]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
nvme: add a common helper to read Identify Controller data
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/list_sort.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/pr.h>
43 #include <scsi/sg.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include <uapi/linux/nvme_ioctl.h>
48 #include "nvme.h"
49
50 #define NVME_MINORS (1U << MINORBITS)
51 #define NVME_Q_DEPTH 1024
52 #define NVME_AQ_DEPTH 256
53 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
55
56 unsigned char admin_timeout = 60;
57 module_param(admin_timeout, byte, 0644);
58 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
59
60 unsigned char nvme_io_timeout = 30;
61 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
62 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
63
64 unsigned char shutdown_timeout = 5;
65 module_param(shutdown_timeout, byte, 0644);
66 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
67
68 static int nvme_major;
69 module_param(nvme_major, int, 0);
70
71 static int nvme_char_major;
72 module_param(nvme_char_major, int, 0);
73
74 static int use_threaded_interrupts;
75 module_param(use_threaded_interrupts, int, 0);
76
77 static bool use_cmb_sqes = true;
78 module_param(use_cmb_sqes, bool, 0644);
79 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
80
81 static LIST_HEAD(dev_list);
82 static struct task_struct *nvme_thread;
83 static struct workqueue_struct *nvme_workq;
84 static wait_queue_head_t nvme_kthread_wait;
85
86 static struct class *nvme_class;
87
88 struct nvme_dev;
89 struct nvme_queue;
90 struct nvme_iod;
91
92 static int __nvme_reset(struct nvme_dev *dev);
93 static int nvme_reset(struct nvme_dev *dev);
94 static void nvme_process_cq(struct nvme_queue *nvmeq);
95 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
96 static void nvme_dead_ctrl(struct nvme_dev *dev);
97
98 struct async_cmd_info {
99 struct kthread_work work;
100 struct kthread_worker *worker;
101 struct request *req;
102 u32 result;
103 int status;
104 void *ctx;
105 };
106
107 /*
108 * Represents an NVM Express device. Each nvme_dev is a PCI function.
109 */
110 struct nvme_dev {
111 struct list_head node;
112 struct nvme_queue **queues;
113 struct blk_mq_tag_set tagset;
114 struct blk_mq_tag_set admin_tagset;
115 u32 __iomem *dbs;
116 struct device *dev;
117 struct dma_pool *prp_page_pool;
118 struct dma_pool *prp_small_pool;
119 unsigned queue_count;
120 unsigned online_queues;
121 unsigned max_qid;
122 int q_depth;
123 u32 db_stride;
124 struct msix_entry *entry;
125 void __iomem *bar;
126 struct list_head namespaces;
127 struct device *device;
128 struct work_struct reset_work;
129 struct work_struct probe_work;
130 struct work_struct scan_work;
131 bool subsystem;
132 void __iomem *cmb;
133 dma_addr_t cmb_dma_addr;
134 u64 cmb_size;
135 u32 cmbsz;
136
137 struct nvme_ctrl ctrl;
138 };
139
140 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
141 {
142 return container_of(ctrl, struct nvme_dev, ctrl);
143 }
144
145 /*
146 * An NVM Express queue. Each device has at least two (one for admin
147 * commands and one for I/O commands).
148 */
149 struct nvme_queue {
150 struct device *q_dmadev;
151 struct nvme_dev *dev;
152 char irqname[24]; /* nvme4294967295-65535\0 */
153 spinlock_t q_lock;
154 struct nvme_command *sq_cmds;
155 struct nvme_command __iomem *sq_cmds_io;
156 volatile struct nvme_completion *cqes;
157 struct blk_mq_tags **tags;
158 dma_addr_t sq_dma_addr;
159 dma_addr_t cq_dma_addr;
160 u32 __iomem *q_db;
161 u16 q_depth;
162 s16 cq_vector;
163 u16 sq_head;
164 u16 sq_tail;
165 u16 cq_head;
166 u16 qid;
167 u8 cq_phase;
168 u8 cqe_seen;
169 struct async_cmd_info cmdinfo;
170 };
171
172 /*
173 * The nvme_iod describes the data in an I/O, including the list of PRP
174 * entries. You can't see it in this data structure because C doesn't let
175 * me express that. Use nvme_alloc_iod to ensure there's enough space
176 * allocated to store the PRP list.
177 */
178 struct nvme_iod {
179 unsigned long private; /* For the use of the submitter of the I/O */
180 int npages; /* In the PRP list. 0 means small pool in use */
181 int offset; /* Of PRP list */
182 int nents; /* Used in scatterlist */
183 int length; /* Of data, in bytes */
184 dma_addr_t first_dma;
185 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
186 struct scatterlist sg[0];
187 };
188
189 /*
190 * Check we didin't inadvertently grow the command struct
191 */
192 static inline void _nvme_check_size(void)
193 {
194 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
195 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
204 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
205 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
206 }
207
208 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
209 struct nvme_completion *);
210
211 struct nvme_cmd_info {
212 nvme_completion_fn fn;
213 void *ctx;
214 int aborted;
215 struct nvme_queue *nvmeq;
216 struct nvme_iod iod[0];
217 };
218
219 /*
220 * Max size of iod being embedded in the request payload
221 */
222 #define NVME_INT_PAGES 2
223 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
224 #define NVME_INT_MASK 0x01
225
226 /*
227 * Will slightly overestimate the number of pages needed. This is OK
228 * as it only leads to a small amount of wasted memory for the lifetime of
229 * the I/O.
230 */
231 static int nvme_npages(unsigned size, struct nvme_dev *dev)
232 {
233 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
234 dev->ctrl.page_size);
235 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
236 }
237
238 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
239 {
240 unsigned int ret = sizeof(struct nvme_cmd_info);
241
242 ret += sizeof(struct nvme_iod);
243 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
244 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
245
246 return ret;
247 }
248
249 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
250 unsigned int hctx_idx)
251 {
252 struct nvme_dev *dev = data;
253 struct nvme_queue *nvmeq = dev->queues[0];
254
255 WARN_ON(hctx_idx != 0);
256 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
257 WARN_ON(nvmeq->tags);
258
259 hctx->driver_data = nvmeq;
260 nvmeq->tags = &dev->admin_tagset.tags[0];
261 return 0;
262 }
263
264 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
265 {
266 struct nvme_queue *nvmeq = hctx->driver_data;
267
268 nvmeq->tags = NULL;
269 }
270
271 static int nvme_admin_init_request(void *data, struct request *req,
272 unsigned int hctx_idx, unsigned int rq_idx,
273 unsigned int numa_node)
274 {
275 struct nvme_dev *dev = data;
276 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
277 struct nvme_queue *nvmeq = dev->queues[0];
278
279 BUG_ON(!nvmeq);
280 cmd->nvmeq = nvmeq;
281 return 0;
282 }
283
284 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
285 unsigned int hctx_idx)
286 {
287 struct nvme_dev *dev = data;
288 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
289
290 if (!nvmeq->tags)
291 nvmeq->tags = &dev->tagset.tags[hctx_idx];
292
293 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
294 hctx->driver_data = nvmeq;
295 return 0;
296 }
297
298 static int nvme_init_request(void *data, struct request *req,
299 unsigned int hctx_idx, unsigned int rq_idx,
300 unsigned int numa_node)
301 {
302 struct nvme_dev *dev = data;
303 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
304 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
305
306 BUG_ON(!nvmeq);
307 cmd->nvmeq = nvmeq;
308 return 0;
309 }
310
311 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
312 nvme_completion_fn handler)
313 {
314 cmd->fn = handler;
315 cmd->ctx = ctx;
316 cmd->aborted = 0;
317 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
318 }
319
320 static void *iod_get_private(struct nvme_iod *iod)
321 {
322 return (void *) (iod->private & ~0x1UL);
323 }
324
325 /*
326 * If bit 0 is set, the iod is embedded in the request payload.
327 */
328 static bool iod_should_kfree(struct nvme_iod *iod)
329 {
330 return (iod->private & NVME_INT_MASK) == 0;
331 }
332
333 /* Special values must be less than 0x1000 */
334 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
335 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
336 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
337 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
338
339 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
340 struct nvme_completion *cqe)
341 {
342 if (ctx == CMD_CTX_CANCELLED)
343 return;
344 if (ctx == CMD_CTX_COMPLETED) {
345 dev_warn(nvmeq->q_dmadev,
346 "completed id %d twice on queue %d\n",
347 cqe->command_id, le16_to_cpup(&cqe->sq_id));
348 return;
349 }
350 if (ctx == CMD_CTX_INVALID) {
351 dev_warn(nvmeq->q_dmadev,
352 "invalid id %d completed on queue %d\n",
353 cqe->command_id, le16_to_cpup(&cqe->sq_id));
354 return;
355 }
356 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
357 }
358
359 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
360 {
361 void *ctx;
362
363 if (fn)
364 *fn = cmd->fn;
365 ctx = cmd->ctx;
366 cmd->fn = special_completion;
367 cmd->ctx = CMD_CTX_CANCELLED;
368 return ctx;
369 }
370
371 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
372 struct nvme_completion *cqe)
373 {
374 u32 result = le32_to_cpup(&cqe->result);
375 u16 status = le16_to_cpup(&cqe->status) >> 1;
376
377 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
378 ++nvmeq->dev->ctrl.event_limit;
379 if (status != NVME_SC_SUCCESS)
380 return;
381
382 switch (result & 0xff07) {
383 case NVME_AER_NOTICE_NS_CHANGED:
384 dev_info(nvmeq->q_dmadev, "rescanning\n");
385 schedule_work(&nvmeq->dev->scan_work);
386 default:
387 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
388 }
389 }
390
391 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
392 struct nvme_completion *cqe)
393 {
394 struct request *req = ctx;
395
396 u16 status = le16_to_cpup(&cqe->status) >> 1;
397 u32 result = le32_to_cpup(&cqe->result);
398
399 blk_mq_free_request(req);
400
401 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
402 ++nvmeq->dev->ctrl.abort_limit;
403 }
404
405 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
406 struct nvme_completion *cqe)
407 {
408 struct async_cmd_info *cmdinfo = ctx;
409 cmdinfo->result = le32_to_cpup(&cqe->result);
410 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
411 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
412 blk_mq_free_request(cmdinfo->req);
413 }
414
415 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
416 unsigned int tag)
417 {
418 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
419
420 return blk_mq_rq_to_pdu(req);
421 }
422
423 /*
424 * Called with local interrupts disabled and the q_lock held. May not sleep.
