2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
49 #define NVME_Q_DEPTH 1024
50 #define NVME_AQ_DEPTH 256
51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
55 * We handle AEN commands ourselves and don't even let the
56 * block layer know about them.
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
60 static int use_threaded_interrupts
;
61 module_param(use_threaded_interrupts
, int, 0);
63 static bool use_cmb_sqes
= true;
64 module_param(use_cmb_sqes
, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes
, "use controller's memory buffer for I/O SQes");
67 static struct workqueue_struct
*nvme_workq
;
72 static int nvme_reset(struct nvme_dev
*dev
);
73 static void nvme_process_cq(struct nvme_queue
*nvmeq
);
74 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
);
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
80 struct nvme_queue
**queues
;
81 struct blk_mq_tag_set tagset
;
82 struct blk_mq_tag_set admin_tagset
;
85 struct dma_pool
*prp_page_pool
;
86 struct dma_pool
*prp_small_pool
;
88 unsigned online_queues
;
93 struct work_struct reset_work
;
94 struct work_struct remove_work
;
95 struct timer_list watchdog_timer
;
96 struct mutex shutdown_lock
;
99 dma_addr_t cmb_dma_addr
;
102 struct nvme_ctrl ctrl
;
103 struct completion ioq_wait
;
106 static inline struct nvme_dev
*to_nvme_dev(struct nvme_ctrl
*ctrl
)
108 return container_of(ctrl
, struct nvme_dev
, ctrl
);
112 * An NVM Express queue. Each device has at least two (one for admin
113 * commands and one for I/O commands).
116 struct device
*q_dmadev
;
117 struct nvme_dev
*dev
;
118 char irqname
[24]; /* nvme4294967295-65535\0 */
120 struct nvme_command
*sq_cmds
;
121 struct nvme_command __iomem
*sq_cmds_io
;
122 volatile struct nvme_completion
*cqes
;
123 struct blk_mq_tags
**tags
;
124 dma_addr_t sq_dma_addr
;
125 dma_addr_t cq_dma_addr
;
137 * The nvme_iod describes the data in an I/O, including the list of PRP
138 * entries. You can't see it in this data structure because C doesn't let
139 * me express that. Use nvme_init_iod to ensure there's enough space
140 * allocated to store the PRP list.
143 struct nvme_queue
*nvmeq
;
145 int npages
; /* In the PRP list. 0 means small pool in use */
146 int nents
; /* Used in scatterlist */
147 int length
; /* Of data, in bytes */
148 dma_addr_t first_dma
;
149 struct scatterlist meta_sg
; /* metadata requires single contiguous buffer */
150 struct scatterlist
*sg
;
151 struct scatterlist inline_sg
[0];
155 * Check we didin't inadvertently grow the command struct
157 static inline void _nvme_check_size(void)
159 BUILD_BUG_ON(sizeof(struct nvme_rw_command
) != 64);
160 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_features
) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd
) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd
) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_command
) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl
) != 4096);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ns
) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type
) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_smart_log
) != 512);
174 * Max size of iod being embedded in the request payload
176 #define NVME_INT_PAGES 2
177 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
180 * Will slightly overestimate the number of pages needed. This is OK
181 * as it only leads to a small amount of wasted memory for the lifetime of
184 static int nvme_npages(unsigned size
, struct nvme_dev
*dev
)
186 unsigned nprps
= DIV_ROUND_UP(size
+ dev
->ctrl
.page_size
,
187 dev
->ctrl
.page_size
);
188 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev
*dev
,
192 unsigned int size
, unsigned int nseg
)
194 return sizeof(__le64
*) * nvme_npages(size
, dev
) +
195 sizeof(struct scatterlist
) * nseg
;
198 static unsigned int nvme_cmd_size(struct nvme_dev
*dev
)
200 return sizeof(struct nvme_iod
) +
201 nvme_iod_alloc_size(dev
, NVME_INT_BYTES(dev
), NVME_INT_PAGES
);
204 static int nvmeq_irq(struct nvme_queue
*nvmeq
)
206 return pci_irq_vector(to_pci_dev(nvmeq
->dev
->dev
), nvmeq
->cq_vector
);
209 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
210 unsigned int hctx_idx
)
212 struct nvme_dev
*dev
= data
;
213 struct nvme_queue
*nvmeq
= dev
->queues
[0];
215 WARN_ON(hctx_idx
!= 0);
216 WARN_ON(dev
->admin_tagset
.tags
[0] != hctx
->tags
);
217 WARN_ON(nvmeq
->tags
);
219 hctx
->driver_data
= nvmeq
;
220 nvmeq
->tags
= &dev
->admin_tagset
.tags
[0];
224 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
226 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
231 static int nvme_admin_init_request(void *data
, struct request
*req
,
232 unsigned int hctx_idx
, unsigned int rq_idx
,
233 unsigned int numa_node
)
235 struct nvme_dev
*dev
= data
;
236 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
237 struct nvme_queue
*nvmeq
= dev
->queues
[0];
244 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
245 unsigned int hctx_idx
)
247 struct nvme_dev
*dev
= data
;
248 struct nvme_queue
*nvmeq
= dev
->queues
[hctx_idx
+ 1];
251 nvmeq
->tags
= &dev
->tagset
.tags
[hctx_idx
];
253 WARN_ON(dev
->tagset
.tags
[hctx_idx
] != hctx
->tags
);
254 hctx
->driver_data
= nvmeq
;
258 static int nvme_init_request(void *data
, struct request
*req
,
259 unsigned int hctx_idx
, unsigned int rq_idx
,
260 unsigned int numa_node
)
262 struct nvme_dev
*dev
= data
;
263 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
264 struct nvme_queue
*nvmeq
= dev
->queues
[hctx_idx
+ 1];
271 static int nvme_pci_map_queues(struct blk_mq_tag_set
*set
)
273 struct nvme_dev
*dev
= set
->driver_data
;
275 return blk_mq_pci_map_queues(set
, to_pci_dev(dev
->dev
));
279 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
280 * @nvmeq: The queue to use
281 * @cmd: The command to send
283 * Safe to use from interrupt context
285 static void __nvme_submit_cmd(struct nvme_queue
*nvmeq
,
286 struct nvme_command
*cmd
)
288 u16 tail
= nvmeq
->sq_tail
;
290 if (nvmeq
->sq_cmds_io
)
291 memcpy_toio(&nvmeq
->sq_cmds_io
[tail
], cmd
, sizeof(*cmd
));
293 memcpy(&nvmeq
->sq_cmds
[tail
], cmd
, sizeof(*cmd
));
295 if (++tail
== nvmeq
->q_depth
)
297 writel(tail
, nvmeq
->q_db
);
298 nvmeq
->sq_tail
= tail
;
301 static __le64
**iod_list(struct request
*req
)
303 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
304 return (__le64
**)(iod
->sg
+ req
->nr_phys_segments
);
307 static int nvme_init_iod(struct request
*rq
, unsigned size
,
308 struct nvme_dev
*dev
)
310 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(rq
);
311 int nseg
= rq
->nr_phys_segments
;
313 if (nseg
> NVME_INT_PAGES
|| size
> NVME_INT_BYTES(dev
)) {
314 iod
->sg
= kmalloc(nvme_iod_alloc_size(dev
, size
, nseg
), GFP_ATOMIC
);
316 return BLK_MQ_RQ_QUEUE_BUSY
;
318 iod
->sg
= iod
->inline_sg
;
326 if (!(rq
->cmd_flags
& REQ_DONTPREP
)) {
328 rq
->cmd_flags
|= REQ_DONTPREP
;
333 static void nvme_free_iod(struct nvme_dev
*dev
, struct request
*req
)
335 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
336 const int last_prp
= dev
->ctrl
.page_size
/ 8 - 1;
338 __le64
**list
= iod_list(req
);
339 dma_addr_t prp_dma
= iod
->first_dma
;
341 nvme_cleanup_cmd(req
);
343 if (iod
->npages
== 0)
344 dma_pool_free(dev
->prp_small_pool
, list
[0], prp_dma
);
345 for (i
= 0; i
< iod
->npages
; i
++) {
346 __le64
*prp_list
= list
[i
];
347 dma_addr_t next_prp_dma
= le64_to_cpu(prp_list
[last_prp
]);
348 dma_pool_free(dev
->prp_page_pool
, prp_list
, prp_dma
);
349 prp_dma
= next_prp_dma
;
352 if (iod
->sg
!= iod
->inline_sg
)
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
359 if (be32_to_cpu(pi
->ref_tag
) == v
)
360 pi
->ref_tag
= cpu_to_be32(p
);
363 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
365 if (be32_to_cpu(pi
->ref_tag
) == p
)
366 pi
->ref_tag
= cpu_to_be32(v
);
370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
372 * The virtual start sector is the one that was originally submitted by the
373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374 * start sector may be different. Remap protection information to match the
375 * physical LBA on writes, and back to the original seed on reads.
