]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
nvme: remove dead controllers from a work item
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/io-64-nonatomic-lo-hi.h>
43 #include <asm/unaligned.h>
44
45 #include "nvme.h"
46
47 #define NVME_Q_DEPTH 1024
48 #define NVME_AQ_DEPTH 256
49 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
51
52 unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59
60 unsigned char shutdown_timeout = 5;
61 module_param(shutdown_timeout, byte, 0644);
62 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63
64 static int use_threaded_interrupts;
65 module_param(use_threaded_interrupts, int, 0);
66
67 static bool use_cmb_sqes = true;
68 module_param(use_cmb_sqes, bool, 0644);
69 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70
71 static LIST_HEAD(dev_list);
72 static struct task_struct *nvme_thread;
73 static struct workqueue_struct *nvme_workq;
74 static wait_queue_head_t nvme_kthread_wait;
75
76 struct nvme_dev;
77 struct nvme_queue;
78 struct nvme_iod;
79
80 static int nvme_reset(struct nvme_dev *dev);
81 static void nvme_process_cq(struct nvme_queue *nvmeq);
82 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
83 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
84 static void nvme_dev_shutdown(struct nvme_dev *dev);
85
86 struct async_cmd_info {
87 struct kthread_work work;
88 struct kthread_worker *worker;
89 struct request *req;
90 u32 result;
91 int status;
92 void *ctx;
93 };
94
95 /*
96 * Represents an NVM Express device. Each nvme_dev is a PCI function.
97 */
98 struct nvme_dev {
99 struct list_head node;
100 struct nvme_queue **queues;
101 struct blk_mq_tag_set tagset;
102 struct blk_mq_tag_set admin_tagset;
103 u32 __iomem *dbs;
104 struct device *dev;
105 struct dma_pool *prp_page_pool;
106 struct dma_pool *prp_small_pool;
107 unsigned queue_count;
108 unsigned online_queues;
109 unsigned max_qid;
110 int q_depth;
111 u32 db_stride;
112 struct msix_entry *entry;
113 void __iomem *bar;
114 struct work_struct reset_work;
115 struct work_struct scan_work;
116 struct work_struct remove_work;
117 struct mutex shutdown_lock;
118 bool subsystem;
119 void __iomem *cmb;
120 dma_addr_t cmb_dma_addr;
121 u64 cmb_size;
122 u32 cmbsz;
123 unsigned long flags;
124 #define NVME_CTRL_RESETTING 0
125
126 struct nvme_ctrl ctrl;
127 };
128
129 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
130 {
131 return container_of(ctrl, struct nvme_dev, ctrl);
132 }
133
134 /*
135 * An NVM Express queue. Each device has at least two (one for admin
136 * commands and one for I/O commands).
137 */
138 struct nvme_queue {
139 struct device *q_dmadev;
140 struct nvme_dev *dev;
141 char irqname[24]; /* nvme4294967295-65535\0 */
142 spinlock_t q_lock;
143 struct nvme_command *sq_cmds;
144 struct nvme_command __iomem *sq_cmds_io;
145 volatile struct nvme_completion *cqes;
146 struct blk_mq_tags **tags;
147 dma_addr_t sq_dma_addr;
148 dma_addr_t cq_dma_addr;
149 u32 __iomem *q_db;
150 u16 q_depth;
151 s16 cq_vector;
152 u16 sq_head;
153 u16 sq_tail;
154 u16 cq_head;
155 u16 qid;
156 u8 cq_phase;
157 u8 cqe_seen;
158 struct async_cmd_info cmdinfo;
159 };
160
161 /*
162 * The nvme_iod describes the data in an I/O, including the list of PRP
163 * entries. You can't see it in this data structure because C doesn't let
164 * me express that. Use nvme_alloc_iod to ensure there's enough space
165 * allocated to store the PRP list.
