]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/pci.c
nvme: move namespace scanning to core
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53 /*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57 #define NVME_NR_AEN_COMMANDS 1
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 struct msix_entry *entry;
93 void __iomem *bar;
94 struct work_struct reset_work;
95 struct work_struct remove_work;
96 struct work_struct async_work;
97 struct timer_list watchdog_timer;
98 struct mutex shutdown_lock;
99 bool subsystem;
100 void __iomem *cmb;
101 dma_addr_t cmb_dma_addr;
102 u64 cmb_size;
103 u32 cmbsz;
104 struct nvme_ctrl ctrl;
105 struct completion ioq_wait;
106 };
107
108 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109 {
110 return container_of(ctrl, struct nvme_dev, ctrl);
111 }
112
113 /*
114 * An NVM Express queue. Each device has at least two (one for admin
115 * commands and one for I/O commands).
116 */
117 struct nvme_queue {
118 struct device *q_dmadev;
119 struct nvme_dev *dev;
120 char irqname[24]; /* nvme4294967295-65535\0 */
121 spinlock_t q_lock;
122 struct nvme_command *sq_cmds;
123 struct nvme_command __iomem *sq_cmds_io;
124 volatile struct nvme_completion *cqes;
125 struct blk_mq_tags **tags;
126 dma_addr_t sq_dma_addr;
127 dma_addr_t cq_dma_addr;
128 u32 __iomem *q_db;
129 u16 q_depth;
130 s16 cq_vector;
131 u16 sq_tail;
132 u16 cq_head;
133 u16 qid;
134 u8 cq_phase;
135 u8 cqe_seen;
136 };
137
138 /*
139 * The nvme_iod describes the data in an I/O, including the list of PRP
140 * entries. You can't see it in this data structure because C doesn't let
141 * me express that. Use nvme_init_iod to ensure there's enough space
142 * allocated to store the PRP list.
143 */
144 struct nvme_iod {
145 struct nvme_queue *nvmeq;
146 int aborted;
147 int npages; /* In the PRP list. 0 means small pool in use */
148 int nents; /* Used in scatterlist */
149 int length; /* Of data, in bytes */
150 dma_addr_t first_dma;
151 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
152 struct scatterlist *sg;
153 struct scatterlist inline_sg[0];
154 };
155
156 /*
157 * Check we didin't inadvertently grow the command struct
158 */
159 static inline void _nvme_check_size(void)
160 {
161 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
173 }
174
175 /*
176 * Max size of iod being embedded in the request payload
177 */
178 #define NVME_INT_PAGES 2
179 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
180
181 /*
182 * Will slightly overestimate the number of pages needed. This is OK
183 * as it only leads to a small amount of wasted memory for the lifetime of
184 * the I/O.
185 */
186 static int nvme_npages(unsigned size, struct nvme_dev *dev)
187 {
188 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
189 dev->ctrl.page_size);
190 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191 }
192
193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
194 unsigned int size, unsigned int nseg)
195 {
196 return sizeof(__le64 *) * nvme_npages(size, dev) +
197 sizeof(struct scatterlist) * nseg;
198 }
199
200 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201 {
202 return sizeof(struct nvme_iod) +
203 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
204 }
205
206 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
207 unsigned int hctx_idx)
208 {
209 struct nvme_dev *dev = data;
210 struct nvme_queue *nvmeq = dev->queues[0];
211
212 WARN_ON(hctx_idx != 0);
213 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
214 WARN_ON(nvmeq->tags);
215
216 hctx->driver_data = nvmeq;
217 nvmeq->tags = &dev->admin_tagset.tags[0];
218 return 0;
219 }
220
221 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
222 {
223 struct nvme_queue *nvmeq = hctx->driver_data;
224
225 nvmeq->tags = NULL;
226 }
227
228 static int nvme_admin_init_request(void *data, struct request *req,
229 unsigned int hctx_idx, unsigned int rq_idx,
230 unsigned int numa_node)
231 {
232 struct nvme_dev *dev = data;
233 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
234 struct nvme_queue *nvmeq = dev->queues[0];
235
236 BUG_ON(!nvmeq);
237 iod->nvmeq = nvmeq;
238 return 0;
239 }
240
241 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
242 unsigned int hctx_idx)
243 {
244 struct nvme_dev *dev = data;
245 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
246
247 if (!nvmeq->tags)
248 nvmeq->tags = &dev->tagset.tags[hctx_idx];
249
250 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
251 hctx->driver_data = nvmeq;
252 return 0;
253 }
254
255 static int nvme_init_request(void *data, struct request *req,
256 unsigned int hctx_idx, unsigned int rq_idx,
257 unsigned int numa_node)
258 {
259 struct nvme_dev *dev = data;
260 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
261 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
262
263 BUG_ON(!nvmeq);
264 iod->nvmeq = nvmeq;
265 return 0;
266 }
267
268 static void nvme_complete_async_event(struct nvme_dev *dev,
269 struct nvme_completion *cqe)
270 {
271 u16 status = le16_to_cpu(cqe->status) >> 1;
272 u32 result = le32_to_cpu(cqe->result);
273
274 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
275 ++dev->ctrl.event_limit;
276 queue_work(nvme_workq, &dev->async_work);
277 }
278
279 if (status != NVME_SC_SUCCESS)
280 return;
281
282 switch (result & 0xff07) {
283 case NVME_AER_NOTICE_NS_CHANGED:
284 dev_info(dev->ctrl.device, "rescanning\n");
285 nvme_queue_scan(&dev->ctrl);
286 default:
287 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
288 }
289 }
290
291 /**
292 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
293 * @nvmeq: The queue to use
294 * @cmd: The command to send
295 *
296 * Safe to use from interrupt context
297 */
298 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
299 struct nvme_command *cmd)
300 {
301 u16 tail = nvmeq->sq_tail;
302
303 if (nvmeq->sq_cmds_io)
304 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
305 else
306 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
307
308 if (++tail == nvmeq->q_depth)
309 tail = 0;
310 writel(tail, nvmeq->q_db);
311 nvmeq->sq_tail = tail;
312 }
313
314 static __le64 **iod_list(struct request *req)
315 {
316 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
317 return (__le64 **)(iod->sg + req->nr_phys_segments);
318 }
319
320 static int nvme_init_iod(struct request *rq, unsigned size,
321 struct nvme_dev *dev)
322 {
323 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
324 int nseg = rq->nr_phys_segments;
325
326 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
327 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
328 if (!iod->sg)
329 return BLK_MQ_RQ_QUEUE_BUSY;
330 } else {
331 iod->sg = iod->inline_sg;
332 }
333
334 iod->aborted = 0;
335 iod->npages = -1;
336 iod->nents = 0;
337 iod->length = size;
338 return 0;
339 }
340
341 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
342 {
343 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
344 const int last_prp = dev->ctrl.page_size / 8 - 1;
345 int i;
346 __le64 **list = iod_list(req);
347 dma_addr_t prp_dma = iod->first_dma;
348
349 if (req->cmd_flags & REQ_DISCARD)
350 kfree(req->completion_data);
351
352 if (iod->npages == 0)
353 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
354 for (i = 0; i < iod->npages; i++) {
355 __le64 *prp_list = list[i];
356 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
357 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
358 prp_dma = next_prp_dma;
359 }
360
361 if (iod->sg != iod->inline_sg)
362 kfree(iod->sg);
363 }
364
365 #ifdef CONFIG_BLK_DEV_INTEGRITY
366 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
367 {
368 if (be32_to_cpu(pi->ref_tag) == v)
369 pi->ref_tag = cpu_to_be32(p);
370 }
371
372 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
373 {
374 if (be32_to_cpu(pi->ref_tag) == p)
375 pi->ref_tag = cpu_to_be32(v);
376 }
377
378 /**
379 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
380 *
381 * The virtual start sector is the one that was originally submitted by the
382 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
383 * start sector may be different. Remap protection information to match the
384 * physical LBA on writes, and back to the original seed on reads.
