]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
nvme: Complete all stuck requests
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46 #include <linux/sed-opal.h>
47
48 #include "nvme.h"
49
50 #define NVME_Q_DEPTH 1024
51 #define NVME_AQ_DEPTH 256
52 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
53 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
54
55 /*
56 * We handle AEN commands ourselves and don't even let the
57 * block layer know about them.
58 */
59 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
60
61 static int use_threaded_interrupts;
62 module_param(use_threaded_interrupts, int, 0);
63
64 static bool use_cmb_sqes = true;
65 module_param(use_cmb_sqes, bool, 0644);
66 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
67
68 static struct workqueue_struct *nvme_workq;
69
70 struct nvme_dev;
71 struct nvme_queue;
72
73 static int nvme_reset(struct nvme_dev *dev);
74 static void nvme_process_cq(struct nvme_queue *nvmeq);
75 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
76
77 /*
78 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 */
80 struct nvme_dev {
81 struct nvme_queue **queues;
82 struct blk_mq_tag_set tagset;
83 struct blk_mq_tag_set admin_tagset;
84 u32 __iomem *dbs;
85 struct device *dev;
86 struct dma_pool *prp_page_pool;
87 struct dma_pool *prp_small_pool;
88 unsigned queue_count;
89 unsigned online_queues;
90 unsigned max_qid;
91 int q_depth;
92 u32 db_stride;
93 void __iomem *bar;
94 struct work_struct reset_work;
95 struct work_struct remove_work;
96 struct timer_list watchdog_timer;
97 struct mutex shutdown_lock;
98 bool subsystem;
99 void __iomem *cmb;
100 dma_addr_t cmb_dma_addr;
101 u64 cmb_size;
102 u32 cmbsz;
103 u32 cmbloc;
104 struct nvme_ctrl ctrl;
105 struct completion ioq_wait;
106 };
107
108 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109 {
110 return container_of(ctrl, struct nvme_dev, ctrl);
111 }
112
113 /*
114 * An NVM Express queue. Each device has at least two (one for admin
115 * commands and one for I/O commands).
116 */
117 struct nvme_queue {
118 struct device *q_dmadev;
119 struct nvme_dev *dev;
120 char irqname[24]; /* nvme4294967295-65535\0 */
121 spinlock_t q_lock;
122 struct nvme_command *sq_cmds;
123 struct nvme_command __iomem *sq_cmds_io;
124 volatile struct nvme_completion *cqes;
125 struct blk_mq_tags **tags;
126 dma_addr_t sq_dma_addr;
127 dma_addr_t cq_dma_addr;
128 u32 __iomem *q_db;
129 u16 q_depth;
130 s16 cq_vector;
131 u16 sq_tail;
132 u16 cq_head;
133 u16 qid;
134 u8 cq_phase;
135 u8 cqe_seen;
136 };
137
138 /*
139 * The nvme_iod describes the data in an I/O, including the list of PRP
140 * entries. You can't see it in this data structure because C doesn't let
141 * me express that. Use nvme_init_iod to ensure there's enough space
142 * allocated to store the PRP list.
143 */
144 struct nvme_iod {
145 struct nvme_request req;
146 struct nvme_queue *nvmeq;
147 int aborted;
148 int npages; /* In the PRP list. 0 means small pool in use */
149 int nents; /* Used in scatterlist */
150 int length; /* Of data, in bytes */
151 dma_addr_t first_dma;
152 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
153 struct scatterlist *sg;
154 struct scatterlist inline_sg[0];
155 };
156
157 /*
158 * Check we didin't inadvertently grow the command struct
159 */
160 static inline void _nvme_check_size(void)
161 {
162 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
172 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
173 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
174 }
175
176 /*
177 * Max size of iod being embedded in the request payload
178 */
179 #define NVME_INT_PAGES 2
180 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
181
182 /*
183 * Will slightly overestimate the number of pages needed. This is OK
184 * as it only leads to a small amount of wasted memory for the lifetime of
185 * the I/O.
186 */
187 static int nvme_npages(unsigned size, struct nvme_dev *dev)
188 {
189 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
190 dev->ctrl.page_size);
191 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
192 }
193
194 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
195 unsigned int size, unsigned int nseg)
196 {
197 return sizeof(__le64 *) * nvme_npages(size, dev) +
198 sizeof(struct scatterlist) * nseg;
199 }
200
201 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
202 {
203 return sizeof(struct nvme_iod) +
204 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
205 }
206
207 static int nvmeq_irq(struct nvme_queue *nvmeq)
208 {
209 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
210 }
211
212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
214 {
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
222 hctx->driver_data = nvmeq;
223 nvmeq->tags = &dev->admin_tagset.tags[0];
224 return 0;
225 }
226
227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228 {
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232 }
233
234 static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
237 {
238 struct nvme_dev *dev = data;
239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
243 iod->nvmeq = nvmeq;
244 return 0;
245 }
246
247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
249 {
250 struct nvme_dev *dev = data;
251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
252
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
255
256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
257 hctx->driver_data = nvmeq;
258 return 0;
259 }
260
261 static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
264 {
265 struct nvme_dev *dev = data;
266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
270 iod->nvmeq = nvmeq;
271 return 0;
272 }
273
274 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
275 {
276 struct nvme_dev *dev = set->driver_data;
277
278 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
279 }
280
281 /**
282 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
283 * @nvmeq: The queue to use
284 * @cmd: The command to send
285 *
286 * Safe to use from interrupt context
287 */
288 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
289 struct nvme_command *cmd)
290 {
291 u16 tail = nvmeq->sq_tail;
292
293 if (nvmeq->sq_cmds_io)
294 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
295 else
296 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
297
298 if (++tail == nvmeq->q_depth)
299 tail = 0;
300 writel(tail, nvmeq->q_db);
301 nvmeq->sq_tail = tail;
302 }
303
304 static __le64 **iod_list(struct request *req)
305 {
306 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
307 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
308 }
309
310 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
311 {
312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
313 int nseg = blk_rq_nr_phys_segments(rq);
314 unsigned int size = blk_rq_payload_bytes(rq);
315
316 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
317 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
318 if (!iod->sg)
319 return BLK_MQ_RQ_QUEUE_BUSY;
320 } else {
321 iod->sg = iod->inline_sg;
322 }
323
324 iod->aborted = 0;
325 iod->npages = -1;
326 iod->nents = 0;
327 iod->length = size;
328
329 if (!(rq->rq_flags & RQF_DONTPREP)) {
330 rq->retries = 0;
331 rq->rq_flags |= RQF_DONTPREP;
332 }
333 return BLK_MQ_RQ_QUEUE_OK;
334 }
335
336 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
337 {
338 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
339 const int last_prp = dev->ctrl.page_size / 8 - 1;
340 int i;
341 __le64 **list = iod_list(req);
342 dma_addr_t prp_dma = iod->first_dma;
343
344 if (iod->npages == 0)
345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346 for (i = 0; i < iod->npages; i++) {
347 __le64 *prp_list = list[i];
348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350 prp_dma = next_prp_dma;
351 }
352
353 if (iod->sg != iod->inline_sg)
354 kfree(iod->sg);
355 }
356
357 #ifdef CONFIG_BLK_DEV_INTEGRITY
358 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
359 {
360 if (be32_to_cpu(pi->ref_tag) == v)
361 pi->ref_tag = cpu_to_be32(p);
362 }
363
364 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
365 {
366 if (be32_to_cpu(pi->ref_tag) == p)
367 pi->ref_tag = cpu_to_be32(v);
368 }
369
370 /**
371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
372 *
373 * The virtual start sector is the one that was originally submitted by the
374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
375 * start sector may be different. Remap protection information to match the
376 * physical LBA on writes, and back to the original seed on reads.