425 */
426 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
427 nvme_completion_fn *fn)
428 {
429 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
430 void *ctx;
431 if (tag >= nvmeq->q_depth) {
432 *fn = special_completion;
433 return CMD_CTX_INVALID;
434 }
435 if (fn)
436 *fn = cmd->fn;
437 ctx = cmd->ctx;
438 cmd->fn = special_completion;
439 cmd->ctx = CMD_CTX_COMPLETED;
440 return ctx;
441 }
442
443 /**
444 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
445 * @nvmeq: The queue to use
446 * @cmd: The command to send
447 *
448 * Safe to use from interrupt context
449 */
450 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
451 struct nvme_command *cmd)
452 {
453 u16 tail = nvmeq->sq_tail;
454
455 if (nvmeq->sq_cmds_io)
456 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
457 else
458 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
459
460 if (++tail == nvmeq->q_depth)
461 tail = 0;
462 writel(tail, nvmeq->q_db);
463 nvmeq->sq_tail = tail;
464 }
465
466 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
467 {
468 unsigned long flags;
469 spin_lock_irqsave(&nvmeq->q_lock, flags);
470 __nvme_submit_cmd(nvmeq, cmd);
471 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
472 }
473
474 static __le64 **iod_list(struct nvme_iod *iod)
475 {
476 return ((void *)iod) + iod->offset;
477 }
478
479 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
480 unsigned nseg, unsigned long private)
481 {
482 iod->private = private;
483 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
484 iod->npages = -1;
485 iod->length = nbytes;
486 iod->nents = 0;
487 }
488
489 static struct nvme_iod *
490 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
491 unsigned long priv, gfp_t gfp)
492 {
493 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
494 sizeof(__le64 *) * nvme_npages(bytes, dev) +
495 sizeof(struct scatterlist) * nseg, gfp);
496
497 if (iod)
498 iod_init(iod, bytes, nseg, priv);
499
500 return iod;
501 }
502
503 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
504 gfp_t gfp)
505 {
506 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
507 sizeof(struct nvme_dsm_range);
508 struct nvme_iod *iod;
509
510 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
511 size <= NVME_INT_BYTES(dev)) {
512 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
513
514 iod = cmd->iod;
515 iod_init(iod, size, rq->nr_phys_segments,
516 (unsigned long) rq | NVME_INT_MASK);
517 return iod;
518 }
519
520 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
521 (unsigned long) rq, gfp);
522 }
523
524 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
525 {
526 const int last_prp = dev->ctrl.page_size / 8 - 1;
527 int i;
528 __le64 **list = iod_list(iod);
529 dma_addr_t prp_dma = iod->first_dma;
530
531 if (iod->npages == 0)
532 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
533 for (i = 0; i < iod->npages; i++) {
534 __le64 *prp_list = list[i];
535 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
536 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
537 prp_dma = next_prp_dma;
538 }
539
540 if (iod_should_kfree(iod))
541 kfree(iod);
542 }
543
544 #ifdef CONFIG_BLK_DEV_INTEGRITY
545 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
546 {
547 if (be32_to_cpu(pi->ref_tag) == v)
548 pi->ref_tag = cpu_to_be32(p);
549 }
550
551 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
552 {
553 if (be32_to_cpu(pi->ref_tag) == p)
554 pi->ref_tag = cpu_to_be32(v);
555 }
556
557 /**
558 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
559 *
560 * The virtual start sector is the one that was originally submitted by the
561 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
562 * start sector may be different. Remap protection information to match the
563 * physical LBA on writes, and back to the original seed on reads.
564 *
565 * Type 0 and 3 do not have a ref tag, so no remapping required.
566 */
567 static void nvme_dif_remap(struct request *req,
568 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
569 {
570 struct nvme_ns *ns = req->rq_disk->private_data;
571 struct bio_integrity_payload *bip;
572 struct t10_pi_tuple *pi;
573 void *p, *pmap;
574 u32 i, nlb, ts, phys, virt;
575
576 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
577 return;
578
579 bip = bio_integrity(req->bio);
580 if (!bip)
581 return;
582
583 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
584
585 p = pmap;
586 virt = bip_get_seed(bip);
587 phys = nvme_block_nr(ns, blk_rq_pos(req));
588 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
589 ts = ns->disk->queue->integrity.tuple_size;
590
591 for (i = 0; i < nlb; i++, virt++, phys++) {
592 pi = (struct t10_pi_tuple *)p;
593 dif_swap(phys, virt, pi);
594 p += ts;
595 }
596 kunmap_atomic(pmap);
597 }
598 #else /* CONFIG_BLK_DEV_INTEGRITY */
599 static void nvme_dif_remap(struct request *req,
600 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
601 {
602 }
603 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
604 {
605 }
606 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
607 {
608 }
609 #endif
610
611 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
612 struct nvme_completion *cqe)
613 {
614 struct nvme_iod *iod = ctx;
615 struct request *req = iod_get_private(iod);
616 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
617 u16 status = le16_to_cpup(&cqe->status) >> 1;
618 int error = 0;
619
620 if (unlikely(status)) {
621 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
622 && (jiffies - req->start_time) < req->timeout) {
623 unsigned long flags;
624
625 nvme_unmap_data(nvmeq->dev, iod);
626
627 blk_mq_requeue_request(req);
628 spin_lock_irqsave(req->q->queue_lock, flags);
629 if (!blk_queue_stopped(req->q))
630 blk_mq_kick_requeue_list(req->q);
631 spin_unlock_irqrestore(req->q->queue_lock, flags);
632 return;
633 }
634
635 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
636 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
637 error = -EINTR;
638 else
639 error = status;
640 } else {
641 error = nvme_error_status(status);
642 }
643 }
644
645 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
646 u32 result = le32_to_cpup(&cqe->result);
647 req->special = (void *)(uintptr_t)result;
648 }
649
650 if (cmd_rq->aborted)
651 dev_warn(nvmeq->dev->dev,
652 "completing aborted command with status:%04x\n",
653 error);
654
655 nvme_unmap_data(nvmeq->dev, iod);
656 blk_mq_complete_request(req, error);
657 }
658
659 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
660 int total_len)
661 {
662 struct dma_pool *pool;
663 int length = total_len;
664 struct scatterlist *sg = iod->sg;
665 int dma_len = sg_dma_len(sg);
666 u64 dma_addr = sg_dma_address(sg);
667 u32 page_size = dev->ctrl.page_size;
668 int offset = dma_addr & (page_size - 1);
669 __le64 *prp_list;
670 __le64 **list = iod_list(iod);
671 dma_addr_t prp_dma;
672 int nprps, i;
673
674 length -= (page_size - offset);
675 if (length <= 0)
676 return true;
677
678 dma_len -= (page_size - offset);
679 if (dma_len) {
680 dma_addr += (page_size - offset);
681 } else {
682 sg = sg_next(sg);
683 dma_addr = sg_dma_address(sg);
684 dma_len = sg_dma_len(sg);
685 }
686
687 if (length <= page_size) {
688 iod->first_dma = dma_addr;
689 return true;
690 }
691
692 nprps = DIV_ROUND_UP(length, page_size);
693 if (nprps <= (256 / 8)) {
694 pool = dev->prp_small_pool;
695 iod->npages = 0;
696 } else {
697 pool = dev->prp_page_pool;
698 iod->npages = 1;
699 }
700
701 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
702 if (!prp_list) {
703 iod->first_dma = dma_addr;
704 iod->npages = -1;
705 return false;
706 }
707 list[0] = prp_list;
708 iod->first_dma = prp_dma;
709 i = 0;
710 for (;;) {
711 if (i == page_size >> 3) {
712 __le64 *old_prp_list = prp_list;
713 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
714 if (!prp_list)
715 return false;
716 list[iod->npages++] = prp_list;
717 prp_list[0] = old_prp_list[i - 1];
718 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
719 i = 1;
720 }
721 prp_list[i++] = cpu_to_le64(dma_addr);
722 dma_len -= page_size;
723 dma_addr += page_size;
724 length -= page_size;
725 if (length <= 0)
726 break;
727 if (dma_len > 0)
728 continue;
729 BUG_ON(dma_len < 0);
730 sg = sg_next(sg);
731 dma_addr = sg_dma_address(sg);
732 dma_len = sg_dma_len(sg);
733 }
734
735 return true;
736 }
737
738 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
739 struct nvme_command *cmnd)
740 {
741 struct request *req = iod_get_private(iod);
742 struct request_queue *q = req->q;
743 enum dma_data_direction dma_dir = rq_data_dir(req) ?
744 DMA_TO_DEVICE : DMA_FROM_DEVICE;
745 int ret = BLK_MQ_RQ_QUEUE_ERROR;
746
747 sg_init_table(iod->sg, req->nr_phys_segments);
748 iod->nents = blk_rq_map_sg(q, req, iod->sg);
749 if (!iod->nents)
750 goto out;
751
752 ret = BLK_MQ_RQ_QUEUE_BUSY;
753 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
754 goto out;
755
756 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
757 goto out_unmap;
758
759 ret = BLK_MQ_RQ_QUEUE_ERROR;
760 if (blk_integrity_rq(req)) {
761 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
762 goto out_unmap;
763
764 sg_init_table(iod->meta_sg, 1);
765 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
766 goto out_unmap;
767
768 if (rq_data_dir(req))
769 nvme_dif_remap(req, nvme_dif_prep);
770
771 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
772 goto out_unmap;
773 }
774
775 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
776 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
777 if (blk_integrity_rq(req))
778 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
779 return BLK_MQ_RQ_QUEUE_OK;
780
781 out_unmap:
782 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
783 out:
784 return ret;
785 }
786
787 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
788 {
789 struct request *req = iod_get_private(iod);
790 enum dma_data_direction dma_dir = rq_data_dir(req) ?