166 */
167 struct nvme_iod {
168 unsigned long private; /* For the use of the submitter of the I/O */
169 int npages; /* In the PRP list. 0 means small pool in use */
170 int offset; /* Of PRP list */
171 int nents; /* Used in scatterlist */
172 int length; /* Of data, in bytes */
173 dma_addr_t first_dma;
174 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
175 struct scatterlist sg[0];
176 };
177
178 /*
179 * Check we didin't inadvertently grow the command struct
180 */
181 static inline void _nvme_check_size(void)
182 {
183 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
191 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
192 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
193 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
194 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
195 }
196
197 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
198 struct nvme_completion *);
199
200 struct nvme_cmd_info {
201 nvme_completion_fn fn;
202 void *ctx;
203 int aborted;
204 struct nvme_queue *nvmeq;
205 struct nvme_iod iod[0];
206 };
207
208 /*
209 * Max size of iod being embedded in the request payload
210 */
211 #define NVME_INT_PAGES 2
212 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
213 #define NVME_INT_MASK 0x01
214
215 /*
216 * Will slightly overestimate the number of pages needed. This is OK
217 * as it only leads to a small amount of wasted memory for the lifetime of
218 * the I/O.
219 */
220 static int nvme_npages(unsigned size, struct nvme_dev *dev)
221 {
222 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
223 dev->ctrl.page_size);
224 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
225 }
226
227 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
228 {
229 unsigned int ret = sizeof(struct nvme_cmd_info);
230
231 ret += sizeof(struct nvme_iod);
232 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
233 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
234
235 return ret;
236 }
237
238 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
239 unsigned int hctx_idx)
240 {
241 struct nvme_dev *dev = data;
242 struct nvme_queue *nvmeq = dev->queues[0];
243
244 WARN_ON(hctx_idx != 0);
245 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
246 WARN_ON(nvmeq->tags);
247
248 hctx->driver_data = nvmeq;
249 nvmeq->tags = &dev->admin_tagset.tags[0];
250 return 0;
251 }
252
253 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
254 {
255 struct nvme_queue *nvmeq = hctx->driver_data;
256
257 nvmeq->tags = NULL;
258 }
259
260 static int nvme_admin_init_request(void *data, struct request *req,
261 unsigned int hctx_idx, unsigned int rq_idx,
262 unsigned int numa_node)
263 {
264 struct nvme_dev *dev = data;
265 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
266 struct nvme_queue *nvmeq = dev->queues[0];
267
268 BUG_ON(!nvmeq);
269 cmd->nvmeq = nvmeq;
270 return 0;
271 }
272
273 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
274 unsigned int hctx_idx)
275 {
276 struct nvme_dev *dev = data;
277 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
278
279 if (!nvmeq->tags)
280 nvmeq->tags = &dev->tagset.tags[hctx_idx];
281
282 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
283 hctx->driver_data = nvmeq;
284 return 0;
285 }
286
287 static int nvme_init_request(void *data, struct request *req,
288 unsigned int hctx_idx, unsigned int rq_idx,
289 unsigned int numa_node)
290 {
291 struct nvme_dev *dev = data;
292 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
293 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
294
295 BUG_ON(!nvmeq);
296 cmd->nvmeq = nvmeq;
297 return 0;
298 }
299
300 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
301 nvme_completion_fn handler)
302 {
303 cmd->fn = handler;
304 cmd->ctx = ctx;
305 cmd->aborted = 0;
306 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
307 }
308
309 static void *iod_get_private(struct nvme_iod *iod)
310 {
311 return (void *) (iod->private & ~0x1UL);
312 }
313
314 /*
315 * If bit 0 is set, the iod is embedded in the request payload.