377 *
378 * Type 0 and 3 do not have a ref tag, so no remapping required.
379 */
380 static void nvme_dif_remap(struct request *req,
381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
382 {
383 struct nvme_ns *ns = req->rq_disk->private_data;
384 struct bio_integrity_payload *bip;
385 struct t10_pi_tuple *pi;
386 void *p, *pmap;
387 u32 i, nlb, ts, phys, virt;
388
389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390 return;
391
392 bip = bio_integrity(req->bio);
393 if (!bip)
394 return;
395
396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
397
398 p = pmap;
399 virt = bip_get_seed(bip);
400 phys = nvme_block_nr(ns, blk_rq_pos(req));
401 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
402 ts = ns->disk->queue->integrity.tuple_size;
403
404 for (i = 0; i < nlb; i++, virt++, phys++) {
405 pi = (struct t10_pi_tuple *)p;
406 dif_swap(phys, virt, pi);
407 p += ts;
408 }
409 kunmap_atomic(pmap);
410 }
411 #else /* CONFIG_BLK_DEV_INTEGRITY */
412 static void nvme_dif_remap(struct request *req,
413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
414 {
415 }
416 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
417 {
418 }
419 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
420 {
421 }
422 #endif
423
424 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
425 {
426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427 struct dma_pool *pool;
428 int length = blk_rq_payload_bytes(req);
429 struct scatterlist *sg = iod->sg;
430 int dma_len = sg_dma_len(sg);
431 u64 dma_addr = sg_dma_address(sg);
432 u32 page_size = dev->ctrl.page_size;
433 int offset = dma_addr & (page_size - 1);
434 __le64 *prp_list;
435 __le64 **list = iod_list(req);
436 dma_addr_t prp_dma;
437 int nprps, i;
438
439 length -= (page_size - offset);
440 if (length <= 0)
441 return true;
442
443 dma_len -= (page_size - offset);
444 if (dma_len) {
445 dma_addr += (page_size - offset);
446 } else {
447 sg = sg_next(sg);
448 dma_addr = sg_dma_address(sg);
449 dma_len = sg_dma_len(sg);
450 }
451
452 if (length <= page_size) {
453 iod->first_dma = dma_addr;
454 return true;
455 }
456
457 nprps = DIV_ROUND_UP(length, page_size);
458 if (nprps <= (256 / 8)) {
459 pool = dev->prp_small_pool;
460 iod->npages = 0;
461 } else {
462 pool = dev->prp_page_pool;
463 iod->npages = 1;
464 }
465
466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467 if (!prp_list) {
468 iod->first_dma = dma_addr;
469 iod->npages = -1;
470 return false;
471 }
472 list[0] = prp_list;
473 iod->first_dma = prp_dma;
474 i = 0;
475 for (;;) {
476 if (i == page_size >> 3) {
477 __le64 *old_prp_list = prp_list;
478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
479 if (!prp_list)
480 return false;
481 list[iod->npages++] = prp_list;
482 prp_list[0] = old_prp_list[i - 1];
483 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484 i = 1;
485 }
486 prp_list[i++] = cpu_to_le64(dma_addr);
487 dma_len -= page_size;
488 dma_addr += page_size;
489 length -= page_size;
490 if (length <= 0)
491 break;
492 if (dma_len > 0)
493 continue;
494 BUG_ON(dma_len < 0);
495 sg = sg_next(sg);
496 dma_addr = sg_dma_address(sg);
497 dma_len = sg_dma_len(sg);
498 }
499
500 return true;
501 }
502
503 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
504 struct nvme_command *cmnd)
505 {
506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507 struct request_queue *q = req->q;
508 enum dma_data_direction dma_dir = rq_data_dir(req) ?
509 DMA_TO_DEVICE : DMA_FROM_DEVICE;
510 int ret = BLK_MQ_RQ_QUEUE_ERROR;
511
512 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
513 iod->nents = blk_rq_map_sg(q, req, iod->sg);
514 if (!iod->nents)
515 goto out;
516
517 ret = BLK_MQ_RQ_QUEUE_BUSY;
518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
519 DMA_ATTR_NO_WARN))
520 goto out;
521
522 if (!nvme_setup_prps(dev, req))
523 goto out_unmap;
524
525 ret = BLK_MQ_RQ_QUEUE_ERROR;
526 if (blk_integrity_rq(req)) {
527 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
528 goto out_unmap;
529
530 sg_init_table(&iod->meta_sg, 1);
531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
532 goto out_unmap;
533
534 if (rq_data_dir(req))
535 nvme_dif_remap(req, nvme_dif_prep);
536
537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
538 goto out_unmap;
539 }
540
541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
543 if (blk_integrity_rq(req))
544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
545 return BLK_MQ_RQ_QUEUE_OK;
546
547 out_unmap:
548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
549 out:
550 return ret;
551 }
552
553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
554 {
555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
556 enum dma_data_direction dma_dir = rq_data_dir(req) ?
557 DMA_TO_DEVICE : DMA_FROM_DEVICE;
558
559 if (iod->nents) {
560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
561 if (blk_integrity_rq(req)) {
562 if (!rq_data_dir(req))
563 nvme_dif_remap(req, nvme_dif_complete);
564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
565 }
566 }
567
568 nvme_cleanup_cmd(req);
569 nvme_free_iod(dev, req);
570 }
571
572 /*
573 * NOTE: ns is NULL when called on the admin queue.
574 */
575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576 const struct blk_mq_queue_data *bd)
577 {
578 struct nvme_ns *ns = hctx->queue->queuedata;
579 struct nvme_queue *nvmeq = hctx->driver_data;
580 struct nvme_dev *dev = nvmeq->dev;
581 struct request *req = bd->rq;
582 struct nvme_command cmnd;
583 int ret = BLK_MQ_RQ_QUEUE_OK;
584
585 /*
586 * If formated with metadata, require the block layer provide a buffer
587 * unless this namespace is formated such that the metadata can be
588 * stripped/generated by the controller with PRACT=1.
