]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/nvme/host/pci.c
1a0912146c7498671ba975b8e12208d8b1b14134
[mirror_ubuntu-jammy-kernel.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39 * These can be higher, but we need to ensure that any command doesn't
40 * require an sg allocation that needs more than a page of data.
41 */
42 #define NVME_MAX_KB_SZ 4096
43 #define NVME_MAX_SEGS 127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 "Use SGLs when average request segment size is larger or equal to "
61 "this size. Use 0 to disable SGLs.");
62
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 .set = io_queue_depth_set,
66 .get = param_get_uint,
67 };
68
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72
73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 unsigned int n;
76 int ret;
77
78 ret = kstrtouint(val, 10, &n);
79 if (ret != 0 || n > num_possible_cpus())
80 return -EINVAL;
81 return param_set_uint(val, kp);
82 }
83
84 static const struct kernel_param_ops io_queue_count_ops = {
85 .set = io_queue_count_set,
86 .get = param_get_uint,
87 };
88
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 "Number of queues to use for writes. If not set, reads and writes "
93 "will share a queue set.");
94
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102
103 struct nvme_dev;
104 struct nvme_queue;
105
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108
109 /*
110 * Represents an NVM Express device. Each nvme_dev is a PCI function.
111 */
112 struct nvme_dev {
113 struct nvme_queue *queues;
114 struct blk_mq_tag_set tagset;
115 struct blk_mq_tag_set admin_tagset;
116 u32 __iomem *dbs;
117 struct device *dev;
118 struct dma_pool *prp_page_pool;
119 struct dma_pool *prp_small_pool;
120 unsigned online_queues;
121 unsigned max_qid;
122 unsigned io_queues[HCTX_MAX_TYPES];
123 unsigned int num_vecs;
124 u32 q_depth;
125 int io_sqes;
126 u32 db_stride;
127 void __iomem *bar;
128 unsigned long bar_mapped_size;
129 struct work_struct remove_work;
130 struct mutex shutdown_lock;
131 bool subsystem;
132 u64 cmb_size;
133 bool cmb_use_sqes;
134 u32 cmbsz;
135 u32 cmbloc;
136 struct nvme_ctrl ctrl;
137 u32 last_ps;
138
139 mempool_t *iod_mempool;
140
141 /* shadow doorbell buffer support: */
142 u32 *dbbuf_dbs;
143 dma_addr_t dbbuf_dbs_dma_addr;
144 u32 *dbbuf_eis;
145 dma_addr_t dbbuf_eis_dma_addr;
146
147 /* host memory buffer support: */
148 u64 host_mem_size;
149 u32 nr_host_mem_descs;
150 dma_addr_t host_mem_descs_dma;
151 struct nvme_host_mem_buf_desc *host_mem_descs;
152 void **host_mem_desc_bufs;
153 unsigned int nr_allocated_queues;
154 unsigned int nr_write_queues;
155 unsigned int nr_poll_queues;
156 };
157
158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160 int ret;
161 u32 n;
162
163 ret = kstrtou32(val, 10, &n);
164 if (ret != 0 || n < 2)
165 return -EINVAL;
166
167 return param_set_uint(val, kp);
168 }
169
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 return qid * 2 * stride;
173 }
174
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 return (qid * 2 + 1) * stride;
178 }
179
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184
185 /*
186 * An NVM Express queue. Each device has at least two (one for admin
187 * commands and one for I/O commands).
188 */
189 struct nvme_queue {
190 struct nvme_dev *dev;
191 spinlock_t sq_lock;
192 void *sq_cmds;
193 /* only used for poll queues: */
194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 struct nvme_completion *cqes;
196 dma_addr_t sq_dma_addr;
197 dma_addr_t cq_dma_addr;
198 u32 __iomem *q_db;
199 u32 q_depth;
200 u16 cq_vector;
201 u16 sq_tail;
202 u16 last_sq_tail;
203 u16 cq_head;
204 u16 qid;
205 u8 cq_phase;
206 u8 sqes;
207 unsigned long flags;
208 #define NVMEQ_ENABLED 0
209 #define NVMEQ_SQ_CMB 1
210 #define NVMEQ_DELETE_ERROR 2
211 #define NVMEQ_POLLED 3
212 u32 *dbbuf_sq_db;
213 u32 *dbbuf_cq_db;
214 u32 *dbbuf_sq_ei;
215 u32 *dbbuf_cq_ei;
216 struct completion delete_done;
217 };
218
219 /*
220 * The nvme_iod describes the data in an I/O.
221 *
222 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223 * to the actual struct scatterlist.
224 */
225 struct nvme_iod {
226 struct nvme_request req;
227 struct nvme_command cmd;
228 struct nvme_queue *nvmeq;
229 bool use_sgl;
230 int aborted;
231 int npages; /* In the PRP list. 0 means small pool in use */
232 int nents; /* Used in scatterlist */
233 dma_addr_t first_dma;
234 unsigned int dma_len; /* length of single DMA segment mapping */
235 dma_addr_t meta_dma;
236 struct scatterlist *sg;
237 };
238
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 unsigned int mem_size = nvme_dbbuf_size(dev);
247
248 if (dev->dbbuf_dbs)
249 return 0;
250
251 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252 &dev->dbbuf_dbs_dma_addr,
253 GFP_KERNEL);
254 if (!dev->dbbuf_dbs)
255 return -ENOMEM;
256 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257 &dev->dbbuf_eis_dma_addr,
258 GFP_KERNEL);
259 if (!dev->dbbuf_eis) {
260 dma_free_coherent(dev->dev, mem_size,
261 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 dev->dbbuf_dbs = NULL;
263 return -ENOMEM;
264 }
265
266 return 0;
267 }
268
269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271 unsigned int mem_size = nvme_dbbuf_size(dev);
272
273 if (dev->dbbuf_dbs) {
274 dma_free_coherent(dev->dev, mem_size,
275 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276 dev->dbbuf_dbs = NULL;
277 }
278 if (dev->dbbuf_eis) {
279 dma_free_coherent(dev->dev, mem_size,
280 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281 dev->dbbuf_eis = NULL;
282 }
283 }
284
285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286 struct nvme_queue *nvmeq, int qid)
287 {
288 if (!dev->dbbuf_dbs || !qid)
289 return;
290
291 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296
297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299 if (!nvmeq->qid)
300 return;
301
302 nvmeq->dbbuf_sq_db = NULL;
303 nvmeq->dbbuf_cq_db = NULL;
304 nvmeq->dbbuf_sq_ei = NULL;
305 nvmeq->dbbuf_cq_ei = NULL;
306 }
307
308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310 struct nvme_command c;
311 unsigned int i;
312
313 if (!dev->dbbuf_dbs)
314 return;
315
316 memset(&c, 0, sizeof(c));
317 c.dbbuf.opcode = nvme_admin_dbbuf;
318 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
319 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320
321 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
322 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
323 /* Free memory and continue on */
324 nvme_dbbuf_dma_free(dev);
325
326 for (i = 1; i <= dev->online_queues; i++)
327 nvme_dbbuf_free(&dev->queues[i]);
328 }
329 }
330
331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 {
333 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
334 }
335
336 /* Update dbbuf and return true if an MMIO is required */
337 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
338 volatile u32 *dbbuf_ei)
339 {
340 if (dbbuf_db) {
341 u16 old_value;
342
343 /*
344 * Ensure that the queue is written before updating
345 * the doorbell in memory
346 */
347 wmb();
348
349 old_value = *dbbuf_db;
350 *dbbuf_db = value;
351
352 /*
353 * Ensure that the doorbell is updated before reading the event
354 * index from memory. The controller needs to provide similar
355 * ordering to ensure the envent index is updated before reading
356 * the doorbell.
357 */
358 mb();
359
360 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
361 return false;
362 }
363
364 return true;
365 }
366
367 /*
368 * Will slightly overestimate the number of pages needed. This is OK
369 * as it only leads to a small amount of wasted memory for the lifetime of
370 * the I/O.
371 */
372 static int nvme_pci_npages_prp(void)
373 {
374 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
375 NVME_CTRL_PAGE_SIZE);
376 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
377 }
378
379 /*
380 * Calculates the number of pages needed for the SGL segments. For example a 4k
381 * page can accommodate 256 SGL descriptors.
382 */
383 static int nvme_pci_npages_sgl(void)
384 {
385 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
386 PAGE_SIZE);
387 }
388
389 static size_t nvme_pci_iod_alloc_size(void)
390 {
391 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
392
393 return sizeof(__le64 *) * npages +
394 sizeof(struct scatterlist) * NVME_MAX_SEGS;
395 }
396
397 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398 unsigned int hctx_idx)
399 {
400 struct nvme_dev *dev = data;
401 struct nvme_queue *nvmeq = &dev->queues[0];
402
403 WARN_ON(hctx_idx != 0);
404 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
405
406 hctx->driver_data = nvmeq;
407 return 0;
408 }
409
410 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
411 unsigned int hctx_idx)
412 {
413 struct nvme_dev *dev = data;
414 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
415
416 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
417 hctx->driver_data = nvmeq;
418 return 0;
419 }
420
421 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
422 unsigned int hctx_idx, unsigned int numa_node)
423 {
424 struct nvme_dev *dev = set->driver_data;
425 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
427 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
428
429 BUG_ON(!nvmeq);
430 iod->nvmeq = nvmeq;
431
432 nvme_req(req)->ctrl = &dev->ctrl;
433 return 0;
434 }
435
436 static int queue_irq_offset(struct nvme_dev *dev)
437 {
438 /* if we have more than 1 vec, admin queue offsets us by 1 */
439 if (dev->num_vecs > 1)
440 return 1;
441
442 return 0;
443 }
444
445 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
446 {
447 struct nvme_dev *dev = set->driver_data;
448 int i, qoff, offset;
449
450 offset = queue_irq_offset(dev);
451 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
452 struct blk_mq_queue_map *map = &set->map[i];
453
454 map->nr_queues = dev->io_queues[i];
455 if (!map->nr_queues) {
456 BUG_ON(i == HCTX_TYPE_DEFAULT);
457 continue;
458 }
459
460 /*
461 * The poll queue(s) doesn't have an IRQ (and hence IRQ
462 * affinity), so use the regular blk-mq cpu mapping
463 */
464 map->queue_offset = qoff;
465 if (i != HCTX_TYPE_POLL && offset)
466 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
467 else
468 blk_mq_map_queues(map);
469 qoff += map->nr_queues;
470 offset += map->nr_queues;
471 }
472
473 return 0;
474 }
475
476 /*
477 * Write sq tail if we are asked to, or if the next command would wrap.