316 */
317 static bool iod_should_kfree(struct nvme_iod *iod)
318 {
319 return (iod->private & NVME_INT_MASK) == 0;
320 }
321
322 /* Special values must be less than 0x1000 */
323 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
324 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
325 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
326 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
327
328 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
329 struct nvme_completion *cqe)
330 {
331 if (ctx == CMD_CTX_CANCELLED)
332 return;
333 if (ctx == CMD_CTX_COMPLETED) {
334 dev_warn(nvmeq->q_dmadev,
335 "completed id %d twice on queue %d\n",
336 cqe->command_id, le16_to_cpup(&cqe->sq_id));
337 return;
338 }
339 if (ctx == CMD_CTX_INVALID) {
340 dev_warn(nvmeq->q_dmadev,
341 "invalid id %d completed on queue %d\n",
342 cqe->command_id, le16_to_cpup(&cqe->sq_id));
343 return;
344 }
345 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
346 }
347
348 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
349 {
350 void *ctx;
351
352 if (fn)
353 *fn = cmd->fn;
354 ctx = cmd->ctx;
355 cmd->fn = special_completion;
356 cmd->ctx = CMD_CTX_CANCELLED;
357 return ctx;
358 }
359
360 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
361 struct nvme_completion *cqe)
362 {
363 u32 result = le32_to_cpup(&cqe->result);
364 u16 status = le16_to_cpup(&cqe->status) >> 1;
365
366 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
367 ++nvmeq->dev->ctrl.event_limit;
368 if (status != NVME_SC_SUCCESS)
369 return;
370
371 switch (result & 0xff07) {
372 case NVME_AER_NOTICE_NS_CHANGED:
373 dev_info(nvmeq->q_dmadev, "rescanning\n");
374 schedule_work(&nvmeq->dev->scan_work);
375 default:
376 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
377 }
378 }
379
380 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
381 struct nvme_completion *cqe)
382 {
383 struct request *req = ctx;
384
385 u16 status = le16_to_cpup(&cqe->status) >> 1;
386 u32 result = le32_to_cpup(&cqe->result);
387
388 blk_mq_free_request(req);
389
390 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
391 ++nvmeq->dev->ctrl.abort_limit;
392 }
393
394 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
395 struct nvme_completion *cqe)
396 {
397 struct async_cmd_info *cmdinfo = ctx;
398 cmdinfo->result = le32_to_cpup(&cqe->result);
399 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
400 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
401 blk_mq_free_request(cmdinfo->req);
402 }
403
404 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
405 unsigned int tag)
406 {
407 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
408
409 return blk_mq_rq_to_pdu(req);
410 }
411
412 /*
413 * Called with local interrupts disabled and the q_lock held. May not sleep.
414 */
415 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
416 nvme_completion_fn *fn)
417 {
418 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
419 void *ctx;
420 if (tag >= nvmeq->q_depth) {
421 *fn = special_completion;
422 return CMD_CTX_INVALID;
423 }
424 if (fn)
425 *fn = cmd->fn;
426 ctx = cmd->ctx;
427 cmd->fn = special_completion;
428 cmd->ctx = CMD_CTX_COMPLETED;
429 return ctx;
430 }
431
432 /**
433 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
434 * @nvmeq: The queue to use
435 * @cmd: The command to send
436 *
437 * Safe to use from interrupt context
438 */
439 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
440 struct nvme_command *cmd)
441 {
442 u16 tail = nvmeq->sq_tail;
443
444 if (nvmeq->sq_cmds_io)
445 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
446 else
447 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
448
449 if (++tail == nvmeq->q_depth)
450 tail = 0;
451 writel(tail, nvmeq->q_db);
452 nvmeq->sq_tail = tail;
453 }
454
455 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
456 {
457 unsigned long flags;
458 spin_lock_irqsave(&nvmeq->q_lock, flags);
459 __nvme_submit_cmd(nvmeq, cmd);
460 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
461 }
462
463 static __le64 **iod_list(struct nvme_iod *iod)
464 {
465 return ((void *)iod) + iod->offset;
466 }
467
468 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
469 unsigned nseg, unsigned long private)
470 {
471 iod->private = private;
472 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
473 iod->npages = -1;
474 iod->length = nbytes;
475 iod->nents = 0;
476 }
477
478 static struct nvme_iod *
479 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
480 unsigned long priv, gfp_t gfp)
481 {
482 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
483 sizeof(__le64 *) * nvme_npages(bytes, dev) +
484 sizeof(struct scatterlist) * nseg, gfp);
485
486 if (iod)
487 iod_init(iod, bytes, nseg, priv);
488
489 return iod;
490 }
491
492 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
493 gfp_t gfp)
494 {
495 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
496 sizeof(struct nvme_dsm_range);
497 struct nvme_iod *iod;
498
499 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
500 size <= NVME_INT_BYTES(dev)) {
501 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
502
503 iod = cmd->iod;
504 iod_init(iod, size, rq->nr_phys_segments,
505 (unsigned long) rq | NVME_INT_MASK);
506 return iod;
507 }
508
509 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
510 (unsigned long) rq, gfp);
511 }
512
513 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
514 {
515 const int last_prp = dev->ctrl.page_size / 8 - 1;
516 int i;
517 __le64 **list = iod_list(iod);
518 dma_addr_t prp_dma = iod->first_dma;
519
520 if (iod->npages == 0)
521 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
522 for (i = 0; i < iod->npages; i++) {
523 __le64 *prp_list = list[i];
524 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
525 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
526 prp_dma = next_prp_dma;
527 }
528
529 if (iod_should_kfree(iod))
530 kfree(iod);
531 }
532
533 #ifdef CONFIG_BLK_DEV_INTEGRITY
534 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535 {
536 if (be32_to_cpu(pi->ref_tag) == v)
537 pi->ref_tag = cpu_to_be32(p);
538 }
539
540 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
541 {
542 if (be32_to_cpu(pi->ref_tag) == p)
543 pi->ref_tag = cpu_to_be32(v);
544 }
545
546 /**
547 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
548 *
549 * The virtual start sector is the one that was originally submitted by the
550 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
551 * start sector may be different. Remap protection information to match the
552 * physical LBA on writes, and back to the original seed on reads.