589 */
590 if (ns && ns->ms && !blk_integrity_rq(req)) {
591 if (!(ns->pi_type && ns->ms == 8) &&
592 !blk_rq_is_passthrough(req)) {
593 blk_mq_end_request(req, -EFAULT);
594 return BLK_MQ_RQ_QUEUE_OK;
595 }
596 }
597
598 ret = nvme_setup_cmd(ns, req, &cmnd);
599 if (ret != BLK_MQ_RQ_QUEUE_OK)
600 return ret;
601
602 ret = nvme_init_iod(req, dev);
603 if (ret != BLK_MQ_RQ_QUEUE_OK)
604 goto out_free_cmd;
605
606 if (blk_rq_nr_phys_segments(req))
607 ret = nvme_map_data(dev, req, &cmnd);
608
609 if (ret != BLK_MQ_RQ_QUEUE_OK)
610 goto out_cleanup_iod;
611
612 blk_mq_start_request(req);
613
614 spin_lock_irq(&nvmeq->q_lock);
615 if (unlikely(nvmeq->cq_vector < 0)) {
616 ret = BLK_MQ_RQ_QUEUE_ERROR;
617 spin_unlock_irq(&nvmeq->q_lock);
618 goto out_cleanup_iod;
619 }
620 __nvme_submit_cmd(nvmeq, &cmnd);
621 nvme_process_cq(nvmeq);
622 spin_unlock_irq(&nvmeq->q_lock);
623 return BLK_MQ_RQ_QUEUE_OK;
624 out_cleanup_iod:
625 nvme_free_iod(dev, req);
626 out_free_cmd:
627 nvme_cleanup_cmd(req);
628 return ret;
629 }
630
631 static void nvme_complete_rq(struct request *req)
632 {
633 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
634 struct nvme_dev *dev = iod->nvmeq->dev;
635 int error = 0;
636
637 nvme_unmap_data(dev, req);
638
639 if (unlikely(req->errors)) {
640 if (nvme_req_needs_retry(req, req->errors)) {
641 req->retries++;
642 nvme_requeue_req(req);
643 return;
644 }
645
646 if (blk_rq_is_passthrough(req))
647 error = req->errors;
648 else
649 error = nvme_error_status(req->errors);
650 }
651
652 if (unlikely(iod->aborted)) {
653 dev_warn(dev->ctrl.device,
654 "completing aborted command with status: %04x\n",
655 req->errors);
656 }
657
658 blk_mq_end_request(req, error);
659 }
660
661 /* We read the CQE phase first to check if the rest of the entry is valid */
662 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
663 u16 phase)
664 {
665 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
666 }
667
668 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
669 {
670 u16 head, phase;
671
672 head = nvmeq->cq_head;
673 phase = nvmeq->cq_phase;
674
675 while (nvme_cqe_valid(nvmeq, head, phase)) {
676 struct nvme_completion cqe = nvmeq->cqes[head];
677 struct request *req;
678
679 if (++head == nvmeq->q_depth) {
680 head = 0;
681 phase = !phase;
682 }
683
684 if (tag && *tag == cqe.command_id)
685 *tag = -1;
686
687 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
688 dev_warn(nvmeq->dev->ctrl.device,
689 "invalid id %d completed on queue %d\n",
690 cqe.command_id, le16_to_cpu(cqe.sq_id));
691 continue;
692 }
693
694 /*
695 * AEN requests are special as they don't time out and can
696 * survive any kind of queue freeze and often don't respond to
697 * aborts. We don't even bother to allocate a struct request
698 * for them but rather special case them here.
699 */
700 if (unlikely(nvmeq->qid == 0 &&
701 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
702 nvme_complete_async_event(&nvmeq->dev->ctrl,
703 cqe.status, &cqe.result);
704 continue;
705 }
706
707 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
708 nvme_req(req)->result = cqe.result;
709 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
710 }
711
712 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
713 return;
714
715 if (likely(nvmeq->cq_vector >= 0))
716 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
717 nvmeq->cq_head = head;
718 nvmeq->cq_phase = phase;
719
720 nvmeq->cqe_seen = 1;
721 }
722
723 static void nvme_process_cq(struct nvme_queue *nvmeq)
724 {
725 __nvme_process_cq(nvmeq, NULL);
726 }
727
728 static irqreturn_t nvme_irq(int irq, void *data)
729 {
730 irqreturn_t result;
731 struct nvme_queue *nvmeq = data;
732 spin_lock(&nvmeq->q_lock);
733 nvme_process_cq(nvmeq);
734 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
735 nvmeq->cqe_seen = 0;
736 spin_unlock(&nvmeq->q_lock);
737 return result;
738 }
739
740 static irqreturn_t nvme_irq_check(int irq, void *data)
741 {
742 struct nvme_queue *nvmeq = data;
743 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
744 return IRQ_WAKE_THREAD;
745 return IRQ_NONE;
746 }
747
748 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
749 {
750 struct nvme_queue *nvmeq = hctx->driver_data;
751
752 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
753 spin_lock_irq(&nvmeq->q_lock);
754 __nvme_process_cq(nvmeq, &tag);
755 spin_unlock_irq(&nvmeq->q_lock);
756
757 if (tag == -1)
758 return 1;
759 }
760
761 return 0;
762 }
763
764 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
765 {
766 struct nvme_dev *dev = to_nvme_dev(ctrl);
767 struct nvme_queue *nvmeq = dev->queues[0];
768 struct nvme_command c;
769
770 memset(&c, 0, sizeof(c));
771 c.common.opcode = nvme_admin_async_event;
772 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
773
774 spin_lock_irq(&nvmeq->q_lock);
775 __nvme_submit_cmd(nvmeq, &c);
776 spin_unlock_irq(&nvmeq->q_lock);
777 }
778
779 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
780 {
781 struct nvme_command c;
782
783 memset(&c, 0, sizeof(c));
784 c.delete_queue.opcode = opcode;
785 c.delete_queue.qid = cpu_to_le16(id);
786
787 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
788 }
789
790 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
791 struct nvme_queue *nvmeq)
792 {
793 struct nvme_command c;
794 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
795
796 /*
797 * Note: we (ab)use the fact the the prp fields survive if no data
798 * is attached to the request.
799 */
800 memset(&c, 0, sizeof(c));
801 c.create_cq.opcode = nvme_admin_create_cq;
802 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
803 c.create_cq.cqid = cpu_to_le16(qid);
804 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
805 c.create_cq.cq_flags = cpu_to_le16(flags);
806 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
807
808 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
809 }
810
811 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
812 struct nvme_queue *nvmeq)
813 {
814 struct nvme_command c;
815 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
816
817 /*
818 * Note: we (ab)use the fact the the prp fields survive if no data
819 * is attached to the request.
820 */
821 memset(&c, 0, sizeof(c));
822 c.create_sq.opcode = nvme_admin_create_sq;
823 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
824 c.create_sq.sqid = cpu_to_le16(qid);
825 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
826 c.create_sq.sq_flags = cpu_to_le16(flags);
827 c.create_sq.cqid = cpu_to_le16(qid);
828
829 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
830 }
831
832 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
833 {
834 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
835 }
836
837 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
838 {
839 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
840 }
841
842 static void abort_endio(struct request *req, int error)
843 {
844 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
845 struct nvme_queue *nvmeq = iod->nvmeq;
846 u16 status = req->errors;
847
848 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
849 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
850 blk_mq_free_request(req);
851 }
852
853 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
854 {
855 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
856 struct nvme_queue *nvmeq = iod->nvmeq;
857 struct nvme_dev *dev = nvmeq->dev;
858 struct request *abort_req;
859 struct nvme_command cmd;
860
861 /*
862 * Shutdown immediately if controller times out while starting. The
863 * reset work will see the pci device disabled when it gets the forced
864 * cancellation error. All outstanding requests are completed on
865 * shutdown, so we return BLK_EH_HANDLED.
866 */
867 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
868 dev_warn(dev->ctrl.device,
869 "I/O %d QID %d timeout, disable controller\n",
870 req->tag, nvmeq->qid);
871 nvme_dev_disable(dev, false);
872 req->errors = NVME_SC_CANCELLED;
873 return BLK_EH_HANDLED;
874 }
875
876 /*
877 * Shutdown the controller immediately and schedule a reset if the
878 * command was already aborted once before and still hasn't been
879 * returned to the driver, or if this is the admin queue.
880 */
881 if (!nvmeq->qid || iod->aborted) {
882 dev_warn(dev->ctrl.device,
883 "I/O %d QID %d timeout, reset controller\n",
884 req->tag, nvmeq->qid);
885 nvme_dev_disable(dev, false);
886 nvme_reset(dev);
887
888 /*
889 * Mark the request as handled, since the inline shutdown
890 * forces all outstanding requests to complete.