478 */
479 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
480 {
481 if (!write_sq) {
482 u16 next_tail = nvmeq->sq_tail + 1;
483
484 if (next_tail == nvmeq->q_depth)
485 next_tail = 0;
486 if (next_tail != nvmeq->last_sq_tail)
487 return;
488 }
489
490 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
491 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
492 writel(nvmeq->sq_tail, nvmeq->q_db);
493 nvmeq->last_sq_tail = nvmeq->sq_tail;
494 }
495
496 /**
497 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
498 * @nvmeq: The queue to use
499 * @cmd: The command to send
500 * @write_sq: whether to write to the SQ doorbell
501 */
502 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
503 bool write_sq)
504 {
505 spin_lock(&nvmeq->sq_lock);
506 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
507 cmd, sizeof(*cmd));
508 if (++nvmeq->sq_tail == nvmeq->q_depth)
509 nvmeq->sq_tail = 0;
510 nvme_write_sq_db(nvmeq, write_sq);
511 spin_unlock(&nvmeq->sq_lock);
512 }
513
514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
515 {
516 struct nvme_queue *nvmeq = hctx->driver_data;
517
518 spin_lock(&nvmeq->sq_lock);
519 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
520 nvme_write_sq_db(nvmeq, true);
521 spin_unlock(&nvmeq->sq_lock);
522 }
523
524 static void **nvme_pci_iod_list(struct request *req)
525 {
526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
528 }
529
530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
531 {
532 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
533 int nseg = blk_rq_nr_phys_segments(req);
534 unsigned int avg_seg_size;
535
536 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
537
538 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
539 return false;
540 if (!iod->nvmeq->qid)
541 return false;
542 if (!sgl_threshold || avg_seg_size < sgl_threshold)
543 return false;
544 return true;
545 }
546
547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
548 {
549 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
550 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
551 dma_addr_t dma_addr = iod->first_dma;
552 int i;
553
554 for (i = 0; i < iod->npages; i++) {
555 __le64 *prp_list = nvme_pci_iod_list(req)[i];
556 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
557
558 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
559 dma_addr = next_dma_addr;
560 }
561
562 }
563
564 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
565 {
566 const int last_sg = SGES_PER_PAGE - 1;
567 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
568 dma_addr_t dma_addr = iod->first_dma;
569 int i;
570
571 for (i = 0; i < iod->npages; i++) {
572 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
573 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
574
575 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
576 dma_addr = next_dma_addr;
577 }
578
579 }
580
581 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
582 {
583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584
585 if (is_pci_p2pdma_page(sg_page(iod->sg)))
586 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
587 rq_dma_dir(req));
588 else
589 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
590 }
591
592 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
593 {
594 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
595
596 if (iod->dma_len) {
597 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
598 rq_dma_dir(req));
599 return;
600 }
601
602 WARN_ON_ONCE(!iod->nents);
603
604 nvme_unmap_sg(dev, req);
605 if (iod->npages == 0)
606 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
607 iod->first_dma);
608 else if (iod->use_sgl)
609 nvme_free_sgls(dev, req);
610 else
611 nvme_free_prps(dev, req);
612 mempool_free(iod->sg, dev->iod_mempool);
613 }
614
615 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
616 {
617 int i;
618 struct scatterlist *sg;
619
620 for_each_sg(sgl, sg, nents, i) {
621 dma_addr_t phys = sg_phys(sg);
622 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
623 "dma_address:%pad dma_length:%d\n",
624 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
625 sg_dma_len(sg));
626 }
627 }
628
629 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
630 struct request *req, struct nvme_rw_command *cmnd)
631 {
632 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
633 struct dma_pool *pool;
634 int length = blk_rq_payload_bytes(req);
635 struct scatterlist *sg = iod->sg;
636 int dma_len = sg_dma_len(sg);
637 u64 dma_addr = sg_dma_address(sg);
638 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
639 __le64 *prp_list;
640 void **list = nvme_pci_iod_list(req);
641 dma_addr_t prp_dma;
642 int nprps, i;
643
644 length -= (NVME_CTRL_PAGE_SIZE - offset);
645 if (length <= 0) {
646 iod->first_dma = 0;
647 goto done;
648 }
649
650 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
651 if (dma_len) {
652 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
653 } else {
654 sg = sg_next(sg);
655 dma_addr = sg_dma_address(sg);
656 dma_len = sg_dma_len(sg);
657 }
658
659 if (length <= NVME_CTRL_PAGE_SIZE) {
660 iod->first_dma = dma_addr;
661 goto done;
662 }
663
664 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
665 if (nprps <= (256 / 8)) {
666 pool = dev->prp_small_pool;
667 iod->npages = 0;
668 } else {
669 pool = dev->prp_page_pool;
670 iod->npages = 1;
671 }
672
673 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
674 if (!prp_list) {
675 iod->first_dma = dma_addr;
676 iod->npages = -1;
677 return BLK_STS_RESOURCE;
678 }
679 list[0] = prp_list;
680 iod->first_dma = prp_dma;
681 i = 0;
682 for (;;) {
683 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
684 __le64 *old_prp_list = prp_list;
685 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
686 if (!prp_list)
687 goto free_prps;
688 list[iod->npages++] = prp_list;
689 prp_list[0] = old_prp_list[i - 1];
690 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
691 i = 1;
692 }
693 prp_list[i++] = cpu_to_le64(dma_addr);
694 dma_len -= NVME_CTRL_PAGE_SIZE;
695 dma_addr += NVME_CTRL_PAGE_SIZE;
696 length -= NVME_CTRL_PAGE_SIZE;
697 if (length <= 0)
698 break;
699 if (dma_len > 0)
700 continue;
701 if (unlikely(dma_len < 0))
702 goto bad_sgl;
703 sg = sg_next(sg);
704 dma_addr = sg_dma_address(sg);
705 dma_len = sg_dma_len(sg);
706 }
707 done:
708 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
709 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
710 return BLK_STS_OK;
711 free_prps:
712 nvme_free_prps(dev, req);
713 return BLK_STS_RESOURCE;
714 bad_sgl:
715 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
716 "Invalid SGL for payload:%d nents:%d\n",
717 blk_rq_payload_bytes(req), iod->nents);
718 return BLK_STS_IOERR;
719 }
720
721 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
722 struct scatterlist *sg)
723 {
724 sge->addr = cpu_to_le64(sg_dma_address(sg));
725 sge->length = cpu_to_le32(sg_dma_len(sg));
726 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
727 }
728
729 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
730 dma_addr_t dma_addr, int entries)
731 {
732 sge->addr = cpu_to_le64(dma_addr);
733 if (entries < SGES_PER_PAGE) {
734 sge->length = cpu_to_le32(entries * sizeof(*sge));
735 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
736 } else {
737 sge->length = cpu_to_le32(PAGE_SIZE);
738 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
739 }
740 }
741
742 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
743 struct request *req, struct nvme_rw_command *cmd, int entries)
744 {
745 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
746 struct dma_pool *pool;
747 struct nvme_sgl_desc *sg_list;
748 struct scatterlist *sg = iod->sg;
749 dma_addr_t sgl_dma;
750 int i = 0;
751
752 /* setting the transfer type as SGL */
753 cmd->flags = NVME_CMD_SGL_METABUF;
754
755 if (entries == 1) {
756 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
757 return BLK_STS_OK;
758 }
759
760 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
761 pool = dev->prp_small_pool;
762 iod->npages = 0;
763 } else {
764 pool = dev->prp_page_pool;
765 iod->npages = 1;
766 }
767
768 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
769 if (!sg_list) {
770 iod->npages = -1;
771 return BLK_STS_RESOURCE;
772 }
773
774 nvme_pci_iod_list(req)[0] = sg_list;
775 iod->first_dma = sgl_dma;
776
777 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
778
779 do {
780 if (i == SGES_PER_PAGE) {
781 struct nvme_sgl_desc *old_sg_desc = sg_list;
782 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
783
784 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
785 if (!sg_list)
786 goto free_sgls;
787
788 i = 0;
789 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
790 sg_list[i++] = *link;
791 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
792 }
793
794 nvme_pci_sgl_set_data(&sg_list[i++], sg);
795 sg = sg_next(sg);
796 } while (--entries > 0);
797
798 return BLK_STS_OK;
799 free_sgls:
800 nvme_free_sgls(dev, req);
801 return BLK_STS_RESOURCE;
802 }
803
804 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
805 struct request *req, struct nvme_rw_command *cmnd,
806 struct bio_vec *bv)
807 {
808 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
809 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
810 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
811
812 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
813 if (dma_mapping_error(dev->dev, iod->first_dma))
814 return BLK_STS_RESOURCE;
815 iod->dma_len = bv->bv_len;
816
817 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
818 if (bv->bv_len > first_prp_len)
819 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
820 return BLK_STS_OK;
821 }
822
823 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
824 struct request *req, struct nvme_rw_command *cmnd,
825 struct bio_vec *bv)
826 {
827 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
828
829 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
830 if (dma_mapping_error(dev->dev, iod->first_dma))
831 return BLK_STS_RESOURCE;
832 iod->dma_len = bv->bv_len;
833
834 cmnd->flags = NVME_CMD_SGL_METABUF;
835 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
836 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
837 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
838 return BLK_STS_OK;
839 }
840
841 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
842 struct nvme_command *cmnd)
843 {
844 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
845 blk_status_t ret = BLK_STS_RESOURCE;
846 int nr_mapped;
847
848 if (blk_rq_nr_phys_segments(req) == 1) {
849 struct bio_vec bv = req_bvec(req);
850
851 if (!is_pci_p2pdma_page(bv.bv_page)) {
852 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
853 return nvme_setup_prp_simple(dev, req,
854 &cmnd->rw, &bv);
855
856 if (iod->nvmeq->qid &&
857 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
858 return nvme_setup_sgl_simple(dev, req,
859 &cmnd->rw, &bv);
860 }
861 }
862
863 iod->dma_len = 0;
864 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
865 if (!iod->sg)
866 return BLK_STS_RESOURCE;
867 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
868 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
869 if (!iod->nents)
870 goto out_free_sg;
871
872 if (is_pci_p2pdma_page(sg_page(iod->sg)))
873 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
874 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
875 else
876 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
877 rq_dma_dir(req), DMA_ATTR_NO_WARN);
878 if (!nr_mapped)
879 goto out_free_sg;
880
881 iod->use_sgl = nvme_pci_use_sgls(dev, req);
882 if (iod->use_sgl)
883 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
884 else
885 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
886 if (ret != BLK_STS_OK)
887 goto out_unmap_sg;
888 return BLK_STS_OK;
889
890 out_unmap_sg:
891 nvme_unmap_sg(dev, req);
892 out_free_sg:
893 mempool_free(iod->sg, dev->iod_mempool);
894 return ret;
895 }
896
897 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
898 struct nvme_command *cmnd)
899 {
900 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
901
902 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
903 rq_dma_dir(req), 0);
904 if (dma_mapping_error(dev->dev, iod->meta_dma))
905 return BLK_STS_IOERR;
906 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
907 return BLK_STS_OK;
908 }
909
910 /*
911 * NOTE: ns is NULL when called on the admin queue.
912 */
913 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
914 const struct blk_mq_queue_data *bd)
915 {
916 struct nvme_ns *ns = hctx->queue->queuedata;
917 struct nvme_queue *nvmeq = hctx->driver_data;
918 struct nvme_dev *dev = nvmeq->dev;
919 struct request *req = bd->rq;
920 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
921 struct nvme_command *cmnd = &iod->cmd;
922 blk_status_t ret;
923
924 iod->aborted = 0;
925 iod->npages = -1;
926 iod->nents = 0;
927
928 /*
929 * We should not need to do this, but we're still using this to
930 * ensure we can drain requests on a dying queue.