553 *
554 * Type 0 and 3 do not have a ref tag, so no remapping required.
555 */
556 static void nvme_dif_remap(struct request *req,
557 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
558 {
559 struct nvme_ns *ns = req->rq_disk->private_data;
560 struct bio_integrity_payload *bip;
561 struct t10_pi_tuple *pi;
562 void *p, *pmap;
563 u32 i, nlb, ts, phys, virt;
564
565 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
566 return;
567
568 bip = bio_integrity(req->bio);
569 if (!bip)
570 return;
571
572 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
573
574 p = pmap;
575 virt = bip_get_seed(bip);
576 phys = nvme_block_nr(ns, blk_rq_pos(req));
577 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
578 ts = ns->disk->queue->integrity.tuple_size;
579
580 for (i = 0; i < nlb; i++, virt++, phys++) {
581 pi = (struct t10_pi_tuple *)p;
582 dif_swap(phys, virt, pi);
583 p += ts;
584 }
585 kunmap_atomic(pmap);
586 }
587 #else /* CONFIG_BLK_DEV_INTEGRITY */
588 static void nvme_dif_remap(struct request *req,
589 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
590 {
591 }
592 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
593 {
594 }
595 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
596 {
597 }
598 #endif
599
600 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
601 struct nvme_completion *cqe)
602 {
603 struct nvme_iod *iod = ctx;
604 struct request *req = iod_get_private(iod);
605 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
606 u16 status = le16_to_cpup(&cqe->status) >> 1;
607 int error = 0;
608
609 if (unlikely(status)) {
610 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
611 && (jiffies - req->start_time) < req->timeout) {
612 unsigned long flags;
613
614 nvme_unmap_data(nvmeq->dev, iod);
615
616 blk_mq_requeue_request(req);
617 spin_lock_irqsave(req->q->queue_lock, flags);
618 if (!blk_queue_stopped(req->q))
619 blk_mq_kick_requeue_list(req->q);
620 spin_unlock_irqrestore(req->q->queue_lock, flags);
621 return;
622 }
623
624 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
625 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
626 error = NVME_SC_CANCELLED;
627 else
628 error = status;
629 } else {
630 error = nvme_error_status(status);
631 }
632 }
633
634 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
635 u32 result = le32_to_cpup(&cqe->result);
636 req->special = (void *)(uintptr_t)result;
637 }
638
639 if (cmd_rq->aborted)
640 dev_warn(nvmeq->dev->dev,
641 "completing aborted command with status:%04x\n",
642 error);
643
644 nvme_unmap_data(nvmeq->dev, iod);
645 blk_mq_complete_request(req, error);
646 }
647
648 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
649 int total_len)
650 {
651 struct dma_pool *pool;
652 int length = total_len;
653 struct scatterlist *sg = iod->sg;
654 int dma_len = sg_dma_len(sg);
655 u64 dma_addr = sg_dma_address(sg);
656 u32 page_size = dev->ctrl.page_size;
657 int offset = dma_addr & (page_size - 1);
658 __le64 *prp_list;
659 __le64 **list = iod_list(iod);
660 dma_addr_t prp_dma;
661 int nprps, i;
662
663 length -= (page_size - offset);
664 if (length <= 0)
665 return true;
666
667 dma_len -= (page_size - offset);
668 if (dma_len) {
669 dma_addr += (page_size - offset);
670 } else {
671 sg = sg_next(sg);
672 dma_addr = sg_dma_address(sg);