891 */
892 req->errors = NVME_SC_CANCELLED;
893 return BLK_EH_HANDLED;
894 }
895
896 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
897 atomic_inc(&dev->ctrl.abort_limit);
898 return BLK_EH_RESET_TIMER;
899 }
900 iod->aborted = 1;
901
902 memset(&cmd, 0, sizeof(cmd));
903 cmd.abort.opcode = nvme_admin_abort_cmd;
904 cmd.abort.cid = req->tag;
905 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
906
907 dev_warn(nvmeq->dev->ctrl.device,
908 "I/O %d QID %d timeout, aborting\n",
909 req->tag, nvmeq->qid);
910
911 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
912 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
913 if (IS_ERR(abort_req)) {
914 atomic_inc(&dev->ctrl.abort_limit);
915 return BLK_EH_RESET_TIMER;
916 }
917
918 abort_req->timeout = ADMIN_TIMEOUT;
919 abort_req->end_io_data = NULL;
920 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
921
922 /*
923 * The aborted req will be completed on receiving the abort req.
924 * We enable the timer again. If hit twice, it'll cause a device reset,
925 * as the device then is in a faulty state.
926 */
927 return BLK_EH_RESET_TIMER;
928 }
929
930 static void nvme_free_queue(struct nvme_queue *nvmeq)
931 {
932 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
933 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
934 if (nvmeq->sq_cmds)
935 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
936 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
937 kfree(nvmeq);
938 }
939
940 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
941 {
942 int i;
943
944 for (i = dev->queue_count - 1; i >= lowest; i--) {
945 struct nvme_queue *nvmeq = dev->queues[i];
946 dev->queue_count--;
947 dev->queues[i] = NULL;
948 nvme_free_queue(nvmeq);
949 }
950 }
951
952 /**
953 * nvme_suspend_queue - put queue into suspended state
954 * @nvmeq - queue to suspend
955 */
956 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
957 {
958 int vector;
959
960 spin_lock_irq(&nvmeq->q_lock);
961 if (nvmeq->cq_vector == -1) {
962 spin_unlock_irq(&nvmeq->q_lock);
963 return 1;
964 }
965 vector = nvmeq_irq(nvmeq);
966 nvmeq->dev->online_queues--;
967 nvmeq->cq_vector = -1;
968 spin_unlock_irq(&nvmeq->q_lock);
969
970 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
971 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
972
973 free_irq(vector, nvmeq);
974
975 return 0;
976 }
977
978 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
979 {
980 struct nvme_queue *nvmeq = dev->queues[0];
981
982 if (!nvmeq)
983 return;
984 if (nvme_suspend_queue(nvmeq))
985 return;
986
987 if (shutdown)
988 nvme_shutdown_ctrl(&dev->ctrl);
989 else
990 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
991 dev->bar + NVME_REG_CAP));
992
993 spin_lock_irq(&nvmeq->q_lock);
994 nvme_process_cq(nvmeq);
995 spin_unlock_irq(&nvmeq->q_lock);
996 }
997
998 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
999 int entry_size)
1000 {
1001 int q_depth = dev->q_depth;
1002 unsigned q_size_aligned = roundup(q_depth * entry_size,
1003 dev->ctrl.page_size);
1004
1005 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1006 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1007 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1008 q_depth = div_u64(mem_per_q, entry_size);
1009
1010 /*
1011 * Ensure the reduced q_depth is above some threshold where it
1012 * would be better to map queues in system memory with the
1013 * original depth
1014 */
1015 if (q_depth < 64)
1016 return -ENOMEM;
1017 }
1018
1019 return q_depth;
1020 }
1021
1022 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1023 int qid, int depth)
1024 {
1025 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1026 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1027 dev->ctrl.page_size);
1028 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1029 nvmeq->sq_cmds_io = dev->cmb + offset;
1030 } else {
1031 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1032 &nvmeq->sq_dma_addr, GFP_KERNEL);
1033 if (!nvmeq->sq_cmds)
1034 return -ENOMEM;
1035 }
1036
1037 return 0;
1038 }
1039
1040 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1041 int depth, int node)
1042 {
1043 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1044 node);
1045 if (!nvmeq)
1046 return NULL;
1047
1048 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1049 &nvmeq->cq_dma_addr, GFP_KERNEL);
1050 if (!nvmeq->cqes)
1051 goto free_nvmeq;
1052
1053 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1054 goto free_cqdma;
1055
1056 nvmeq->q_dmadev = dev->dev;
1057 nvmeq->dev = dev;
1058 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1059 dev->ctrl.instance, qid);
1060 spin_lock_init(&nvmeq->q_lock);
1061 nvmeq->cq_head = 0;
1062 nvmeq->cq_phase = 1;
1063 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1064 nvmeq->q_depth = depth;
1065 nvmeq->qid = qid;
1066 nvmeq->cq_vector = -1;
1067 dev->queues[qid] = nvmeq;
1068 dev->queue_count++;
1069
1070 return nvmeq;
1071
1072 free_cqdma:
1073 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1074 nvmeq->cq_dma_addr);
1075 free_nvmeq:
1076 kfree(nvmeq);
1077 return NULL;
1078 }
1079
1080 static int queue_request_irq(struct nvme_queue *nvmeq)
1081 {
1082 if (use_threaded_interrupts)
1083 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1084 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1085 else
1086 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1087 nvmeq->irqname, nvmeq);
1088 }
1089
1090 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1091 {
1092 struct nvme_dev *dev = nvmeq->dev;
1093
1094 spin_lock_irq(&nvmeq->q_lock);
1095 nvmeq->sq_tail = 0;
1096 nvmeq->cq_head = 0;
1097 nvmeq->cq_phase = 1;
1098 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1099 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1100 dev->online_queues++;
1101 spin_unlock_irq(&nvmeq->q_lock);
1102 }
1103
1104 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1105 {
1106 struct nvme_dev *dev = nvmeq->dev;
1107 int result;
1108
1109 nvmeq->cq_vector = qid - 1;
1110 result = adapter_alloc_cq(dev, qid, nvmeq);
1111 if (result < 0)
1112 return result;
1113
1114 result = adapter_alloc_sq(dev, qid, nvmeq);
1115 if (result < 0)
1116 goto release_cq;
1117
1118 result = queue_request_irq(nvmeq);
1119 if (result < 0)
1120 goto release_sq;
1121
1122 nvme_init_queue(nvmeq, qid);
1123 return result;
1124
1125 release_sq:
1126 adapter_delete_sq(dev, qid);
1127 release_cq:
1128 adapter_delete_cq(dev, qid);
1129 return result;
1130 }
1131
1132 static struct blk_mq_ops nvme_mq_admin_ops = {
1133 .queue_rq = nvme_queue_rq,
1134 .complete = nvme_complete_rq,
1135 .init_hctx = nvme_admin_init_hctx,
1136 .exit_hctx = nvme_admin_exit_hctx,
1137 .init_request = nvme_admin_init_request,
1138 .timeout = nvme_timeout,
1139 };
1140
1141 static struct blk_mq_ops nvme_mq_ops = {
1142 .queue_rq = nvme_queue_rq,
1143 .complete = nvme_complete_rq,
1144 .init_hctx = nvme_init_hctx,
1145 .init_request = nvme_init_request,
1146 .map_queues = nvme_pci_map_queues,
1147 .timeout = nvme_timeout,
1148 .poll = nvme_poll,
1149 };
1150
1151 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1152 {
1153 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1154 /*
1155 * If the controller was reset during removal, it's possible
1156 * user requests may be waiting on a stopped queue. Start the
1157 * queue to flush these to completion.