931 */
932 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
933 return BLK_STS_IOERR;
934
935 ret = nvme_setup_cmd(ns, req, cmnd);
936 if (ret)
937 return ret;
938
939 if (blk_rq_nr_phys_segments(req)) {
940 ret = nvme_map_data(dev, req, cmnd);
941 if (ret)
942 goto out_free_cmd;
943 }
944
945 if (blk_integrity_rq(req)) {
946 ret = nvme_map_metadata(dev, req, cmnd);
947 if (ret)
948 goto out_unmap_data;
949 }
950
951 blk_mq_start_request(req);
952 nvme_submit_cmd(nvmeq, cmnd, bd->last);
953 return BLK_STS_OK;
954 out_unmap_data:
955 nvme_unmap_data(dev, req);
956 out_free_cmd:
957 nvme_cleanup_cmd(req);
958 return ret;
959 }
960
961 static void nvme_pci_complete_rq(struct request *req)
962 {
963 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
964 struct nvme_dev *dev = iod->nvmeq->dev;
965
966 if (blk_integrity_rq(req))
967 dma_unmap_page(dev->dev, iod->meta_dma,
968 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
969 if (blk_rq_nr_phys_segments(req))
970 nvme_unmap_data(dev, req);
971 nvme_complete_rq(req);
972 }
973
974 /* We read the CQE phase first to check if the rest of the entry is valid */
975 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
976 {
977 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
978
979 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
980 }
981
982 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
983 {
984 u16 head = nvmeq->cq_head;
985
986 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
987 nvmeq->dbbuf_cq_ei))
988 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
989 }
990
991 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
992 {
993 if (!nvmeq->qid)
994 return nvmeq->dev->admin_tagset.tags[0];
995 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
996 }
997
998 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
999 {
1000 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1001 __u16 command_id = READ_ONCE(cqe->command_id);
1002 struct request *req;
1003
1004 /*
1005 * AEN requests are special as they don't time out and can
1006 * survive any kind of queue freeze and often don't respond to
1007 * aborts. We don't even bother to allocate a struct request
1008 * for them but rather special case them here.
1009 */
1010 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1011 nvme_complete_async_event(&nvmeq->dev->ctrl,
1012 cqe->status, &cqe->result);
1013 return;
1014 }
1015
1016 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id);
1017 if (unlikely(!req)) {
1018 dev_warn(nvmeq->dev->ctrl.device,
1019 "invalid id %d completed on queue %d\n",
1020 command_id, le16_to_cpu(cqe->sq_id));
1021 return;
1022 }
1023
1024 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1025 if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1026 nvme_pci_complete_rq(req);
1027 }
1028
1029 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1030 {
1031 u16 tmp = nvmeq->cq_head + 1;
1032
1033 if (tmp == nvmeq->q_depth) {
1034 nvmeq->cq_head = 0;
1035 nvmeq->cq_phase ^= 1;
1036 } else {
1037 nvmeq->cq_head = tmp;
1038 }
1039 }
1040
1041 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1042 {
1043 int found = 0;
1044
1045 while (nvme_cqe_pending(nvmeq)) {
1046 found++;
1047 /*
1048 * load-load control dependency between phase and the rest of
1049 * the cqe requires a full read memory barrier
1050 */
1051 dma_rmb();
1052 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1053 nvme_update_cq_head(nvmeq);
1054 }
1055
1056 if (found)
1057 nvme_ring_cq_doorbell(nvmeq);
1058 return found;
1059 }
1060
1061 static irqreturn_t nvme_irq(int irq, void *data)
1062 {
1063 struct nvme_queue *nvmeq = data;
1064
1065 if (nvme_process_cq(nvmeq))
1066 return IRQ_HANDLED;
1067 return IRQ_NONE;
1068 }
1069
1070 static irqreturn_t nvme_irq_check(int irq, void *data)
1071 {
1072 struct nvme_queue *nvmeq = data;
1073
1074 if (nvme_cqe_pending(nvmeq))
1075 return IRQ_WAKE_THREAD;
1076 return IRQ_NONE;
1077 }
1078
1079 /*
1080 * Poll for completions for any interrupt driven queue
1081 * Can be called from any context.
1082 */
1083 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1084 {
1085 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1086
1087 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1088
1089 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1090 nvme_process_cq(nvmeq);
1091 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1092 }
1093
1094 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1095 {
1096 struct nvme_queue *nvmeq = hctx->driver_data;
1097 bool found;
1098
1099 if (!nvme_cqe_pending(nvmeq))
1100 return 0;
1101
1102 spin_lock(&nvmeq->cq_poll_lock);
1103 found = nvme_process_cq(nvmeq);
1104 spin_unlock(&nvmeq->cq_poll_lock);
1105
1106 return found;
1107 }
1108
1109 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1110 {
1111 struct nvme_dev *dev = to_nvme_dev(ctrl);
1112 struct nvme_queue *nvmeq = &dev->queues[0];
1113 struct nvme_command c;
1114
1115 memset(&c, 0, sizeof(c));
1116 c.common.opcode = nvme_admin_async_event;
1117 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1118 nvme_submit_cmd(nvmeq, &c, true);
1119 }
1120
1121 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1122 {
1123 struct nvme_command c;
1124
1125 memset(&c, 0, sizeof(c));
1126 c.delete_queue.opcode = opcode;
1127 c.delete_queue.qid = cpu_to_le16(id);
1128
1129 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1130 }
1131
1132 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1133 struct nvme_queue *nvmeq, s16 vector)
1134 {
1135 struct nvme_command c;
1136 int flags = NVME_QUEUE_PHYS_CONTIG;
1137
1138 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1139 flags |= NVME_CQ_IRQ_ENABLED;
1140
1141 /*
1142 * Note: we (ab)use the fact that the prp fields survive if no data
1143 * is attached to the request.
1144 */
1145 memset(&c, 0, sizeof(c));
1146 c.create_cq.opcode = nvme_admin_create_cq;
1147 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1148 c.create_cq.cqid = cpu_to_le16(qid);
1149 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1150 c.create_cq.cq_flags = cpu_to_le16(flags);
1151 c.create_cq.irq_vector = cpu_to_le16(vector);
1152
1153 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1154 }
1155
1156 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1157 struct nvme_queue *nvmeq)
1158 {
1159 struct nvme_ctrl *ctrl = &dev->ctrl;
1160 struct nvme_command c;
1161 int flags = NVME_QUEUE_PHYS_CONTIG;
1162
1163 /*
1164 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1165 * set. Since URGENT priority is zeroes, it makes all queues
1166 * URGENT.
1167 */
1168 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1169 flags |= NVME_SQ_PRIO_MEDIUM;
1170
1171 /*
1172 * Note: we (ab)use the fact that the prp fields survive if no data
1173 * is attached to the request.
1174 */
1175 memset(&c, 0, sizeof(c));
1176 c.create_sq.opcode = nvme_admin_create_sq;
1177 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1178 c.create_sq.sqid = cpu_to_le16(qid);
1179 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1180 c.create_sq.sq_flags = cpu_to_le16(flags);
1181 c.create_sq.cqid = cpu_to_le16(qid);
1182
1183 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1184 }
1185
1186 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1187 {
1188 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1189 }
1190
1191 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1192 {
1193 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1194 }
1195
1196 static void abort_endio(struct request *req, blk_status_t error)
1197 {
1198 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1199 struct nvme_queue *nvmeq = iod->nvmeq;
1200
1201 dev_warn(nvmeq->dev->ctrl.device,
1202 "Abort status: 0x%x", nvme_req(req)->status);
1203 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1204 blk_mq_free_request(req);
1205 }
1206
1207 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1208 {
1209 /* If true, indicates loss of adapter communication, possibly by a
1210 * NVMe Subsystem reset.
1211 */
1212 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1213
1214 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1215 switch (dev->ctrl.state) {
1216 case NVME_CTRL_RESETTING:
1217 case NVME_CTRL_CONNECTING:
1218 return false;
1219 default:
1220 break;
1221 }
1222
1223 /* We shouldn't reset unless the controller is on fatal error state
1224 * _or_ if we lost the communication with it.
1225 */
1226 if (!(csts & NVME_CSTS_CFS) && !nssro)
1227 return false;
1228
1229 return true;
1230 }
1231
1232 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1233 {
1234 /* Read a config register to help see what died. */
1235 u16 pci_status;
1236 int result;
1237
1238 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1239 &pci_status);
1240 if (result == PCIBIOS_SUCCESSFUL)
1241 dev_warn(dev->ctrl.device,
1242 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1243 csts, pci_status);
1244 else
1245 dev_warn(dev->ctrl.device,
1246 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1247 csts, result);
1248 }
1249
1250 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1251 {
1252 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1253 struct nvme_queue *nvmeq = iod->nvmeq;
1254 struct nvme_dev *dev = nvmeq->dev;
1255 struct request *abort_req;
1256 struct nvme_command cmd;
1257 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1258
1259 /* If PCI error recovery process is happening, we cannot reset or
1260 * the recovery mechanism will surely fail.
1261 */
1262 mb();
1263 if (pci_channel_offline(to_pci_dev(dev->dev)))
1264 return BLK_EH_RESET_TIMER;
1265
1266 /*
1267 * Reset immediately if the controller is failed
1268 */
1269 if (nvme_should_reset(dev, csts)) {
1270 nvme_warn_reset(dev, csts);
1271 nvme_dev_disable(dev, false);
1272 nvme_reset_ctrl(&dev->ctrl);
1273 return BLK_EH_DONE;
1274 }
1275
1276 /*
1277 * Did we miss an interrupt?
1278 */
1279 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1280 nvme_poll(req->mq_hctx);
1281 else
1282 nvme_poll_irqdisable(nvmeq);
1283
1284 if (blk_mq_request_completed(req)) {
1285 dev_warn(dev->ctrl.device,
1286 "I/O %d QID %d timeout, completion polled\n",
1287 req->tag, nvmeq->qid);
1288 return BLK_EH_DONE;
1289 }
1290
1291 /*
1292 * Shutdown immediately if controller times out while starting. The
1293 * reset work will see the pci device disabled when it gets the forced
1294 * cancellation error. All outstanding requests are completed on
1295 * shutdown, so we return BLK_EH_DONE.
1296 */
1297 switch (dev->ctrl.state) {
1298 case NVME_CTRL_CONNECTING:
1299 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1300 fallthrough;
1301 case NVME_CTRL_DELETING:
1302 dev_warn_ratelimited(dev->ctrl.device,
1303 "I/O %d QID %d timeout, disable controller\n",
1304 req->tag, nvmeq->qid);
1305 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1306 nvme_dev_disable(dev, true);
1307 return BLK_EH_DONE;
1308 case NVME_CTRL_RESETTING:
1309 return BLK_EH_RESET_TIMER;
1310 default:
1311 break;
1312 }
1313
1314 /*
1315 * Shutdown the controller immediately and schedule a reset if the
1316 * command was already aborted once before and still hasn't been
1317 * returned to the driver, or if this is the admin queue.