673 dma_len = sg_dma_len(sg);
674 }
675
676 if (length <= page_size) {
677 iod->first_dma = dma_addr;
678 return true;
679 }
680
681 nprps = DIV_ROUND_UP(length, page_size);
682 if (nprps <= (256 / 8)) {
683 pool = dev->prp_small_pool;
684 iod->npages = 0;
685 } else {
686 pool = dev->prp_page_pool;
687 iod->npages = 1;
688 }
689
690 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
691 if (!prp_list) {
692 iod->first_dma = dma_addr;
693 iod->npages = -1;
694 return false;
695 }
696 list[0] = prp_list;
697 iod->first_dma = prp_dma;
698 i = 0;
699 for (;;) {
700 if (i == page_size >> 3) {
701 __le64 *old_prp_list = prp_list;
702 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
703 if (!prp_list)
704 return false;
705 list[iod->npages++] = prp_list;
706 prp_list[0] = old_prp_list[i - 1];
707 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
708 i = 1;
709 }
710 prp_list[i++] = cpu_to_le64(dma_addr);
711 dma_len -= page_size;
712 dma_addr += page_size;
713 length -= page_size;
714 if (length <= 0)
715 break;
716 if (dma_len > 0)
717 continue;
718 BUG_ON(dma_len < 0);
719 sg = sg_next(sg);
720 dma_addr = sg_dma_address(sg);
721 dma_len = sg_dma_len(sg);
722 }
723
724 return true;
725 }
726
727 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
728 struct nvme_command *cmnd)
729 {
730 struct request *req = iod_get_private(iod);
731 struct request_queue *q = req->q;
732 enum dma_data_direction dma_dir = rq_data_dir(req) ?
733 DMA_TO_DEVICE : DMA_FROM_DEVICE;
734 int ret = BLK_MQ_RQ_QUEUE_ERROR;
735
736 sg_init_table(iod->sg, req->nr_phys_segments);
737 iod->nents = blk_rq_map_sg(q, req, iod->sg);
738 if (!iod->nents)
739 goto out;
740
741 ret = BLK_MQ_RQ_QUEUE_BUSY;
742 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
743 goto out;
744
745 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
746 goto out_unmap;
747
748 ret = BLK_MQ_RQ_QUEUE_ERROR;
749 if (blk_integrity_rq(req)) {
750 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
751 goto out_unmap;
752
753 sg_init_table(iod->meta_sg, 1);
754 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
755 goto out_unmap;
756
757 if (rq_data_dir(req))
758 nvme_dif_remap(req, nvme_dif_prep);
759
760 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
761 goto out_unmap;
762 }
763
764 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
765 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
766 if (blk_integrity_rq(req))
767 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
768 return BLK_MQ_RQ_QUEUE_OK;
769
770 out_unmap:
771 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
772 out:
773 return ret;
774 }
775
776 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
777 {
778 struct request *req = iod_get_private(iod);
779 enum dma_data_direction dma_dir = rq_data_dir(req) ?
780 DMA_TO_DEVICE : DMA_FROM_DEVICE;
781
782 if (iod->nents) {
783 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
784 if (blk_integrity_rq(req)) {
785 if (!rq_data_dir(req))
786 nvme_dif_remap(req, nvme_dif_complete);
787 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
788 }
789 }
790
791 nvme_free_iod(dev, iod);
792 }
793
794 /*
795 * We reuse the small pool to allocate the 16-byte range here as it is not
796 * worth having a special pool for these or additional cases to handle freeing
797 * the iod.