1158 */
1159 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1160 blk_cleanup_queue(dev->ctrl.admin_q);
1161 blk_mq_free_tag_set(&dev->admin_tagset);
1162 }
1163 }
1164
1165 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1166 {
1167 if (!dev->ctrl.admin_q) {
1168 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1169 dev->admin_tagset.nr_hw_queues = 1;
1170
1171 /*
1172 * Subtract one to leave an empty queue entry for 'Full Queue'
1173 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1174 */
1175 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1176 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1177 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1178 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1179 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1180 dev->admin_tagset.driver_data = dev;
1181
1182 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1183 return -ENOMEM;
1184
1185 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1186 if (IS_ERR(dev->ctrl.admin_q)) {
1187 blk_mq_free_tag_set(&dev->admin_tagset);
1188 return -ENOMEM;
1189 }
1190 if (!blk_get_queue(dev->ctrl.admin_q)) {
1191 nvme_dev_remove_admin(dev);
1192 dev->ctrl.admin_q = NULL;
1193 return -ENODEV;
1194 }
1195 } else
1196 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1197
1198 return 0;
1199 }
1200
1201 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1202 {
1203 int result;
1204 u32 aqa;
1205 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1206 struct nvme_queue *nvmeq;
1207
1208 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1209 NVME_CAP_NSSRC(cap) : 0;
1210
1211 if (dev->subsystem &&
1212 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1213 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1214
1215 result = nvme_disable_ctrl(&dev->ctrl, cap);
1216 if (result < 0)
1217 return result;
1218
1219 nvmeq = dev->queues[0];
1220 if (!nvmeq) {
1221 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1222 dev_to_node(dev->dev));
1223 if (!nvmeq)
1224 return -ENOMEM;
1225 }
1226
1227 aqa = nvmeq->q_depth - 1;
1228 aqa |= aqa << 16;
1229
1230 writel(aqa, dev->bar + NVME_REG_AQA);
1231 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1232 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1233
1234 result = nvme_enable_ctrl(&dev->ctrl, cap);
1235 if (result)
1236 return result;
1237
1238 nvmeq->cq_vector = 0;
1239 result = queue_request_irq(nvmeq);
1240 if (result) {
1241 nvmeq->cq_vector = -1;
1242 return result;
1243 }
1244
1245 return result;
1246 }
1247
1248 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1249 {
1250
1251 /* If true, indicates loss of adapter communication, possibly by a
1252 * NVMe Subsystem reset.
1253 */
1254 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1255
1256 /* If there is a reset ongoing, we shouldn't reset again. */
1257 if (work_busy(&dev->reset_work))
1258 return false;
1259
1260 /* We shouldn't reset unless the controller is on fatal error state
1261 * _or_ if we lost the communication with it.
1262 */
1263 if (!(csts & NVME_CSTS_CFS) && !nssro)
1264 return false;
1265
1266 /* If PCI error recovery process is happening, we cannot reset or
1267 * the recovery mechanism will surely fail.
1268 */
1269 if (pci_channel_offline(to_pci_dev(dev->dev)))
1270 return false;
1271
1272 return true;
1273 }
1274
1275 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1276 {
1277 /* Read a config register to help see what died. */
1278 u16 pci_status;
1279 int result;
1280
1281 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1282 &pci_status);
1283 if (result == PCIBIOS_SUCCESSFUL)
1284 dev_warn(dev->dev,
1285 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1286 csts, pci_status);
1287 else
1288 dev_warn(dev->dev,
1289 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1290 csts, result);
1291 }
1292
1293 static void nvme_watchdog_timer(unsigned long data)
1294 {
1295 struct nvme_dev *dev = (struct nvme_dev *)data;
1296 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1297
1298 /* Skip controllers under certain specific conditions. */
1299 if (nvme_should_reset(dev, csts)) {
1300 if (!nvme_reset(dev))
1301 nvme_warn_reset(dev, csts);
1302 return;
1303 }
1304
1305 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1306 }
1307
1308 static int nvme_create_io_queues(struct nvme_dev *dev)
1309 {
1310 unsigned i, max;
1311 int ret = 0;
1312
1313 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1314 /* vector == qid - 1, match nvme_create_queue */
1315 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1316 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1317 ret = -ENOMEM;
1318 break;
1319 }
1320 }
1321
1322 max = min(dev->max_qid, dev->queue_count - 1);
1323 for (i = dev->online_queues; i <= max; i++) {
1324 ret = nvme_create_queue(dev->queues[i], i);
1325 if (ret)
1326 break;
1327 }
1328
1329 /*
1330 * Ignore failing Create SQ/CQ commands, we can continue with less
1331 * than the desired aount of queues, and even a controller without
1332 * I/O queues an still be used to issue admin commands. This might
1333 * be useful to upgrade a buggy firmware for example.
1334 */
1335 return ret >= 0 ? 0 : ret;
1336 }
1337
1338 static ssize_t nvme_cmb_show(struct device *dev,
1339 struct device_attribute *attr,
1340 char *buf)
1341 {
1342 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1343
1344 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1345 ndev->cmbloc, ndev->cmbsz);
1346 }
1347 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1348
1349 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1350 {
1351 u64 szu, size, offset;
1352 resource_size_t bar_size;
1353 struct pci_dev *pdev = to_pci_dev(dev->dev);
1354 void __iomem *cmb;
1355 dma_addr_t dma_addr;
1356
1357 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1358 if (!(NVME_CMB_SZ(dev->cmbsz)))
1359 return NULL;
1360 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1361
1362 if (!use_cmb_sqes)
1363 return NULL;
1364
1365 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1366 size = szu * NVME_CMB_SZ(dev->cmbsz);
1367 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1368 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1369
1370 if (offset > bar_size)
1371 return NULL;
1372
1373 /*
1374 * Controllers may support a CMB size larger than their BAR,
1375 * for example, due to being behind a bridge. Reduce the CMB to
1376 * the reported size of the BAR
1377 */
1378 if (size > bar_size - offset)
1379 size = bar_size - offset;
1380
1381 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1382 cmb = ioremap_wc(dma_addr, size);
1383 if (!cmb)
1384 return NULL;
1385
1386 dev->cmb_dma_addr = dma_addr;
1387 dev->cmb_size = size;
1388 return cmb;
1389 }
1390
1391 static inline void nvme_release_cmb(struct nvme_dev *dev)
1392 {
1393 if (dev->cmb) {
1394 iounmap(dev->cmb);
1395 dev->cmb = NULL;
1396 }
1397 }
1398
1399 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1400 {
1401 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1402 }
1403
1404 static int nvme_setup_io_queues(struct nvme_dev *dev)
1405 {
1406 struct nvme_queue *adminq = dev->queues[0];
1407 struct pci_dev *pdev = to_pci_dev(dev->dev);
1408 int result, nr_io_queues, size;
1409
1410 nr_io_queues = num_online_cpus();
1411 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1412 if (result < 0)
1413 return result;
1414
1415 if (nr_io_queues == 0)
1416 return 0;
1417
1418 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1419 result = nvme_cmb_qdepth(dev, nr_io_queues,
1420 sizeof(struct nvme_command));
1421 if (result > 0)
1422 dev->q_depth = result;
1423 else
1424 nvme_release_cmb(dev);
1425 }
1426
1427 size = db_bar_size(dev, nr_io_queues);
1428 if (size > 8192) {
1429 iounmap(dev->bar);
1430 do {
1431 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1432 if (dev->bar)
1433 break;
1434 if (!--nr_io_queues)
1435 return -ENOMEM;
1436 size = db_bar_size(dev, nr_io_queues);
1437 } while (1);
1438 dev->dbs = dev->bar + 4096;
1439 adminq->q_db = dev->dbs;
1440 }
1441
1442 /* Deregister the admin queue's interrupt */
1443 free_irq(pci_irq_vector(pdev, 0), adminq);
1444
1445 /*
1446 * If we enable msix early due to not intx, disable it again before
1447 * setting up the full range we need.