791 DMA_TO_DEVICE : DMA_FROM_DEVICE;
792
793 if (iod->nents) {
794 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
795 if (blk_integrity_rq(req)) {
796 if (!rq_data_dir(req))
797 nvme_dif_remap(req, nvme_dif_complete);
798 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
799 }
800 }
801
802 nvme_free_iod(dev, iod);
803 }
804
805 /*
806 * We reuse the small pool to allocate the 16-byte range here as it is not
807 * worth having a special pool for these or additional cases to handle freeing
808 * the iod.
809 */
810 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
811 struct nvme_iod *iod, struct nvme_command *cmnd)
812 {
813 struct request *req = iod_get_private(iod);
814 struct nvme_dsm_range *range;
815
816 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
817 &iod->first_dma);
818 if (!range)
819 return BLK_MQ_RQ_QUEUE_BUSY;
820 iod_list(iod)[0] = (__le64 *)range;
821 iod->npages = 0;
822
823 range->cattr = cpu_to_le32(0);
824 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
825 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
826
827 memset(cmnd, 0, sizeof(*cmnd));
828 cmnd->dsm.opcode = nvme_cmd_dsm;
829 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
830 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
831 cmnd->dsm.nr = 0;
832 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
833 return BLK_MQ_RQ_QUEUE_OK;
834 }
835
836 /*
837 * NOTE: ns is NULL when called on the admin queue.
838 */
839 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
840 const struct blk_mq_queue_data *bd)
841 {
842 struct nvme_ns *ns = hctx->queue->queuedata;
843 struct nvme_queue *nvmeq = hctx->driver_data;
844 struct nvme_dev *dev = nvmeq->dev;
845 struct request *req = bd->rq;
846 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
847 struct nvme_iod *iod;
848 struct nvme_command cmnd;
849 int ret = BLK_MQ_RQ_QUEUE_OK;
850
851 /*
852 * If formated with metadata, require the block layer provide a buffer
853 * unless this namespace is formated such that the metadata can be
854 * stripped/generated by the controller with PRACT=1.
855 */
856 if (ns && ns->ms && !blk_integrity_rq(req)) {
857 if (!(ns->pi_type && ns->ms == 8) &&
858 req->cmd_type != REQ_TYPE_DRV_PRIV) {
859 blk_mq_complete_request(req, -EFAULT);
860 return BLK_MQ_RQ_QUEUE_OK;
861 }
862 }
863
864 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
865 if (!iod)
866 return BLK_MQ_RQ_QUEUE_BUSY;
867
868 if (req->cmd_flags & REQ_DISCARD) {
869 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
870 } else {
871 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
872 memcpy(&cmnd, req->cmd, sizeof(cmnd));
873 else if (req->cmd_flags & REQ_FLUSH)
874 nvme_setup_flush(ns, &cmnd);
875 else
876 nvme_setup_rw(ns, req, &cmnd);
877
878 if (req->nr_phys_segments)
879 ret = nvme_map_data(dev, iod, &cmnd);
880 }
881
882 if (ret)
883 goto out;
884
885 cmnd.common.command_id = req->tag;
886 nvme_set_info(cmd, iod, req_completion);
887
888 spin_lock_irq(&nvmeq->q_lock);
889 __nvme_submit_cmd(nvmeq, &cmnd);
890 nvme_process_cq(nvmeq);
891 spin_unlock_irq(&nvmeq->q_lock);
892 return BLK_MQ_RQ_QUEUE_OK;
893 out:
894 nvme_free_iod(dev, iod);
895 return ret;
896 }
897
898 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
899 {
900 u16 head, phase;
901
902 head = nvmeq->cq_head;
903 phase = nvmeq->cq_phase;
904
905 for (;;) {
906 void *ctx;
907 nvme_completion_fn fn;
908 struct nvme_completion cqe = nvmeq->cqes[head];
909 if ((le16_to_cpu(cqe.status) & 1) != phase)
910 break;
911 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
912 if (++head == nvmeq->q_depth) {
913 head = 0;
914 phase = !phase;
915 }
916 if (tag && *tag == cqe.command_id)
917 *tag = -1;
918 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
919 fn(nvmeq, ctx, &cqe);
920 }
921
922 /* If the controller ignores the cq head doorbell and continuously
923 * writes to the queue, it is theoretically possible to wrap around
924 * the queue twice and mistakenly return IRQ_NONE. Linux only
925 * requires that 0.1% of your interrupts are handled, so this isn't
926 * a big problem.
927 */
928 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
929 return;
930
931 if (likely(nvmeq->cq_vector >= 0))
932 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
933 nvmeq->cq_head = head;
934 nvmeq->cq_phase = phase;
935
936 nvmeq->cqe_seen = 1;
937 }
938
939 static void nvme_process_cq(struct nvme_queue *nvmeq)
940 {
941 __nvme_process_cq(nvmeq, NULL);
942 }
943
944 static irqreturn_t nvme_irq(int irq, void *data)
945 {
946 irqreturn_t result;
947 struct nvme_queue *nvmeq = data;
948 spin_lock(&nvmeq->q_lock);
949 nvme_process_cq(nvmeq);
950 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
951 nvmeq->cqe_seen = 0;
952 spin_unlock(&nvmeq->q_lock);
953 return result;
954 }
955
956 static irqreturn_t nvme_irq_check(int irq, void *data)
957 {
958 struct nvme_queue *nvmeq = data;
959 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
960 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
961 return IRQ_NONE;
962 return IRQ_WAKE_THREAD;
963 }
964
965 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
966 {
967 struct nvme_queue *nvmeq = hctx->driver_data;
968
969 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
970 nvmeq->cq_phase) {
971 spin_lock_irq(&nvmeq->q_lock);
972 __nvme_process_cq(nvmeq, &tag);
973 spin_unlock_irq(&nvmeq->q_lock);
974
975 if (tag == -1)
976 return 1;
977 }
978
979 return 0;
980 }
981
982 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
983 {
984 struct nvme_queue *nvmeq = dev->queues[0];
985 struct nvme_command c;
986 struct nvme_cmd_info *cmd_info;
987 struct request *req;
988
989 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
990 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
991 if (IS_ERR(req))
992 return PTR_ERR(req);
993
994 req->cmd_flags |= REQ_NO_TIMEOUT;
995 cmd_info = blk_mq_rq_to_pdu(req);
996 nvme_set_info(cmd_info, NULL, async_req_completion);
997
998 memset(&c, 0, sizeof(c));
999 c.common.opcode = nvme_admin_async_event;
1000 c.common.command_id = req->tag;
1001
1002 blk_mq_free_request(req);
1003 __nvme_submit_cmd(nvmeq, &c);
1004 return 0;
1005 }
1006
1007 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1008 struct nvme_command *cmd,
1009 struct async_cmd_info *cmdinfo, unsigned timeout)
1010 {
1011 struct nvme_queue *nvmeq = dev->queues[0];
1012 struct request *req;
1013 struct nvme_cmd_info *cmd_rq;
1014
1015 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
1016 if (IS_ERR(req))
1017 return PTR_ERR(req);
1018
1019 req->timeout = timeout;
1020 cmd_rq = blk_mq_rq_to_pdu(req);
1021 cmdinfo->req = req;
1022 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1023 cmdinfo->status = -EINTR;
1024
1025 cmd->common.command_id = req->tag;
1026
1027 nvme_submit_cmd(nvmeq, cmd);
1028 return 0;
1029 }
1030
1031 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1032 {
1033 struct nvme_command c;
1034
1035 memset(&c, 0, sizeof(c));
1036 c.delete_queue.opcode = opcode;
1037 c.delete_queue.qid = cpu_to_le16(id);
1038
1039 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1040 }
1041
1042 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1043 struct nvme_queue *nvmeq)
1044 {
1045 struct nvme_command c;
1046 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1047
1048 /*
1049 * Note: we (ab)use the fact the the prp fields survive if no data
1050 * is attached to the request.
1051 */
1052 memset(&c, 0, sizeof(c));
1053 c.create_cq.opcode = nvme_admin_create_cq;
1054 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1055 c.create_cq.cqid = cpu_to_le16(qid);
1056 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1057 c.create_cq.cq_flags = cpu_to_le16(flags);
1058 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1059
1060 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1061 }
1062
1063 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1064 struct nvme_queue *nvmeq)
1065 {
1066 struct nvme_command c;
1067 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1068
1069 /*
1070 * Note: we (ab)use the fact the the prp fields survive if no data
1071 * is attached to the request.
1072 */
1073 memset(&c, 0, sizeof(c));
1074 c.create_sq.opcode = nvme_admin_create_sq;
1075 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1076 c.create_sq.sqid = cpu_to_le16(qid);
1077 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1078 c.create_sq.sq_flags = cpu_to_le16(flags);
1079 c.create_sq.cqid = cpu_to_le16(qid);
1080
1081 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1082 }
1083
1084 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1085 {
1086 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1087 }
1088
1089 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1090 {
1091 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1092 }
1093
1094 /**
1095 * nvme_abort_req - Attempt aborting a request
1096 *
1097 * Schedule controller reset if the command was already aborted once before and
1098 * still hasn't been returned to the driver, or if this is the admin queue.
1099 */
1100 static void nvme_abort_req(struct request *req)
1101 {
1102 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1103 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1104 struct nvme_dev *dev = nvmeq->dev;
1105 struct request *abort_req;
1106 struct nvme_cmd_info *abort_cmd;
1107 struct nvme_command cmd;
1108
1109 if (!nvmeq->qid || cmd_rq->aborted) {
1110 spin_lock(&dev_list_lock);
1111 if (!__nvme_reset(dev)) {
1112 dev_warn(dev->dev,
1113 "I/O %d QID %d timeout, reset controller\n",
1114 req->tag, nvmeq->qid);
1115 }
1116 spin_unlock(&dev_list_lock);
1117 return;
1118 }
1119
1120 if (!dev->ctrl.abort_limit)
1121 return;
1122
1123 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1124 BLK_MQ_REQ_NOWAIT);
1125 if (IS_ERR(abort_req))
1126 return;
1127
1128 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1129 nvme_set_info(abort_cmd, abort_req, abort_completion);
1130
1131 memset(&cmd, 0, sizeof(cmd));
1132 cmd.abort.opcode = nvme_admin_abort_cmd;
1133 cmd.abort.cid = req->tag;
1134 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1135 cmd.abort.command_id = abort_req->tag;
1136
1137 --dev->ctrl.abort_limit;
1138 cmd_rq->aborted = 1;
1139
1140 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1141 nvmeq->qid);
1142 nvme_submit_cmd(dev->queues[0], &cmd);
1143 }
1144
1145 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1146 {
1147 struct nvme_queue *nvmeq = data;
1148 void *ctx;
1149 nvme_completion_fn fn;
1150 struct nvme_cmd_info *cmd;
1151 struct nvme_completion cqe;
1152
1153 if (!blk_mq_request_started(req))
1154 return;
1155
1156 cmd = blk_mq_rq_to_pdu(req);
1157
1158 if (cmd->ctx == CMD_CTX_CANCELLED)
1159 return;
1160
1161 if (blk_queue_dying(req->q))
1162 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1163 else
1164 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1165
1166
1167 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1168 req->tag, nvmeq->qid);
1169 ctx = cancel_cmd_info(cmd, &fn);
1170 fn(nvmeq, ctx, &cqe);
1171 }
1172
1173 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1174 {
1175 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1176 struct nvme_queue *nvmeq = cmd->nvmeq;
1177
1178 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1179 nvmeq->qid);
1180 spin_lock_irq(&nvmeq->q_lock);
1181 nvme_abort_req(req);
1182 spin_unlock_irq(&nvmeq->q_lock);
1183
1184 /*
1185 * The aborted req will be completed on receiving the abort req.