377 * Type 0 and 3 do not have a ref tag, so no remapping required.
379 static void nvme_dif_remap(struct request
*req
,
380 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
382 struct nvme_ns
*ns
= req
->rq_disk
->private_data
;
383 struct bio_integrity_payload
*bip
;
384 struct t10_pi_tuple
*pi
;
386 u32 i
, nlb
, ts
, phys
, virt
;
388 if (!ns
->pi_type
|| ns
->pi_type
== NVME_NS_DPS_PI_TYPE3
)
391 bip
= bio_integrity(req
->bio
);
395 pmap
= kmap_atomic(bip
->bip_vec
->bv_page
) + bip
->bip_vec
->bv_offset
;
398 virt
= bip_get_seed(bip
);
399 phys
= nvme_block_nr(ns
, blk_rq_pos(req
));
400 nlb
= (blk_rq_bytes(req
) >> ns
->lba_shift
);
401 ts
= ns
->disk
->queue
->integrity
.tuple_size
;
403 for (i
= 0; i
< nlb
; i
++, virt
++, phys
++) {
404 pi
= (struct t10_pi_tuple
*)p
;
405 dif_swap(phys
, virt
, pi
);
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request
*req
,
412 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
415 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
418 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
423 static bool nvme_setup_prps(struct nvme_dev
*dev
, struct request
*req
,
426 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
427 struct dma_pool
*pool
;
428 int length
= total_len
;
429 struct scatterlist
*sg
= iod
->sg
;
430 int dma_len
= sg_dma_len(sg
);
431 u64 dma_addr
= sg_dma_address(sg
);
432 u32 page_size
= dev
->ctrl
.page_size
;
433 int offset
= dma_addr
& (page_size
- 1);
435 __le64
**list
= iod_list(req
);
439 length
-= (page_size
- offset
);
443 dma_len
-= (page_size
- offset
);
445 dma_addr
+= (page_size
- offset
);
448 dma_addr
= sg_dma_address(sg
);
449 dma_len
= sg_dma_len(sg
);
452 if (length
<= page_size
) {
453 iod
->first_dma
= dma_addr
;
457 nprps
= DIV_ROUND_UP(length
, page_size
);
458 if (nprps
<= (256 / 8)) {
459 pool
= dev
->prp_small_pool
;
462 pool
= dev
->prp_page_pool
;
466 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
468 iod
->first_dma
= dma_addr
;
473 iod
->first_dma
= prp_dma
;
476 if (i
== page_size
>> 3) {
477 __le64
*old_prp_list
= prp_list
;
478 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
481 list
[iod
->npages
++] = prp_list
;
482 prp_list
[0] = old_prp_list
[i
- 1];
483 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
486 prp_list
[i
++] = cpu_to_le64(dma_addr
);
487 dma_len
-= page_size
;
488 dma_addr
+= page_size
;
496 dma_addr
= sg_dma_address(sg
);
497 dma_len
= sg_dma_len(sg
);
503 static int nvme_map_data(struct nvme_dev
*dev
, struct request
*req
,
504 unsigned size
, struct nvme_command
*cmnd
)
506 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
507 struct request_queue
*q
= req
->q
;
508 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
509 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
510 int ret
= BLK_MQ_RQ_QUEUE_ERROR
;
512 sg_init_table(iod
->sg
, req
->nr_phys_segments
);
513 iod
->nents
= blk_rq_map_sg(q
, req
, iod
->sg
);
517 ret
= BLK_MQ_RQ_QUEUE_BUSY
;
518 if (!dma_map_sg_attrs(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
,
522 if (!nvme_setup_prps(dev
, req
, size
))
525 ret
= BLK_MQ_RQ_QUEUE_ERROR
;
526 if (blk_integrity_rq(req
)) {
527 if (blk_rq_count_integrity_sg(q
, req
->bio
) != 1)
530 sg_init_table(&iod
->meta_sg
, 1);
531 if (blk_rq_map_integrity_sg(q
, req
->bio
, &iod
->meta_sg
) != 1)
534 if (rq_data_dir(req
))
535 nvme_dif_remap(req
, nvme_dif_prep
);
537 if (!dma_map_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
))
541 cmnd
->rw
.dptr
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
542 cmnd
->rw
.dptr
.prp2
= cpu_to_le64(iod
->first_dma
);
543 if (blk_integrity_rq(req
))
544 cmnd
->rw
.metadata
= cpu_to_le64(sg_dma_address(&iod
->meta_sg
));
545 return BLK_MQ_RQ_QUEUE_OK
;
548 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
553 static void nvme_unmap_data(struct nvme_dev
*dev
, struct request
*req
)
555 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
556 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
557 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
560 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
561 if (blk_integrity_rq(req
)) {
562 if (!rq_data_dir(req
))
563 nvme_dif_remap(req
, nvme_dif_complete
);
564 dma_unmap_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
);
568 nvme_free_iod(dev
, req
);
572 * NOTE: ns is NULL when called on the admin queue.
574 static int nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
575 const struct blk_mq_queue_data
*bd
)
577 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
578 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
579 struct nvme_dev
*dev
= nvmeq
->dev
;
580 struct request
*req
= bd
->rq
;
581 struct nvme_command cmnd
;
583 int ret
= BLK_MQ_RQ_QUEUE_OK
;
586 * If formated with metadata, require the block layer provide a buffer
587 * unless this namespace is formated such that the metadata can be
588 * stripped/generated by the controller with PRACT=1.