385 *
386 * Type 0 and 3 do not have a ref tag, so no remapping required.
387 */
388 static void nvme_dif_remap(struct request *req,
389 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
390 {
391 struct nvme_ns *ns = req->rq_disk->private_data;
392 struct bio_integrity_payload *bip;
393 struct t10_pi_tuple *pi;
394 void *p, *pmap;
395 u32 i, nlb, ts, phys, virt;
396
397 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
398 return;
399
400 bip = bio_integrity(req->bio);
401 if (!bip)
402 return;
403
404 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
405
406 p = pmap;
407 virt = bip_get_seed(bip);
408 phys = nvme_block_nr(ns, blk_rq_pos(req));
409 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
410 ts = ns->disk->queue->integrity.tuple_size;
411
412 for (i = 0; i < nlb; i++, virt++, phys++) {
413 pi = (struct t10_pi_tuple *)p;
414 dif_swap(phys, virt, pi);
415 p += ts;
416 }
417 kunmap_atomic(pmap);
418 }
419 #else /* CONFIG_BLK_DEV_INTEGRITY */
420 static void nvme_dif_remap(struct request *req,
421 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
422 {
423 }
424 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
425 {
426 }
427 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
428 {
429 }
430 #endif
431
432 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
433 int total_len)
434 {
435 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
436 struct dma_pool *pool;
437 int length = total_len;
438 struct scatterlist *sg = iod->sg;
439 int dma_len = sg_dma_len(sg);
440 u64 dma_addr = sg_dma_address(sg);
441 u32 page_size = dev->ctrl.page_size;
442 int offset = dma_addr & (page_size - 1);
443 __le64 *prp_list;
444 __le64 **list = iod_list(req);
445 dma_addr_t prp_dma;
446 int nprps, i;
447
448 length -= (page_size - offset);
449 if (length <= 0)
450 return true;
451
452 dma_len -= (page_size - offset);
453 if (dma_len) {
454 dma_addr += (page_size - offset);
455 } else {
456 sg = sg_next(sg);
457 dma_addr = sg_dma_address(sg);
458 dma_len = sg_dma_len(sg);
459 }
460
461 if (length <= page_size) {
462 iod->first_dma = dma_addr;
463 return true;
464 }
465
466 nprps = DIV_ROUND_UP(length, page_size);
467 if (nprps <= (256 / 8)) {
468 pool = dev->prp_small_pool;
469 iod->npages = 0;
470 } else {
471 pool = dev->prp_page_pool;
472 iod->npages = 1;
473 }
474
475 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
476 if (!prp_list) {
477 iod->first_dma = dma_addr;
478 iod->npages = -1;
479 return false;
480 }
481 list[0] = prp_list;
482 iod->first_dma = prp_dma;
483 i = 0;
484 for (;;) {
485 if (i == page_size >> 3) {
486 __le64 *old_prp_list = prp_list;
487 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
488 if (!prp_list)
489 return false;
490 list[iod->npages++] = prp_list;
491 prp_list[0] = old_prp_list[i - 1];
492 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
493 i = 1;
494 }
495 prp_list[i++] = cpu_to_le64(dma_addr);
496 dma_len -= page_size;
497 dma_addr += page_size;
498 length -= page_size;
499 if (length <= 0)
500 break;
501 if (dma_len > 0)
502 continue;
503 BUG_ON(dma_len < 0);
504 sg = sg_next(sg);
505 dma_addr = sg_dma_address(sg);
506 dma_len = sg_dma_len(sg);
507 }
508
509 return true;
510 }
511
512 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
513 unsigned size, struct nvme_command *cmnd)
514 {
515 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
516 struct request_queue *q = req->q;
517 enum dma_data_direction dma_dir = rq_data_dir(req) ?
518 DMA_TO_DEVICE : DMA_FROM_DEVICE;
519 int ret = BLK_MQ_RQ_QUEUE_ERROR;
520
521 sg_init_table(iod->sg, req->nr_phys_segments);
522 iod->nents = blk_rq_map_sg(q, req, iod->sg);
523 if (!iod->nents)
524 goto out;
525
526 ret = BLK_MQ_RQ_QUEUE_BUSY;
527 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
528 goto out;
529
530 if (!nvme_setup_prps(dev, req, size))
531 goto out_unmap;
532
533 ret = BLK_MQ_RQ_QUEUE_ERROR;
534 if (blk_integrity_rq(req)) {
535 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
536 goto out_unmap;
537
538 sg_init_table(&iod->meta_sg, 1);
539 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
540 goto out_unmap;
541
542 if (rq_data_dir(req))
543 nvme_dif_remap(req, nvme_dif_prep);
544
545 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
546 goto out_unmap;
547 }
548
549 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
550 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
551 if (blk_integrity_rq(req))
552 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
553 return BLK_MQ_RQ_QUEUE_OK;
554
555 out_unmap:
556 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
557 out:
558 return ret;
559 }
560
561 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
562 {
563 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
564 enum dma_data_direction dma_dir = rq_data_dir(req) ?
565 DMA_TO_DEVICE : DMA_FROM_DEVICE;
566
567 if (iod->nents) {
568 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
569 if (blk_integrity_rq(req)) {
570 if (!rq_data_dir(req))
571 nvme_dif_remap(req, nvme_dif_complete);
572 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
573 }
574 }
575
576 nvme_free_iod(dev, req);
577 }
578
579 /*
580 * NOTE: ns is NULL when called on the admin queue.
581 */
582 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
583 const struct blk_mq_queue_data *bd)
584 {
585 struct nvme_ns *ns = hctx->queue->queuedata;
586 struct nvme_queue *nvmeq = hctx->driver_data;
587 struct nvme_dev *dev = nvmeq->dev;
588 struct request *req = bd->rq;
589 struct nvme_command cmnd;
590 unsigned map_len;
591 int ret = BLK_MQ_RQ_QUEUE_OK;
592
593 /*
594 * If formated with metadata, require the block layer provide a buffer
595 * unless this namespace is formated such that the metadata can be
596 * stripped/generated by the controller with PRACT=1.