1318 */
1319 if (!nvmeq->qid || iod->aborted) {
1320 dev_warn(dev->ctrl.device,
1321 "I/O %d QID %d timeout, reset controller\n",
1322 req->tag, nvmeq->qid);
1323 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1324 nvme_dev_disable(dev, false);
1325 nvme_reset_ctrl(&dev->ctrl);
1326
1327 return BLK_EH_DONE;
1328 }
1329
1330 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1331 atomic_inc(&dev->ctrl.abort_limit);
1332 return BLK_EH_RESET_TIMER;
1333 }
1334 iod->aborted = 1;
1335
1336 memset(&cmd, 0, sizeof(cmd));
1337 cmd.abort.opcode = nvme_admin_abort_cmd;
1338 cmd.abort.cid = req->tag;
1339 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1340
1341 dev_warn(nvmeq->dev->ctrl.device,
1342 "I/O %d QID %d timeout, aborting\n",
1343 req->tag, nvmeq->qid);
1344
1345 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1346 BLK_MQ_REQ_NOWAIT);
1347 if (IS_ERR(abort_req)) {
1348 atomic_inc(&dev->ctrl.abort_limit);
1349 return BLK_EH_RESET_TIMER;
1350 }
1351
1352 abort_req->end_io_data = NULL;
1353 blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio);
1354
1355 /*
1356 * The aborted req will be completed on receiving the abort req.
1357 * We enable the timer again. If hit twice, it'll cause a device reset,
1358 * as the device then is in a faulty state.
1359 */
1360 return BLK_EH_RESET_TIMER;
1361 }
1362
1363 static void nvme_free_queue(struct nvme_queue *nvmeq)
1364 {
1365 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1366 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1367 if (!nvmeq->sq_cmds)
1368 return;
1369
1370 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1371 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1372 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1373 } else {
1374 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1375 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1376 }
1377 }
1378
1379 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1380 {
1381 int i;
1382
1383 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1384 dev->ctrl.queue_count--;
1385 nvme_free_queue(&dev->queues[i]);
1386 }
1387 }
1388
1389 /**
1390 * nvme_suspend_queue - put queue into suspended state
1391 * @nvmeq: queue to suspend
1392 */
1393 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1394 {
1395 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1396 return 1;
1397
1398 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1399 mb();
1400
1401 nvmeq->dev->online_queues--;
1402 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1403 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1404 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1405 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1406 return 0;
1407 }
1408
1409 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1410 {
1411 int i;
1412
1413 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1414 nvme_suspend_queue(&dev->queues[i]);
1415 }
1416
1417 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1418 {
1419 struct nvme_queue *nvmeq = &dev->queues[0];
1420
1421 if (shutdown)
1422 nvme_shutdown_ctrl(&dev->ctrl);
1423 else
1424 nvme_disable_ctrl(&dev->ctrl);
1425
1426 nvme_poll_irqdisable(nvmeq);
1427 }
1428
1429 /*
1430 * Called only on a device that has been disabled and after all other threads
1431 * that can check this device's completion queues have synced, except
1432 * nvme_poll(). This is the last chance for the driver to see a natural
1433 * completion before nvme_cancel_request() terminates all incomplete requests.
1434 */
1435 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1436 {
1437 int i;
1438
1439 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1440 spin_lock(&dev->queues[i].cq_poll_lock);
1441 nvme_process_cq(&dev->queues[i]);
1442 spin_unlock(&dev->queues[i].cq_poll_lock);
1443 }
1444 }
1445
1446 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1447 int entry_size)
1448 {
1449 int q_depth = dev->q_depth;
1450 unsigned q_size_aligned = roundup(q_depth * entry_size,
1451 NVME_CTRL_PAGE_SIZE);
1452
1453 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1454 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1455
1456 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1457 q_depth = div_u64(mem_per_q, entry_size);
1458
1459 /*
1460 * Ensure the reduced q_depth is above some threshold where it
1461 * would be better to map queues in system memory with the
1462 * original depth
1463 */
1464 if (q_depth < 64)
1465 return -ENOMEM;
1466 }
1467
1468 return q_depth;
1469 }
1470
1471 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1472 int qid)
1473 {
1474 struct pci_dev *pdev = to_pci_dev(dev->dev);
1475
1476 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1477 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1478 if (nvmeq->sq_cmds) {
1479 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1480 nvmeq->sq_cmds);
1481 if (nvmeq->sq_dma_addr) {
1482 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1483 return 0;
1484 }
1485
1486 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1487 }
1488 }
1489
1490 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1491 &nvmeq->sq_dma_addr, GFP_KERNEL);
1492 if (!nvmeq->sq_cmds)
1493 return -ENOMEM;
1494 return 0;
1495 }
1496
1497 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1498 {
1499 struct nvme_queue *nvmeq = &dev->queues[qid];
1500
1501 if (dev->ctrl.queue_count > qid)
1502 return 0;
1503
1504 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1505 nvmeq->q_depth = depth;
1506 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1507 &nvmeq->cq_dma_addr, GFP_KERNEL);
1508 if (!nvmeq->cqes)
1509 goto free_nvmeq;
1510
1511 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1512 goto free_cqdma;
1513
1514 nvmeq->dev = dev;
1515 spin_lock_init(&nvmeq->sq_lock);
1516 spin_lock_init(&nvmeq->cq_poll_lock);
1517 nvmeq->cq_head = 0;
1518 nvmeq->cq_phase = 1;
1519 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1520 nvmeq->qid = qid;
1521 dev->ctrl.queue_count++;
1522
1523 return 0;
1524
1525 free_cqdma:
1526 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1527 nvmeq->cq_dma_addr);
1528 free_nvmeq:
1529 return -ENOMEM;
1530 }
1531
1532 static int queue_request_irq(struct nvme_queue *nvmeq)
1533 {
1534 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1535 int nr = nvmeq->dev->ctrl.instance;
1536
1537 if (use_threaded_interrupts) {
1538 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1539 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1540 } else {
1541 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1542 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1543 }
1544 }
1545
1546 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1547 {
1548 struct nvme_dev *dev = nvmeq->dev;
1549
1550 nvmeq->sq_tail = 0;
1551 nvmeq->last_sq_tail = 0;
1552 nvmeq->cq_head = 0;
1553 nvmeq->cq_phase = 1;
1554 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1555 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1556 nvme_dbbuf_init(dev, nvmeq, qid);
1557 dev->online_queues++;
1558 wmb(); /* ensure the first interrupt sees the initialization */
1559 }
1560
1561 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1562 {
1563 struct nvme_dev *dev = nvmeq->dev;
1564 int result;
1565 u16 vector = 0;
1566
1567 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1568
1569 /*
1570 * A queue's vector matches the queue identifier unless the controller
1571 * has only one vector available.
1572 */
1573 if (!polled)
1574 vector = dev->num_vecs == 1 ? 0 : qid;
1575 else
1576 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1577
1578 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1579 if (result)
1580 return result;
1581
1582 result = adapter_alloc_sq(dev, qid, nvmeq);
1583 if (result < 0)
1584 return result;
1585 if (result)
1586 goto release_cq;
1587
1588 nvmeq->cq_vector = vector;
1589 nvme_init_queue(nvmeq, qid);
1590
1591 if (!polled) {
1592 result = queue_request_irq(nvmeq);
1593 if (result < 0)
1594 goto release_sq;
1595 }
1596
1597 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1598 return result;
1599
1600 release_sq:
1601 dev->online_queues--;
1602 adapter_delete_sq(dev, qid);
1603 release_cq:
1604 adapter_delete_cq(dev, qid);
1605 return result;
1606 }
1607
1608 static const struct blk_mq_ops nvme_mq_admin_ops = {
1609 .queue_rq = nvme_queue_rq,
1610 .complete = nvme_pci_complete_rq,
1611 .init_hctx = nvme_admin_init_hctx,
1612 .init_request = nvme_init_request,
1613 .timeout = nvme_timeout,
1614 };
1615
1616 static const struct blk_mq_ops nvme_mq_ops = {
1617 .queue_rq = nvme_queue_rq,
1618 .complete = nvme_pci_complete_rq,
1619 .commit_rqs = nvme_commit_rqs,
1620 .init_hctx = nvme_init_hctx,
1621 .init_request = nvme_init_request,
1622 .map_queues = nvme_pci_map_queues,
1623 .timeout = nvme_timeout,
1624 .poll = nvme_poll,
1625 };
1626
1627 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1628 {
1629 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1630 /*
1631 * If the controller was reset during removal, it's possible
1632 * user requests may be waiting on a stopped queue. Start the
1633 * queue to flush these to completion.
1634 */
1635 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1636 blk_cleanup_queue(dev->ctrl.admin_q);
1637 blk_mq_free_tag_set(&dev->admin_tagset);
1638 }
1639 }
1640
1641 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1642 {
1643 if (!dev->ctrl.admin_q) {
1644 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1645 dev->admin_tagset.nr_hw_queues = 1;
1646
1647 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1648 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1649 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1650 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1651 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1652 dev->admin_tagset.driver_data = dev;
1653
1654 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1655 return -ENOMEM;
1656 dev->ctrl.admin_tagset = &dev->admin_tagset;
1657
1658 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1659 if (IS_ERR(dev->ctrl.admin_q)) {
1660 blk_mq_free_tag_set(&dev->admin_tagset);
1661 return -ENOMEM;
1662 }
1663 if (!blk_get_queue(dev->ctrl.admin_q)) {
1664 nvme_dev_remove_admin(dev);
1665 dev->ctrl.admin_q = NULL;
1666 return -ENODEV;
1667 }
1668 } else
1669 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1670
1671 return 0;
1672 }
1673
1674 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1675 {
1676 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1677 }
1678
1679 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1680 {
1681 struct pci_dev *pdev = to_pci_dev(dev->dev);
1682
1683 if (size <= dev->bar_mapped_size)
1684 return 0;
1685 if (size > pci_resource_len(pdev, 0))
1686 return -ENOMEM;
1687 if (dev->bar)
1688 iounmap(dev->bar);
1689 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1690 if (!dev->bar) {
1691 dev->bar_mapped_size = 0;
1692 return -ENOMEM;
1693 }
1694 dev->bar_mapped_size = size;
1695 dev->dbs = dev->bar + NVME_REG_DBS;
1696
1697 return 0;
1698 }
1699
1700 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1701 {
1702 int result;
1703 u32 aqa;
1704 struct nvme_queue *nvmeq;
1705
1706 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1707 if (result < 0)
1708 return result;
1709
1710 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1711 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1712
1713 if (dev->subsystem &&
1714 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1715 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1716
1717 result = nvme_disable_ctrl(&dev->ctrl);
1718 if (result < 0)
1719 return result;
1720
1721 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1722 if (result)
1723 return result;
1724
1725 dev->ctrl.numa_node = dev_to_node(dev->dev);
1726
1727 nvmeq = &dev->queues[0];
1728 aqa = nvmeq->q_depth - 1;
1729 aqa |= aqa << 16;
1730
1731 writel(aqa, dev->bar + NVME_REG_AQA);
1732 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1733 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1734
1735 result = nvme_enable_ctrl(&dev->ctrl);
1736 if (result)
1737 return result;
1738
1739 nvmeq->cq_vector = 0;
1740 nvme_init_queue(nvmeq, 0);
1741 result = queue_request_irq(nvmeq);
1742 if (result) {
1743 dev->online_queues--;
1744 return result;
1745 }
1746
1747 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1748 return result;
1749 }
1750
1751 static int nvme_create_io_queues(struct nvme_dev *dev)
1752 {
1753 unsigned i, max, rw_queues;
1754 int ret = 0;
1755
1756 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1757 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1758 ret = -ENOMEM;
1759 break;
1760 }
1761 }
1762
1763 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1764 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1765 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1766 dev->io_queues[HCTX_TYPE_READ];
1767 } else {
1768 rw_queues = max;
1769 }
1770
1771 for (i = dev->online_queues; i <= max; i++) {
1772 bool polled = i > rw_queues;
1773
1774 ret = nvme_create_queue(&dev->queues[i], i, polled);
1775 if (ret)
1776 break;
1777 }
1778
1779 /*
1780 * Ignore failing Create SQ/CQ commands, we can continue with less
1781 * than the desired amount of queues, and even a controller without
1782 * I/O queues can still be used to issue admin commands. This might
1783 * be useful to upgrade a buggy firmware for example.