590 if (ns
&& ns
->ms
&& !blk_integrity_rq(req
)) {
591 if (!(ns
->pi_type
&& ns
->ms
== 8) &&
592 req
->cmd_type
!= REQ_TYPE_DRV_PRIV
) {
593 blk_mq_end_request(req
, -EFAULT
);
594 return BLK_MQ_RQ_QUEUE_OK
;
598 map_len
= nvme_map_len(req
);
599 ret
= nvme_init_iod(req
, map_len
, dev
);
603 ret
= nvme_setup_cmd(ns
, req
, &cmnd
);
607 if (req
->nr_phys_segments
)
608 ret
= nvme_map_data(dev
, req
, map_len
, &cmnd
);
613 cmnd
.common
.command_id
= req
->tag
;
614 blk_mq_start_request(req
);
616 spin_lock_irq(&nvmeq
->q_lock
);
617 if (unlikely(nvmeq
->cq_vector
< 0)) {
618 if (ns
&& !test_bit(NVME_NS_DEAD
, &ns
->flags
))
619 ret
= BLK_MQ_RQ_QUEUE_BUSY
;
621 ret
= BLK_MQ_RQ_QUEUE_ERROR
;
622 spin_unlock_irq(&nvmeq
->q_lock
);
625 __nvme_submit_cmd(nvmeq
, &cmnd
);
626 nvme_process_cq(nvmeq
);
627 spin_unlock_irq(&nvmeq
->q_lock
);
628 return BLK_MQ_RQ_QUEUE_OK
;
630 nvme_free_iod(dev
, req
);
634 static void nvme_complete_rq(struct request
*req
)
636 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
637 struct nvme_dev
*dev
= iod
->nvmeq
->dev
;
640 nvme_unmap_data(dev
, req
);
642 if (unlikely(req
->errors
)) {
643 if (nvme_req_needs_retry(req
, req
->errors
)) {
645 nvme_requeue_req(req
);
649 if (req
->cmd_type
== REQ_TYPE_DRV_PRIV
)
652 error
= nvme_error_status(req
->errors
);
655 if (unlikely(iod
->aborted
)) {
656 dev_warn(dev
->ctrl
.device
,
657 "completing aborted command with status: %04x\n",
661 blk_mq_end_request(req
, error
);
664 /* We read the CQE phase first to check if the rest of the entry is valid */
665 static inline bool nvme_cqe_valid(struct nvme_queue
*nvmeq
, u16 head
,
668 return (le16_to_cpu(nvmeq
->cqes
[head
].status
) & 1) == phase
;
671 static void __nvme_process_cq(struct nvme_queue
*nvmeq
, unsigned int *tag
)
675 head
= nvmeq
->cq_head
;
676 phase
= nvmeq
->cq_phase
;
678 while (nvme_cqe_valid(nvmeq
, head
, phase
)) {
679 struct nvme_completion cqe
= nvmeq
->cqes
[head
];
682 if (++head
== nvmeq
->q_depth
) {
687 if (tag
&& *tag
== cqe
.command_id
)
690 if (unlikely(cqe
.command_id
>= nvmeq
->q_depth
)) {
691 dev_warn(nvmeq
->dev
->ctrl
.device
,
692 "invalid id %d completed on queue %d\n",
693 cqe
.command_id
, le16_to_cpu(cqe
.sq_id
));
698 * AEN requests are special as they don't time out and can
699 * survive any kind of queue freeze and often don't respond to
700 * aborts. We don't even bother to allocate a struct request
701 * for them but rather special case them here.
703 if (unlikely(nvmeq
->qid
== 0 &&
704 cqe
.command_id
>= NVME_AQ_BLKMQ_DEPTH
)) {
705 nvme_complete_async_event(&nvmeq
->dev
->ctrl
, &cqe
);
709 req
= blk_mq_tag_to_rq(*nvmeq
->tags
, cqe
.command_id
);
710 if (req
->cmd_type
== REQ_TYPE_DRV_PRIV
&& req
->special
)
711 memcpy(req
->special
, &cqe
, sizeof(cqe
));
712 blk_mq_complete_request(req
, le16_to_cpu(cqe
.status
) >> 1);
716 /* If the controller ignores the cq head doorbell and continuously
717 * writes to the queue, it is theoretically possible to wrap around
718 * the queue twice and mistakenly return IRQ_NONE. Linux only
719 * requires that 0.1% of your interrupts are handled, so this isn't
722 if (head
== nvmeq
->cq_head
&& phase
== nvmeq
->cq_phase
)
725 if (likely(nvmeq
->cq_vector
>= 0))
726 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
727 nvmeq
->cq_head
= head
;
728 nvmeq
->cq_phase
= phase
;
733 static void nvme_process_cq(struct nvme_queue
*nvmeq
)
735 __nvme_process_cq(nvmeq
, NULL
);
738 static irqreturn_t
nvme_irq(int irq
, void *data
)
741 struct nvme_queue
*nvmeq
= data
;
742 spin_lock(&nvmeq
->q_lock
);
743 nvme_process_cq(nvmeq
);
744 result
= nvmeq
->cqe_seen
? IRQ_HANDLED
: IRQ_NONE
;
746 spin_unlock(&nvmeq
->q_lock
);
750 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
752 struct nvme_queue
*nvmeq
= data
;
753 if (nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
))
754 return IRQ_WAKE_THREAD
;
758 static int nvme_poll(struct blk_mq_hw_ctx
*hctx
, unsigned int tag
)
760 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
762 if (nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
)) {
763 spin_lock_irq(&nvmeq
->q_lock
);
764 __nvme_process_cq(nvmeq
, &tag
);
765 spin_unlock_irq(&nvmeq
->q_lock
);
774 static void nvme_pci_submit_async_event(struct nvme_ctrl
*ctrl
, int aer_idx
)
776 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
777 struct nvme_queue
*nvmeq
= dev
->queues
[0];
778 struct nvme_command c
;
780 memset(&c
, 0, sizeof(c
));
781 c
.common
.opcode
= nvme_admin_async_event
;
782 c
.common
.command_id
= NVME_AQ_BLKMQ_DEPTH
+ aer_idx
;
784 spin_lock_irq(&nvmeq
->q_lock
);
785 __nvme_submit_cmd(nvmeq
, &c
);
786 spin_unlock_irq(&nvmeq
->q_lock
);
789 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
791 struct nvme_command c
;
793 memset(&c
, 0, sizeof(c
));
794 c
.delete_queue
.opcode
= opcode
;
795 c
.delete_queue
.qid
= cpu_to_le16(id
);
797 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
800 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
801 struct nvme_queue
*nvmeq
)
803 struct nvme_command c
;
804 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_CQ_IRQ_ENABLED
;
807 * Note: we (ab)use the fact the the prp fields survive if no data
808 * is attached to the request.
810 memset(&c
, 0, sizeof(c
));
811 c
.create_cq
.opcode
= nvme_admin_create_cq
;
812 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
813 c
.create_cq
.cqid
= cpu_to_le16(qid
);
814 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
815 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
816 c
.create_cq
.irq_vector
= cpu_to_le16(nvmeq
->cq_vector
);
818 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
821 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
822 struct nvme_queue
*nvmeq
)
824 struct nvme_command c
;
825 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_SQ_PRIO_MEDIUM
;
828 * Note: we (ab)use the fact the the prp fields survive if no data
829 * is attached to the request.
831 memset(&c
, 0, sizeof(c
));
832 c
.create_sq
.opcode
= nvme_admin_create_sq
;
833 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
834 c
.create_sq
.sqid
= cpu_to_le16(qid
);
835 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
836 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
837 c
.create_sq
.cqid
= cpu_to_le16(qid
);
839 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
842 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
844 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
847 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
849 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
852 static void abort_endio(struct request
*req
, int error
)
854 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
855 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
856 u16 status
= req
->errors
;
858 dev_warn(nvmeq
->dev
->ctrl
.device
, "Abort status: 0x%x", status
);
859 atomic_inc(&nvmeq
->dev
->ctrl
.abort_limit
);
860 blk_mq_free_request(req
);
863 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
865 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
866 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
867 struct nvme_dev
*dev
= nvmeq
->dev
;
868 struct request
*abort_req
;
869 struct nvme_command cmd
;
872 * Shutdown immediately if controller times out while starting. The
873 * reset work will see the pci device disabled when it gets the forced
874 * cancellation error. All outstanding requests are completed on
875 * shutdown, so we return BLK_EH_HANDLED.