597 */
598 if (ns && ns->ms && !blk_integrity_rq(req)) {
599 if (!(ns->pi_type && ns->ms == 8) &&
600 req->cmd_type != REQ_TYPE_DRV_PRIV) {
601 blk_mq_end_request(req, -EFAULT);
602 return BLK_MQ_RQ_QUEUE_OK;
603 }
604 }
605
606 map_len = nvme_map_len(req);
607 ret = nvme_init_iod(req, map_len, dev);
608 if (ret)
609 return ret;
610
611 ret = nvme_setup_cmd(ns, req, &cmnd);
612 if (ret)
613 goto out;
614
615 if (req->nr_phys_segments)
616 ret = nvme_map_data(dev, req, map_len, &cmnd);
617
618 if (ret)
619 goto out;
620
621 cmnd.common.command_id = req->tag;
622 blk_mq_start_request(req);
623
624 spin_lock_irq(&nvmeq->q_lock);
625 if (unlikely(nvmeq->cq_vector < 0)) {
626 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
627 ret = BLK_MQ_RQ_QUEUE_BUSY;
628 else
629 ret = BLK_MQ_RQ_QUEUE_ERROR;
630 spin_unlock_irq(&nvmeq->q_lock);
631 goto out;
632 }
633 __nvme_submit_cmd(nvmeq, &cmnd);
634 nvme_process_cq(nvmeq);
635 spin_unlock_irq(&nvmeq->q_lock);
636 return BLK_MQ_RQ_QUEUE_OK;
637 out:
638 nvme_free_iod(dev, req);
639 return ret;
640 }
641
642 static void nvme_complete_rq(struct request *req)
643 {
644 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
645 struct nvme_dev *dev = iod->nvmeq->dev;
646 int error = 0;
647
648 nvme_unmap_data(dev, req);
649
650 if (unlikely(req->errors)) {
651 if (nvme_req_needs_retry(req, req->errors)) {
652 nvme_requeue_req(req);
653 return;
654 }
655
656 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
657 error = req->errors;
658 else
659 error = nvme_error_status(req->errors);
660 }
661
662 if (unlikely(iod->aborted)) {
663 dev_warn(dev->ctrl.device,
664 "completing aborted command with status: %04x\n",
665 req->errors);
666 }
667
668 blk_mq_end_request(req, error);
669 }
670
671 /* We read the CQE phase first to check if the rest of the entry is valid */
672 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
673 u16 phase)
674 {
675 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
676 }
677
678 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
679 {
680 u16 head, phase;
681
682 head = nvmeq->cq_head;
683 phase = nvmeq->cq_phase;
684
685 while (nvme_cqe_valid(nvmeq, head, phase)) {
686 struct nvme_completion cqe = nvmeq->cqes[head];
687 struct request *req;
688
689 if (++head == nvmeq->q_depth) {
690 head = 0;
691 phase = !phase;
692 }
693
694 if (tag && *tag == cqe.command_id)
695 *tag = -1;
696
697 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
698 dev_warn(nvmeq->dev->ctrl.device,
699 "invalid id %d completed on queue %d\n",
700 cqe.command_id, le16_to_cpu(cqe.sq_id));
701 continue;
702 }
703
704 /*
705 * AEN requests are special as they don't time out and can
706 * survive any kind of queue freeze and often don't respond to
707 * aborts. We don't even bother to allocate a struct request
708 * for them but rather special case them here.
709 */
710 if (unlikely(nvmeq->qid == 0 &&
711 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
712 nvme_complete_async_event(nvmeq->dev, &cqe);
713 continue;
714 }
715
716 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
717 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
718 memcpy(req->special, &cqe, sizeof(cqe));
719 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
720
721 }
722
723 /* If the controller ignores the cq head doorbell and continuously
724 * writes to the queue, it is theoretically possible to wrap around
725 * the queue twice and mistakenly return IRQ_NONE. Linux only
726 * requires that 0.1% of your interrupts are handled, so this isn't
727 * a big problem.
728 */
729 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
730 return;
731
732 if (likely(nvmeq->cq_vector >= 0))
733 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
734 nvmeq->cq_head = head;
735 nvmeq->cq_phase = phase;
736
737 nvmeq->cqe_seen = 1;
738 }
739
740 static void nvme_process_cq(struct nvme_queue *nvmeq)
741 {
742 __nvme_process_cq(nvmeq, NULL);
743 }
744
745 static irqreturn_t nvme_irq(int irq, void *data)
746 {
747 irqreturn_t result;
748 struct nvme_queue *nvmeq = data;
749 spin_lock(&nvmeq->q_lock);
750 nvme_process_cq(nvmeq);
751 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
752 nvmeq->cqe_seen = 0;
753 spin_unlock(&nvmeq->q_lock);
754 return result;
755 }
756
757 static irqreturn_t nvme_irq_check(int irq, void *data)
758 {
759 struct nvme_queue *nvmeq = data;
760 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
761 return IRQ_WAKE_THREAD;
762 return IRQ_NONE;
763 }
764
765 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
766 {
767 struct nvme_queue *nvmeq = hctx->driver_data;
768
769 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
770 spin_lock_irq(&nvmeq->q_lock);
771 __nvme_process_cq(nvmeq, &tag);
772 spin_unlock_irq(&nvmeq->q_lock);
773
774 if (tag == -1)
775 return 1;
776 }
777
778 return 0;
779 }
780
781 static void nvme_async_event_work(struct work_struct *work)
782 {
783 struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
784 struct nvme_queue *nvmeq = dev->queues[0];
785 struct nvme_command c;
786
787 memset(&c, 0, sizeof(c));
788 c.common.opcode = nvme_admin_async_event;
789
790 spin_lock_irq(&nvmeq->q_lock);
791 while (dev->ctrl.event_limit > 0) {
792 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
793 --dev->ctrl.event_limit;
794 __nvme_submit_cmd(nvmeq, &c);
795 }
796 spin_unlock_irq(&nvmeq->q_lock);
797 }
798
799 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
800 {
801 struct nvme_command c;
802
803 memset(&c, 0, sizeof(c));
804 c.delete_queue.opcode = opcode;
805 c.delete_queue.qid = cpu_to_le16(id);
806
807 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
808 }
809
810 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
811 struct nvme_queue *nvmeq)
812 {
813 struct nvme_command c;
814 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
815
816 /*
817 * Note: we (ab)use the fact the the prp fields survive if no data
818 * is attached to the request.
819 */
820 memset(&c, 0, sizeof(c));
821 c.create_cq.opcode = nvme_admin_create_cq;
822 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
823 c.create_cq.cqid = cpu_to_le16(qid);
824 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
825 c.create_cq.cq_flags = cpu_to_le16(flags);
826 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
827
828 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
829 }
830
831 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
832 struct nvme_queue *nvmeq)
833 {
834 struct nvme_command c;
835 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
836
837 /*
838 * Note: we (ab)use the fact the the prp fields survive if no data
839 * is attached to the request.
840 */
841 memset(&c, 0, sizeof(c));
842 c.create_sq.opcode = nvme_admin_create_sq;
843 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
844 c.create_sq.sqid = cpu_to_le16(qid);
845 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
846 c.create_sq.sq_flags = cpu_to_le16(flags);
847 c.create_sq.cqid = cpu_to_le16(qid);
848
849 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
850 }
851
852 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
853 {
854 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
855 }
856
857 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
858 {
859 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
860 }
861
862 static void abort_endio(struct request *req, int error)
863 {
864 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
865 struct nvme_queue *nvmeq = iod->nvmeq;
866 u16 status = req->errors;
867
868 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
869 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
870 blk_mq_free_request(req);
871 }
872
873 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
874 {
875 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
876 struct nvme_queue *nvmeq = iod->nvmeq;
877 struct nvme_dev *dev = nvmeq->dev;
878 struct request *abort_req;
879 struct nvme_command cmd;
880
881 /*
882 * Shutdown immediately if controller times out while starting. The
883 * reset work will see the pci device disabled when it gets the forced
884 * cancellation error. All outstanding requests are completed on
885 * shutdown, so we return BLK_EH_HANDLED.
886 */
887 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
888 dev_warn(dev->ctrl.device,
889 "I/O %d QID %d timeout, disable controller\n",
890 req->tag, nvmeq->qid);
891 nvme_dev_disable(dev, false);
892 req->errors = NVME_SC_CANCELLED;
893 return BLK_EH_HANDLED;
894 }
895
896 /*
897 * Shutdown the controller immediately and schedule a reset if the
898 * command was already aborted once before and still hasn't been
899 * returned to the driver, or if this is the admin queue.