1784 */
1785 return ret >= 0 ? 0 : ret;
1786 }
1787
1788 static ssize_t nvme_cmb_show(struct device *dev,
1789 struct device_attribute *attr,
1790 char *buf)
1791 {
1792 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1793
1794 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1795 ndev->cmbloc, ndev->cmbsz);
1796 }
1797 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1798
1799 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1800 {
1801 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1802
1803 return 1ULL << (12 + 4 * szu);
1804 }
1805
1806 static u32 nvme_cmb_size(struct nvme_dev *dev)
1807 {
1808 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1809 }
1810
1811 static void nvme_map_cmb(struct nvme_dev *dev)
1812 {
1813 u64 size, offset;
1814 resource_size_t bar_size;
1815 struct pci_dev *pdev = to_pci_dev(dev->dev);
1816 int bar;
1817
1818 if (dev->cmb_size)
1819 return;
1820
1821 if (NVME_CAP_CMBS(dev->ctrl.cap))
1822 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1823
1824 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1825 if (!dev->cmbsz)
1826 return;
1827 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1828
1829 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1830 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1831 bar = NVME_CMB_BIR(dev->cmbloc);
1832 bar_size = pci_resource_len(pdev, bar);
1833
1834 if (offset > bar_size)
1835 return;
1836
1837 /*
1838 * Tell the controller about the host side address mapping the CMB,
1839 * and enable CMB decoding for the NVMe 1.4+ scheme:
1840 */
1841 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1842 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1843 (pci_bus_address(pdev, bar) + offset),
1844 dev->bar + NVME_REG_CMBMSC);
1845 }
1846
1847 /*
1848 * Controllers may support a CMB size larger than their BAR,
1849 * for example, due to being behind a bridge. Reduce the CMB to
1850 * the reported size of the BAR
1851 */
1852 if (size > bar_size - offset)
1853 size = bar_size - offset;
1854
1855 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1856 dev_warn(dev->ctrl.device,
1857 "failed to register the CMB\n");
1858 return;
1859 }
1860
1861 dev->cmb_size = size;
1862 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1863
1864 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1865 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1866 pci_p2pmem_publish(pdev, true);
1867
1868 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1869 &dev_attr_cmb.attr, NULL))
1870 dev_warn(dev->ctrl.device,
1871 "failed to add sysfs attribute for CMB\n");
1872 }
1873
1874 static inline void nvme_release_cmb(struct nvme_dev *dev)
1875 {
1876 if (dev->cmb_size) {
1877 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1878 &dev_attr_cmb.attr, NULL);
1879 dev->cmb_size = 0;
1880 }
1881 }
1882
1883 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1884 {
1885 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1886 u64 dma_addr = dev->host_mem_descs_dma;
1887 struct nvme_command c;
1888 int ret;
1889
1890 memset(&c, 0, sizeof(c));
1891 c.features.opcode = nvme_admin_set_features;
1892 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1893 c.features.dword11 = cpu_to_le32(bits);
1894 c.features.dword12 = cpu_to_le32(host_mem_size);
1895 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1896 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1897 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1898
1899 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1900 if (ret) {
1901 dev_warn(dev->ctrl.device,
1902 "failed to set host mem (err %d, flags %#x).\n",
1903 ret, bits);
1904 }
1905 return ret;
1906 }
1907
1908 static void nvme_free_host_mem(struct nvme_dev *dev)
1909 {
1910 int i;
1911
1912 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1913 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1914 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1915
1916 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1917 le64_to_cpu(desc->addr),
1918 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1919 }
1920
1921 kfree(dev->host_mem_desc_bufs);
1922 dev->host_mem_desc_bufs = NULL;
1923 dma_free_coherent(dev->dev,
1924 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1925 dev->host_mem_descs, dev->host_mem_descs_dma);
1926 dev->host_mem_descs = NULL;
1927 dev->nr_host_mem_descs = 0;
1928 }
1929
1930 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1931 u32 chunk_size)
1932 {
1933 struct nvme_host_mem_buf_desc *descs;
1934 u32 max_entries, len;
1935 dma_addr_t descs_dma;
1936 int i = 0;
1937 void **bufs;
1938 u64 size, tmp;
1939
1940 tmp = (preferred + chunk_size - 1);
1941 do_div(tmp, chunk_size);
1942 max_entries = tmp;
1943
1944 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1945 max_entries = dev->ctrl.hmmaxd;
1946
1947 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1948 &descs_dma, GFP_KERNEL);
1949 if (!descs)
1950 goto out;
1951
1952 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1953 if (!bufs)
1954 goto out_free_descs;
1955
1956 for (size = 0; size < preferred && i < max_entries; size += len) {
1957 dma_addr_t dma_addr;
1958
1959 len = min_t(u64, chunk_size, preferred - size);
1960 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1961 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1962 if (!bufs[i])
1963 break;
1964
1965 descs[i].addr = cpu_to_le64(dma_addr);
1966 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1967 i++;
1968 }
1969
1970 if (!size)
1971 goto out_free_bufs;
1972
1973 dev->nr_host_mem_descs = i;
1974 dev->host_mem_size = size;
1975 dev->host_mem_descs = descs;
1976 dev->host_mem_descs_dma = descs_dma;
1977 dev->host_mem_desc_bufs = bufs;
1978 return 0;
1979
1980 out_free_bufs:
1981 while (--i >= 0) {
1982 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1983
1984 dma_free_attrs(dev->dev, size, bufs[i],
1985 le64_to_cpu(descs[i].addr),
1986 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1987 }
1988
1989 kfree(bufs);
1990 out_free_descs:
1991 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1992 descs_dma);
1993 out:
1994 dev->host_mem_descs = NULL;
1995 return -ENOMEM;
1996 }
1997
1998 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1999 {
2000 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2001 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2002 u64 chunk_size;
2003
2004 /* start big and work our way down */
2005 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2006 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2007 if (!min || dev->host_mem_size >= min)
2008 return 0;
2009 nvme_free_host_mem(dev);
2010 }
2011 }
2012
2013 return -ENOMEM;
2014 }
2015
2016 static int nvme_setup_host_mem(struct nvme_dev *dev)
2017 {
2018 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2019 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2020 u64 min = (u64)dev->ctrl.hmmin * 4096;
2021 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2022 int ret;
2023
2024 preferred = min(preferred, max);
2025 if (min > max) {
2026 dev_warn(dev->ctrl.device,
2027 "min host memory (%lld MiB) above limit (%d MiB).\n",
2028 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2029 nvme_free_host_mem(dev);
2030 return 0;
2031 }
2032
2033 /*
2034 * If we already have a buffer allocated check if we can reuse it.
2035 */
2036 if (dev->host_mem_descs) {
2037 if (dev->host_mem_size >= min)
2038 enable_bits |= NVME_HOST_MEM_RETURN;
2039 else
2040 nvme_free_host_mem(dev);
2041 }
2042
2043 if (!dev->host_mem_descs) {
2044 if (nvme_alloc_host_mem(dev, min, preferred)) {
2045 dev_warn(dev->ctrl.device,
2046 "failed to allocate host memory buffer.\n");
2047 return 0; /* controller must work without HMB */
2048 }
2049
2050 dev_info(dev->ctrl.device,
2051 "allocated %lld MiB host memory buffer.\n",
2052 dev->host_mem_size >> ilog2(SZ_1M));
2053 }
2054
2055 ret = nvme_set_host_mem(dev, enable_bits);
2056 if (ret)
2057 nvme_free_host_mem(dev);
2058 return ret;
2059 }
2060
2061 /*
2062 * nirqs is the number of interrupts available for write and read
2063 * queues. The core already reserved an interrupt for the admin queue.
2064 */
2065 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2066 {
2067 struct nvme_dev *dev = affd->priv;
2068 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2069
2070 /*
2071 * If there is no interrupt available for queues, ensure that
2072 * the default queue is set to 1. The affinity set size is
2073 * also set to one, but the irq core ignores it for this case.
2074 *
2075 * If only one interrupt is available or 'write_queue' == 0, combine
2076 * write and read queues.
2077 *
2078 * If 'write_queues' > 0, ensure it leaves room for at least one read
2079 * queue.
2080 */
2081 if (!nrirqs) {
2082 nrirqs = 1;
2083 nr_read_queues = 0;
2084 } else if (nrirqs == 1 || !nr_write_queues) {
2085 nr_read_queues = 0;
2086 } else if (nr_write_queues >= nrirqs) {
2087 nr_read_queues = 1;
2088 } else {
2089 nr_read_queues = nrirqs - nr_write_queues;
2090 }
2091
2092 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2093 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2094 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2095 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2096 affd->nr_sets = nr_read_queues ? 2 : 1;
2097 }
2098
2099 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2100 {
2101 struct pci_dev *pdev = to_pci_dev(dev->dev);
2102 struct irq_affinity affd = {
2103 .pre_vectors = 1,
2104 .calc_sets = nvme_calc_irq_sets,
2105 .priv = dev,
2106 };
2107 unsigned int irq_queues, poll_queues;
2108
2109 /*
2110 * Poll queues don't need interrupts, but we need at least one I/O queue
2111 * left over for non-polled I/O.
2112 */
2113 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2114 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2115
2116 /*
2117 * Initialize for the single interrupt case, will be updated in
2118 * nvme_calc_irq_sets().
2119 */
2120 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2121 dev->io_queues[HCTX_TYPE_READ] = 0;
2122
2123 /*
2124 * We need interrupts for the admin queue and each non-polled I/O queue,
2125 * but some Apple controllers require all queues to use the first
2126 * vector.
2127 */
2128 irq_queues = 1;
2129 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2130 irq_queues += (nr_io_queues - poll_queues);
2131 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2132 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2133 }
2134
2135 static void nvme_disable_io_queues(struct nvme_dev *dev)
2136 {
2137 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2138 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2139 }
2140
2141 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2142 {
2143 /*
2144 * If tags are shared with admin queue (Apple bug), then
2145 * make sure we only use one IO queue.
2146 */
2147 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2148 return 1;
2149 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2150 }
2151
2152 static int nvme_setup_io_queues(struct nvme_dev *dev)
2153 {
2154 struct nvme_queue *adminq = &dev->queues[0];
2155 struct pci_dev *pdev = to_pci_dev(dev->dev);
2156 unsigned int nr_io_queues;
2157 unsigned long size;
2158 int result;
2159
2160 /*
2161 * Sample the module parameters once at reset time so that we have
2162 * stable values to work with.