798 */
799 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
800 struct nvme_iod *iod, struct nvme_command *cmnd)
801 {
802 struct request *req = iod_get_private(iod);
803 struct nvme_dsm_range *range;
804
805 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
806 &iod->first_dma);
807 if (!range)
808 return BLK_MQ_RQ_QUEUE_BUSY;
809 iod_list(iod)[0] = (__le64 *)range;
810 iod->npages = 0;
811
812 range->cattr = cpu_to_le32(0);
813 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
814 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
815
816 memset(cmnd, 0, sizeof(*cmnd));
817 cmnd->dsm.opcode = nvme_cmd_dsm;
818 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
819 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
820 cmnd->dsm.nr = 0;
821 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
822 return BLK_MQ_RQ_QUEUE_OK;
823 }
824
825 /*
826 * NOTE: ns is NULL when called on the admin queue.
827 */
828 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
829 const struct blk_mq_queue_data *bd)
830 {
831 struct nvme_ns *ns = hctx->queue->queuedata;
832 struct nvme_queue *nvmeq = hctx->driver_data;
833 struct nvme_dev *dev = nvmeq->dev;
834 struct request *req = bd->rq;
835 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
836 struct nvme_iod *iod;
837 struct nvme_command cmnd;
838 int ret = BLK_MQ_RQ_QUEUE_OK;
839
840 /*
841 * If formated with metadata, require the block layer provide a buffer
842 * unless this namespace is formated such that the metadata can be
843 * stripped/generated by the controller with PRACT=1.
844 */
845 if (ns && ns->ms && !blk_integrity_rq(req)) {
846 if (!(ns->pi_type && ns->ms == 8) &&
847 req->cmd_type != REQ_TYPE_DRV_PRIV) {
848 blk_mq_complete_request(req, -EFAULT);
849 return BLK_MQ_RQ_QUEUE_OK;
850 }
851 }
852
853 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
854 if (!iod)
855 return BLK_MQ_RQ_QUEUE_BUSY;
856
857 if (req->cmd_flags & REQ_DISCARD) {
858 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
859 } else {
860 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
861 memcpy(&cmnd, req->cmd, sizeof(cmnd));
862 else if (req->cmd_flags & REQ_FLUSH)
863 nvme_setup_flush(ns, &cmnd);
864 else
865 nvme_setup_rw(ns, req, &cmnd);
866
867 if (req->nr_phys_segments)
868 ret = nvme_map_data(dev, iod, &cmnd);
869 }
870
871 if (ret)
872 goto out;
873
874 cmnd.common.command_id = req->tag;
875 nvme_set_info(cmd, iod, req_completion);
876
877 spin_lock_irq(&nvmeq->q_lock);
878 __nvme_submit_cmd(nvmeq, &cmnd);
879 nvme_process_cq(nvmeq);
880 spin_unlock_irq(&nvmeq->q_lock);
881 return BLK_MQ_RQ_QUEUE_OK;
882 out:
883 nvme_free_iod(dev, iod);
884 return ret;
885 }
886
887 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
888 {
889 u16 head, phase;
890
891 head = nvmeq->cq_head;
892 phase = nvmeq->cq_phase;
893
894 for (;;) {
895 void *ctx;
896 nvme_completion_fn fn;
897 struct nvme_completion cqe = nvmeq->cqes[head];
898 if ((le16_to_cpu(cqe.status) & 1) != phase)
899 break;
900 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
901 if (++head == nvmeq->q_depth) {
902 head = 0;
903 phase = !phase;
904 }
905 if (tag && *tag == cqe.command_id)
906 *tag = -1;
907 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
908 fn(nvmeq, ctx, &cqe);
909 }
910
911 /* If the controller ignores the cq head doorbell and continuously
912 * writes to the queue, it is theoretically possible to wrap around
913 * the queue twice and mistakenly return IRQ_NONE. Linux only
914 * requires that 0.1% of your interrupts are handled, so this isn't
915 * a big problem.