1186 * We enable the timer again. If hit twice, it'll cause a device reset,
1187 * as the device then is in a faulty state.
1188 */
1189 return BLK_EH_RESET_TIMER;
1190 }
1191
1192 static void nvme_free_queue(struct nvme_queue *nvmeq)
1193 {
1194 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1195 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1196 if (nvmeq->sq_cmds)
1197 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1198 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1199 kfree(nvmeq);
1200 }
1201
1202 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1203 {
1204 int i;
1205
1206 for (i = dev->queue_count - 1; i >= lowest; i--) {
1207 struct nvme_queue *nvmeq = dev->queues[i];
1208 dev->queue_count--;
1209 dev->queues[i] = NULL;
1210 nvme_free_queue(nvmeq);
1211 }
1212 }
1213
1214 /**
1215 * nvme_suspend_queue - put queue into suspended state
1216 * @nvmeq - queue to suspend
1217 */
1218 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1219 {
1220 int vector;
1221
1222 spin_lock_irq(&nvmeq->q_lock);
1223 if (nvmeq->cq_vector == -1) {
1224 spin_unlock_irq(&nvmeq->q_lock);
1225 return 1;
1226 }
1227 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1228 nvmeq->dev->online_queues--;
1229 nvmeq->cq_vector = -1;
1230 spin_unlock_irq(&nvmeq->q_lock);
1231
1232 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1233 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1234
1235 irq_set_affinity_hint(vector, NULL);
1236 free_irq(vector, nvmeq);
1237
1238 return 0;
1239 }
1240
1241 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1242 {
1243 spin_lock_irq(&nvmeq->q_lock);
1244 if (nvmeq->tags && *nvmeq->tags)
1245 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1246 spin_unlock_irq(&nvmeq->q_lock);
1247 }
1248
1249 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1250 {
1251 struct nvme_queue *nvmeq = dev->queues[qid];
1252
1253 if (!nvmeq)
1254 return;
1255 if (nvme_suspend_queue(nvmeq))
1256 return;
1257
1258 /* Don't tell the adapter to delete the admin queue.
1259 * Don't tell a removed adapter to delete IO queues. */
1260 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1261 adapter_delete_sq(dev, qid);
1262 adapter_delete_cq(dev, qid);
1263 }
1264
1265 spin_lock_irq(&nvmeq->q_lock);
1266 nvme_process_cq(nvmeq);
1267 spin_unlock_irq(&nvmeq->q_lock);
1268 }
1269
1270 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1271 int entry_size)
1272 {
1273 int q_depth = dev->q_depth;
1274 unsigned q_size_aligned = roundup(q_depth * entry_size,
1275 dev->ctrl.page_size);
1276
1277 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1278 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1279 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1280 q_depth = div_u64(mem_per_q, entry_size);
1281
1282 /*
1283 * Ensure the reduced q_depth is above some threshold where it
1284 * would be better to map queues in system memory with the
1285 * original depth
1286 */
1287 if (q_depth < 64)
1288 return -ENOMEM;
1289 }
1290
1291 return q_depth;
1292 }
1293
1294 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1295 int qid, int depth)
1296 {
1297 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1298 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1299 dev->ctrl.page_size);
1300 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1301 nvmeq->sq_cmds_io = dev->cmb + offset;
1302 } else {
1303 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1304 &nvmeq->sq_dma_addr, GFP_KERNEL);
1305 if (!nvmeq->sq_cmds)
1306 return -ENOMEM;
1307 }
1308
1309 return 0;
1310 }
1311
1312 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1313 int depth)
1314 {
1315 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1316 if (!nvmeq)
1317 return NULL;
1318
1319 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1320 &nvmeq->cq_dma_addr, GFP_KERNEL);
1321 if (!nvmeq->cqes)
1322 goto free_nvmeq;
1323
1324 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1325 goto free_cqdma;
1326
1327 nvmeq->q_dmadev = dev->dev;
1328 nvmeq->dev = dev;
1329 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1330 dev->ctrl.instance, qid);
1331 spin_lock_init(&nvmeq->q_lock);
1332 nvmeq->cq_head = 0;
1333 nvmeq->cq_phase = 1;
1334 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1335 nvmeq->q_depth = depth;
1336 nvmeq->qid = qid;
1337 nvmeq->cq_vector = -1;
1338 dev->queues[qid] = nvmeq;
1339
1340 /* make sure queue descriptor is set before queue count, for kthread */
1341 mb();
1342 dev->queue_count++;
1343
1344 return nvmeq;
1345
1346 free_cqdma:
1347 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1348 nvmeq->cq_dma_addr);
1349 free_nvmeq:
1350 kfree(nvmeq);
1351 return NULL;
1352 }
1353
1354 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1355 const char *name)
1356 {
1357 if (use_threaded_interrupts)
1358 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1359 nvme_irq_check, nvme_irq, IRQF_SHARED,
1360 name, nvmeq);
1361 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1362 IRQF_SHARED, name, nvmeq);
1363 }
1364
1365 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1366 {
1367 struct nvme_dev *dev = nvmeq->dev;
1368
1369 spin_lock_irq(&nvmeq->q_lock);
1370 nvmeq->sq_tail = 0;
1371 nvmeq->cq_head = 0;
1372 nvmeq->cq_phase = 1;
1373 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1374 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1375 dev->online_queues++;
1376 spin_unlock_irq(&nvmeq->q_lock);
1377 }
1378
1379 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1380 {
1381 struct nvme_dev *dev = nvmeq->dev;
1382 int result;
1383
1384 nvmeq->cq_vector = qid - 1;
1385 result = adapter_alloc_cq(dev, qid, nvmeq);
1386 if (result < 0)
1387 return result;
1388
1389 result = adapter_alloc_sq(dev, qid, nvmeq);
1390 if (result < 0)
1391 goto release_cq;
1392
1393 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1394 if (result < 0)
1395 goto release_sq;
1396
1397 nvme_init_queue(nvmeq, qid);
1398 return result;
1399
1400 release_sq:
1401 adapter_delete_sq(dev, qid);
1402 release_cq:
1403 adapter_delete_cq(dev, qid);
1404 return result;
1405 }
1406
1407 static struct blk_mq_ops nvme_mq_admin_ops = {
1408 .queue_rq = nvme_queue_rq,
1409 .map_queue = blk_mq_map_queue,
1410 .init_hctx = nvme_admin_init_hctx,
1411 .exit_hctx = nvme_admin_exit_hctx,
1412 .init_request = nvme_admin_init_request,
1413 .timeout = nvme_timeout,
1414 };
1415
1416 static struct blk_mq_ops nvme_mq_ops = {
1417 .queue_rq = nvme_queue_rq,
1418 .map_queue = blk_mq_map_queue,
1419 .init_hctx = nvme_init_hctx,
1420 .init_request = nvme_init_request,
1421 .timeout = nvme_timeout,
1422 .poll = nvme_poll,
1423 };
1424
1425 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1426 {
1427 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1428 blk_cleanup_queue(dev->ctrl.admin_q);
1429 blk_mq_free_tag_set(&dev->admin_tagset);
1430 }
1431 }
1432
1433 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1434 {
1435 if (!dev->ctrl.admin_q) {
1436 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1437 dev->admin_tagset.nr_hw_queues = 1;
1438 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1439 dev->admin_tagset.reserved_tags = 1;
1440 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1441 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1442 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1443 dev->admin_tagset.driver_data = dev;
1444
1445 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1446 return -ENOMEM;
1447
1448 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1449 if (IS_ERR(dev->ctrl.admin_q)) {
1450 blk_mq_free_tag_set(&dev->admin_tagset);
1451 return -ENOMEM;
1452 }
1453 if (!blk_get_queue(dev->ctrl.admin_q)) {
1454 nvme_dev_remove_admin(dev);
1455 dev->ctrl.admin_q = NULL;
1456 return -ENODEV;
1457 }
1458 } else
1459 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1460
1461 return 0;
1462 }
1463
1464 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1465 {
1466 int result;
1467 u32 aqa;
1468 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1469 struct nvme_queue *nvmeq;
1470
1471 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1472 NVME_CAP_NSSRC(cap) : 0;
1473
1474 if (dev->subsystem &&
1475 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1476 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1477
1478 result = nvme_disable_ctrl(&dev->ctrl, cap);
1479 if (result < 0)
1480 return result;
1481
1482 nvmeq = dev->queues[0];
1483 if (!nvmeq) {
1484 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1485 if (!nvmeq)
1486 return -ENOMEM;
1487 }
1488
1489 aqa = nvmeq->q_depth - 1;
1490 aqa |= aqa << 16;
1491
1492 writel(aqa, dev->bar + NVME_REG_AQA);
1493 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1494 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1495