2163 */
2164 dev->nr_write_queues = write_queues;
2165 dev->nr_poll_queues = poll_queues;
2166
2167 nr_io_queues = dev->nr_allocated_queues - 1;
2168 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2169 if (result < 0)
2170 return result;
2171
2172 if (nr_io_queues == 0)
2173 return 0;
2174
2175 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2176
2177 if (dev->cmb_use_sqes) {
2178 result = nvme_cmb_qdepth(dev, nr_io_queues,
2179 sizeof(struct nvme_command));
2180 if (result > 0)
2181 dev->q_depth = result;
2182 else
2183 dev->cmb_use_sqes = false;
2184 }
2185
2186 do {
2187 size = db_bar_size(dev, nr_io_queues);
2188 result = nvme_remap_bar(dev, size);
2189 if (!result)
2190 break;
2191 if (!--nr_io_queues)
2192 return -ENOMEM;
2193 } while (1);
2194 adminq->q_db = dev->dbs;
2195
2196 retry:
2197 /* Deregister the admin queue's interrupt */
2198 pci_free_irq(pdev, 0, adminq);
2199
2200 /*
2201 * If we enable msix early due to not intx, disable it again before
2202 * setting up the full range we need.
2203 */
2204 pci_free_irq_vectors(pdev);
2205
2206 result = nvme_setup_irqs(dev, nr_io_queues);
2207 if (result <= 0)
2208 return -EIO;
2209
2210 dev->num_vecs = result;
2211 result = max(result - 1, 1);
2212 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2213
2214 /*
2215 * Should investigate if there's a performance win from allocating
2216 * more queues than interrupt vectors; it might allow the submission
2217 * path to scale better, even if the receive path is limited by the
2218 * number of interrupts.
2219 */
2220 result = queue_request_irq(adminq);
2221 if (result)
2222 return result;
2223 set_bit(NVMEQ_ENABLED, &adminq->flags);
2224
2225 result = nvme_create_io_queues(dev);
2226 if (result || dev->online_queues < 2)
2227 return result;
2228
2229 if (dev->online_queues - 1 < dev->max_qid) {
2230 nr_io_queues = dev->online_queues - 1;
2231 nvme_disable_io_queues(dev);
2232 nvme_suspend_io_queues(dev);
2233 goto retry;
2234 }
2235 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2236 dev->io_queues[HCTX_TYPE_DEFAULT],
2237 dev->io_queues[HCTX_TYPE_READ],
2238 dev->io_queues[HCTX_TYPE_POLL]);
2239 return 0;
2240 }
2241
2242 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2243 {
2244 struct nvme_queue *nvmeq = req->end_io_data;
2245
2246 blk_mq_free_request(req);
2247 complete(&nvmeq->delete_done);
2248 }
2249
2250 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2251 {
2252 struct nvme_queue *nvmeq = req->end_io_data;
2253
2254 if (error)
2255 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2256
2257 nvme_del_queue_end(req, error);
2258 }
2259
2260 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2261 {
2262 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2263 struct request *req;
2264 struct nvme_command cmd;
2265
2266 memset(&cmd, 0, sizeof(cmd));
2267 cmd.delete_queue.opcode = opcode;
2268 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2269
2270 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2271 if (IS_ERR(req))
2272 return PTR_ERR(req);
2273
2274 req->end_io_data = nvmeq;
2275
2276 init_completion(&nvmeq->delete_done);
2277 blk_execute_rq_nowait(NULL, req, false,
2278 opcode == nvme_admin_delete_cq ?
2279 nvme_del_cq_end : nvme_del_queue_end);
2280 return 0;
2281 }
2282
2283 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2284 {
2285 int nr_queues = dev->online_queues - 1, sent = 0;
2286 unsigned long timeout;
2287
2288 retry:
2289 timeout = NVME_ADMIN_TIMEOUT;
2290 while (nr_queues > 0) {
2291 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2292 break;
2293 nr_queues--;
2294 sent++;
2295 }
2296 while (sent) {
2297 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2298
2299 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2300 timeout);
2301 if (timeout == 0)
2302 return false;
2303
2304 sent--;
2305 if (nr_queues)
2306 goto retry;
2307 }
2308 return true;
2309 }
2310
2311 static void nvme_dev_add(struct nvme_dev *dev)
2312 {
2313 int ret;
2314
2315 if (!dev->ctrl.tagset) {
2316 dev->tagset.ops = &nvme_mq_ops;
2317 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2318 dev->tagset.nr_maps = 2; /* default + read */
2319 if (dev->io_queues[HCTX_TYPE_POLL])
2320 dev->tagset.nr_maps++;
2321 dev->tagset.timeout = NVME_IO_TIMEOUT;
2322 dev->tagset.numa_node = dev->ctrl.numa_node;
2323 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2324 BLK_MQ_MAX_DEPTH) - 1;
2325 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2326 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2327 dev->tagset.driver_data = dev;
2328
2329 /*
2330 * Some Apple controllers requires tags to be unique
2331 * across admin and IO queue, so reserve the first 32
2332 * tags of the IO queue.
2333 */
2334 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2335 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2336
2337 ret = blk_mq_alloc_tag_set(&dev->tagset);
2338 if (ret) {
2339 dev_warn(dev->ctrl.device,
2340 "IO queues tagset allocation failed %d\n", ret);
2341 return;
2342 }
2343 dev->ctrl.tagset = &dev->tagset;
2344 } else {
2345 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2346
2347 /* Free previously allocated queues that are no longer usable */
2348 nvme_free_queues(dev, dev->online_queues);
2349 }
2350
2351 nvme_dbbuf_set(dev);
2352 }
2353
2354 static int nvme_pci_enable(struct nvme_dev *dev)
2355 {
2356 int result = -ENOMEM;
2357 struct pci_dev *pdev = to_pci_dev(dev->dev);
2358 int dma_address_bits = 64;
2359
2360 if (pci_enable_device_mem(pdev))
2361 return result;
2362
2363 pci_set_master(pdev);
2364
2365 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2366 dma_address_bits = 48;
2367 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2368 goto disable;
2369
2370 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2371 result = -ENODEV;
2372 goto disable;
2373 }
2374
2375 /*
2376 * Some devices and/or platforms don't advertise or work with INTx
2377 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2378 * adjust this later.
2379 */
2380 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2381 if (result < 0)
2382 return result;
2383
2384 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2385
2386 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2387 io_queue_depth);
2388 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2389 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2390 dev->dbs = dev->bar + 4096;
2391
2392 /*
2393 * Some Apple controllers require a non-standard SQE size.
2394 * Interestingly they also seem to ignore the CC:IOSQES register
2395 * so we don't bother updating it here.
2396 */
2397 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2398 dev->io_sqes = 7;
2399 else
2400 dev->io_sqes = NVME_NVM_IOSQES;
2401
2402 /*
2403 * Temporary fix for the Apple controller found in the MacBook8,1 and
2404 * some MacBook7,1 to avoid controller resets and data loss.
2405 */
2406 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2407 dev->q_depth = 2;
2408 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2409 "set queue depth=%u to work around controller resets\n",
2410 dev->q_depth);
2411 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2412 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2413 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2414 dev->q_depth = 64;
2415 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2416 "set queue depth=%u\n", dev->q_depth);
2417 }
2418
2419 /*
2420 * Controllers with the shared tags quirk need the IO queue to be
2421 * big enough so that we get 32 tags for the admin queue
2422 */
2423 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2424 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2425 dev->q_depth = NVME_AQ_DEPTH + 2;
2426 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2427 dev->q_depth);
2428 }
2429
2430
2431 nvme_map_cmb(dev);
2432
2433 pci_enable_pcie_error_reporting(pdev);
2434 pci_save_state(pdev);
2435 return 0;
2436
2437 disable:
2438 pci_disable_device(pdev);
2439 return result;
2440 }
2441
2442 static void nvme_dev_unmap(struct nvme_dev *dev)
2443 {
2444 if (dev->bar)
2445 iounmap(dev->bar);
2446 pci_release_mem_regions(to_pci_dev(dev->dev));
2447 }
2448
2449 static void nvme_pci_disable(struct nvme_dev *dev)
2450 {
2451 struct pci_dev *pdev = to_pci_dev(dev->dev);
2452
2453 pci_free_irq_vectors(pdev);
2454
2455 if (pci_is_enabled(pdev)) {
2456 pci_disable_pcie_error_reporting(pdev);
2457 pci_disable_device(pdev);
2458 }
2459 }
2460
2461 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2462 {
2463 bool dead = true, freeze = false;
2464 struct pci_dev *pdev = to_pci_dev(dev->dev);
2465
2466 mutex_lock(&dev->shutdown_lock);
2467 if (pci_is_enabled(pdev)) {
2468 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2469
2470 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2471 dev->ctrl.state == NVME_CTRL_RESETTING) {
2472 freeze = true;
2473 nvme_start_freeze(&dev->ctrl);
2474 }
2475 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2476 pdev->error_state != pci_channel_io_normal);
2477 }
2478
2479 /*
2480 * Give the controller a chance to complete all entered requests if
2481 * doing a safe shutdown.
2482 */
2483 if (!dead && shutdown && freeze)
2484 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2485
2486 nvme_stop_queues(&dev->ctrl);
2487
2488 if (!dead && dev->ctrl.queue_count > 0) {
2489 nvme_disable_io_queues(dev);
2490 nvme_disable_admin_queue(dev, shutdown);
2491 }
2492 nvme_suspend_io_queues(dev);
2493 nvme_suspend_queue(&dev->queues[0]);
2494 nvme_pci_disable(dev);
2495 nvme_reap_pending_cqes(dev);
2496
2497 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2498 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2499 blk_mq_tagset_wait_completed_request(&dev->tagset);
2500 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2501
2502 /*
2503 * The driver will not be starting up queues again if shutting down so
2504 * must flush all entered requests to their failed completion to avoid
2505 * deadlocking blk-mq hot-cpu notifier.
2506 */
2507 if (shutdown) {
2508 nvme_start_queues(&dev->ctrl);
2509 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2510 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2511 }
2512 mutex_unlock(&dev->shutdown_lock);
2513 }
2514
2515 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2516 {
2517 if (!nvme_wait_reset(&dev->ctrl))
2518 return -EBUSY;
2519 nvme_dev_disable(dev, shutdown);
2520 return 0;
2521 }
2522
2523 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2524 {
2525 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2526 NVME_CTRL_PAGE_SIZE,
2527 NVME_CTRL_PAGE_SIZE, 0);
2528 if (!dev->prp_page_pool)
2529 return -ENOMEM;
2530
2531 /* Optimisation for I/Os between 4k and 128k */
2532 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2533 256, 256, 0);
2534 if (!dev->prp_small_pool) {
2535 dma_pool_destroy(dev->prp_page_pool);
2536 return -ENOMEM;
2537 }
2538 return 0;
2539 }
2540
2541 static void nvme_release_prp_pools(struct nvme_dev *dev)
2542 {
2543 dma_pool_destroy(dev->prp_page_pool);
2544 dma_pool_destroy(dev->prp_small_pool);
2545 }
2546
2547 static void nvme_free_tagset(struct nvme_dev *dev)
2548 {
2549 if (dev->tagset.tags)
2550 blk_mq_free_tag_set(&dev->tagset);
2551 dev->ctrl.tagset = NULL;
2552 }
2553
2554 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2555 {
2556 struct nvme_dev *dev = to_nvme_dev(ctrl);
2557
2558 nvme_dbbuf_dma_free(dev);
2559 nvme_free_tagset(dev);
2560 if (dev->ctrl.admin_q)
2561 blk_put_queue(dev->ctrl.admin_q);
2562 free_opal_dev(dev->ctrl.opal_dev);
2563 mempool_destroy(dev->iod_mempool);
2564 put_device(dev->dev);
2565 kfree(dev->queues);
2566 kfree(dev);
2567 }
2568
2569 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2570 {
2571 /*
2572 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2573 * may be holding this pci_dev's device lock.