900 */
901 if (!nvmeq->qid || iod->aborted) {
902 dev_warn(dev->ctrl.device,
903 "I/O %d QID %d timeout, reset controller\n",
904 req->tag, nvmeq->qid);
905 nvme_dev_disable(dev, false);
906 queue_work(nvme_workq, &dev->reset_work);
907
908 /*
909 * Mark the request as handled, since the inline shutdown
910 * forces all outstanding requests to complete.
911 */
912 req->errors = NVME_SC_CANCELLED;
913 return BLK_EH_HANDLED;
914 }
915
916 iod->aborted = 1;
917
918 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
919 atomic_inc(&dev->ctrl.abort_limit);
920 return BLK_EH_RESET_TIMER;
921 }
922
923 memset(&cmd, 0, sizeof(cmd));
924 cmd.abort.opcode = nvme_admin_abort_cmd;
925 cmd.abort.cid = req->tag;
926 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
927
928 dev_warn(nvmeq->dev->ctrl.device,
929 "I/O %d QID %d timeout, aborting\n",
930 req->tag, nvmeq->qid);
931
932 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
933 BLK_MQ_REQ_NOWAIT);
934 if (IS_ERR(abort_req)) {
935 atomic_inc(&dev->ctrl.abort_limit);
936 return BLK_EH_RESET_TIMER;
937 }
938
939 abort_req->timeout = ADMIN_TIMEOUT;
940 abort_req->end_io_data = NULL;
941 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
942
943 /*
944 * The aborted req will be completed on receiving the abort req.
945 * We enable the timer again. If hit twice, it'll cause a device reset,
946 * as the device then is in a faulty state.
947 */
948 return BLK_EH_RESET_TIMER;
949 }
950
951 static void nvme_cancel_io(struct request *req, void *data, bool reserved)
952 {
953 int status;
954
955 if (!blk_mq_request_started(req))
956 return;
957
958 dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device,
959 "Cancelling I/O %d", req->tag);
960
961 status = NVME_SC_ABORT_REQ;
962 if (blk_queue_dying(req->q))
963 status |= NVME_SC_DNR;
964 blk_mq_complete_request(req, status);
965 }
966
967 static void nvme_free_queue(struct nvme_queue *nvmeq)
968 {
969 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
970 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
971 if (nvmeq->sq_cmds)
972 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
973 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
974 kfree(nvmeq);
975 }
976
977 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
978 {
979 int i;
980
981 for (i = dev->queue_count - 1; i >= lowest; i--) {
982 struct nvme_queue *nvmeq = dev->queues[i];
983 dev->queue_count--;
984 dev->queues[i] = NULL;
985 nvme_free_queue(nvmeq);
986 }
987 }
988
989 /**
990 * nvme_suspend_queue - put queue into suspended state
991 * @nvmeq - queue to suspend
992 */
993 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
994 {
995 int vector;
996
997 spin_lock_irq(&nvmeq->q_lock);
998 if (nvmeq->cq_vector == -1) {
999 spin_unlock_irq(&nvmeq->q_lock);
1000 return 1;
1001 }
1002 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1003 nvmeq->dev->online_queues--;
1004 nvmeq->cq_vector = -1;
1005 spin_unlock_irq(&nvmeq->q_lock);
1006
1007 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1008 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1009
1010 irq_set_affinity_hint(vector, NULL);
1011 free_irq(vector, nvmeq);
1012
1013 return 0;
1014 }
1015
1016 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1017 {
1018 struct nvme_queue *nvmeq = dev->queues[0];
1019
1020 if (!nvmeq)
1021 return;
1022 if (nvme_suspend_queue(nvmeq))
1023 return;
1024
1025 if (shutdown)
1026 nvme_shutdown_ctrl(&dev->ctrl);
1027 else
1028 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1029 dev->bar + NVME_REG_CAP));
1030
1031 spin_lock_irq(&nvmeq->q_lock);
1032 nvme_process_cq(nvmeq);
1033 spin_unlock_irq(&nvmeq->q_lock);
1034 }
1035
1036 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1037 int entry_size)
1038 {
1039 int q_depth = dev->q_depth;
1040 unsigned q_size_aligned = roundup(q_depth * entry_size,
1041 dev->ctrl.page_size);
1042
1043 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1044 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1045 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1046 q_depth = div_u64(mem_per_q, entry_size);
1047
1048 /*
1049 * Ensure the reduced q_depth is above some threshold where it
1050 * would be better to map queues in system memory with the
1051 * original depth
1052 */
1053 if (q_depth < 64)
1054 return -ENOMEM;
1055 }
1056
1057 return q_depth;
1058 }
1059
1060 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1061 int qid, int depth)
1062 {
1063 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1064 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1065 dev->ctrl.page_size);
1066 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1067 nvmeq->sq_cmds_io = dev->cmb + offset;
1068 } else {
1069 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1070 &nvmeq->sq_dma_addr, GFP_KERNEL);
1071 if (!nvmeq->sq_cmds)
1072 return -ENOMEM;
1073 }
1074
1075 return 0;
1076 }
1077
1078 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1079 int depth)
1080 {
1081 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1082 if (!nvmeq)
1083 return NULL;
1084
1085 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1086 &nvmeq->cq_dma_addr, GFP_KERNEL);
1087 if (!nvmeq->cqes)
1088 goto free_nvmeq;
1089
1090 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1091 goto free_cqdma;
1092
1093 nvmeq->q_dmadev = dev->dev;
1094 nvmeq->dev = dev;
1095 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1096 dev->ctrl.instance, qid);
1097 spin_lock_init(&nvmeq->q_lock);
1098 nvmeq->cq_head = 0;
1099 nvmeq->cq_phase = 1;
1100 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1101 nvmeq->q_depth = depth;
1102 nvmeq->qid = qid;
1103 nvmeq->cq_vector = -1;
1104 dev->queues[qid] = nvmeq;
1105 dev->queue_count++;
1106
1107 return nvmeq;
1108
1109 free_cqdma:
1110 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1111 nvmeq->cq_dma_addr);
1112 free_nvmeq:
1113 kfree(nvmeq);
1114 return NULL;
1115 }
1116
1117 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1118 const char *name)
1119 {
1120 if (use_threaded_interrupts)
1121 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1122 nvme_irq_check, nvme_irq, IRQF_SHARED,
1123 name, nvmeq);
1124 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1125 IRQF_SHARED, name, nvmeq);
1126 }
1127
1128 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1129 {
1130 struct nvme_dev *dev = nvmeq->dev;
1131
1132 spin_lock_irq(&nvmeq->q_lock);
1133 nvmeq->sq_tail = 0;
1134 nvmeq->cq_head = 0;
1135 nvmeq->cq_phase = 1;
1136 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1137 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1138 dev->online_queues++;
1139 spin_unlock_irq(&nvmeq->q_lock);
1140 }
1141
1142 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1143 {
1144 struct nvme_dev *dev = nvmeq->dev;
1145 int result;
1146
1147 nvmeq->cq_vector = qid - 1;
1148 result = adapter_alloc_cq(dev, qid, nvmeq);
1149 if (result < 0)
1150 return result;
1151
1152 result = adapter_alloc_sq(dev, qid, nvmeq);
1153 if (result < 0)
1154 goto release_cq;
1155
1156 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1157 if (result < 0)
1158 goto release_sq;
1159
1160 nvme_init_queue(nvmeq, qid);
1161 return result;
1162
1163 release_sq:
1164 adapter_delete_sq(dev, qid);
1165 release_cq:
1166 adapter_delete_cq(dev, qid);
1167 return result;
1168 }
1169
1170 static struct blk_mq_ops nvme_mq_admin_ops = {
1171 .queue_rq = nvme_queue_rq,
1172 .complete = nvme_complete_rq,
1173 .map_queue = blk_mq_map_queue,
1174 .init_hctx = nvme_admin_init_hctx,
1175 .exit_hctx = nvme_admin_exit_hctx,
1176 .init_request = nvme_admin_init_request,
1177 .timeout = nvme_timeout,
1178 };
1179
1180 static struct blk_mq_ops nvme_mq_ops = {
1181 .queue_rq = nvme_queue_rq,
1182 .complete = nvme_complete_rq,
1183 .map_queue = blk_mq_map_queue,
1184 .init_hctx = nvme_init_hctx,
1185 .init_request = nvme_init_request,
1186 .timeout = nvme_timeout,
1187 .poll = nvme_poll,
1188 };
1189
1190 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1191 {
1192 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1193 /*
1194 * If the controller was reset during removal, it's possible
1195 * user requests may be waiting on a stopped queue. Start the
1196 * queue to flush these to completion.