877 if (dev
->ctrl
.state
== NVME_CTRL_RESETTING
) {
878 dev_warn(dev
->ctrl
.device
,
879 "I/O %d QID %d timeout, disable controller\n",
880 req
->tag
, nvmeq
->qid
);
881 nvme_dev_disable(dev
, false);
882 req
->errors
= NVME_SC_CANCELLED
;
883 return BLK_EH_HANDLED
;
887 * Shutdown the controller immediately and schedule a reset if the
888 * command was already aborted once before and still hasn't been
889 * returned to the driver, or if this is the admin queue.
891 if (!nvmeq
->qid
|| iod
->aborted
) {
892 dev_warn(dev
->ctrl
.device
,
893 "I/O %d QID %d timeout, reset controller\n",
894 req
->tag
, nvmeq
->qid
);
895 nvme_dev_disable(dev
, false);
896 queue_work(nvme_workq
, &dev
->reset_work
);
899 * Mark the request as handled, since the inline shutdown
900 * forces all outstanding requests to complete.
902 req
->errors
= NVME_SC_CANCELLED
;
903 return BLK_EH_HANDLED
;
908 if (atomic_dec_return(&dev
->ctrl
.abort_limit
) < 0) {
909 atomic_inc(&dev
->ctrl
.abort_limit
);
910 return BLK_EH_RESET_TIMER
;
913 memset(&cmd
, 0, sizeof(cmd
));
914 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
915 cmd
.abort
.cid
= req
->tag
;
916 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
918 dev_warn(nvmeq
->dev
->ctrl
.device
,
919 "I/O %d QID %d timeout, aborting\n",
920 req
->tag
, nvmeq
->qid
);
922 abort_req
= nvme_alloc_request(dev
->ctrl
.admin_q
, &cmd
,
923 BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
924 if (IS_ERR(abort_req
)) {
925 atomic_inc(&dev
->ctrl
.abort_limit
);
926 return BLK_EH_RESET_TIMER
;
929 abort_req
->timeout
= ADMIN_TIMEOUT
;
930 abort_req
->end_io_data
= NULL
;
931 blk_execute_rq_nowait(abort_req
->q
, NULL
, abort_req
, 0, abort_endio
);
934 * The aborted req will be completed on receiving the abort req.
935 * We enable the timer again. If hit twice, it'll cause a device reset,
936 * as the device then is in a faulty state.
938 return BLK_EH_RESET_TIMER
;
941 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
943 dma_free_coherent(nvmeq
->q_dmadev
, CQ_SIZE(nvmeq
->q_depth
),
944 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
946 dma_free_coherent(nvmeq
->q_dmadev
, SQ_SIZE(nvmeq
->q_depth
),
947 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
951 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
955 for (i
= dev
->queue_count
- 1; i
>= lowest
; i
--) {
956 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
958 dev
->queues
[i
] = NULL
;
959 nvme_free_queue(nvmeq
);
964 * nvme_suspend_queue - put queue into suspended state
965 * @nvmeq - queue to suspend
967 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
971 spin_lock_irq(&nvmeq
->q_lock
);
972 if (nvmeq
->cq_vector
== -1) {
973 spin_unlock_irq(&nvmeq
->q_lock
);
976 vector
= nvmeq_irq(nvmeq
);
977 nvmeq
->dev
->online_queues
--;
978 nvmeq
->cq_vector
= -1;
979 spin_unlock_irq(&nvmeq
->q_lock
);
981 if (!nvmeq
->qid
&& nvmeq
->dev
->ctrl
.admin_q
)
982 blk_mq_stop_hw_queues(nvmeq
->dev
->ctrl
.admin_q
);
984 free_irq(vector
, nvmeq
);
989 static void nvme_disable_admin_queue(struct nvme_dev
*dev
, bool shutdown
)
991 struct nvme_queue
*nvmeq
= dev
->queues
[0];
995 if (nvme_suspend_queue(nvmeq
))
999 nvme_shutdown_ctrl(&dev
->ctrl
);
1001 nvme_disable_ctrl(&dev
->ctrl
, lo_hi_readq(
1002 dev
->bar
+ NVME_REG_CAP
));
1004 spin_lock_irq(&nvmeq
->q_lock
);
1005 nvme_process_cq(nvmeq
);
1006 spin_unlock_irq(&nvmeq
->q_lock
);
1009 static int nvme_cmb_qdepth(struct nvme_dev
*dev
, int nr_io_queues
,
1012 int q_depth
= dev
->q_depth
;
1013 unsigned q_size_aligned
= roundup(q_depth
* entry_size
,
1014 dev
->ctrl
.page_size
);
1016 if (q_size_aligned
* nr_io_queues
> dev
->cmb_size
) {
1017 u64 mem_per_q
= div_u64(dev
->cmb_size
, nr_io_queues
);
1018 mem_per_q
= round_down(mem_per_q
, dev
->ctrl
.page_size
);
1019 q_depth
= div_u64(mem_per_q
, entry_size
);
1022 * Ensure the reduced q_depth is above some threshold where it
1023 * would be better to map queues in system memory with the
1033 static int nvme_alloc_sq_cmds(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1036 if (qid
&& dev
->cmb
&& use_cmb_sqes
&& NVME_CMB_SQS(dev
->cmbsz
)) {
1037 unsigned offset
= (qid
- 1) * roundup(SQ_SIZE(depth
),
1038 dev
->ctrl
.page_size
);
1039 nvmeq
->sq_dma_addr
= dev
->cmb_dma_addr
+ offset
;
1040 nvmeq
->sq_cmds_io
= dev
->cmb
+ offset
;
1042 nvmeq
->sq_cmds
= dma_alloc_coherent(dev
->dev
, SQ_SIZE(depth
),
1043 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1044 if (!nvmeq
->sq_cmds
)
1051 static struct nvme_queue
*nvme_alloc_queue(struct nvme_dev
*dev
, int qid
,
1054 struct nvme_queue
*nvmeq
= kzalloc(sizeof(*nvmeq
), GFP_KERNEL
);
1058 nvmeq
->cqes
= dma_zalloc_coherent(dev
->dev
, CQ_SIZE(depth
),
1059 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1063 if (nvme_alloc_sq_cmds(dev
, nvmeq
, qid
, depth
))
1066 nvmeq
->q_dmadev
= dev
->dev
;
1068 snprintf(nvmeq
->irqname
, sizeof(nvmeq
->irqname
), "nvme%dq%d",
1069 dev
->ctrl
.instance
, qid
);
1070 spin_lock_init(&nvmeq
->q_lock
);
1072 nvmeq
->cq_phase
= 1;
1073 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1074 nvmeq
->q_depth
= depth
;
1076 nvmeq
->cq_vector
= -1;
1077 dev
->queues
[qid
] = nvmeq
;
1083 dma_free_coherent(dev
->dev
, CQ_SIZE(depth
), (void *)nvmeq
->cqes
,
1084 nvmeq
->cq_dma_addr
);
1090 static int queue_request_irq(struct nvme_queue
*nvmeq
)
1092 if (use_threaded_interrupts
)
1093 return request_threaded_irq(nvmeq_irq(nvmeq
), nvme_irq_check
,
1094 nvme_irq
, IRQF_SHARED
, nvmeq
->irqname
, nvmeq
);
1096 return request_irq(nvmeq_irq(nvmeq
), nvme_irq
, IRQF_SHARED
,
1097 nvmeq
->irqname
, nvmeq
);
1100 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1102 struct nvme_dev
*dev
= nvmeq
->dev
;
1104 spin_lock_irq(&nvmeq
->q_lock
);
1107 nvmeq
->cq_phase
= 1;
1108 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1109 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
->q_depth
));
1110 dev
->online_queues
++;
1111 spin_unlock_irq(&nvmeq
->q_lock
);
1114 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
)
1116 struct nvme_dev
*dev
= nvmeq
->dev
;
1119 nvmeq
->cq_vector
= qid
- 1;
1120 result
= adapter_alloc_cq(dev
, qid
, nvmeq
);
1124 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1128 result
= queue_request_irq(nvmeq
);
1132 nvme_init_queue(nvmeq
, qid
);
1136 adapter_delete_sq(dev
, qid
);
1138 adapter_delete_cq(dev
, qid
);
1142 static struct blk_mq_ops nvme_mq_admin_ops
= {
1143 .queue_rq
= nvme_queue_rq
,
1144 .complete
= nvme_complete_rq
,
1145 .init_hctx
= nvme_admin_init_hctx
,
1146 .exit_hctx
= nvme_admin_exit_hctx
,
1147 .init_request
= nvme_admin_init_request
,
1148 .timeout
= nvme_timeout
,
1151 static struct blk_mq_ops nvme_mq_ops
= {
1152 .queue_rq
= nvme_queue_rq
,
1153 .complete
= nvme_complete_rq
,
1154 .init_hctx
= nvme_init_hctx
,
1155 .init_request
= nvme_init_request
,
1156 .map_queues
= nvme_pci_map_queues
,
1157 .timeout
= nvme_timeout
,
1161 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1163 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
)) {
1165 * If the controller was reset during removal, it's possible
1166 * user requests may be waiting on a stopped queue. Start the
1167 * queue to flush these to completion.
