvme_nvm_id = kmalloc(sizeof(struct nvme_nvm_id), GFP_KERNEL);
256 if (!nvme_nvm_id)
257 return -ENOMEM;
258
259 ret = nvme_submit_sync_cmd(q, (struct nvme_command *)&c, nvme_nvm_id,
260 sizeof(struct nvme_nvm_id));
261 if (ret) {
262 ret = -EIO;
263 goto out;
264 }
265
266 nvm_id->ver_id = nvme_nvm_id->ver_id;
267 nvm_id->vmnt = nvme_nvm_id->vmnt;
268 nvm_id->cgrps = nvme_nvm_id->cgrps;
269 nvm_id->cap = le32_to_cpu(nvme_nvm_id->cap);
270 nvm_id->dom = le32_to_cpu(nvme_nvm_id->dom);
271
272 ret = init_grps(nvm_id, nvme_nvm_id);
273 out:
274 kfree(nvme_nvm_id);
275 return ret;
276 }
277
278 static int nvme_nvm_get_l2p_tbl(struct request_queue *q, u64 slba, u32 nlb,
279 nvm_l2p_update_fn *update_l2p, void *priv)
280 {
281 struct nvme_ns *ns = q->queuedata;
282 struct nvme_dev *dev = ns->dev;
283 struct nvme_nvm_command c = {};
284 u32 len = queue_max_hw_sectors(q) << 9;
285 u32 nlb_pr_rq = len / sizeof(u64);
286 u64 cmd_slba = slba;
287 void *entries;
288 int ret = 0;
289
290 c.l2p.opcode = nvme_nvm_admin_get_l2p_tbl;
291 c.l2p.nsid = cpu_to_le32(ns->ns_id);
292 entries = kmalloc(len, GFP_KERNEL);
293 if (!entries)
294 return -ENOMEM;
295
296 while (nlb) {
297 u32 cmd_nlb = min(nlb_pr_rq, nlb);
298
299 c.l2p.slba = cpu_to_le64(cmd_slba);
300 c.l2p.nlb = cpu_to_le32(cmd_nlb);
301
302 ret = nvme_submit_sync_cmd(q, (struct nvme_command *)&c,
303 entries, len);
304 if (ret) {
305 dev_err(dev->dev, "L2P table transfer failed (%d)\n",
306 ret);
307 ret = -EIO;
308 goto out;
309 }
310
311 if (update_l2p(cmd_slba, cmd_nlb, entries, priv)) {
312 ret = -EINTR;
313 goto out;
314 }
315
316 cmd_slba += cmd_nlb;
317 nlb -= cmd_nlb;
318 }
319
320 out:
321 kfree(entries);
322 return ret;
323 }
324
325 static int nvme_nvm_get_bb_tbl(struct request_queue *q, int lunid,
326 unsigned int nr_blocks,
327 nvm_bb_update_fn *update_bbtbl, void *priv)
328 {
329 struct nvme_ns *ns = q->queuedata;
330 struct nvme_dev *dev = ns->dev;
331 struct nvme_nvm_command c = {};
332 void *bb_bitmap;
333 u16 bb_bitmap_size;
334 int ret = 0;
335
336 c.get_bb.opcode = nvme_nvm_admin_get_bb_tbl;
337 c.get_bb.nsid = cpu_to_le32(ns->ns_id);
338 c.get_bb.lbb = cpu_to_le32(lunid);
339 bb_bitmap_size = ((nr_blocks >> 15) + 1) * PAGE_SIZE;
340 bb_bitmap = kmalloc(bb_bitmap_size, GFP_KERNEL);
341 if (!bb_bitmap)
342 return -ENOMEM;
343
344 bitmap_zero(bb_bitmap, nr_blocks);
345
346 ret = nvme_submit_sync_cmd(q, (struct nvme_command *)&c, bb_bitmap,
347 bb_bitmap_size);
348 if (ret) {
349 dev_err(dev->dev, "get bad block table failed (%d)\n", ret);
350 ret = -EIO;
351 goto out;
352 }
353
354 ret = update_bbtbl(lunid, bb_bitmap, nr_blocks, priv);
355 if (ret) {
356 ret = -EINTR;
357 goto out;
358 }
359
360 out:
361 kfree(bb_bitmap);
362 return ret;
363 }
364
365 static inline void nvme_nvm_rqtocmd(struct request *rq, struct nvm_rq *rqd,
366 struct nvme_ns *ns, struct nvme_nvm_command *c)
367 {
368 c->ph_rw.opcode = rqd->opcode;
369 c->ph_rw.nsid = cpu_to_le32(ns->ns_id);
370 c->ph_rw.spba = cpu_to_le64(rqd->ppa_addr.ppa);
371 c->ph_rw.control = cpu_to_le16(rqd->flags);
372 c->ph_rw.length = cpu_to_le16(rqd->nr_pages - 1);
373
374 if (rqd->opcode == NVM_OP_HBWRITE || rqd->opcode == NVM_OP_HBREAD)
375 c->hb_rw.slba = cpu_to_le64(nvme_block_nr(ns,
376 rqd->bio->bi_iter.bi_sector));
377 }
378
379 static void nvme_nvm_end_io(struct request *rq, int error)
380 {
381 struct nvm_rq *rqd = rq->end_io_data;
382 struct nvm_dev *dev = rqd->dev;
383
384 if (dev->mt->end_io(rqd, error))
385 pr_err("nvme: err status: %x result: %lx\n",
386 rq->errors, (unsigned long)rq->special);
387
388 kfree(rq->cmd);
389 blk_mq_free_request(rq);
390 }
391
392 static int nvme_nvm_submit_io(struct request_queue *q, struct nvm_rq *rqd)