1197 */
1198 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1199 blk_cleanup_queue(dev->ctrl.admin_q);
1200 blk_mq_free_tag_set(&dev->admin_tagset);
1201 }
1202 }
1203
1204 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1205 {
1206 if (!dev->ctrl.admin_q) {
1207 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1208 dev->admin_tagset.nr_hw_queues = 1;
1209
1210 /*
1211 * Subtract one to leave an empty queue entry for 'Full Queue'
1212 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1213 */
1214 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1215 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1216 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1217 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1218 dev->admin_tagset.driver_data = dev;
1219
1220 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1221 return -ENOMEM;
1222
1223 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1224 if (IS_ERR(dev->ctrl.admin_q)) {
1225 blk_mq_free_tag_set(&dev->admin_tagset);
1226 return -ENOMEM;
1227 }
1228 if (!blk_get_queue(dev->ctrl.admin_q)) {
1229 nvme_dev_remove_admin(dev);
1230 dev->ctrl.admin_q = NULL;
1231 return -ENODEV;
1232 }
1233 } else
1234 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1235
1236 return 0;
1237 }
1238
1239 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1240 {
1241 int result;
1242 u32 aqa;
1243 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1244 struct nvme_queue *nvmeq;
1245
1246 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1247 NVME_CAP_NSSRC(cap) : 0;
1248
1249 if (dev->subsystem &&
1250 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1251 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1252
1253 result = nvme_disable_ctrl(&dev->ctrl, cap);
1254 if (result < 0)
1255 return result;
1256
1257 nvmeq = dev->queues[0];
1258 if (!nvmeq) {
1259 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1260 if (!nvmeq)
1261 return -ENOMEM;
1262 }
1263
1264 aqa = nvmeq->q_depth - 1;
1265 aqa |= aqa << 16;
1266
1267 writel(aqa, dev->bar + NVME_REG_AQA);
1268 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1269 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1270
1271 result = nvme_enable_ctrl(&dev->ctrl, cap);
1272 if (result)
1273 goto free_nvmeq;
1274
1275 nvmeq->cq_vector = 0;
1276 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1277 if (result) {
1278 nvmeq->cq_vector = -1;
1279 goto free_nvmeq;
1280 }
1281
1282 return result;
1283
1284 free_nvmeq:
1285 nvme_free_queues(dev, 0);
1286 return result;
1287 }
1288
1289 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1290 {
1291
1292 /* If true, indicates loss of adapter communication, possibly by a
1293 * NVMe Subsystem reset.
1294 */
1295 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1296
1297 /* If there is a reset ongoing, we shouldn't reset again. */
1298 if (work_busy(&dev->reset_work))
1299 return false;
1300
1301 /* We shouldn't reset unless the controller is on fatal error state
1302 * _or_ if we lost the communication with it.
1303 */
1304 if (!(csts & NVME_CSTS_CFS) && !nssro)
1305 return false;
1306
1307 /* If PCI error recovery process is happening, we cannot reset or
1308 * the recovery mechanism will surely fail.
1309 */
1310 if (pci_channel_offline(to_pci_dev(dev->dev)))
1311 return false;
1312
1313 return true;
1314 }
1315
1316 static void nvme_watchdog_timer(unsigned long data)
1317 {
1318 struct nvme_dev *dev = (struct nvme_dev *)data;
1319 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1320
1321 /* Skip controllers under certain specific conditions. */
1322 if (nvme_should_reset(dev, csts)) {
1323 if (queue_work(nvme_workq, &dev->reset_work))
1324 dev_warn(dev->dev,
1325 "Failed status: 0x%x, reset controller.\n",
1326 csts);
1327 return;
1328 }
1329
1330 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1331 }
1332
1333 static int nvme_create_io_queues(struct nvme_dev *dev)
1334 {
1335 unsigned i, max;
1336 int ret = 0;
1337
1338 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1339 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1340 ret = -ENOMEM;
1341 break;
1342 }
1343 }
1344
1345 max = min(dev->max_qid, dev->queue_count - 1);
1346 for (i = dev->online_queues; i <= max; i++) {
1347 ret = nvme_create_queue(dev->queues[i], i);
1348 if (ret) {
1349 nvme_free_queues(dev, i);
1350 break;
1351 }
1352 }
1353
1354 /*
1355 * Ignore failing Create SQ/CQ commands, we can continue with less
1356 * than the desired aount of queues, and even a controller without
1357 * I/O queues an still be used to issue admin commands. This might
1358 * be useful to upgrade a buggy firmware for example.
1359 */
1360 return ret >= 0 ? 0 : ret;
1361 }
1362
1363 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1364 {
1365 u64 szu, size, offset;
1366 u32 cmbloc;
1367 resource_size_t bar_size;
1368 struct pci_dev *pdev = to_pci_dev(dev->dev);
1369 void __iomem *cmb;
1370 dma_addr_t dma_addr;
1371
1372 if (!use_cmb_sqes)
1373 return NULL;
1374
1375 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1376 if (!(NVME_CMB_SZ(dev->cmbsz)))
1377 return NULL;
1378
1379 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1380
1381 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1382 size = szu * NVME_CMB_SZ(dev->cmbsz);
1383 offset = szu * NVME_CMB_OFST(cmbloc);
1384 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1385
1386 if (offset > bar_size)
1387 return NULL;
1388
1389 /*
1390 * Controllers may support a CMB size larger than their BAR,
1391 * for example, due to being behind a bridge. Reduce the CMB to
1392 * the reported size of the BAR
1393 */
1394 if (size > bar_size - offset)
1395 size = bar_size - offset;
1396
1397 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1398 cmb = ioremap_wc(dma_addr, size);
1399 if (!cmb)
1400 return NULL;
1401
1402 dev->cmb_dma_addr = dma_addr;
1403 dev->cmb_size = size;
1404 return cmb;
1405 }
1406
1407 static inline void nvme_release_cmb(struct nvme_dev *dev)
1408 {
1409 if (dev->cmb) {
1410 iounmap(dev->cmb);
1411 dev->cmb = NULL;
1412 }
1413 }
1414
1415 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1416 {
1417 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1418 }
1419
1420 static int nvme_setup_io_queues(struct nvme_dev *dev)
1421 {
1422 struct nvme_queue *adminq = dev->queues[0];
1423 struct pci_dev *pdev = to_pci_dev(dev->dev);
1424 int result, i, vecs, nr_io_queues, size;
1425
1426 nr_io_queues = num_possible_cpus();
1427 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1428 if (result < 0)
1429 return result;
1430
1431 /*
1432 * Degraded controllers might return an error when setting the queue
1433 * count. We still want to be able to bring them online and offer
1434 * access to the admin queue, as that might be only way to fix them up.