1169 blk_mq_start_stopped_hw_queues(dev
->ctrl
.admin_q
, true);
1170 blk_cleanup_queue(dev
->ctrl
.admin_q
);
1171 blk_mq_free_tag_set(&dev
->admin_tagset
);
1175 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1177 if (!dev
->ctrl
.admin_q
) {
1178 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1179 dev
->admin_tagset
.nr_hw_queues
= 1;
1182 * Subtract one to leave an empty queue entry for 'Full Queue'
1183 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1185 dev
->admin_tagset
.queue_depth
= NVME_AQ_BLKMQ_DEPTH
- 1;
1186 dev
->admin_tagset
.timeout
= ADMIN_TIMEOUT
;
1187 dev
->admin_tagset
.numa_node
= dev_to_node(dev
->dev
);
1188 dev
->admin_tagset
.cmd_size
= nvme_cmd_size(dev
);
1189 dev
->admin_tagset
.driver_data
= dev
;
1191 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1194 dev
->ctrl
.admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1195 if (IS_ERR(dev
->ctrl
.admin_q
)) {
1196 blk_mq_free_tag_set(&dev
->admin_tagset
);
1199 if (!blk_get_queue(dev
->ctrl
.admin_q
)) {
1200 nvme_dev_remove_admin(dev
);
1201 dev
->ctrl
.admin_q
= NULL
;
1205 blk_mq_start_stopped_hw_queues(dev
->ctrl
.admin_q
, true);
1210 static int nvme_configure_admin_queue(struct nvme_dev
*dev
)
1214 u64 cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
1215 struct nvme_queue
*nvmeq
;
1217 dev
->subsystem
= readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 1) ?
1218 NVME_CAP_NSSRC(cap
) : 0;
1220 if (dev
->subsystem
&&
1221 (readl(dev
->bar
+ NVME_REG_CSTS
) & NVME_CSTS_NSSRO
))
1222 writel(NVME_CSTS_NSSRO
, dev
->bar
+ NVME_REG_CSTS
);
1224 result
= nvme_disable_ctrl(&dev
->ctrl
, cap
);
1228 nvmeq
= dev
->queues
[0];
1230 nvmeq
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
);
1235 aqa
= nvmeq
->q_depth
- 1;
1238 writel(aqa
, dev
->bar
+ NVME_REG_AQA
);
1239 lo_hi_writeq(nvmeq
->sq_dma_addr
, dev
->bar
+ NVME_REG_ASQ
);
1240 lo_hi_writeq(nvmeq
->cq_dma_addr
, dev
->bar
+ NVME_REG_ACQ
);
1242 result
= nvme_enable_ctrl(&dev
->ctrl
, cap
);
1246 nvmeq
->cq_vector
= 0;
1247 result
= queue_request_irq(nvmeq
);
1249 nvmeq
->cq_vector
= -1;
1256 nvme_free_queues(dev
, 0);
1260 static bool nvme_should_reset(struct nvme_dev
*dev
, u32 csts
)
1263 /* If true, indicates loss of adapter communication, possibly by a
1264 * NVMe Subsystem reset.
1266 bool nssro
= dev
->subsystem
&& (csts
& NVME_CSTS_NSSRO
);
1268 /* If there is a reset ongoing, we shouldn't reset again. */
1269 if (work_busy(&dev
->reset_work
))
1272 /* We shouldn't reset unless the controller is on fatal error state
1273 * _or_ if we lost the communication with it.
1275 if (!(csts
& NVME_CSTS_CFS
) && !nssro
)
1278 /* If PCI error recovery process is happening, we cannot reset or
1279 * the recovery mechanism will surely fail.
1281 if (pci_channel_offline(to_pci_dev(dev
->dev
)))
1287 static void nvme_watchdog_timer(unsigned long data
)
1289 struct nvme_dev
*dev
= (struct nvme_dev
*)data
;
1290 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1292 /* Skip controllers under certain specific conditions. */
1293 if (nvme_should_reset(dev
, csts
)) {
1294 if (queue_work(nvme_workq
, &dev
->reset_work
))
1296 "Failed status: 0x%x, reset controller.\n",
1301 mod_timer(&dev
->watchdog_timer
, round_jiffies(jiffies
+ HZ
));
1304 static int nvme_create_io_queues(struct nvme_dev
*dev
)
1309 for (i
= dev
->queue_count
; i
<= dev
->max_qid
; i
++) {
1310 if (!nvme_alloc_queue(dev
, i
, dev
->q_depth
)) {
1316 max
= min(dev
->max_qid
, dev
->queue_count
- 1);
1317 for (i
= dev
->online_queues
; i
<= max
; i
++) {
1318 ret
= nvme_create_queue(dev
->queues
[i
], i
);
1320 nvme_free_queues(dev
, i
);
1326 * Ignore failing Create SQ/CQ commands, we can continue with less
1327 * than the desired aount of queues, and even a controller without
1328 * I/O queues an still be used to issue admin commands. This might
1329 * be useful to upgrade a buggy firmware for example.