393 {
394 struct nvme_ns *ns = q->queuedata;
395 struct request *rq;
396 struct bio *bio = rqd->bio;
397 struct nvme_nvm_command *cmd;
398
399 rq = blk_mq_alloc_request(q, bio_rw(bio), GFP_KERNEL, 0);
400 if (IS_ERR(rq))
401 return -ENOMEM;
402
403 cmd = kzalloc(sizeof(struct nvme_nvm_command), GFP_KERNEL);
404 if (!cmd) {
405 blk_mq_free_request(rq);
406 return -ENOMEM;
407 }
408
409 rq->cmd_type = REQ_TYPE_DRV_PRIV;
410 rq->ioprio = bio_prio(bio);
411
412 if (bio_has_data(bio))
413 rq->nr_phys_segments = bio_phys_segments(q, bio);
414
415 rq->__data_len = bio->bi_iter.bi_size;
416 rq->bio = rq->biotail = bio;
417
418 nvme_nvm_rqtocmd(rq, rqd, ns, cmd);
419
420 rq->cmd = (unsigned char *)cmd;
421 rq->cmd_len = sizeof(struct nvme_nvm_command);
422 rq->special = (void *)0;
423
424 rq->end_io_data = rqd;
425
426 blk_execute_rq_nowait(q, NULL, rq, 0, nvme_nvm_end_io);
427
428 return 0;
429 }
430
431 static int nvme_nvm_erase_block(struct request_queue *q, struct nvm_rq *rqd)
432 {
433 struct nvme_ns *ns = q->queuedata;
434 struct nvme_nvm_command c = {};
435
436 c.erase.opcode = NVM_OP_ERASE;
437 c.erase.nsid = cpu_to_le32(ns->ns_id);
438 c.erase.spba = cpu_to_le64(rqd->ppa_addr.ppa);
439 c.erase.length = cpu_to_le16(rqd->nr_pages - 1);
440
441 return nvme_submit_sync_cmd(q, (struct nvme_command *)&c, NULL, 0);
442 }
443
444 static void *nvme_nvm_create_dma_pool(struct request_queue *q, char *name)
445 {
446 struct nvme_ns *ns = q->queuedata;
447 struct nvme_dev *dev = ns->dev;
448
449 return dma_pool_create(name, dev->dev, PAGE_SIZE, PAGE_SIZE, 0);
450 }
451
452 static void nvme_nvm_destroy_dma_pool(void *pool)
453 {
454 struct dma_pool *dma_pool = pool;
455
456 dma_pool_destroy(dma_pool);
457 }
458
459 static void *nvme_nvm_dev_dma_alloc(struct request_queue *q, void *pool,
460 gfp_t mem_flags, dma_addr_t *dma_handler)
461 {
462 return dma_pool_alloc(pool, mem_flags, dma_handler);
463 }
464
465 static void nvme_nvm_dev_dma_free(void *pool, void *ppa_list,
466 dma_addr_t dma_handler)
467 {
468 dma_pool_free(pool, ppa_list, dma_handler);
469 }
470
471 static struct nvm_dev_ops nvme_nvm_dev_ops = {
472 .identity = nvme_nvm_identity,
473
474 .get_l2p_tbl = nvme_nvm_get_l2p_tbl,
475
476 .get_bb_tbl = nvme_nvm_get_bb_tbl,
477
478 .submit_io = nvme_nvm_submit_io,
479 .erase_block = nvme_nvm_erase_block,
480
481 .create_dma_pool = nvme_nvm_create_dma_pool,
482 .destroy_dma_pool = nvme_nvm_destroy_dma_pool,
483 .dev_dma_alloc = nvme_nvm_dev_dma_alloc,
484 .dev_dma_free = nvme_nvm_dev_dma_free,
485
486 .max_phys_sect = 64,
487 };
488
489 int nvme_nvm_register(struct request_queue *q, char *disk_name)
490 {
491 return nvm_register(q, disk_name, &nvme_nvm_dev_ops);
492 }
493
494 void nvme_nvm_unregister(struct request_queue *q, char *disk_name)
495 {
496 nvm_unregister(disk_name);
497 }
498
499 int nvme_nvm_ns_supported(struct nvme_ns *ns, struct nvme_id_ns *id)
500 {
501 struct nvme_dev *dev = ns->dev;
502 struct pci_dev *pdev = to_pci_dev(dev->dev);
503
504 /* QEMU NVMe simulator - PCI ID + Vendor specific bit */
505 if (pdev->vendor == PCI_VENDOR_ID_INTEL && pdev->device == 0x5845 &&
506 id->vs[0] == 0x1)
507 return 1;
508
509 /* CNEX Labs - PCI ID + Vendor specific bit */
510 if (pdev->vendor == 0x1d1d && pdev->device == 0x2807 &&
511 id->vs[0] == 0x1)
512 return 1;
513
514 return 0;
515 }
516 #else
517 int nvme_nvm_register(struct request_queue *q, char *disk_name)
518 {
519 return 0;
520 }
521 void nvme_nvm_unregister(struct request_queue *q, char *disk_name) {};
522 int nvme_nvm_ns_supported(struct nvme_ns *ns, struct nvme_id_ns *id)
523 {
524 return 0;
525 }
526 #endif /* CONFIG_NVM */