1435 */
1436 if (result > 0) {
1437 dev_err(dev->ctrl.device,
1438 "Could not set queue count (%d)\n", result);
1439 return 0;
1440 }
1441
1442 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1443 result = nvme_cmb_qdepth(dev, nr_io_queues,
1444 sizeof(struct nvme_command));
1445 if (result > 0)
1446 dev->q_depth = result;
1447 else
1448 nvme_release_cmb(dev);
1449 }
1450
1451 size = db_bar_size(dev, nr_io_queues);
1452 if (size > 8192) {
1453 iounmap(dev->bar);
1454 do {
1455 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1456 if (dev->bar)
1457 break;
1458 if (!--nr_io_queues)
1459 return -ENOMEM;
1460 size = db_bar_size(dev, nr_io_queues);
1461 } while (1);
1462 dev->dbs = dev->bar + 4096;
1463 adminq->q_db = dev->dbs;
1464 }
1465
1466 /* Deregister the admin queue's interrupt */
1467 free_irq(dev->entry[0].vector, adminq);
1468
1469 /*
1470 * If we enable msix early due to not intx, disable it again before
1471 * setting up the full range we need.
1472 */
1473 if (pdev->msi_enabled)
1474 pci_disable_msi(pdev);
1475 else if (pdev->msix_enabled)
1476 pci_disable_msix(pdev);
1477
1478 for (i = 0; i < nr_io_queues; i++)
1479 dev->entry[i].entry = i;
1480 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1481 if (vecs < 0) {
1482 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1483 if (vecs < 0) {
1484 vecs = 1;
1485 } else {
1486 for (i = 0; i < vecs; i++)
1487 dev->entry[i].vector = i + pdev->irq;
1488 }
1489 }
1490
1491 /*
1492 * Should investigate if there's a performance win from allocating
1493 * more queues than interrupt vectors; it might allow the submission
1494 * path to scale better, even if the receive path is limited by the
1495 * number of interrupts.
1496 */
1497 nr_io_queues = vecs;
1498 dev->max_qid = nr_io_queues;
1499
1500 result = queue_request_irq(dev, adminq, adminq->irqname);
1501 if (result) {
1502 adminq->cq_vector = -1;
1503 goto free_queues;
1504 }
1505 return nvme_create_io_queues(dev);
1506
1507 free_queues:
1508 nvme_free_queues(dev, 1);
1509 return result;
1510 }
1511
1512 static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
1513 {
1514 struct nvme_dev *dev = to_nvme_dev(ctrl);
1515 struct nvme_queue *nvmeq;
1516 int i;
1517
1518 for (i = 0; i < dev->online_queues; i++) {
1519 nvmeq = dev->queues[i];
1520
1521 if (!nvmeq->tags || !(*nvmeq->tags))
1522 continue;
1523
1524 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1525 blk_mq_tags_cpumask(*nvmeq->tags));
1526 }
1527 }
1528
1529 static void nvme_del_queue_end(struct request *req, int error)
1530 {
1531 struct nvme_queue *nvmeq = req->end_io_data;
1532
1533 blk_mq_free_request(req);
1534 complete(&nvmeq->dev->ioq_wait);
1535 }
1536
1537 static void nvme_del_cq_end(struct request *req, int error)
1538 {
1539 struct nvme_queue *nvmeq = req->end_io_data;
1540
1541 if (!error) {
1542 unsigned long flags;
1543
1544 /*
1545 * We might be called with the AQ q_lock held
1546 * and the I/O queue q_lock should always
1547 * nest inside the AQ one.
1548 */
1549 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1550 SINGLE_DEPTH_NESTING);
1551 nvme_process_cq(nvmeq);
1552 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1553 }
1554
1555 nvme_del_queue_end(req, error);
1556 }
1557
1558 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1559 {
1560 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1561 struct request *req;
1562 struct nvme_command cmd;
1563
1564 memset(&cmd, 0, sizeof(cmd));
1565 cmd.delete_queue.opcode = opcode;
1566 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1567
1568 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1569 if (IS_ERR(req))
1570 return PTR_ERR(req);
1571
1572 req->timeout = ADMIN_TIMEOUT;
1573 req->end_io_data = nvmeq;
1574
1575 blk_execute_rq_nowait(q, NULL, req, false,
1576 opcode == nvme_admin_delete_cq ?
1577 nvme_del_cq_end : nvme_del_queue_end);
1578 return 0;
1579 }
1580
1581 static void nvme_disable_io_queues(struct nvme_dev *dev)
1582 {
1583 int pass;
1584 unsigned long timeout;
1585 u8 opcode = nvme_admin_delete_sq;
1586
1587 for (pass = 0; pass < 2; pass++) {
1588 int sent = 0, i = dev->queue_count - 1;
1589
1590 reinit_completion(&dev->ioq_wait);
1591 retry:
1592 timeout = ADMIN_TIMEOUT;
1593 for (; i > 0; i--) {
1594 struct nvme_queue *nvmeq = dev->queues[i];
1595
1596 if (!pass)
1597 nvme_suspend_queue(nvmeq);
1598 if (nvme_delete_queue(nvmeq, opcode))
1599 break;
1600 ++sent;
1601 }
1602 while (sent--) {
1603 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1604 if (timeout == 0)
1605 return;
1606 if (i)
1607 goto retry;
1608 }
1609 opcode = nvme_admin_delete_cq;
1610 }
1611 }
1612
1613 /*
1614 * Return: error value if an error occurred setting up the queues or calling
1615 * Identify Device. 0 if these succeeded, even if adding some of the
1616 * namespaces failed. At the moment, these failures are silent. TBD which
1617 * failures should be reported.
1618 */
1619 static int nvme_dev_add(struct nvme_dev *dev)
1620 {
1621 if (!dev->ctrl.tagset) {
1622 dev->tagset.ops = &nvme_mq_ops;
1623 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1624 dev->tagset.timeout = NVME_IO_TIMEOUT;
1625 dev->tagset.numa_node = dev_to_node(dev->dev);
1626 dev->tagset.queue_depth =
1627 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1628 dev->tagset.cmd_size = nvme_cmd_size(dev);
1629 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1630 dev->tagset.driver_data = dev;
1631
1632 if (blk_mq_alloc_tag_set(&dev->tagset))
1633 return 0;
1634 dev->ctrl.tagset = &dev->tagset;
1635 } else {
1636 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1637
1638 /* Free previously allocated queues that are no longer usable */
1639 nvme_free_queues(dev, dev->online_queues);
1640 }
1641
1642 return 0;
1643 }
1644
1645 static int nvme_pci_enable(struct nvme_dev *dev)
1646 {
1647 u64 cap;
1648 int result = -ENOMEM;
1649 struct pci_dev *pdev = to_pci_dev(dev->dev);
1650
1651 if (pci_enable_device_mem(pdev))
1652 return result;
1653
1654 pci_set_master(pdev);
1655
1656 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1657 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1658 goto disable;
1659
1660 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1661 result = -ENODEV;
1662 goto disable;
1663 }
1664
1665 /*
1666 * Some devices and/or platforms don't advertise or work with INTx
1667 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1668 * adjust this later.