1496 result = nvme_enable_ctrl(&dev->ctrl, cap);
1497 if (result)
1498 goto free_nvmeq;
1499
1500 nvmeq->cq_vector = 0;
1501 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1502 if (result) {
1503 nvmeq->cq_vector = -1;
1504 goto free_nvmeq;
1505 }
1506
1507 return result;
1508
1509 free_nvmeq:
1510 nvme_free_queues(dev, 0);
1511 return result;
1512 }
1513
1514 static int nvme_subsys_reset(struct nvme_dev *dev)
1515 {
1516 if (!dev->subsystem)
1517 return -ENOTTY;
1518
1519 writel(0x4E564D65, dev->bar + NVME_REG_NSSR); /* "NVMe" */
1520 return 0;
1521 }
1522
1523 static int nvme_kthread(void *data)
1524 {
1525 struct nvme_dev *dev, *next;
1526
1527 while (!kthread_should_stop()) {
1528 set_current_state(TASK_INTERRUPTIBLE);
1529 spin_lock(&dev_list_lock);
1530 list_for_each_entry_safe(dev, next, &dev_list, node) {
1531 int i;
1532 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1533
1534 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1535 csts & NVME_CSTS_CFS) {
1536 if (!__nvme_reset(dev)) {
1537 dev_warn(dev->dev,
1538 "Failed status: %x, reset controller\n",
1539 readl(dev->bar + NVME_REG_CSTS));
1540 }
1541 continue;
1542 }
1543 for (i = 0; i < dev->queue_count; i++) {
1544 struct nvme_queue *nvmeq = dev->queues[i];
1545 if (!nvmeq)
1546 continue;
1547 spin_lock_irq(&nvmeq->q_lock);
1548 nvme_process_cq(nvmeq);
1549
1550 while (i == 0 && dev->ctrl.event_limit > 0) {
1551 if (nvme_submit_async_admin_req(dev))
1552 break;
1553 dev->ctrl.event_limit--;
1554 }
1555 spin_unlock_irq(&nvmeq->q_lock);
1556 }
1557 }
1558 spin_unlock(&dev_list_lock);
1559 schedule_timeout(round_jiffies_relative(HZ));
1560 }
1561 return 0;
1562 }
1563
1564 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
1565 {
1566 struct nvme_ns *ns;
1567 struct gendisk *disk;
1568 int node = dev_to_node(dev->dev);
1569
1570 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1571 if (!ns)
1572 return;
1573
1574 ns->queue = blk_mq_init_queue(&dev->tagset);
1575 if (IS_ERR(ns->queue))
1576 goto out_free_ns;
1577 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1578 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1579 ns->ctrl = &dev->ctrl;
1580 ns->queue->queuedata = ns;
1581
1582 disk = alloc_disk_node(0, node);
1583 if (!disk)
1584 goto out_free_queue;
1585
1586 kref_init(&ns->kref);
1587 ns->ns_id = nsid;
1588 ns->disk = disk;
1589 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1590 list_add_tail(&ns->list, &dev->namespaces);
1591
1592 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1593 if (dev->ctrl.max_hw_sectors) {
1594 blk_queue_max_hw_sectors(ns->queue, dev->ctrl.max_hw_sectors);
1595 blk_queue_max_segments(ns->queue,
1596 (dev->ctrl.max_hw_sectors / (dev->ctrl.page_size >> 9)) + 1);
1597 }
1598 if (dev->ctrl.stripe_size)
1599 blk_queue_chunk_sectors(ns->queue, dev->ctrl.stripe_size >> 9);
1600 if (dev->ctrl.vwc & NVME_CTRL_VWC_PRESENT)
1601 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1602 blk_queue_virt_boundary(ns->queue, dev->ctrl.page_size - 1);
1603
1604 disk->major = nvme_major;
1605 disk->first_minor = 0;
1606 disk->fops = &nvme_fops;
1607 disk->private_data = ns;
1608 disk->queue = ns->queue;
1609 disk->driverfs_dev = dev->device;
1610 disk->flags = GENHD_FL_EXT_DEVT;
1611 sprintf(disk->disk_name, "nvme%dn%d", dev->ctrl.instance, nsid);
1612
1613 /*
1614 * Initialize capacity to 0 until we establish the namespace format and
1615 * setup integrity extentions if necessary. The revalidate_disk after
1616 * add_disk allows the driver to register with integrity if the format
1617 * requires it.
1618 */
1619 set_capacity(disk, 0);
1620 if (nvme_revalidate_disk(ns->disk))
1621 goto out_free_disk;
1622
1623 kref_get(&dev->ctrl.kref);
1624 if (ns->type != NVME_NS_LIGHTNVM) {
1625 add_disk(ns->disk);
1626 if (ns->ms) {
1627 struct block_device *bd = bdget_disk(ns->disk, 0);
1628 if (!bd)
1629 return;
1630 if (blkdev_get(bd, FMODE_READ, NULL)) {
1631 bdput(bd);
1632 return;
1633 }
1634 blkdev_reread_part(bd);
1635 blkdev_put(bd, FMODE_READ);
1636 }
1637 }
1638 return;
1639 out_free_disk:
1640 kfree(disk);
1641 list_del(&ns->list);
1642 out_free_queue:
1643 blk_cleanup_queue(ns->queue);
1644 out_free_ns:
1645 kfree(ns);
1646 }
1647
1648 /*
1649 * Create I/O queues. Failing to create an I/O queue is not an issue,
1650 * we can continue with less than the desired amount of queues, and
1651 * even a controller without I/O queues an still be used to issue
1652 * admin commands. This might be useful to upgrade a buggy firmware
1653 * for example.
1654 */
1655 static void nvme_create_io_queues(struct nvme_dev *dev)
1656 {
1657 unsigned i;
1658
1659 for (i = dev->queue_count; i <= dev->max_qid; i++)
1660 if (!nvme_alloc_queue(dev, i, dev->q_depth))
1661 break;
1662
1663 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
1664 if (nvme_create_queue(dev->queues[i], i)) {
1665 nvme_free_queues(dev, i);
1666 break;
1667 }
1668 }
1669
1670 static int set_queue_count(struct nvme_dev *dev, int count)
1671 {
1672 int status;
1673 u32 result;
1674 u32 q_count = (count - 1) | ((count - 1) << 16);
1675
1676 status = nvme_set_features(&dev->ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
1677 &result);
1678 if (status < 0)
1679 return status;
1680 if (status > 0) {
1681 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
1682 return 0;
1683 }
1684 return min(result & 0xffff, result >> 16) + 1;
1685 }
1686
1687 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1688 {
1689 u64 szu, size, offset;
1690 u32 cmbloc;
1691 resource_size_t bar_size;
1692 struct pci_dev *pdev = to_pci_dev(dev->dev);
1693 void __iomem *cmb;
1694 dma_addr_t dma_addr;
1695
1696 if (!use_cmb_sqes)
1697 return NULL;
1698
1699 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1700 if (!(NVME_CMB_SZ(dev->cmbsz)))
1701 return NULL;
1702
1703 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1704
1705 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1706 size = szu * NVME_CMB_SZ(dev->cmbsz);
1707 offset = szu * NVME_CMB_OFST(cmbloc);
1708 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1709
1710 if (offset > bar_size)
1711 return NULL;
1712
1713 /*
1714 * Controllers may support a CMB size larger than their BAR,
1715 * for example, due to being behind a bridge. Reduce the CMB to
1716 * the reported size of the BAR
1717 */
1718 if (size > bar_size - offset)
1719 size = bar_size - offset;
1720
1721 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1722 cmb = ioremap_wc(dma_addr, size);
1723 if (!cmb)
1724 return NULL;
1725
1726 dev->cmb_dma_addr = dma_addr;
1727 dev->cmb_size = size;
1728 return cmb;
1729 }
1730
1731 static inline void nvme_release_cmb(struct nvme_dev *dev)
1732 {
1733 if (dev->cmb) {
1734 iounmap(dev->cmb);
1735 dev->cmb = NULL;
1736 }
1737 }
1738
1739 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1740 {
1741 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1742 }
1743
1744 static int nvme_setup_io_queues(struct nvme_dev *dev)
1745 {
1746 struct nvme_queue *adminq = dev->queues[0];
1747 struct pci_dev *pdev = to_pci_dev(dev->dev);
1748 int result, i, vecs, nr_io_queues, size;
1749
1750 nr_io_queues = num_possible_cpus();
1751 result = set_queue_count(dev, nr_io_queues);
1752 if (result <= 0)
1753 return result;
1754 if (result < nr_io_queues)
1755 nr_io_queues = result;
1756
1757 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1758 result = nvme_cmb_qdepth(dev, nr_io_queues,
1759 sizeof(struct nvme_command));
1760 if (result > 0)
1761 dev->q_depth = result;
1762 else
1763 nvme_release_cmb(dev);
1764 }
1765
1766 size = db_bar_size(dev, nr_io_queues);
1767 if (size > 8192) {
1768 iounmap(dev->bar);
1769 do {
1770 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1771 if (dev->bar)
1772 break;
1773 if (!--nr_io_queues)
1774 return -ENOMEM;
1775 size = db_bar_size(dev, nr_io_queues);
1776 } while (1);
1777 dev->dbs = dev->bar + 4096;
1778 adminq->q_db = dev->dbs;
1779 }
1780
1781 /* Deregister the admin queue's interrupt */
1782 free_irq(dev->entry[0].vector, adminq);
1783
1784 /*
1785 * If we enable msix early due to not intx, disable it again before
1786 * setting up the full range we need.
1787 */
1788 if (!pdev->irq)
1789 pci_disable_msix(pdev);
1790
1791 for (i = 0; i < nr_io_queues; i++)
1792 dev->entry[i].entry = i;
1793 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1794 if (vecs < 0) {
1795 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1796 if (vecs < 0) {
1797 vecs = 1;
1798 } else {
1799 for (i = 0; i < vecs; i++)
1800 dev->entry[i].vector = i + pdev->irq;
1801 }
1802 }
1803
1804 /*
1805 * Should investigate if there's a performance win from allocating
1806 * more queues than interrupt vectors; it might allow the submission
1807 * path to scale better, even if the receive path is limited by the
1808 * number of interrupts.