2574 */
2575 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2576 nvme_get_ctrl(&dev->ctrl);
2577 nvme_dev_disable(dev, false);
2578 nvme_kill_queues(&dev->ctrl);
2579 if (!queue_work(nvme_wq, &dev->remove_work))
2580 nvme_put_ctrl(&dev->ctrl);
2581 }
2582
2583 static void nvme_reset_work(struct work_struct *work)
2584 {
2585 struct nvme_dev *dev =
2586 container_of(work, struct nvme_dev, ctrl.reset_work);
2587 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2588 int result;
2589
2590 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2591 result = -ENODEV;
2592 goto out;
2593 }
2594
2595 /*
2596 * If we're called to reset a live controller first shut it down before
2597 * moving on.
2598 */
2599 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2600 nvme_dev_disable(dev, false);
2601 nvme_sync_queues(&dev->ctrl);
2602
2603 mutex_lock(&dev->shutdown_lock);
2604 result = nvme_pci_enable(dev);
2605 if (result)
2606 goto out_unlock;
2607
2608 result = nvme_pci_configure_admin_queue(dev);
2609 if (result)
2610 goto out_unlock;
2611
2612 result = nvme_alloc_admin_tags(dev);
2613 if (result)
2614 goto out_unlock;
2615
2616 /*
2617 * Limit the max command size to prevent iod->sg allocations going
2618 * over a single page.
2619 */
2620 dev->ctrl.max_hw_sectors = min_t(u32,
2621 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2622 dev->ctrl.max_segments = NVME_MAX_SEGS;
2623
2624 /*
2625 * Don't limit the IOMMU merged segment size.
2626 */
2627 dma_set_max_seg_size(dev->dev, 0xffffffff);
2628 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2629
2630 mutex_unlock(&dev->shutdown_lock);
2631
2632 /*
2633 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2634 * initializing procedure here.
2635 */
2636 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2637 dev_warn(dev->ctrl.device,
2638 "failed to mark controller CONNECTING\n");
2639 result = -EBUSY;
2640 goto out;
2641 }
2642
2643 /*
2644 * We do not support an SGL for metadata (yet), so we are limited to a
2645 * single integrity segment for the separate metadata pointer.
2646 */
2647 dev->ctrl.max_integrity_segments = 1;
2648
2649 result = nvme_init_ctrl_finish(&dev->ctrl);
2650 if (result)
2651 goto out;
2652
2653 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2654 if (!dev->ctrl.opal_dev)
2655 dev->ctrl.opal_dev =
2656 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2657 else if (was_suspend)
2658 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2659 } else {
2660 free_opal_dev(dev->ctrl.opal_dev);
2661 dev->ctrl.opal_dev = NULL;
2662 }
2663
2664 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2665 result = nvme_dbbuf_dma_alloc(dev);
2666 if (result)
2667 dev_warn(dev->dev,
2668 "unable to allocate dma for dbbuf\n");
2669 }
2670
2671 if (dev->ctrl.hmpre) {
2672 result = nvme_setup_host_mem(dev);
2673 if (result < 0)
2674 goto out;
2675 }
2676
2677 result = nvme_setup_io_queues(dev);
2678 if (result)
2679 goto out;
2680
2681 /*
2682 * Keep the controller around but remove all namespaces if we don't have
2683 * any working I/O queue.
2684 */
2685 if (dev->online_queues < 2) {
2686 dev_warn(dev->ctrl.device, "IO queues not created\n");
2687 nvme_kill_queues(&dev->ctrl);
2688 nvme_remove_namespaces(&dev->ctrl);
2689 nvme_free_tagset(dev);
2690 } else {
2691 nvme_start_queues(&dev->ctrl);
2692 nvme_wait_freeze(&dev->ctrl);
2693 nvme_dev_add(dev);
2694 nvme_unfreeze(&dev->ctrl);
2695 }
2696
2697 /*
2698 * If only admin queue live, keep it to do further investigation or
2699 * recovery.
2700 */
2701 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2702 dev_warn(dev->ctrl.device,
2703 "failed to mark controller live state\n");
2704 result = -ENODEV;
2705 goto out;
2706 }
2707
2708 nvme_start_ctrl(&dev->ctrl);
2709 return;
2710
2711 out_unlock:
2712 mutex_unlock(&dev->shutdown_lock);
2713 out:
2714 if (result)
2715 dev_warn(dev->ctrl.device,
2716 "Removing after probe failure status: %d\n", result);
2717 nvme_remove_dead_ctrl(dev);
2718 }
2719
2720 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2721 {
2722 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2723 struct pci_dev *pdev = to_pci_dev(dev->dev);
2724
2725 if (pci_get_drvdata(pdev))
2726 device_release_driver(&pdev->dev);
2727 nvme_put_ctrl(&dev->ctrl);
2728 }
2729
2730 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2731 {
2732 *val = readl(to_nvme_dev(ctrl)->bar + off);
2733 return 0;
2734 }
2735
2736 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2737 {
2738 writel(val, to_nvme_dev(ctrl)->bar + off);
2739 return 0;
2740 }
2741
2742 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2743 {
2744 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2745 return 0;
2746 }
2747
2748 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2749 {
2750 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2751
2752 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2753 }
2754
2755 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2756 .name = "pcie",
2757 .module = THIS_MODULE,
2758 .flags = NVME_F_METADATA_SUPPORTED |
2759 NVME_F_PCI_P2PDMA,
2760 .reg_read32 = nvme_pci_reg_read32,
2761 .reg_write32 = nvme_pci_reg_write32,
2762 .reg_read64 = nvme_pci_reg_read64,
2763 .free_ctrl = nvme_pci_free_ctrl,
2764 .submit_async_event = nvme_pci_submit_async_event,
2765 .get_address = nvme_pci_get_address,
2766 };
2767
2768 static int nvme_dev_map(struct nvme_dev *dev)
2769 {
2770 struct pci_dev *pdev = to_pci_dev(dev->dev);
2771
2772 if (pci_request_mem_regions(pdev, "nvme"))
2773 return -ENODEV;
2774
2775 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2776 goto release;
2777
2778 return 0;
2779 release:
2780 pci_release_mem_regions(pdev);
2781 return -ENODEV;
2782 }
2783
2784 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2785 {
2786 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2787 /*
2788 * Several Samsung devices seem to drop off the PCIe bus
2789 * randomly when APST is on and uses the deepest sleep state.
2790 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2791 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2792 * 950 PRO 256GB", but it seems to be restricted to two Dell
2793 * laptops.
2794 */
2795 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2796 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2797 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2798 return NVME_QUIRK_NO_DEEPEST_PS;
2799 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2800 /*
2801 * Samsung SSD 960 EVO drops off the PCIe bus after system
2802 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2803 * within few minutes after bootup on a Coffee Lake board -
2804 * ASUS PRIME Z370-A
2805 */
2806 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2807 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2808 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2809 return NVME_QUIRK_NO_APST;
2810 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2811 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2812 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2813 /*
2814 * Forcing to use host managed nvme power settings for
2815 * lowest idle power with quick resume latency on
2816 * Samsung and Toshiba SSDs based on suspend behavior
2817 * on Coffee Lake board for LENOVO C640
2818 */
2819 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2820 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2821 return NVME_QUIRK_SIMPLE_SUSPEND;
2822 }
2823
2824 return 0;
2825 }
2826
2827 #ifdef CONFIG_ACPI
2828 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2829 {
2830 struct acpi_device *adev;
2831 struct pci_dev *root;
2832 acpi_handle handle;
2833 acpi_status status;
2834 u8 val;
2835
2836 /*
2837 * Look for _DSD property specifying that the storage device on the port
2838 * must use D3 to support deep platform power savings during
2839 * suspend-to-idle.
2840 */
2841 root = pcie_find_root_port(dev);
2842 if (!root)
2843 return false;
2844
2845 adev = ACPI_COMPANION(&root->dev);
2846 if (!adev)
2847 return false;
2848
2849 /*
2850 * The property is defined in the PXSX device for South complex ports
2851 * and in the PEGP device for North complex ports.
2852 */
2853 status = acpi_get_handle(adev->handle, "PXSX", &handle);
2854 if (ACPI_FAILURE(status)) {
2855 status = acpi_get_handle(adev->handle, "PEGP", &handle);
2856 if (ACPI_FAILURE(status))
2857 return false;
2858 }
2859
2860 if (acpi_bus_get_device(handle, &adev))
2861 return false;
2862
2863 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2864 &val))
2865 return false;
2866 return val == 1;
2867 }
2868 #else
2869 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2870 {
2871 return false;
2872 }
2873 #endif /* CONFIG_ACPI */
2874
2875 static void nvme_async_probe(void *data, async_cookie_t cookie)
2876 {
2877 struct nvme_dev *dev = data;
2878
2879 flush_work(&dev->ctrl.reset_work);
2880 flush_work(&dev->ctrl.scan_work);
2881 nvme_put_ctrl(&dev->ctrl);
2882 }
2883
2884 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2885 {
2886 int node, result = -ENOMEM;
2887 struct nvme_dev *dev;
2888 unsigned long quirks = id->driver_data;
2889 size_t alloc_size;
2890
2891 node = dev_to_node(&pdev->dev);
2892 if (node == NUMA_NO_NODE)
2893 set_dev_node(&pdev->dev, first_memory_node);
2894
2895 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2896 if (!dev)
2897 return -ENOMEM;
2898
2899 dev->nr_write_queues = write_queues;
2900 dev->nr_poll_queues = poll_queues;
2901 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2902 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2903 sizeof(struct nvme_queue), GFP_KERNEL, node);
2904 if (!dev->queues)
2905 goto free;
2906
2907 dev->dev = get_device(&pdev->dev);
2908 pci_set_drvdata(pdev, dev);
2909
2910 result = nvme_dev_map(dev);
2911 if (result)
2912 goto put_pci;
2913
2914 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2915 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2916 mutex_init(&dev->shutdown_lock);
2917
2918 result = nvme_setup_prp_pools(dev);
2919 if (result)
2920 goto unmap;
2921
2922 quirks |= check_vendor_combination_bug(pdev);
2923
2924 if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2925 /*
2926 * Some systems use a bios work around to ask for D3 on
2927 * platforms that support kernel managed suspend.
2928 */
2929 dev_info(&pdev->dev,
2930 "platform quirk: setting simple suspend\n");
2931 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2932 }
2933
2934 /*
2935 * Double check that our mempool alloc size will cover the biggest
2936 * command we support.