1448 */
1449 pci_free_irq_vectors(pdev);
1450 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1451 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1452 if (nr_io_queues <= 0)
1453 return -EIO;
1454 dev->max_qid = nr_io_queues;
1455
1456 /*
1457 * Should investigate if there's a performance win from allocating
1458 * more queues than interrupt vectors; it might allow the submission
1459 * path to scale better, even if the receive path is limited by the
1460 * number of interrupts.
1461 */
1462
1463 result = queue_request_irq(adminq);
1464 if (result) {
1465 adminq->cq_vector = -1;
1466 return result;
1467 }
1468 return nvme_create_io_queues(dev);
1469 }
1470
1471 static void nvme_del_queue_end(struct request *req, int error)
1472 {
1473 struct nvme_queue *nvmeq = req->end_io_data;
1474
1475 blk_mq_free_request(req);
1476 complete(&nvmeq->dev->ioq_wait);
1477 }
1478
1479 static void nvme_del_cq_end(struct request *req, int error)
1480 {
1481 struct nvme_queue *nvmeq = req->end_io_data;
1482
1483 if (!error) {
1484 unsigned long flags;
1485
1486 /*
1487 * We might be called with the AQ q_lock held
1488 * and the I/O queue q_lock should always
1489 * nest inside the AQ one.
1490 */
1491 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1492 SINGLE_DEPTH_NESTING);
1493 nvme_process_cq(nvmeq);
1494 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1495 }
1496
1497 nvme_del_queue_end(req, error);
1498 }
1499
1500 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1501 {
1502 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1503 struct request *req;
1504 struct nvme_command cmd;
1505
1506 memset(&cmd, 0, sizeof(cmd));
1507 cmd.delete_queue.opcode = opcode;
1508 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1509
1510 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1511 if (IS_ERR(req))
1512 return PTR_ERR(req);
1513
1514 req->timeout = ADMIN_TIMEOUT;
1515 req->end_io_data = nvmeq;
1516
1517 blk_execute_rq_nowait(q, NULL, req, false,
1518 opcode == nvme_admin_delete_cq ?
1519 nvme_del_cq_end : nvme_del_queue_end);
1520 return 0;
1521 }
1522
1523 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1524 {
1525 int pass;
1526 unsigned long timeout;
1527 u8 opcode = nvme_admin_delete_sq;
1528
1529 for (pass = 0; pass < 2; pass++) {
1530 int sent = 0, i = queues;
1531
1532 reinit_completion(&dev->ioq_wait);
1533 retry:
1534 timeout = ADMIN_TIMEOUT;
1535 for (; i > 0; i--, sent++)
1536 if (nvme_delete_queue(dev->queues[i], opcode))
1537 break;
1538
1539 while (sent--) {
1540 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1541 if (timeout == 0)
1542 return;
1543 if (i)
1544 goto retry;
1545 }
1546 opcode = nvme_admin_delete_cq;
1547 }
1548 }
1549
1550 /*
1551 * Return: error value if an error occurred setting up the queues or calling
1552 * Identify Device. 0 if these succeeded, even if adding some of the
1553 * namespaces failed. At the moment, these failures are silent. TBD which
1554 * failures should be reported.
1555 */
1556 static int nvme_dev_add(struct nvme_dev *dev)
1557 {
1558 if (!dev->ctrl.tagset) {
1559 dev->tagset.ops = &nvme_mq_ops;
1560 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1561 dev->tagset.timeout = NVME_IO_TIMEOUT;
1562 dev->tagset.numa_node = dev_to_node(dev->dev);
1563 dev->tagset.queue_depth =
1564 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1565 dev->tagset.cmd_size = nvme_cmd_size(dev);
1566 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1567 dev->tagset.driver_data = dev;
1568
1569 if (blk_mq_alloc_tag_set(&dev->tagset))
1570 return 0;
1571 dev->ctrl.tagset = &dev->tagset;
1572 } else {
1573 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1574
1575 /* Free previously allocated queues that are no longer usable */
1576 nvme_free_queues(dev, dev->online_queues);
1577 }
1578
1579 return 0;
1580 }
1581
1582 static int nvme_pci_enable(struct nvme_dev *dev)
1583 {
1584 u64 cap;
1585 int result = -ENOMEM;
1586 struct pci_dev *pdev = to_pci_dev(dev->dev);
1587
1588 if (pci_enable_device_mem(pdev))
1589 return result;
1590
1591 pci_set_master(pdev);
1592
1593 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1594 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1595 goto disable;
1596
1597 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1598 result = -ENODEV;
1599 goto disable;
1600 }
1601
1602 /*
1603 * Some devices and/or platforms don't advertise or work with INTx
1604 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1605 * adjust this later.
1606 */
1607 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1608 if (result < 0)
1609 return result;
1610
1611 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1612
1613 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1614 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1615 dev->dbs = dev->bar + 4096;
1616
1617 /*
1618 * Temporary fix for the Apple controller found in the MacBook8,1 and
1619 * some MacBook7,1 to avoid controller resets and data loss.
1620 */
1621 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1622 dev->q_depth = 2;
1623 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1624 "queue depth=%u to work around controller resets\n",
1625 dev->q_depth);
1626 }
1627
1628 /*
1629 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1630 * populate sysfs if a CMB is implemented. Note that we add the
1631 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1632 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1633 * NULL as final argument to sysfs_add_file_to_group.
1634 */
1635
1636 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1637 dev->cmb = nvme_map_cmb(dev);
1638
1639 if (dev->cmbsz) {
1640 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1641 &dev_attr_cmb.attr, NULL))
1642 dev_warn(dev->dev,
1643 "failed to add sysfs attribute for CMB\n");
1644 }
1645 }
1646
1647 pci_enable_pcie_error_reporting(pdev);
1648 pci_save_state(pdev);
1649 return 0;
1650
1651 disable:
1652 pci_disable_device(pdev);
1653 return result;
1654 }
1655
1656 static void nvme_dev_unmap(struct nvme_dev *dev)
1657 {
1658 if (dev->bar)
1659 iounmap(dev->bar);
1660 pci_release_mem_regions(to_pci_dev(dev->dev));
1661 }
1662
1663 static void nvme_pci_disable(struct nvme_dev *dev)
1664 {
1665 struct pci_dev *pdev = to_pci_dev(dev->dev);
1666
1667 pci_free_irq_vectors(pdev);
1668
1669 if (pci_is_enabled(pdev)) {
1670 pci_disable_pcie_error_reporting(pdev);
1671 pci_disable_device(pdev);
1672 }
1673 }
1674
1675 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1676 {
1677 int i, queues;
1678 bool dead = true;
1679 struct pci_dev *pdev = to_pci_dev(dev->dev);
1680
1681 del_timer_sync(&dev->watchdog_timer);
1682
1683 mutex_lock(&dev->shutdown_lock);
1684 if (pci_is_enabled(pdev)) {
1685 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1686
1687 if (dev->ctrl.state == NVME_CTRL_LIVE)
1688 nvme_start_freeze(&dev->ctrl);
1689 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1690 pdev->error_state != pci_channel_io_normal);
1691 }
1692
1693 /*
1694 * Give the controller a chance to complete all entered requests if
1695 * doing a safe shutdown.