1331 return ret
>= 0 ? 0 : ret
;
1334 static void __iomem
*nvme_map_cmb(struct nvme_dev
*dev
)
1336 u64 szu
, size
, offset
;
1338 resource_size_t bar_size
;
1339 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1341 dma_addr_t dma_addr
;
1346 dev
->cmbsz
= readl(dev
->bar
+ NVME_REG_CMBSZ
);
1347 if (!(NVME_CMB_SZ(dev
->cmbsz
)))
1350 cmbloc
= readl(dev
->bar
+ NVME_REG_CMBLOC
);
1352 szu
= (u64
)1 << (12 + 4 * NVME_CMB_SZU(dev
->cmbsz
));
1353 size
= szu
* NVME_CMB_SZ(dev
->cmbsz
);
1354 offset
= szu
* NVME_CMB_OFST(cmbloc
);
1355 bar_size
= pci_resource_len(pdev
, NVME_CMB_BIR(cmbloc
));
1357 if (offset
> bar_size
)
1361 * Controllers may support a CMB size larger than their BAR,
1362 * for example, due to being behind a bridge. Reduce the CMB to
1363 * the reported size of the BAR
1365 if (size
> bar_size
- offset
)
1366 size
= bar_size
- offset
;
1368 dma_addr
= pci_resource_start(pdev
, NVME_CMB_BIR(cmbloc
)) + offset
;
1369 cmb
= ioremap_wc(dma_addr
, size
);
1373 dev
->cmb_dma_addr
= dma_addr
;
1374 dev
->cmb_size
= size
;
1378 static inline void nvme_release_cmb(struct nvme_dev
*dev
)
1386 static size_t db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1388 return 4096 + ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
1391 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
1393 struct nvme_queue
*adminq
= dev
->queues
[0];
1394 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1395 int result
, nr_io_queues
, size
;
1397 nr_io_queues
= num_online_cpus();
1398 result
= nvme_set_queue_count(&dev
->ctrl
, &nr_io_queues
);
1402 if (nr_io_queues
== 0)
1405 if (dev
->cmb
&& NVME_CMB_SQS(dev
->cmbsz
)) {
1406 result
= nvme_cmb_qdepth(dev
, nr_io_queues
,
1407 sizeof(struct nvme_command
));
1409 dev
->q_depth
= result
;
1411 nvme_release_cmb(dev
);
1414 size
= db_bar_size(dev
, nr_io_queues
);
1418 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1421 if (!--nr_io_queues
)
1423 size
= db_bar_size(dev
, nr_io_queues
);
1425 dev
->dbs
= dev
->bar
+ 4096;
1426 adminq
->q_db
= dev
->dbs
;
1429 /* Deregister the admin queue's interrupt */
1430 free_irq(pci_irq_vector(pdev
, 0), adminq
);
1433 * If we enable msix early due to not intx, disable it again before
1434 * setting up the full range we need.
1436 pci_free_irq_vectors(pdev
);
1437 nr_io_queues
= pci_alloc_irq_vectors(pdev
, 1, nr_io_queues
,
1438 PCI_IRQ_ALL_TYPES
| PCI_IRQ_AFFINITY
);
1439 if (nr_io_queues
<= 0)
1441 dev
->max_qid
= nr_io_queues
;
1444 * Should investigate if there's a performance win from allocating
1445 * more queues than interrupt vectors; it might allow the submission
1446 * path to scale better, even if the receive path is limited by the
1447 * number of interrupts.
1450 result
= queue_request_irq(adminq
);
1452 adminq
->cq_vector
= -1;
1455 return nvme_create_io_queues(dev
);
1458 nvme_free_queues(dev
, 1);
1462 static void nvme_del_queue_end(struct request
*req
, int error
)
1464 struct nvme_queue
*nvmeq
= req
->end_io_data
;
1466 blk_mq_free_request(req
);
1467 complete(&nvmeq
->dev
->ioq_wait
);
1470 static void nvme_del_cq_end(struct request
*req
, int error
)
1472 struct nvme_queue
*nvmeq
= req
->end_io_data
;
1475 unsigned long flags
;
1478 * We might be called with the AQ q_lock held
1479 * and the I/O queue q_lock should always
1480 * nest inside the AQ one.
1482 spin_lock_irqsave_nested(&nvmeq
->q_lock
, flags
,
1483 SINGLE_DEPTH_NESTING
);
1484 nvme_process_cq(nvmeq
);
1485 spin_unlock_irqrestore(&nvmeq
->q_lock
, flags
);
1488 nvme_del_queue_end(req
, error
);
1491 static int nvme_delete_queue(struct nvme_queue
*nvmeq
, u8 opcode
)
1493 struct request_queue
*q
= nvmeq
->dev
->ctrl
.admin_q
;
1494 struct request
*req
;
1495 struct nvme_command cmd
;
1497 memset(&cmd
, 0, sizeof(cmd
));
1498 cmd
.delete_queue
.opcode
= opcode
;
1499 cmd
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
1501 req
= nvme_alloc_request(q
, &cmd
, BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
1503 return PTR_ERR(req
);
1505 req
->timeout
= ADMIN_TIMEOUT
;
1506 req
->end_io_data
= nvmeq
;
1508 blk_execute_rq_nowait(q
, NULL
, req
, false,
1509 opcode
== nvme_admin_delete_cq
?
1510 nvme_del_cq_end
: nvme_del_queue_end
);
1514 static void nvme_disable_io_queues(struct nvme_dev
*dev
)
1516 int pass
, queues
= dev
->online_queues
- 1;
1517 unsigned long timeout
;
1518 u8 opcode
= nvme_admin_delete_sq
;
1520 for (pass
= 0; pass
< 2; pass
++) {
1521 int sent
= 0, i
= queues
;
1523 reinit_completion(&dev
->ioq_wait
);
1525 timeout
= ADMIN_TIMEOUT
;
1526 for (; i
> 0; i
--, sent
++)
1527 if (nvme_delete_queue(dev
->queues
[i
], opcode
))
1531 timeout
= wait_for_completion_io_timeout(&dev
->ioq_wait
, timeout
);
1537 opcode
= nvme_admin_delete_cq
;
1542 * Return: error value if an error occurred setting up the queues or calling
1543 * Identify Device. 0 if these succeeded, even if adding some of the
1544 * namespaces failed. At the moment, these failures are silent. TBD which
1545 * failures should be reported.
1547 static int nvme_dev_add(struct nvme_dev
*dev
)
1549 if (!dev
->ctrl
.tagset
) {
1550 dev
->tagset
.ops
= &nvme_mq_ops
;
1551 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
1552 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
1553 dev
->tagset
.numa_node
= dev_to_node(dev
->dev
);
1554 dev
->tagset
.queue_depth
=
1555 min_t(int, dev
->q_depth
, BLK_MQ_MAX_DEPTH
) - 1;
1556 dev
->tagset
.cmd_size
= nvme_cmd_size(dev
);
1557 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
1558 dev
->tagset
.driver_data
= dev
;
1560 if (blk_mq_alloc_tag_set(&dev
->tagset
))
1562 dev
->ctrl
.tagset
= &dev
->tagset
;
1564 blk_mq_update_nr_hw_queues(&dev
->tagset
, dev
->online_queues
- 1);
1566 /* Free previously allocated queues that are no longer usable */
1567 nvme_free_queues(dev
, dev
->online_queues
);
1573 static int nvme_pci_enable(struct nvme_dev
*dev
)
1576 int result
= -ENOMEM
;
1577 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1579 if (pci_enable_device_mem(pdev
))
1582 pci_set_master(pdev
);
1584 if (dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(64)) &&
1585 dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(32)))
1588 if (readl(dev
->bar
+ NVME_REG_CSTS
) == -1) {
1594 * Some devices and/or platforms don't advertise or work with INTx
1595 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1596 * adjust this later.
1598 result
= pci_alloc_irq_vectors(pdev
, 1, 1, PCI_IRQ_ALL_TYPES
);
1602 cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
1604 dev
->q_depth
= min_t(int, NVME_CAP_MQES(cap
) + 1, NVME_Q_DEPTH
);
1605 dev
->db_stride
= 1 << NVME_CAP_STRIDE(cap
);
1606 dev
->dbs
= dev
->bar
+ 4096;
1609 * Temporary fix for the Apple controller found in the MacBook8,1 and
1610 * some MacBook7,1 to avoid controller resets and data loss.