1669 */
1670 if (pci_enable_msix(pdev, dev->entry, 1)) {
1671 pci_enable_msi(pdev);
1672 dev->entry[0].vector = pdev->irq;
1673 }
1674
1675 if (!dev->entry[0].vector) {
1676 result = -ENODEV;
1677 goto disable;
1678 }
1679
1680 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1681
1682 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1683 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1684 dev->dbs = dev->bar + 4096;
1685
1686 /*
1687 * Temporary fix for the Apple controller found in the MacBook8,1 and
1688 * some MacBook7,1 to avoid controller resets and data loss.
1689 */
1690 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1691 dev->q_depth = 2;
1692 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1693 "queue depth=%u to work around controller resets\n",
1694 dev->q_depth);
1695 }
1696
1697 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1698 dev->cmb = nvme_map_cmb(dev);
1699
1700 pci_enable_pcie_error_reporting(pdev);
1701 pci_save_state(pdev);
1702 return 0;
1703
1704 disable:
1705 pci_disable_device(pdev);
1706 return result;
1707 }
1708
1709 static void nvme_dev_unmap(struct nvme_dev *dev)
1710 {
1711 if (dev->bar)
1712 iounmap(dev->bar);
1713 pci_release_regions(to_pci_dev(dev->dev));
1714 }
1715
1716 static void nvme_pci_disable(struct nvme_dev *dev)
1717 {
1718 struct pci_dev *pdev = to_pci_dev(dev->dev);
1719
1720 if (pdev->msi_enabled)
1721 pci_disable_msi(pdev);
1722 else if (pdev->msix_enabled)
1723 pci_disable_msix(pdev);
1724
1725 if (pci_is_enabled(pdev)) {
1726 pci_disable_pcie_error_reporting(pdev);
1727 pci_disable_device(pdev);
1728 }
1729 }
1730
1731 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1732 {
1733 int i;
1734 u32 csts = -1;
1735
1736 del_timer_sync(&dev->watchdog_timer);
1737
1738 mutex_lock(&dev->shutdown_lock);
1739 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1740 nvme_stop_queues(&dev->ctrl);
1741 csts = readl(dev->bar + NVME_REG_CSTS);
1742 }
1743 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1744 for (i = dev->queue_count - 1; i >= 0; i--) {
1745 struct nvme_queue *nvmeq = dev->queues[i];
1746 nvme_suspend_queue(nvmeq);
1747 }
1748 } else {
1749 nvme_disable_io_queues(dev);
1750 nvme_disable_admin_queue(dev, shutdown);
1751 }
1752 nvme_pci_disable(dev);
1753
1754 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev);
1755 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev);
1756 mutex_unlock(&dev->shutdown_lock);
1757 }
1758
1759 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1760 {
1761 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1762 PAGE_SIZE, PAGE_SIZE, 0);
1763 if (!dev->prp_page_pool)
1764 return -ENOMEM;
1765
1766 /* Optimisation for I/Os between 4k and 128k */
1767 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1768 256, 256, 0);
1769 if (!dev->prp_small_pool) {
1770 dma_pool_destroy(dev->prp_page_pool);
1771 return -ENOMEM;
1772 }
1773 return 0;
1774 }
1775
1776 static void nvme_release_prp_pools(struct nvme_dev *dev)
1777 {
1778 dma_pool_destroy(dev->prp_page_pool);
1779 dma_pool_destroy(dev->prp_small_pool);
1780 }
1781
1782 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1783 {
1784 struct nvme_dev *dev = to_nvme_dev(ctrl);
1785
1786 put_device(dev->dev);
1787 if (dev->tagset.tags)
1788 blk_mq_free_tag_set(&dev->tagset);
1789 if (dev->ctrl.admin_q)
1790 blk_put_queue(dev->ctrl.admin_q);
1791 kfree(dev->queues);
1792 kfree(dev->entry);
1793 kfree(dev);
1794 }
1795
1796 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1797 {
1798 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1799
1800 kref_get(&dev->ctrl.kref);
1801 nvme_dev_disable(dev, false);
1802 if (!schedule_work(&dev->remove_work))
1803 nvme_put_ctrl(&dev->ctrl);
1804 }
1805
1806 static void nvme_reset_work(struct work_struct *work)
1807 {
1808 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1809 int result = -ENODEV;
1810
1811 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1812 goto out;
1813
1814 /*
1815 * If we're called to reset a live controller first shut it down before
1816 * moving on.
1817 */
1818 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1819 nvme_dev_disable(dev, false);
1820
1821 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1822 goto out;
1823
1824 result = nvme_pci_enable(dev);
1825 if (result)
1826 goto out;
1827
1828 result = nvme_configure_admin_queue(dev);
1829 if (result)
1830 goto out;
1831
1832 nvme_init_queue(dev->queues[0], 0);
1833 result = nvme_alloc_admin_tags(dev);
1834 if (result)
1835 goto out;
1836
1837 result = nvme_init_identify(&dev->ctrl);
1838 if (result)
1839 goto out;
1840
1841 result = nvme_setup_io_queues(dev);
1842 if (result)
1843 goto out;
1844
1845 /*
1846 * A controller that can not execute IO typically requires user
1847 * intervention to correct. For such degraded controllers, the driver
1848 * should not submit commands the user did not request, so skip
1849 * registering for asynchronous event notification on this condition.
1850 */
1851 if (dev->online_queues > 1) {
1852 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1853 queue_work(nvme_workq, &dev->async_work);
1854 }
1855
1856 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1857
1858 /*
1859 * Keep the controller around but remove all namespaces if we don't have
1860 * any working I/O queue.