1696 */
1697 if (!dead && shutdown)
1698 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1699 nvme_stop_queues(&dev->ctrl);
1700
1701 queues = dev->online_queues - 1;
1702 for (i = dev->queue_count - 1; i > 0; i--)
1703 nvme_suspend_queue(dev->queues[i]);
1704
1705 if (dead) {
1706 /* A device might become IO incapable very soon during
1707 * probe, before the admin queue is configured. Thus,
1708 * queue_count can be 0 here.
1709 */
1710 if (dev->queue_count)
1711 nvme_suspend_queue(dev->queues[0]);
1712 } else {
1713 nvme_disable_io_queues(dev, queues);
1714 nvme_disable_admin_queue(dev, shutdown);
1715 }
1716 nvme_pci_disable(dev);
1717
1718 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1719 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1720
1721 /*
1722 * The driver will not be starting up queues again if shutting down so
1723 * must flush all entered requests to their failed completion to avoid
1724 * deadlocking blk-mq hot-cpu notifier.
1725 */
1726 if (shutdown)
1727 nvme_start_queues(&dev->ctrl);
1728 mutex_unlock(&dev->shutdown_lock);
1729 }
1730
1731 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1732 {
1733 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1734 PAGE_SIZE, PAGE_SIZE, 0);
1735 if (!dev->prp_page_pool)
1736 return -ENOMEM;
1737
1738 /* Optimisation for I/Os between 4k and 128k */
1739 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1740 256, 256, 0);
1741 if (!dev->prp_small_pool) {
1742 dma_pool_destroy(dev->prp_page_pool);
1743 return -ENOMEM;
1744 }
1745 return 0;
1746 }
1747
1748 static void nvme_release_prp_pools(struct nvme_dev *dev)
1749 {
1750 dma_pool_destroy(dev->prp_page_pool);
1751 dma_pool_destroy(dev->prp_small_pool);
1752 }
1753
1754 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1755 {
1756 struct nvme_dev *dev = to_nvme_dev(ctrl);
1757
1758 put_device(dev->dev);
1759 if (dev->tagset.tags)
1760 blk_mq_free_tag_set(&dev->tagset);
1761 if (dev->ctrl.admin_q)
1762 blk_put_queue(dev->ctrl.admin_q);
1763 kfree(dev->queues);
1764 free_opal_dev(dev->ctrl.opal_dev);
1765 kfree(dev);
1766 }
1767
1768 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1769 {
1770 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1771
1772 kref_get(&dev->ctrl.kref);
1773 nvme_dev_disable(dev, false);
1774 if (!schedule_work(&dev->remove_work))
1775 nvme_put_ctrl(&dev->ctrl);
1776 }
1777
1778 static void nvme_reset_work(struct work_struct *work)
1779 {
1780 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1781 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1782 int result = -ENODEV;
1783
1784 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1785 goto out;
1786
1787 /*
1788 * If we're called to reset a live controller first shut it down before
1789 * moving on.
1790 */
1791 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1792 nvme_dev_disable(dev, false);
1793
1794 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1795 goto out;
1796
1797 result = nvme_pci_enable(dev);
1798 if (result)
1799 goto out;
1800
1801 result = nvme_configure_admin_queue(dev);
1802 if (result)
1803 goto out;
1804
1805 nvme_init_queue(dev->queues[0], 0);
1806 result = nvme_alloc_admin_tags(dev);
1807 if (result)
1808 goto out;
1809
1810 result = nvme_init_identify(&dev->ctrl);
1811 if (result)
1812 goto out;
1813
1814 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1815 if (!dev->ctrl.opal_dev)
1816 dev->ctrl.opal_dev =
1817 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1818 else if (was_suspend)
1819 opal_unlock_from_suspend(dev->ctrl.opal_dev);
1820 } else {
1821 free_opal_dev(dev->ctrl.opal_dev);
1822 dev->ctrl.opal_dev = NULL;
1823 }
1824
1825 result = nvme_setup_io_queues(dev);
1826 if (result)
1827 goto out;
1828
1829 /*
1830 * A controller that can not execute IO typically requires user
1831 * intervention to correct. For such degraded controllers, the driver
1832 * should not submit commands the user did not request, so skip
1833 * registering for asynchronous event notification on this condition.
1834 */
1835 if (dev->online_queues > 1)
1836 nvme_queue_async_events(&dev->ctrl);
1837
1838 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1839
1840 /*
1841 * Keep the controller around but remove all namespaces if we don't have
1842 * any working I/O queue.
1843 */
1844 if (dev->online_queues < 2) {
1845 dev_warn(dev->ctrl.device, "IO queues not created\n");
1846 nvme_kill_queues(&dev->ctrl);
1847 nvme_remove_namespaces(&dev->ctrl);
1848 } else {
1849 nvme_start_queues(&dev->ctrl);
1850 nvme_wait_freeze(&dev->ctrl);
1851 nvme_dev_add(dev);
1852 nvme_unfreeze(&dev->ctrl);
1853 }
1854
1855 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1856 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1857 goto out;
1858 }
1859
1860 if (dev->online_queues > 1)
1861 nvme_queue_scan(&dev->ctrl);
1862 return;
1863
1864 out:
1865 nvme_remove_dead_ctrl(dev, result);
1866 }
1867
1868 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1869 {
1870 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1871 struct pci_dev *pdev = to_pci_dev(dev->dev);
1872
1873 nvme_kill_queues(&dev->ctrl);
1874 if (pci_get_drvdata(pdev))
1875 device_release_driver(&pdev->dev);
1876 nvme_put_ctrl(&dev->ctrl);
1877 }
1878
1879 static int nvme_reset(struct nvme_dev *dev)
1880 {
1881 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1882 return -ENODEV;
1883 if (work_busy(&dev->reset_work))
1884 return -ENODEV;
1885 if (!queue_work(nvme_workq, &dev->reset_work))
1886 return -EBUSY;
1887 return 0;
1888 }
1889
1890 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1891 {
1892 *val = readl(to_nvme_dev(ctrl)->bar + off);
1893 return 0;
1894 }
1895
1896 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1897 {
1898 writel(val, to_nvme_dev(ctrl)->bar + off);
1899 return 0;
1900 }
1901
1902 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1903 {
1904 *val = readq(to_nvme_dev(ctrl)->bar + off);
1905 return 0;
1906 }
1907
1908 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1909 {
1910 struct nvme_dev *dev = to_nvme_dev(ctrl);
1911 int ret = nvme_reset(dev);
1912
1913 if (!ret)
1914 flush_work(&dev->reset_work);
1915 return ret;
1916 }
1917
1918 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1919 .name = "pcie",
1920 .module = THIS_MODULE,
1921 .reg_read32 = nvme_pci_reg_read32,
1922 .reg_write32 = nvme_pci_reg_write32,
1923 .reg_read64 = nvme_pci_reg_read64,
1924 .reset_ctrl = nvme_pci_reset_ctrl,
1925 .free_ctrl = nvme_pci_free_ctrl,
1926 .submit_async_event = nvme_pci_submit_async_event,
1927 };
1928
1929 static int nvme_dev_map(struct nvme_dev *dev)
1930 {
1931 struct pci_dev *pdev = to_pci_dev(dev->dev);
1932
1933 if (pci_request_mem_regions(pdev, "nvme"))
1934 return -ENODEV;
1935
1936 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1937 if (!dev->bar)
1938 goto release;
1939
1940 return 0;
1941 release:
1942 pci_release_mem_regions(pdev);
1943 return -ENODEV;
1944 }
1945
1946 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1947 {
1948 int node, result = -ENOMEM;
1949 struct nvme_dev *dev;
1950
1951 node = dev_to_node(&pdev->dev);
1952 if (node == NUMA_NO_NODE)
1953 set_dev_node(&pdev->dev, first_memory_node);
1954
1955 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1956 if (!dev)
1957 return -ENOMEM;
1958 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1959 GFP_KERNEL, node);
1960 if (!dev->queues)
1961 goto free;
1962
1963 dev->dev = get_device(&pdev->dev);
1964 pci_set_drvdata(pdev, dev);
1965
1966 result = nvme_dev_map(dev);
1967 if (result)
1968 goto free;
1969
1970 INIT_WORK(&dev->reset_work, nvme_reset_work);
1971 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1972 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1973 (unsigned long)dev);
1974 mutex_init(&dev->shutdown_lock);
1975 init_completion(&dev->ioq_wait);
1976
1977 result = nvme_setup_prp_pools(dev);
1978 if (result)
1979 goto put_pci;
1980
1981 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1982 id->driver_data);
1983 if (result)
1984 goto release_pools;
1985
1986 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1987
1988 queue_work(nvme_workq, &dev->reset_work);
1989 return 0;
1990
1991 release_pools:
1992 nvme_release_prp_pools(dev);
1993 put_pci:
1994 put_device(dev->dev);
1995 nvme_dev_unmap(dev);
1996 free:
1997 kfree(dev->queues);
1998 kfree(dev);
1999 return result;
2000 }
2001
2002 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2003 {
2004 struct nvme_dev *dev = pci_get_drvdata(pdev);
2005
2006 if (prepare)
2007 nvme_dev_disable(dev, false);
2008 else
2009 nvme_reset(dev);
2010 }
2011
2012 static void nvme_shutdown(struct pci_dev *pdev)
2013 {
2014 struct nvme_dev *dev = pci_get_drvdata(pdev);
2015 nvme_dev_disable(dev, true);
2016 }
2017
2018 /*
2019 * The driver's remove may be called on a device in a partially initialized
2020 * state. This function must not have any dependencies on the device state in
2021 * order to proceed.