1809 */
1810 nr_io_queues = vecs;
1811 dev->max_qid = nr_io_queues;
1812
1813 result = queue_request_irq(dev, adminq, adminq->irqname);
1814 if (result) {
1815 adminq->cq_vector = -1;
1816 goto free_queues;
1817 }
1818
1819 /* Free previously allocated queues that are no longer usable */
1820 nvme_free_queues(dev, nr_io_queues + 1);
1821 nvme_create_io_queues(dev);
1822
1823 return 0;
1824
1825 free_queues:
1826 nvme_free_queues(dev, 1);
1827 return result;
1828 }
1829
1830 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1831 {
1832 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1833 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1834
1835 return nsa->ns_id - nsb->ns_id;
1836 }
1837
1838 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
1839 {
1840 struct nvme_ns *ns;
1841
1842 list_for_each_entry(ns, &dev->namespaces, list) {
1843 if (ns->ns_id == nsid)
1844 return ns;
1845 if (ns->ns_id > nsid)
1846 break;
1847 }
1848 return NULL;
1849 }
1850
1851 static inline bool nvme_io_incapable(struct nvme_dev *dev)
1852 {
1853 return (!dev->bar ||
1854 readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_CFS ||
1855 dev->online_queues < 2);
1856 }
1857
1858 static void nvme_ns_remove(struct nvme_ns *ns)
1859 {
1860 bool kill = nvme_io_incapable(to_nvme_dev(ns->ctrl)) &&
1861 !blk_queue_dying(ns->queue);
1862
1863 if (kill)
1864 blk_set_queue_dying(ns->queue);
1865 if (ns->disk->flags & GENHD_FL_UP)
1866 del_gendisk(ns->disk);
1867 if (kill || !blk_queue_dying(ns->queue)) {
1868 blk_mq_abort_requeue_list(ns->queue);
1869 blk_cleanup_queue(ns->queue);
1870 }
1871 list_del_init(&ns->list);
1872 nvme_put_ns(ns);
1873 }
1874
1875 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
1876 {
1877 struct nvme_ns *ns, *next;
1878 unsigned i;
1879
1880 for (i = 1; i <= nn; i++) {
1881 ns = nvme_find_ns(dev, i);
1882 if (ns) {
1883 if (revalidate_disk(ns->disk))
1884 nvme_ns_remove(ns);
1885 } else
1886 nvme_alloc_ns(dev, i);
1887 }
1888 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1889 if (ns->ns_id > nn)
1890 nvme_ns_remove(ns);
1891 }
1892 list_sort(NULL, &dev->namespaces, ns_cmp);
1893 }
1894
1895 static void nvme_set_irq_hints(struct nvme_dev *dev)
1896 {
1897 struct nvme_queue *nvmeq;
1898 int i;
1899
1900 for (i = 0; i < dev->online_queues; i++) {
1901 nvmeq = dev->queues[i];
1902
1903 if (!nvmeq->tags || !(*nvmeq->tags))
1904 continue;
1905
1906 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1907 blk_mq_tags_cpumask(*nvmeq->tags));
1908 }
1909 }
1910
1911 static void nvme_dev_scan(struct work_struct *work)
1912 {
1913 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1914 struct nvme_id_ctrl *ctrl;
1915
1916 if (!dev->tagset.tags)
1917 return;
1918 if (nvme_identify_ctrl(&dev->ctrl, &ctrl))
1919 return;
1920 nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
1921 kfree(ctrl);
1922 nvme_set_irq_hints(dev);
1923 }
1924
1925 /*
1926 * Return: error value if an error occurred setting up the queues or calling
1927 * Identify Device. 0 if these succeeded, even if adding some of the
1928 * namespaces failed. At the moment, these failures are silent. TBD which
1929 * failures should be reported.
1930 */
1931 static int nvme_dev_add(struct nvme_dev *dev)
1932 {
1933 int res;
1934
1935 res = nvme_init_identify(&dev->ctrl);
1936 if (res)
1937 return res;
1938
1939 if (!dev->tagset.tags) {
1940 dev->tagset.ops = &nvme_mq_ops;
1941 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1942 dev->tagset.timeout = NVME_IO_TIMEOUT;
1943 dev->tagset.numa_node = dev_to_node(dev->dev);
1944 dev->tagset.queue_depth =
1945 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1946 dev->tagset.cmd_size = nvme_cmd_size(dev);
1947 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1948 dev->tagset.driver_data = dev;
1949
1950 if (blk_mq_alloc_tag_set(&dev->tagset))
1951 return 0;
1952 }
1953 schedule_work(&dev->scan_work);
1954 return 0;
1955 }
1956
1957 static int nvme_dev_map(struct nvme_dev *dev)
1958 {
1959 u64 cap;
1960 int bars, result = -ENOMEM;
1961 struct pci_dev *pdev = to_pci_dev(dev->dev);
1962
1963 if (pci_enable_device_mem(pdev))
1964 return result;
1965
1966 dev->entry[0].vector = pdev->irq;
1967 pci_set_master(pdev);
1968 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1969 if (!bars)
1970 goto disable_pci;
1971
1972 if (pci_request_selected_regions(pdev, bars, "nvme"))
1973 goto disable_pci;
1974
1975 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1976 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1977 goto disable;
1978
1979 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1980 if (!dev->bar)
1981 goto disable;
1982
1983 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1984 result = -ENODEV;
1985 goto unmap;
1986 }
1987
1988 /*
1989 * Some devices don't advertse INTx interrupts, pre-enable a single
1990 * MSIX vec for setup. We'll adjust this later.
1991 */
1992 if (!pdev->irq) {
1993 result = pci_enable_msix(pdev, dev->entry, 1);
1994 if (result < 0)
1995 goto unmap;
1996 }
1997
1998 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1999
2000 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2001 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2002 dev->dbs = dev->bar + 4096;
2003 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
2004 dev->cmb = nvme_map_cmb(dev);
2005
2006 return 0;
2007
2008 unmap:
2009 iounmap(dev->bar);
2010 dev->bar = NULL;
2011 disable:
2012 pci_release_regions(pdev);
2013 disable_pci:
2014 pci_disable_device(pdev);
2015 return result;
2016 }
2017
2018 static void nvme_dev_unmap(struct nvme_dev *dev)
2019 {
2020 struct pci_dev *pdev = to_pci_dev(dev->dev);
2021
2022 if (pdev->msi_enabled)
2023 pci_disable_msi(pdev);
2024 else if (pdev->msix_enabled)
2025 pci_disable_msix(pdev);
2026
2027 if (dev->bar) {
2028 iounmap(dev->bar);
2029 dev->bar = NULL;
2030 pci_release_regions(pdev);
2031 }
2032
2033 if (pci_is_enabled(pdev))
2034 pci_disable_device(pdev);
2035 }
2036
2037 struct nvme_delq_ctx {
2038 struct task_struct *waiter;
2039 struct kthread_worker *worker;
2040 atomic_t refcount;
2041 };
2042
2043 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2044 {
2045 dq->waiter = current;
2046 mb();
2047
2048 for (;;) {
2049 set_current_state(TASK_KILLABLE);
2050 if (!atomic_read(&dq->refcount))
2051 break;
2052 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2053 fatal_signal_pending(current)) {
2054 /*
2055 * Disable the controller first since we can't trust it
2056 * at this point, but leave the admin queue enabled
2057 * until all queue deletion requests are flushed.
2058 * FIXME: This may take a while if there are more h/w
2059 * queues than admin tags.
2060 */
2061 set_current_state(TASK_RUNNING);
2062 nvme_disable_ctrl(&dev->ctrl,
2063 lo_hi_readq(dev->bar + NVME_REG_CAP));
2064 nvme_clear_queue(dev->queues[0]);
2065 flush_kthread_worker(dq->worker);
2066 nvme_disable_queue(dev, 0);
2067 return;
2068 }
2069 }
2070 set_current_state(TASK_RUNNING);
2071 }
2072
2073 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2074 {
2075 atomic_dec(&dq->refcount);
2076 if (dq->waiter)
2077 wake_up_process(dq->waiter);
2078 }
2079
2080 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2081 {
2082 atomic_inc(&dq->refcount);
2083 return dq;
2084 }
2085
2086 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2087 {
2088 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2089 nvme_put_dq(dq);
2090
2091 spin_lock_irq(&nvmeq->q_lock);
2092 nvme_process_cq(nvmeq);
2093 spin_unlock_irq(&nvmeq->q_lock);
2094 }
2095
2096 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2097 kthread_work_func_t fn)
2098 {
2099 struct nvme_command c;
2100
2101 memset(&c, 0, sizeof(c));
2102 c.delete_queue.opcode = opcode;
2103 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2104
2105 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2106 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2107 ADMIN_TIMEOUT);
2108 }
2109
2110 static void nvme_del_cq_work_handler(struct kthread_work *work)
2111 {
2112 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2113 cmdinfo.work);
2114 nvme_del_queue_end(nvmeq);
2115 }
2116
2117 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2118 {
2119 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2120 nvme_del_cq_work_handler);
2121 }
2122
2123 static void nvme_del_sq_work_handler(struct kthread_work *work)
2124 {
2125 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2126 cmdinfo.work);
2127 int status = nvmeq->cmdinfo.status;
2128
2129 if (!status)
2130 status = nvme_delete_cq(nvmeq);
2131 if (status)
2132 nvme_del_queue_end(nvmeq);
2133 }
2134
2135 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2136 {
2137 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2138 nvme_del_sq_work_handler);
2139 }
2140
2141 static void nvme_del_queue_start(struct kthread_work *work)
2142 {
2143 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2144 cmdinfo.work);
2145 if (nvme_delete_sq(nvmeq))
2146 nvme_del_queue_end(nvmeq);
2147 }
2148
2149 static void nvme_disable_io_queues(struct nvme_dev *dev)
2150 {
2151 int i;
2152 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2153 struct nvme_delq_ctx dq;
2154 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2155 &worker, "nvme%d", dev->ctrl.instance);
2156
2157 if (IS_ERR(kworker_task)) {
2158 dev_err(dev->dev,
2159 "Failed to create queue del task\n");
2160 for (i = dev->queue_count - 1; i > 0; i--)
2161 nvme_disable_queue(dev, i);
2162 return;
2163 }
2164
2165 dq.waiter = NULL;
2166 atomic_set(&dq.refcount, 0);
2167 dq.worker = &worker;
2168 for (i = dev->queue_count - 1; i > 0; i--) {
2169 struct nvme_queue *nvmeq = dev->queues[i];
2170
2171 if (nvme_suspend_queue(nvmeq))
2172 continue;
2173 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2174 nvmeq->cmdinfo.worker = dq.worker;
2175 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2176 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2177 }
2178 nvme_wait_dq(&dq, dev);
2179 kthread_stop(kworker_task);
2180 }
2181
2182 /*
2183 * Remove the node from the device list and check
2184 * for whether or not we need to stop the nvme_thread.