2937 */
2938 alloc_size = nvme_pci_iod_alloc_size();
2939 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2940
2941 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2942 mempool_kfree,
2943 (void *) alloc_size,
2944 GFP_KERNEL, node);
2945 if (!dev->iod_mempool) {
2946 result = -ENOMEM;
2947 goto release_pools;
2948 }
2949
2950 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2951 quirks);
2952 if (result)
2953 goto release_mempool;
2954
2955 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2956
2957 nvme_reset_ctrl(&dev->ctrl);
2958 async_schedule(nvme_async_probe, dev);
2959
2960 return 0;
2961
2962 release_mempool:
2963 mempool_destroy(dev->iod_mempool);
2964 release_pools:
2965 nvme_release_prp_pools(dev);
2966 unmap:
2967 nvme_dev_unmap(dev);
2968 put_pci:
2969 put_device(dev->dev);
2970 free:
2971 kfree(dev->queues);
2972 kfree(dev);
2973 return result;
2974 }
2975
2976 static void nvme_reset_prepare(struct pci_dev *pdev)
2977 {
2978 struct nvme_dev *dev = pci_get_drvdata(pdev);
2979
2980 /*
2981 * We don't need to check the return value from waiting for the reset
2982 * state as pci_dev device lock is held, making it impossible to race
2983 * with ->remove().
2984 */
2985 nvme_disable_prepare_reset(dev, false);
2986 nvme_sync_queues(&dev->ctrl);
2987 }
2988
2989 static void nvme_reset_done(struct pci_dev *pdev)
2990 {
2991 struct nvme_dev *dev = pci_get_drvdata(pdev);
2992
2993 if (!nvme_try_sched_reset(&dev->ctrl))
2994 flush_work(&dev->ctrl.reset_work);
2995 }
2996
2997 static void nvme_shutdown(struct pci_dev *pdev)
2998 {
2999 struct nvme_dev *dev = pci_get_drvdata(pdev);
3000
3001 nvme_disable_prepare_reset(dev, true);
3002 }
3003
3004 /*
3005 * The driver's remove may be called on a device in a partially initialized
3006 * state. This function must not have any dependencies on the device state in
3007 * order to proceed.
3008 */
3009 static void nvme_remove(struct pci_dev *pdev)
3010 {
3011 struct nvme_dev *dev = pci_get_drvdata(pdev);
3012
3013 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3014 pci_set_drvdata(pdev, NULL);
3015
3016 if (!pci_device_is_present(pdev)) {
3017 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3018 nvme_dev_disable(dev, true);
3019 nvme_dev_remove_admin(dev);
3020 }
3021
3022 flush_work(&dev->ctrl.reset_work);
3023 nvme_stop_ctrl(&dev->ctrl);
3024 nvme_remove_namespaces(&dev->ctrl);
3025 nvme_dev_disable(dev, true);
3026 nvme_release_cmb(dev);
3027 nvme_free_host_mem(dev);
3028 nvme_dev_remove_admin(dev);
3029 nvme_free_queues(dev, 0);
3030 nvme_release_prp_pools(dev);
3031 nvme_dev_unmap(dev);
3032 nvme_uninit_ctrl(&dev->ctrl);
3033 }
3034
3035 #ifdef CONFIG_PM_SLEEP
3036 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3037 {
3038 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3039 }
3040
3041 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3042 {
3043 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3044 }
3045
3046 static int nvme_resume(struct device *dev)
3047 {
3048 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3049 struct nvme_ctrl *ctrl = &ndev->ctrl;
3050
3051 if (ndev->last_ps == U32_MAX ||
3052 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3053 return nvme_try_sched_reset(&ndev->ctrl);
3054 return 0;
3055 }
3056
3057 static int nvme_suspend(struct device *dev)
3058 {
3059 struct pci_dev *pdev = to_pci_dev(dev);
3060 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3061 struct nvme_ctrl *ctrl = &ndev->ctrl;
3062 int ret = -EBUSY;
3063
3064 ndev->last_ps = U32_MAX;
3065
3066 /*
3067 * The platform does not remove power for a kernel managed suspend so
3068 * use host managed nvme power settings for lowest idle power if
3069 * possible. This should have quicker resume latency than a full device
3070 * shutdown. But if the firmware is involved after the suspend or the
3071 * device does not support any non-default power states, shut down the
3072 * device fully.
3073 *
3074 * If ASPM is not enabled for the device, shut down the device and allow
3075 * the PCI bus layer to put it into D3 in order to take the PCIe link
3076 * down, so as to allow the platform to achieve its minimum low-power
3077 * state (which may not be possible if the link is up).
3078 *
3079 * If a host memory buffer is enabled, shut down the device as the NVMe
3080 * specification allows the device to access the host memory buffer in
3081 * host DRAM from all power states, but hosts will fail access to DRAM
3082 * during S3.
3083 */
3084 if (pm_suspend_via_firmware() || !ctrl->npss ||
3085 !pcie_aspm_enabled(pdev) ||
3086 ndev->nr_host_mem_descs ||
3087 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3088 return nvme_disable_prepare_reset(ndev, true);
3089
3090 nvme_start_freeze(ctrl);
3091 nvme_wait_freeze(ctrl);
3092 nvme_sync_queues(ctrl);
3093
3094 if (ctrl->state != NVME_CTRL_LIVE)
3095 goto unfreeze;
3096
3097 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3098 if (ret < 0)
3099 goto unfreeze;
3100
3101 /*
3102 * A saved state prevents pci pm from generically controlling the
3103 * device's power. If we're using protocol specific settings, we don't
3104 * want pci interfering.
3105 */
3106 pci_save_state(pdev);
3107
3108 ret = nvme_set_power_state(ctrl, ctrl->npss);
3109 if (ret < 0)
3110 goto unfreeze;
3111
3112 if (ret) {
3113 /* discard the saved state */
3114 pci_load_saved_state(pdev, NULL);
3115
3116 /*
3117 * Clearing npss forces a controller reset on resume. The
3118 * correct value will be rediscovered then.
3119 */
3120 ret = nvme_disable_prepare_reset(ndev, true);
3121 ctrl->npss = 0;
3122 }
3123 unfreeze:
3124 nvme_unfreeze(ctrl);
3125 return ret;
3126 }
3127
3128 static int nvme_simple_suspend(struct device *dev)
3129 {
3130 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3131
3132 return nvme_disable_prepare_reset(ndev, true);
3133 }
3134
3135 static int nvme_simple_resume(struct device *dev)
3136 {
3137 struct pci_dev *pdev = to_pci_dev(dev);
3138 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3139
3140 return nvme_try_sched_reset(&ndev->ctrl);
3141 }
3142
3143 static const struct dev_pm_ops nvme_dev_pm_ops = {
3144 .suspend = nvme_suspend,
3145 .resume = nvme_resume,
3146 .freeze = nvme_simple_suspend,
3147 .thaw = nvme_simple_resume,
3148 .poweroff = nvme_simple_suspend,
3149 .restore = nvme_simple_resume,
3150 };
3151 #endif /* CONFIG_PM_SLEEP */
3152
3153 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3154 pci_channel_state_t state)
3155 {
3156 struct nvme_dev *dev = pci_get_drvdata(pdev);
3157
3158 /*
3159 * A frozen channel requires a reset. When detected, this method will
3160 * shutdown the controller to quiesce. The controller will be restarted
3161 * after the slot reset through driver's slot_reset callback.
3162 */
3163 switch (state) {
3164 case pci_channel_io_normal:
3165 return PCI_ERS_RESULT_CAN_RECOVER;
3166 case pci_channel_io_frozen:
3167 dev_warn(dev->ctrl.device,
3168 "frozen state error detected, reset controller\n");
3169 nvme_dev_disable(dev, false);
3170 return PCI_ERS_RESULT_NEED_RESET;
3171 case pci_channel_io_perm_failure:
3172 dev_warn(dev->ctrl.device,
3173 "failure state error detected, request disconnect\n");
3174 return PCI_ERS_RESULT_DISCONNECT;
3175 }
3176 return PCI_ERS_RESULT_NEED_RESET;
3177 }
3178
3179 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3180 {
3181 struct nvme_dev *dev = pci_get_drvdata(pdev);
3182
3183 dev_info(dev->ctrl.device, "restart after slot reset\n");
3184 pci_restore_state(pdev);
3185 nvme_reset_ctrl(&dev->ctrl);
3186 return PCI_ERS_RESULT_RECOVERED;
3187 }
3188
3189 static void nvme_error_resume(struct pci_dev *pdev)
3190 {
3191 struct nvme_dev *dev = pci_get_drvdata(pdev);
3192
3193 flush_work(&dev->ctrl.reset_work);
3194 }
3195
3196 static const struct pci_error_handlers nvme_err_handler = {
3197 .error_detected = nvme_error_detected,
3198 .slot_reset = nvme_slot_reset,
3199 .resume = nvme_error_resume,
3200 .reset_prepare = nvme_reset_prepare,
3201 .reset_done = nvme_reset_done,
3202 };
3203
3204 static const struct pci_device_id nvme_id_table[] = {
3205 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3206 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3207 NVME_QUIRK_DEALLOCATE_ZEROES, },
3208 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3209 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3210 NVME_QUIRK_DEALLOCATE_ZEROES, },
3211 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3212 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3213 NVME_QUIRK_DEALLOCATE_ZEROES, },
3214 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3215 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3216 NVME_QUIRK_DEALLOCATE_ZEROES, },
3217 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3218 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3219 NVME_QUIRK_MEDIUM_PRIO_SQ |
3220 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3221 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3222 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3223 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3224 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3225 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3226 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3227 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3228 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3229 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3230 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3231 NVME_QUIRK_NO_NS_DESC_LIST, },
3232 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3233 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3234 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3235 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3236 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3237 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3238 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3239 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3240 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3241 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3242 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3243 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3244 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3245 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3246 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3247 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3248 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3249 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3250 .driver_data = NVME_QUIRK_LIGHTNVM, },
3251 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3252 .driver_data = NVME_QUIRK_LIGHTNVM, },
3253 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3254 .driver_data = NVME_QUIRK_LIGHTNVM, },
3255 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3256 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3257 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3258 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3259 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3260 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3261 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3262 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3263 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3264 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3265 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3266 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3267 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3268 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3269 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3270 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3271 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3272 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3273 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3274 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3275 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3276 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3277 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3278 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3279 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3280 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3281 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3282 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3283 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3284 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3285 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3286 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3287 NVME_QUIRK_128_BYTES_SQES |
3288 NVME_QUIRK_SHARED_TAGS },
3289
3290 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3291 { 0, }
3292 };
3293 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3294
3295 static struct pci_driver nvme_driver = {
3296 .name = "nvme",
3297 .id_table = nvme_id_table,
3298 .probe = nvme_probe,
3299 .remove = nvme_remove,
3300 .shutdown = nvme_shutdown,
3301 #ifdef CONFIG_PM_SLEEP
3302 .driver = {
3303 .pm = &nvme_dev_pm_ops,
3304 },
3305 #endif
3306 .sriov_configure = pci_sriov_configure_simple,
3307 .err_handler = &nvme_err_handler,
3308 };
3309
3310 static int __init nvme_init(void)
3311 {
3312 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3313 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3314 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3315 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3316
3317 return pci_register_driver(&nvme_driver);
3318 }
3319
3320 static void __exit nvme_exit(void)
3321 {
3322 pci_unregister_driver(&nvme_driver);
3323 flush_workqueue(nvme_wq);
3324 }
3325
3326 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3327 MODULE_LICENSE("GPL");
3328 MODULE_VERSION("1.0");
3329 module_init(nvme_init);
3330 module_exit(nvme_exit);