2022 */
2023 static void nvme_remove(struct pci_dev *pdev)
2024 {
2025 struct nvme_dev *dev = pci_get_drvdata(pdev);
2026
2027 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2028
2029 pci_set_drvdata(pdev, NULL);
2030
2031 if (!pci_device_is_present(pdev)) {
2032 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2033 nvme_dev_disable(dev, false);
2034 }
2035
2036 flush_work(&dev->reset_work);
2037 nvme_uninit_ctrl(&dev->ctrl);
2038 nvme_dev_disable(dev, true);
2039 nvme_dev_remove_admin(dev);
2040 nvme_free_queues(dev, 0);
2041 nvme_release_cmb(dev);
2042 nvme_release_prp_pools(dev);
2043 nvme_dev_unmap(dev);
2044 nvme_put_ctrl(&dev->ctrl);
2045 }
2046
2047 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2048 {
2049 int ret = 0;
2050
2051 if (numvfs == 0) {
2052 if (pci_vfs_assigned(pdev)) {
2053 dev_warn(&pdev->dev,
2054 "Cannot disable SR-IOV VFs while assigned\n");
2055 return -EPERM;
2056 }
2057 pci_disable_sriov(pdev);
2058 return 0;
2059 }
2060
2061 ret = pci_enable_sriov(pdev, numvfs);
2062 return ret ? ret : numvfs;
2063 }
2064
2065 #ifdef CONFIG_PM_SLEEP
2066 static int nvme_suspend(struct device *dev)
2067 {
2068 struct pci_dev *pdev = to_pci_dev(dev);
2069 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2070
2071 nvme_dev_disable(ndev, true);
2072 return 0;
2073 }
2074
2075 static int nvme_resume(struct device *dev)
2076 {
2077 struct pci_dev *pdev = to_pci_dev(dev);
2078 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2079
2080 nvme_reset(ndev);
2081 return 0;
2082 }
2083 #endif
2084
2085 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2086
2087 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2088 pci_channel_state_t state)
2089 {
2090 struct nvme_dev *dev = pci_get_drvdata(pdev);
2091
2092 /*
2093 * A frozen channel requires a reset. When detected, this method will
2094 * shutdown the controller to quiesce. The controller will be restarted
2095 * after the slot reset through driver's slot_reset callback.
2096 */
2097 switch (state) {
2098 case pci_channel_io_normal:
2099 return PCI_ERS_RESULT_CAN_RECOVER;
2100 case pci_channel_io_frozen:
2101 dev_warn(dev->ctrl.device,
2102 "frozen state error detected, reset controller\n");
2103 nvme_dev_disable(dev, false);
2104 return PCI_ERS_RESULT_NEED_RESET;
2105 case pci_channel_io_perm_failure:
2106 dev_warn(dev->ctrl.device,
2107 "failure state error detected, request disconnect\n");
2108 return PCI_ERS_RESULT_DISCONNECT;
2109 }
2110 return PCI_ERS_RESULT_NEED_RESET;
2111 }
2112
2113 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2114 {
2115 struct nvme_dev *dev = pci_get_drvdata(pdev);
2116
2117 dev_info(dev->ctrl.device, "restart after slot reset\n");
2118 pci_restore_state(pdev);
2119 nvme_reset(dev);
2120 return PCI_ERS_RESULT_RECOVERED;
2121 }
2122
2123 static void nvme_error_resume(struct pci_dev *pdev)
2124 {
2125 pci_cleanup_aer_uncorrect_error_status(pdev);
2126 }
2127
2128 static const struct pci_error_handlers nvme_err_handler = {
2129 .error_detected = nvme_error_detected,
2130 .slot_reset = nvme_slot_reset,
2131 .resume = nvme_error_resume,
2132 .reset_notify = nvme_reset_notify,
2133 };
2134
2135 static const struct pci_device_id nvme_id_table[] = {
2136 { PCI_VDEVICE(INTEL, 0x0953),
2137 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2138 NVME_QUIRK_DISCARD_ZEROES, },
2139 { PCI_VDEVICE(INTEL, 0x0a53),
2140 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2141 NVME_QUIRK_DISCARD_ZEROES, },
2142 { PCI_VDEVICE(INTEL, 0x0a54),
2143 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2144 NVME_QUIRK_DISCARD_ZEROES, },
2145 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2146 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2147 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2148 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2149 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2150 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2151 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2152 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2153 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2154 { 0, }
2155 };
2156 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2157
2158 static struct pci_driver nvme_driver = {
2159 .name = "nvme",
2160 .id_table = nvme_id_table,
2161 .probe = nvme_probe,
2162 .remove = nvme_remove,
2163 .shutdown = nvme_shutdown,
2164 .driver = {
2165 .pm = &nvme_dev_pm_ops,
2166 },
2167 .sriov_configure = nvme_pci_sriov_configure,
2168 .err_handler = &nvme_err_handler,
2169 };
2170
2171 static int __init nvme_init(void)
2172 {
2173 int result;
2174
2175 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2176 if (!nvme_workq)
2177 return -ENOMEM;
2178
2179 result = pci_register_driver(&nvme_driver);
2180 if (result)
2181 destroy_workqueue(nvme_workq);
2182 return result;
2183 }
2184
2185 static void __exit nvme_exit(void)
2186 {
2187 pci_unregister_driver(&nvme_driver);
2188 destroy_workqueue(nvme_workq);
2189 _nvme_check_size();
2190 }
2191
2192 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2193 MODULE_LICENSE("GPL");
2194 MODULE_VERSION("1.0");
2195 module_init(nvme_init);
2196 module_exit(nvme_exit);