2185 */
2186 static void nvme_dev_list_remove(struct nvme_dev *dev)
2187 {
2188 struct task_struct *tmp = NULL;
2189
2190 spin_lock(&dev_list_lock);
2191 list_del_init(&dev->node);
2192 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2193 tmp = nvme_thread;
2194 nvme_thread = NULL;
2195 }
2196 spin_unlock(&dev_list_lock);
2197
2198 if (tmp)
2199 kthread_stop(tmp);
2200 }
2201
2202 static void nvme_freeze_queues(struct nvme_dev *dev)
2203 {
2204 struct nvme_ns *ns;
2205
2206 list_for_each_entry(ns, &dev->namespaces, list) {
2207 blk_mq_freeze_queue_start(ns->queue);
2208
2209 spin_lock_irq(ns->queue->queue_lock);
2210 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2211 spin_unlock_irq(ns->queue->queue_lock);
2212
2213 blk_mq_cancel_requeue_work(ns->queue);
2214 blk_mq_stop_hw_queues(ns->queue);
2215 }
2216 }
2217
2218 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2219 {
2220 struct nvme_ns *ns;
2221
2222 list_for_each_entry(ns, &dev->namespaces, list) {
2223 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2224 blk_mq_unfreeze_queue(ns->queue);
2225 blk_mq_start_stopped_hw_queues(ns->queue, true);
2226 blk_mq_kick_requeue_list(ns->queue);
2227 }
2228 }
2229
2230 static void nvme_dev_shutdown(struct nvme_dev *dev)
2231 {
2232 int i;
2233 u32 csts = -1;
2234
2235 nvme_dev_list_remove(dev);
2236
2237 if (dev->bar) {
2238 nvme_freeze_queues(dev);
2239 csts = readl(dev->bar + NVME_REG_CSTS);
2240 }
2241 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2242 for (i = dev->queue_count - 1; i >= 0; i--) {
2243 struct nvme_queue *nvmeq = dev->queues[i];
2244 nvme_suspend_queue(nvmeq);
2245 }
2246 } else {
2247 nvme_disable_io_queues(dev);
2248 nvme_shutdown_ctrl(&dev->ctrl);
2249 nvme_disable_queue(dev, 0);
2250 }
2251 nvme_dev_unmap(dev);
2252
2253 for (i = dev->queue_count - 1; i >= 0; i--)
2254 nvme_clear_queue(dev->queues[i]);
2255 }
2256
2257 static void nvme_dev_remove(struct nvme_dev *dev)
2258 {
2259 struct nvme_ns *ns, *next;
2260
2261 list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2262 nvme_ns_remove(ns);
2263 }
2264
2265 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2266 {
2267 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2268 PAGE_SIZE, PAGE_SIZE, 0);
2269 if (!dev->prp_page_pool)
2270 return -ENOMEM;
2271
2272 /* Optimisation for I/Os between 4k and 128k */
2273 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2274 256, 256, 0);
2275 if (!dev->prp_small_pool) {
2276 dma_pool_destroy(dev->prp_page_pool);
2277 return -ENOMEM;
2278 }
2279 return 0;
2280 }
2281
2282 static void nvme_release_prp_pools(struct nvme_dev *dev)
2283 {
2284 dma_pool_destroy(dev->prp_page_pool);
2285 dma_pool_destroy(dev->prp_small_pool);
2286 }
2287
2288 static DEFINE_IDA(nvme_instance_ida);
2289
2290 static int nvme_set_instance(struct nvme_dev *dev)
2291 {
2292 int instance, error;
2293
2294 do {
2295 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2296 return -ENODEV;
2297
2298 spin_lock(&dev_list_lock);
2299 error = ida_get_new(&nvme_instance_ida, &instance);
2300 spin_unlock(&dev_list_lock);
2301 } while (error == -EAGAIN);
2302
2303 if (error)
2304 return -ENODEV;
2305
2306 dev->ctrl.instance = instance;
2307 return 0;
2308 }
2309
2310 static void nvme_release_instance(struct nvme_dev *dev)
2311 {
2312 spin_lock(&dev_list_lock);
2313 ida_remove(&nvme_instance_ida, dev->ctrl.instance);
2314 spin_unlock(&dev_list_lock);
2315 }
2316
2317 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2318 {
2319 struct nvme_dev *dev = to_nvme_dev(ctrl);
2320
2321 put_device(dev->dev);
2322 put_device(dev->device);
2323 nvme_release_instance(dev);
2324 if (dev->tagset.tags)
2325 blk_mq_free_tag_set(&dev->tagset);
2326 if (dev->ctrl.admin_q)
2327 blk_put_queue(dev->ctrl.admin_q);
2328 kfree(dev->queues);
2329 kfree(dev->entry);
2330 kfree(dev);
2331 }
2332
2333 static int nvme_dev_open(struct inode *inode, struct file *f)
2334 {
2335 struct nvme_dev *dev;
2336 int instance = iminor(inode);
2337 int ret = -ENODEV;
2338
2339 spin_lock(&dev_list_lock);
2340 list_for_each_entry(dev, &dev_list, node) {
2341 if (dev->ctrl.instance == instance) {
2342 if (!dev->ctrl.admin_q) {
2343 ret = -EWOULDBLOCK;
2344 break;
2345 }
2346 if (!kref_get_unless_zero(&dev->ctrl.kref))
2347 break;
2348 f->private_data = dev;
2349 ret = 0;
2350 break;
2351 }
2352 }
2353 spin_unlock(&dev_list_lock);
2354
2355 return ret;
2356 }
2357
2358 static int nvme_dev_release(struct inode *inode, struct file *f)
2359 {
2360 struct nvme_dev *dev = f->private_data;
2361 nvme_put_ctrl(&dev->ctrl);
2362 return 0;
2363 }
2364
2365 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2366 {
2367 struct nvme_dev *dev = f->private_data;
2368 struct nvme_ns *ns;
2369
2370 switch (cmd) {
2371 case NVME_IOCTL_ADMIN_CMD:
2372 return nvme_user_cmd(&dev->ctrl, NULL, (void __user *)arg);
2373 case NVME_IOCTL_IO_CMD:
2374 if (list_empty(&dev->namespaces))
2375 return -ENOTTY;
2376 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2377 return nvme_user_cmd(&dev->ctrl, ns, (void __user *)arg);
2378 case NVME_IOCTL_RESET:
2379 dev_warn(dev->dev, "resetting controller\n");
2380 return nvme_reset(dev);
2381 case NVME_IOCTL_SUBSYS_RESET:
2382 return nvme_subsys_reset(dev);
2383 default:
2384 return -ENOTTY;
2385 }
2386 }
2387
2388 static const struct file_operations nvme_dev_fops = {
2389 .owner = THIS_MODULE,
2390 .open = nvme_dev_open,
2391 .release = nvme_dev_release,
2392 .unlocked_ioctl = nvme_dev_ioctl,
2393 .compat_ioctl = nvme_dev_ioctl,
2394 };
2395
2396 static void nvme_probe_work(struct work_struct *work)
2397 {
2398 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2399 bool start_thread = false;
2400 int result;
2401
2402 result = nvme_dev_map(dev);
2403 if (result)
2404 goto out;
2405
2406 result = nvme_configure_admin_queue(dev);
2407 if (result)
2408 goto unmap;
2409
2410 spin_lock(&dev_list_lock);
2411 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2412 start_thread = true;
2413 nvme_thread = NULL;
2414 }
2415 list_add(&dev->node, &dev_list);
2416 spin_unlock(&dev_list_lock);
2417
2418 if (start_thread) {
2419 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2420 wake_up_all(&nvme_kthread_wait);
2421 } else
2422 wait_event_killable(nvme_kthread_wait, nvme_thread);
2423
2424 if (IS_ERR_OR_NULL(nvme_thread)) {
2425 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2426 goto disable;
2427 }
2428
2429 nvme_init_queue(dev->queues[0], 0);
2430 result = nvme_alloc_admin_tags(dev);
2431 if (result)
2432 goto disable;
2433
2434 result = nvme_setup_io_queues(dev);
2435 if (result)
2436 goto free_tags;
2437
2438 dev->ctrl.event_limit = 1;
2439
2440 /*
2441 * Keep the controller around but remove all namespaces if we don't have
2442 * any working I/O queue.