1861 */
1862 if (dev->online_queues < 2) {
1863 dev_warn(dev->ctrl.device, "IO queues not created\n");
1864 nvme_kill_queues(&dev->ctrl);
1865 nvme_remove_namespaces(&dev->ctrl);
1866 } else {
1867 nvme_start_queues(&dev->ctrl);
1868 nvme_dev_add(dev);
1869 }
1870
1871 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1872 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1873 goto out;
1874 }
1875
1876 if (dev->online_queues > 1)
1877 nvme_queue_scan(&dev->ctrl);
1878 return;
1879
1880 out:
1881 nvme_remove_dead_ctrl(dev, result);
1882 }
1883
1884 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1885 {
1886 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1887 struct pci_dev *pdev = to_pci_dev(dev->dev);
1888
1889 nvme_kill_queues(&dev->ctrl);
1890 if (pci_get_drvdata(pdev))
1891 pci_stop_and_remove_bus_device_locked(pdev);
1892 nvme_put_ctrl(&dev->ctrl);
1893 }
1894
1895 static int nvme_reset(struct nvme_dev *dev)
1896 {
1897 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1898 return -ENODEV;
1899
1900 if (!queue_work(nvme_workq, &dev->reset_work))
1901 return -EBUSY;
1902
1903 flush_work(&dev->reset_work);
1904 return 0;
1905 }
1906
1907 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1908 {
1909 *val = readl(to_nvme_dev(ctrl)->bar + off);
1910 return 0;
1911 }
1912
1913 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1914 {
1915 writel(val, to_nvme_dev(ctrl)->bar + off);
1916 return 0;
1917 }
1918
1919 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1920 {
1921 *val = readq(to_nvme_dev(ctrl)->bar + off);
1922 return 0;
1923 }
1924
1925 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1926 {
1927 return nvme_reset(to_nvme_dev(ctrl));
1928 }
1929
1930 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1931 .module = THIS_MODULE,
1932 .reg_read32 = nvme_pci_reg_read32,
1933 .reg_write32 = nvme_pci_reg_write32,
1934 .reg_read64 = nvme_pci_reg_read64,
1935 .reset_ctrl = nvme_pci_reset_ctrl,
1936 .free_ctrl = nvme_pci_free_ctrl,
1937 .post_scan = nvme_pci_post_scan,
1938 };
1939
1940 static int nvme_dev_map(struct nvme_dev *dev)
1941 {
1942 int bars;
1943 struct pci_dev *pdev = to_pci_dev(dev->dev);
1944
1945 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1946 if (!bars)
1947 return -ENODEV;
1948 if (pci_request_selected_regions(pdev, bars, "nvme"))
1949 return -ENODEV;
1950
1951 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1952 if (!dev->bar)
1953 goto release;
1954
1955 return 0;
1956 release:
1957 pci_release_regions(pdev);
1958 return -ENODEV;
1959 }
1960
1961 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1962 {
1963 int node, result = -ENOMEM;
1964 struct nvme_dev *dev;
1965
1966 node = dev_to_node(&pdev->dev);
1967 if (node == NUMA_NO_NODE)
1968 set_dev_node(&pdev->dev, 0);
1969
1970 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1971 if (!dev)
1972 return -ENOMEM;
1973 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1974 GFP_KERNEL, node);
1975 if (!dev->entry)
1976 goto free;
1977 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1978 GFP_KERNEL, node);
1979 if (!dev->queues)
1980 goto free;
1981
1982 dev->dev = get_device(&pdev->dev);
1983 pci_set_drvdata(pdev, dev);
1984
1985 result = nvme_dev_map(dev);
1986 if (result)
1987 goto free;
1988
1989 INIT_WORK(&dev->reset_work, nvme_reset_work);
1990 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1991 INIT_WORK(&dev->async_work, nvme_async_event_work);
1992 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1993 (unsigned long)dev);
1994 mutex_init(&dev->shutdown_lock);
1995 init_completion(&dev->ioq_wait);
1996
1997 result = nvme_setup_prp_pools(dev);
1998 if (result)
1999 goto put_pci;
2000
2001 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2002 id->driver_data);
2003 if (result)
2004 goto release_pools;
2005
2006 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2007
2008 queue_work(nvme_workq, &dev->reset_work);
2009 return 0;
2010
2011 release_pools:
2012 nvme_release_prp_pools(dev);
2013 put_pci:
2014 put_device(dev->dev);
2015 nvme_dev_unmap(dev);
2016 free:
2017 kfree(dev->queues);
2018 kfree(dev->entry);
2019 kfree(dev);
2020 return result;
2021 }
2022
2023 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2024 {
2025 struct nvme_dev *dev = pci_get_drvdata(pdev);
2026
2027 if (prepare)
2028 nvme_dev_disable(dev, false);
2029 else
2030 queue_work(nvme_workq, &dev->reset_work);
2031 }
2032
2033 static void nvme_shutdown(struct pci_dev *pdev)
2034 {
2035 struct nvme_dev *dev = pci_get_drvdata(pdev);
2036 nvme_dev_disable(dev, true);
2037 }
2038
2039 /*
2040 * The driver's remove may be called on a device in a partially initialized
2041 * state. This function must not have any dependencies on the device state in
2042 * order to proceed.
2043 */
2044 static void nvme_remove(struct pci_dev *pdev)
2045 {
2046 struct nvme_dev *dev = pci_get_drvdata(pdev);
2047
2048 del_timer_sync(&dev->watchdog_timer);
2049
2050 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2051
2052 pci_set_drvdata(pdev, NULL);
2053 flush_work(&dev->async_work);
2054 nvme_uninit_ctrl(&dev->ctrl);
2055 nvme_dev_disable(dev, true);
2056 flush_work(&dev->reset_work);
2057 nvme_dev_remove_admin(dev);
2058 nvme_free_queues(dev, 0);
2059 nvme_release_cmb(dev);
2060 nvme_release_prp_pools(dev);
2061 nvme_dev_unmap(dev);
2062 nvme_put_ctrl(&dev->ctrl);
2063 }
2064
2065 #ifdef CONFIG_PM_SLEEP
2066 static int nvme_suspend(struct device *dev)
2067 {
2068 struct pci_dev *pdev = to_pci_dev(dev);
2069 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2070
2071 nvme_dev_disable(ndev, true);
2072 return 0;
2073 }
2074
2075 static int nvme_resume(struct device *dev)
2076 {
2077 struct pci_dev *pdev = to_pci_dev(dev);
2078 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2079
2080 queue_work(nvme_workq, &ndev->reset_work);
2081 return 0;
2082 }
2083 #endif
2084
2085 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2086
2087 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2088 pci_channel_state_t state)
2089 {
2090 struct nvme_dev *dev = pci_get_drvdata(pdev);
2091
2092 /*
2093 * A frozen channel requires a reset. When detected, this method will
2094 * shutdown the controller to quiesce. The controller will be restarted
2095 * after the slot reset through driver's slot_reset callback.
2096 */
2097 dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
2098 switch (state) {
2099 case pci_channel_io_normal:
2100 return PCI_ERS_RESULT_CAN_RECOVER;
2101 case pci_channel_io_frozen:
2102 nvme_dev_disable(dev, false);
2103 return PCI_ERS_RESULT_NEED_RESET;
2104 case pci_channel_io_perm_failure:
2105 return PCI_ERS_RESULT_DISCONNECT;
2106 }
2107 return PCI_ERS_RESULT_NEED_RESET;
2108 }
2109
2110 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2111 {
2112 struct nvme_dev *dev = pci_get_drvdata(pdev);
2113
2114 dev_info(dev->ctrl.device, "restart after slot reset\n");
2115 pci_restore_state(pdev);
2116 queue_work(nvme_workq, &dev->reset_work);
2117 return PCI_ERS_RESULT_RECOVERED;
2118 }
2119
2120 static void nvme_error_resume(struct pci_dev *pdev)
2121 {
2122 pci_cleanup_aer_uncorrect_error_status(pdev);
2123 }
2124
2125 static const struct pci_error_handlers nvme_err_handler = {
2126 .error_detected = nvme_error_detected,
2127 .slot_reset = nvme_slot_reset,
2128 .resume = nvme_error_resume,
2129 .reset_notify = nvme_reset_notify,
2130 };
2131
2132 /* Move to pci_ids.h later */
2133 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2134
2135 static const struct pci_device_id nvme_id_table[] = {
2136 { PCI_VDEVICE(INTEL, 0x0953),
2137 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2138 NVME_QUIRK_DISCARD_ZEROES, },
2139 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2140 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2141 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2142 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2143 { 0, }
2144 };
2145 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2146
2147 static struct pci_driver nvme_driver = {
2148 .name = "nvme",
2149 .id_table = nvme_id_table,
2150 .probe = nvme_probe,
2151 .remove = nvme_remove,
2152 .shutdown = nvme_shutdown,
2153 .driver = {
2154 .pm = &nvme_dev_pm_ops,
2155 },
2156 .err_handler = &nvme_err_handler,
2157 };
2158
2159 static int __init nvme_init(void)
2160 {
2161 int result;
2162
2163 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2164 if (!nvme_workq)
2165 return -ENOMEM;
2166
2167 result = pci_register_driver(&nvme_driver);
2168 if (result)
2169 destroy_workqueue(nvme_workq);
2170 return result;
2171 }
2172
2173 static void __exit nvme_exit(void)
2174 {
2175 pci_unregister_driver(&nvme_driver);
2176 destroy_workqueue(nvme_workq);
2177 _nvme_check_size();
2178 }
2179
2180 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2181 MODULE_LICENSE("GPL");
2182 MODULE_VERSION("1.0");
2183 module_init(nvme_init);
2184 module_exit(nvme_exit);