1612 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
&& pdev
->device
== 0x2001) {
1614 dev_warn(dev
->dev
, "detected Apple NVMe controller, set "
1615 "queue depth=%u to work around controller resets\n",
1619 if (readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 2))
1620 dev
->cmb
= nvme_map_cmb(dev
);
1622 pci_enable_pcie_error_reporting(pdev
);
1623 pci_save_state(pdev
);
1627 pci_disable_device(pdev
);
1631 static void nvme_dev_unmap(struct nvme_dev
*dev
)
1635 pci_release_mem_regions(to_pci_dev(dev
->dev
));
1638 static void nvme_pci_disable(struct nvme_dev
*dev
)
1640 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1642 pci_free_irq_vectors(pdev
);
1644 if (pci_is_enabled(pdev
)) {
1645 pci_disable_pcie_error_reporting(pdev
);
1646 pci_disable_device(pdev
);
1650 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
)
1655 del_timer_sync(&dev
->watchdog_timer
);
1657 mutex_lock(&dev
->shutdown_lock
);
1658 if (pci_is_enabled(to_pci_dev(dev
->dev
))) {
1659 nvme_stop_queues(&dev
->ctrl
);
1660 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1663 for (i
= dev
->queue_count
- 1; i
> 0; i
--)
1664 nvme_suspend_queue(dev
->queues
[i
]);
1666 if (csts
& NVME_CSTS_CFS
|| !(csts
& NVME_CSTS_RDY
)) {
1667 /* A device might become IO incapable very soon during
1668 * probe, before the admin queue is configured. Thus,
1669 * queue_count can be 0 here.
1671 if (dev
->queue_count
)
1672 nvme_suspend_queue(dev
->queues
[0]);
1674 nvme_disable_io_queues(dev
);
1675 nvme_disable_admin_queue(dev
, shutdown
);
1677 nvme_pci_disable(dev
);
1679 blk_mq_tagset_busy_iter(&dev
->tagset
, nvme_cancel_request
, &dev
->ctrl
);
1680 blk_mq_tagset_busy_iter(&dev
->admin_tagset
, nvme_cancel_request
, &dev
->ctrl
);
1681 mutex_unlock(&dev
->shutdown_lock
);
1684 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
1686 dev
->prp_page_pool
= dma_pool_create("prp list page", dev
->dev
,
1687 PAGE_SIZE
, PAGE_SIZE
, 0);
1688 if (!dev
->prp_page_pool
)
1691 /* Optimisation for I/Os between 4k and 128k */
1692 dev
->prp_small_pool
= dma_pool_create("prp list 256", dev
->dev
,
1694 if (!dev
->prp_small_pool
) {
1695 dma_pool_destroy(dev
->prp_page_pool
);
1701 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
1703 dma_pool_destroy(dev
->prp_page_pool
);
1704 dma_pool_destroy(dev
->prp_small_pool
);
1707 static void nvme_pci_free_ctrl(struct nvme_ctrl
*ctrl
)
1709 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1711 put_device(dev
->dev
);
1712 if (dev
->tagset
.tags
)
1713 blk_mq_free_tag_set(&dev
->tagset
);
1714 if (dev
->ctrl
.admin_q
)
1715 blk_put_queue(dev
->ctrl
.admin_q
);
1720 static void nvme_remove_dead_ctrl(struct nvme_dev
*dev
, int status
)
1722 dev_warn(dev
->ctrl
.device
, "Removing after probe failure status: %d\n", status
);
1724 kref_get(&dev
->ctrl
.kref
);
1725 nvme_dev_disable(dev
, false);
1726 if (!schedule_work(&dev
->remove_work
))
1727 nvme_put_ctrl(&dev
->ctrl
);
1730 static void nvme_reset_work(struct work_struct
*work
)
1732 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, reset_work
);
1733 int result
= -ENODEV
;
1735 if (WARN_ON(dev
->ctrl
.state
== NVME_CTRL_RESETTING
))
1739 * If we're called to reset a live controller first shut it down before
1742 if (dev
->ctrl
.ctrl_config
& NVME_CC_ENABLE
)
1743 nvme_dev_disable(dev
, false);
1745 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_RESETTING
))
1748 result
= nvme_pci_enable(dev
);
1752 result
= nvme_configure_admin_queue(dev
);
1756 nvme_init_queue(dev
->queues
[0], 0);
1757 result
= nvme_alloc_admin_tags(dev
);
1761 result
= nvme_init_identify(&dev
->ctrl
);
1765 result
= nvme_setup_io_queues(dev
);
1770 * A controller that can not execute IO typically requires user
1771 * intervention to correct. For such degraded controllers, the driver
1772 * should not submit commands the user did not request, so skip
1773 * registering for asynchronous event notification on this condition.
1775 if (dev
->online_queues
> 1)
1776 nvme_queue_async_events(&dev
->ctrl
);
1778 mod_timer(&dev
->watchdog_timer
, round_jiffies(jiffies
+ HZ
));
1781 * Keep the controller around but remove all namespaces if we don't have
1782 * any working I/O queue.
1784 if (dev
->online_queues
< 2) {
1785 dev_warn(dev
->ctrl
.device
, "IO queues not created\n");
1786 nvme_kill_queues(&dev
->ctrl
);
1787 nvme_remove_namespaces(&dev
->ctrl
);
1789 nvme_start_queues(&dev
->ctrl
);
1793 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_LIVE
)) {
1794 dev_warn(dev
->ctrl
.device
, "failed to mark controller live\n");
1798 if (dev
->online_queues
> 1)
1799 nvme_queue_scan(&dev
->ctrl
);
1803 nvme_remove_dead_ctrl(dev
, result
);
1806 static void nvme_remove_dead_ctrl_work(struct work_struct
*work
)
1808 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, remove_work
);
1809 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1811 nvme_kill_queues(&dev
->ctrl
);
1812 if (pci_get_drvdata(pdev
))
1813 device_release_driver(&pdev
->dev
);
1814 nvme_put_ctrl(&dev
->ctrl
);
1817 static int nvme_reset(struct nvme_dev
*dev
)
1819 if (!dev
->ctrl
.admin_q
|| blk_queue_dying(dev
->ctrl
.admin_q
))
1822 if (!queue_work(nvme_workq
, &dev
->reset_work
))
1825 flush_work(&dev
->reset_work
);
1829 static int nvme_pci_reg_read32(struct nvme_ctrl
*ctrl
, u32 off
, u32
*val
)
1831 *val
= readl(to_nvme_dev(ctrl
)->bar
+ off
);
1835 static int nvme_pci_reg_write32(struct nvme_ctrl
*ctrl
, u32 off
, u32 val
)
1837 writel(val
, to_nvme_dev(ctrl
)->bar
+ off
);
1841 static int nvme_pci_reg_read64(struct nvme_ctrl
*ctrl
, u32 off
, u64
*val
)
1843 *val
= readq(to_nvme_dev(ctrl
)->bar
+ off
);
1847 static int nvme_pci_reset_ctrl(struct nvme_ctrl
*ctrl
)
1849 return nvme_reset(to_nvme_dev(ctrl
));
1852 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops
= {
1854 .module
= THIS_MODULE
,
1855 .reg_read32
= nvme_pci_reg_read32
,
1856 .reg_write32
= nvme_pci_reg_write32
,
1857 .reg_read64
= nvme_pci_reg_read64
,
1858 .reset_ctrl
= nvme_pci_reset_ctrl
,
1859 .free_ctrl
= nvme_pci_free_ctrl
,
1860 .submit_async_event
= nvme_pci_submit_async_event
,
1863 static int nvme_dev_map(struct nvme_dev
*dev
)
1865 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1867 if (pci_request_mem_regions(pdev
, "nvme"))
1870 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), 8192);
1876 pci_release_mem_regions(pdev
);
1880 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1882 int node