2443 */
2444 if (dev->online_queues < 2) {
2445 dev_warn(dev->dev, "IO queues not created\n");
2446 nvme_dev_remove(dev);
2447 } else {
2448 nvme_unfreeze_queues(dev);
2449 nvme_dev_add(dev);
2450 }
2451
2452 return;
2453
2454 free_tags:
2455 nvme_dev_remove_admin(dev);
2456 blk_put_queue(dev->ctrl.admin_q);
2457 dev->ctrl.admin_q = NULL;
2458 dev->queues[0]->tags = NULL;
2459 disable:
2460 nvme_disable_queue(dev, 0);
2461 nvme_dev_list_remove(dev);
2462 unmap:
2463 nvme_dev_unmap(dev);
2464 out:
2465 if (!work_busy(&dev->reset_work))
2466 nvme_dead_ctrl(dev);
2467 }
2468
2469 static int nvme_remove_dead_ctrl(void *arg)
2470 {
2471 struct nvme_dev *dev = (struct nvme_dev *)arg;
2472 struct pci_dev *pdev = to_pci_dev(dev->dev);
2473
2474 if (pci_get_drvdata(pdev))
2475 pci_stop_and_remove_bus_device_locked(pdev);
2476 nvme_put_ctrl(&dev->ctrl);
2477 return 0;
2478 }
2479
2480 static void nvme_dead_ctrl(struct nvme_dev *dev)
2481 {
2482 dev_warn(dev->dev, "Device failed to resume\n");
2483 kref_get(&dev->ctrl.kref);
2484 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2485 dev->ctrl.instance))) {
2486 dev_err(dev->dev,
2487 "Failed to start controller remove task\n");
2488 nvme_put_ctrl(&dev->ctrl);
2489 }
2490 }
2491
2492 static void nvme_reset_work(struct work_struct *ws)
2493 {
2494 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2495 bool in_probe = work_busy(&dev->probe_work);
2496
2497 nvme_dev_shutdown(dev);
2498
2499 /* Synchronize with device probe so that work will see failure status
2500 * and exit gracefully without trying to schedule another reset */
2501 flush_work(&dev->probe_work);
2502
2503 /* Fail this device if reset occured during probe to avoid
2504 * infinite initialization loops. */
2505 if (in_probe) {
2506 nvme_dead_ctrl(dev);
2507 return;
2508 }
2509 /* Schedule device resume asynchronously so the reset work is available
2510 * to cleanup errors that may occur during reinitialization */
2511 schedule_work(&dev->probe_work);
2512 }
2513
2514 static int __nvme_reset(struct nvme_dev *dev)
2515 {
2516 if (work_pending(&dev->reset_work))
2517 return -EBUSY;
2518 list_del_init(&dev->node);
2519 queue_work(nvme_workq, &dev->reset_work);
2520 return 0;
2521 }
2522
2523 static int nvme_reset(struct nvme_dev *dev)
2524 {
2525 int ret;
2526
2527 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2528 return -ENODEV;
2529
2530 spin_lock(&dev_list_lock);
2531 ret = __nvme_reset(dev);
2532 spin_unlock(&dev_list_lock);
2533
2534 if (!ret) {
2535 flush_work(&dev->reset_work);
2536 flush_work(&dev->probe_work);
2537 return 0;
2538 }
2539
2540 return ret;
2541 }
2542
2543 static ssize_t nvme_sysfs_reset(struct device *dev,
2544 struct device_attribute *attr, const char *buf,
2545 size_t count)
2546 {
2547 struct nvme_dev *ndev = dev_get_drvdata(dev);
2548 int ret;
2549
2550 ret = nvme_reset(ndev);
2551 if (ret < 0)
2552 return ret;
2553
2554 return count;
2555 }
2556 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2557
2558 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2559 {
2560 *val = readl(to_nvme_dev(ctrl)->bar + off);
2561 return 0;
2562 }
2563
2564 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2565 {
2566 writel(val, to_nvme_dev(ctrl)->bar + off);
2567 return 0;
2568 }
2569
2570 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2571 {
2572 *val = readq(to_nvme_dev(ctrl)->bar + off);
2573 return 0;
2574 }
2575
2576 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2577 .reg_read32 = nvme_pci_reg_read32,
2578 .reg_write32 = nvme_pci_reg_write32,
2579 .reg_read64 = nvme_pci_reg_read64,
2580 .free_ctrl = nvme_pci_free_ctrl,
2581 };
2582
2583 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2584 {
2585 int node, result = -ENOMEM;
2586 struct nvme_dev *dev;
2587
2588 node = dev_to_node(&pdev->dev);
2589 if (node == NUMA_NO_NODE)
2590 set_dev_node(&pdev->dev, 0);
2591
2592 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2593 if (!dev)
2594 return -ENOMEM;
2595 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2596 GFP_KERNEL, node);
2597 if (!dev->entry)
2598 goto free;
2599 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2600 GFP_KERNEL, node);
2601 if (!dev->queues)
2602 goto free;
2603
2604 INIT_LIST_HEAD(&dev->namespaces);
2605 INIT_WORK(&dev->reset_work, nvme_reset_work);
2606 dev->dev = get_device(&pdev->dev);
2607 pci_set_drvdata(pdev, dev);
2608
2609 dev->ctrl.ops = &nvme_pci_ctrl_ops;
2610 dev->ctrl.dev = dev->dev;
2611 dev->ctrl.quirks = id->driver_data;
2612
2613 result = nvme_set_instance(dev);
2614 if (result)
2615 goto put_pci;
2616
2617 result = nvme_setup_prp_pools(dev);
2618 if (result)
2619 goto release;
2620
2621 kref_init(&dev->ctrl.kref);
2622 dev->device = device_create(nvme_class, &pdev->dev,
2623 MKDEV(nvme_char_major, dev->ctrl.instance),
2624 dev, "nvme%d", dev->ctrl.instance);
2625 if (IS_ERR(dev->device)) {
2626 result = PTR_ERR(dev->device);
2627 goto release_pools;
2628 }
2629 get_device(dev->device);
2630 dev_set_drvdata(dev->device, dev);
2631
2632 result = device_create_file(dev->device, &dev_attr_reset_controller);
2633 if (result)
2634 goto put_dev;
2635
2636 INIT_LIST_HEAD(&dev->node);
2637 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2638 INIT_WORK(&dev->probe_work, nvme_probe_work);
2639 schedule_work(&dev->probe_work);
2640 return 0;
2641
2642 put_dev:
2643 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
2644 put_device(dev->device);
2645 release_pools:
2646 nvme_release_prp_pools(dev);
2647 release:
2648 nvme_release_instance(dev);
2649 put_pci:
2650 put_device(dev->dev);
2651 free:
2652 kfree(dev->queues);
2653 kfree(dev->entry);
2654 kfree(dev);
2655 return result;
2656 }
2657
2658 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2659 {
2660 struct nvme_dev *dev = pci_get_drvdata(pdev);
2661
2662 if (prepare)
2663 nvme_dev_shutdown(dev);
2664 else
2665 schedule_work(&dev->probe_work);
2666 }
2667
2668 static void nvme_shutdown(struct pci_dev *pdev)
2669 {
2670 struct nvme_dev *dev = pci_get_drvdata(pdev);
2671 nvme_dev_shutdown(dev);
2672 }
2673
2674 static void nvme_remove(struct pci_dev *pdev)
2675 {
2676 struct nvme_dev *dev = pci_get_drvdata(pdev);
2677
2678 spin_lock(&dev_list_lock);
2679 list_del_init(&dev->node);
2680 spin_unlock(&dev_list_lock);
2681
2682 pci_set_drvdata(pdev, NULL);
2683 flush_work(&dev->probe_work);
2684 flush_work(&dev->reset_work);
2685 flush_work(&dev->scan_work);
2686 device_remove_file(dev->device, &dev_attr_reset_controller);
2687 nvme_dev_remove(dev);
2688 nvme_dev_shutdown(dev);
2689 nvme_dev_remove_admin(dev);
2690 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
2691 nvme_free_queues(dev, 0);
2692 nvme_release_cmb(dev);
2693 nvme_release_prp_pools(dev);
2694 nvme_put_ctrl(&dev->ctrl);
2695 }
2696
2697 /* These functions are yet to be implemented */
2698 #define nvme_error_detected NULL
2699 #define nvme_dump_registers NULL
2700 #define nvme_link_reset NULL
2701 #define nvme_slot_reset NULL
2702 #define nvme_error_resume NULL
2703
2704 #ifdef CONFIG_PM_SLEEP
2705 static int nvme_suspend(struct device *dev)
2706 {
2707 struct pci_dev *pdev = to_pci_dev(dev);
2708 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2709
2710 nvme_dev_shutdown(ndev);
2711 return 0;
2712 }
2713
2714 static int nvme_resume(struct device *dev)
2715 {
2716 struct pci_dev *pdev = to_pci_dev(dev);
2717 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2718
2719 schedule_work(&ndev->probe_work);
2720 return 0;
2721 }
2722 #endif
2723
2724 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2725
2726 static const struct pci_error_handlers nvme_err_handler = {
2727 .error_detected = nvme_error_detected,
2728 .mmio_enabled = nvme_dump_registers,
2729 .link_reset = nvme_link_reset,
2730 .slot_reset = nvme_slot_reset,
2731 .resume = nvme_error_resume,
2732 .reset_notify = nvme_reset_notify,
2733 };
2734
2735 /* Move to pci_ids.h later */
2736 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2737
2738 static const struct pci_device_id nvme_id_table[] = {
2739 { PCI_VDEVICE(INTEL, 0x0953),
2740 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2741 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2742 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2743 { 0, }
2744 };
2745 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2746
2747 static struct pci_driver nvme_driver = {
2748 .name = "nvme",
2749 .id_table = nvme_id_table,
2750 .probe = nvme_probe,
2751 .remove = nvme_remove,
2752 .shutdown = nvme_shutdown,
2753 .driver = {
2754 .pm = &nvme_dev_pm_ops,
2755 },
2756 .err_handler = &nvme_err_handler,
2757 };
2758
2759 static int __init nvme_init(void)
2760 {
2761 int result;
2762
2763 init_waitqueue_head(&nvme_kthread_wait);
2764
2765 nvme_workq = create_singlethread_workqueue("nvme");
2766 if (!nvme_workq)
2767 return -ENOMEM;
2768
2769 result = register_blkdev(nvme_major, "nvme");
2770 if (result < 0)
2771 goto kill_workq;
2772 else if (result > 0)
2773 nvme_major = result;
2774
2775 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2776 &nvme_dev_fops);
2777 if (result < 0)
2778 goto unregister_blkdev;
2779 else if (result > 0)
2780 nvme_char_major = result;
2781
2782 nvme_class = class_create(THIS_MODULE, "nvme");
2783 if (IS_ERR(nvme_class)) {
2784 result = PTR_ERR(nvme_class);
2785 goto unregister_chrdev;
2786 }
2787
2788 result = pci_register_driver(&nvme_driver);
2789 if (result)
2790 goto destroy_class;
2791 return 0;
2792
2793 destroy_class:
2794 class_destroy(nvme_class);
2795 unregister_chrdev:
2796 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2797 unregister_blkdev:
2798 unregister_blkdev(nvme_major, "nvme");
2799 kill_workq:
2800 destroy_workqueue(nvme_workq);
2801 return result;
2802 }
2803
2804 static void __exit nvme_exit(void)
2805 {
2806 pci_unregister_driver(&nvme_driver);
2807 unregister_blkdev(nvme_major, "nvme");
2808 destroy_workqueue(nvme_workq);
2809 class_destroy(nvme_class);
2810 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2811 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2812 _nvme_check_size();
2813 }
2814
2815 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2816 MODULE_LICENSE("GPL");
2817 MODULE_VERSION("1.0");
2818 module_init(nvme_init);
2819 module_exit(nvme_exit);