, result
= -ENOMEM
;
1883 struct nvme_dev
*dev
;
1885 node
= dev_to_node(&pdev
->dev
);
1886 if (node
== NUMA_NO_NODE
)
1887 set_dev_node(&pdev
->dev
, first_memory_node
);
1889 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
1892 dev
->queues
= kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1897 dev
->dev
= get_device(&pdev
->dev
);
1898 pci_set_drvdata(pdev
, dev
);
1900 result
= nvme_dev_map(dev
);
1904 INIT_WORK(&dev
->reset_work
, nvme_reset_work
);
1905 INIT_WORK(&dev
->remove_work
, nvme_remove_dead_ctrl_work
);
1906 setup_timer(&dev
->watchdog_timer
, nvme_watchdog_timer
,
1907 (unsigned long)dev
);
1908 mutex_init(&dev
->shutdown_lock
);
1909 init_completion(&dev
->ioq_wait
);
1911 result
= nvme_setup_prp_pools(dev
);
1915 result
= nvme_init_ctrl(&dev
->ctrl
, &pdev
->dev
, &nvme_pci_ctrl_ops
,
1920 dev_info(dev
->ctrl
.device
, "pci function %s\n", dev_name(&pdev
->dev
));
1922 queue_work(nvme_workq
, &dev
->reset_work
);
1926 nvme_release_prp_pools(dev
);
1928 put_device(dev
->dev
);
1929 nvme_dev_unmap(dev
);
1936 static void nvme_reset_notify(struct pci_dev
*pdev
, bool prepare
)
1938 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
1941 nvme_dev_disable(dev
, false);
1943 queue_work(nvme_workq
, &dev
->reset_work
);
1946 static void nvme_shutdown(struct pci_dev
*pdev
)
1948 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
1949 nvme_dev_disable(dev
, true);
1953 * The driver's remove may be called on a device in a partially initialized
1954 * state. This function must not have any dependencies on the device state in
1957 static void nvme_remove(struct pci_dev
*pdev
)
1959 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
1961 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
1963 pci_set_drvdata(pdev
, NULL
);
1965 if (!pci_device_is_present(pdev
))
1966 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
1968 flush_work(&dev
->reset_work
);
1969 nvme_uninit_ctrl(&dev
->ctrl
);
1970 nvme_dev_disable(dev
, true);
1971 nvme_dev_remove_admin(dev
);
1972 nvme_free_queues(dev
, 0);
1973 nvme_release_cmb(dev
);
1974 nvme_release_prp_pools(dev
);
1975 nvme_dev_unmap(dev
);
1976 nvme_put_ctrl(&dev
->ctrl
);
1979 static int nvme_pci_sriov_configure(struct pci_dev
*pdev
, int numvfs
)
1984 if (pci_vfs_assigned(pdev
)) {
1985 dev_warn(&pdev
->dev
,
1986 "Cannot disable SR-IOV VFs while assigned\n");
1989 pci_disable_sriov(pdev
);
1993 ret
= pci_enable_sriov(pdev
, numvfs
);
1994 return ret
? ret
: numvfs
;
1997 #ifdef CONFIG_PM_SLEEP
1998 static int nvme_suspend(struct device
*dev
)
2000 struct pci_dev
*pdev
= to_pci_dev(dev
);
2001 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2003 nvme_dev_disable(ndev
, true);
2007 static int nvme_resume(struct device
*dev
)
2009 struct pci_dev
*pdev
= to_pci_dev(dev
);
2010 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2012 queue_work(nvme_workq
, &ndev
->reset_work
);
2017 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops
, nvme_suspend
, nvme_resume
);
2019 static pci_ers_result_t
nvme_error_detected(struct pci_dev
*pdev
,
2020 pci_channel_state_t state
)
2022 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2025 * A frozen channel requires a reset. When detected, this method will
2026 * shutdown the controller to quiesce. The controller will be restarted
2027 * after the slot reset through driver's slot_reset callback.
2030 case pci_channel_io_normal
:
2031 return PCI_ERS_RESULT_CAN_RECOVER
;
2032 case pci_channel_io_frozen
:
2033 dev_warn(dev
->ctrl
.device
,
2034 "frozen state error detected, reset controller\n");
2035 nvme_dev_disable(dev
, false);
2036 return PCI_ERS_RESULT_NEED_RESET
;
2037 case pci_channel_io_perm_failure
:
2038 dev_warn(dev
->ctrl
.device
,
2039 "failure state error detected, request disconnect\n");
2040 return PCI_ERS_RESULT_DISCONNECT
;
2042 return PCI_ERS_RESULT_NEED_RESET
;
2045 static pci_ers_result_t
nvme_slot_reset(struct pci_dev
*pdev
)
2047 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2049 dev_info(dev
->ctrl
.device
, "restart after slot reset\n");
2050 pci_restore_state(pdev
);
2051 queue_work(nvme_workq
, &dev
->reset_work
);
2052 return PCI_ERS_RESULT_RECOVERED
;
2055 static void nvme_error_resume(struct pci_dev
*pdev
)
2057 pci_cleanup_aer_uncorrect_error_status(pdev
);
2060 static const struct pci_error_handlers nvme_err_handler
= {
2061 .error_detected
= nvme_error_detected
,
2062 .slot_reset
= nvme_slot_reset
,
2063 .resume
= nvme_error_resume
,
2064 .reset_notify
= nvme_reset_notify
,
2067 /* Move to pci_ids.h later */
2068 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2070 static const struct pci_device_id nvme_id_table
[] = {
2071 { PCI_VDEVICE(INTEL
, 0x0953),
2072 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2073 NVME_QUIRK_DISCARD_ZEROES
, },
2074 { PCI_VDEVICE(INTEL
, 0x0a53),
2075 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2076 NVME_QUIRK_DISCARD_ZEROES
, },
2077 { PCI_VDEVICE(INTEL
, 0x0a54),
2078 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2079 NVME_QUIRK_DISCARD_ZEROES
, },
2080 { PCI_VDEVICE(INTEL
, 0x5845), /* Qemu emulated controller */
2081 .driver_data
= NVME_QUIRK_IDENTIFY_CNS
, },
2082 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2083 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2084 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2085 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2086 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
2087 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2001) },
2090 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
2092 static struct pci_driver nvme_driver
= {
2094 .id_table
= nvme_id_table
,
2095 .probe
= nvme_probe
,
2096 .remove
= nvme_remove
,
2097 .shutdown
= nvme_shutdown
,
2099 .pm
= &nvme_dev_pm_ops
,
2101 .sriov_configure
= nvme_pci_sriov_configure
,
2102 .err_handler
= &nvme_err_handler
,
2105 static int __init
nvme_init(void)
2109 nvme_workq
= alloc_workqueue("nvme", WQ_UNBOUND
| WQ_MEM_RECLAIM
, 0);
2113 result
= pci_register_driver(&nvme_driver
);
2115 destroy_workqueue(nvme_workq
);
2119 static void __exit
nvme_exit(void)
2121 pci_unregister_driver(&nvme_driver
);
2122 destroy_workqueue(nvme_workq
);
2126 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2127 MODULE_LICENSE("GPL");
2128 MODULE_VERSION("1.0");
2129 module_init(nvme_init
);
2130 module_exit(nvme_exit
);