916 */
917 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
918 return;
919
920 if (likely(nvmeq->cq_vector >= 0))
921 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
922 nvmeq->cq_head = head;
923 nvmeq->cq_phase = phase;
924
925 nvmeq->cqe_seen = 1;
926 }
927
928 static void nvme_process_cq(struct nvme_queue *nvmeq)
929 {
930 __nvme_process_cq(nvmeq, NULL);
931 }
932
933 static irqreturn_t nvme_irq(int irq, void *data)
934 {
935 irqreturn_t result;
936 struct nvme_queue *nvmeq = data;
937 spin_lock(&nvmeq->q_lock);
938 nvme_process_cq(nvmeq);
939 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
940 nvmeq->cqe_seen = 0;
941 spin_unlock(&nvmeq->q_lock);
942 return result;
943 }
944
945 static irqreturn_t nvme_irq_check(int irq, void *data)
946 {
947 struct nvme_queue *nvmeq = data;
948 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
949 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
950 return IRQ_NONE;
951 return IRQ_WAKE_THREAD;
952 }
953
954 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
955 {
956 struct nvme_queue *nvmeq = hctx->driver_data;
957
958 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
959 nvmeq->cq_phase) {
960 spin_lock_irq(&nvmeq->q_lock);
961 __nvme_process_cq(nvmeq, &tag);
962 spin_unlock_irq(&nvmeq->q_lock);
963
964 if (tag == -1)
965 return 1;
966 }
967
968 return 0;
969 }
970
971 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
972 {
973 struct nvme_queue *nvmeq = dev->queues[0];
974 struct nvme_command c;
975 struct nvme_cmd_info *cmd_info;
976 struct request *req;
977
978 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
979 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
980 if (IS_ERR(req))
981 return PTR_ERR(req);
982
983 req->cmd_flags |= REQ_NO_TIMEOUT;
984 cmd_info = blk_mq_rq_to_pdu(req);
985 nvme_set_info(cmd_info, NULL, async_req_completion);
986
987 memset(&c, 0, sizeof(c));
988 c.common.opcode = nvme_admin_async_event;
989 c.common.command_id = req->tag;
990
991 blk_mq_free_request(req);
992 __nvme_submit_cmd(nvmeq, &c);
993 return 0;
994 }
995
996 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
997 struct nvme_command *cmd,
998 struct async_cmd_info *cmdinfo, unsigned timeout)
999 {
1000 struct nvme_queue *nvmeq = dev->queues[0];
1001 struct request *req;
1002 struct nvme_cmd_info *cmd_rq;
1003
1004 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
1005 if (IS_ERR(req))
1006 return PTR_ERR(req);
1007
1008 req->timeout = timeout;
1009 cmd_rq = blk_mq_rq_to_pdu(req);
1010 cmdinfo->req = req;
1011 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1012 cmdinfo->status = -EINTR;
1013
1014 cmd->common.command_id = req->tag;
1015
1016 nvme_submit_cmd(nvmeq, cmd);
1017 return 0;
1018 }
1019
1020 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1021 {
1022 struct nvme_command c;
1023
1024 memset(&c, 0, sizeof(c));
1025 c.delete_queue.opcode = opcode;
1026 c.delete_queue.qid = cpu_to_le16(id);
1027
1028 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1029 }
1030
1031 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1032 struct nvme_queue *nvmeq)
1033 {
1034 struct nvme_command c;
1035 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1036
1037 /*
1038 * Note: we (ab)use the fact the the prp fields survive if no data
1039 * is attached to the request.
1040 */
1041 memset(&c, 0, sizeof(c));
1042 c.create_cq.opcode = nvme_admin_create_cq;
1043 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1044 c.create_cq.cqid = cpu_to_le16(qid);
1045 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1046 c.create_cq.cq_flags = cpu_to_le16(flags);
1047 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1048
1049 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1050 }
1051
1052 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1053 struct nvme_queue *nvmeq)
1054 {
1055 struct nvme_command c;
1056 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1057
1058 /*
1059 * Note: we (ab)use the fact the the prp fields survive if no data
1060 * is attached to the request.
1061 */
1062 memset(&c, 0, sizeof(c));
1063 c.create_sq.opcode = nvme_admin_create_sq;
1064 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1065 c.create_sq.sqid = cpu_to_le16(qid);
1066 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1067 c.create_sq.sq_flags = cpu_to_le16(flags);
1068 c.create_sq.cqid = cpu_to_le16(qid);
1069
1070 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1071 }
1072
1073 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1074 {
1075 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1076 }
1077
1078 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1079 {
1080 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1081 }
1082
1083 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1084 {
1085 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1086 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1087 struct nvme_dev *dev = nvmeq->dev;
1088 struct request *abort_req;
1089 struct nvme_cmd_info *abort_cmd;
1090 struct nvme_command cmd;
1091
1092 /*
1093 * Shutdown immediately if controller times out while starting. The
1094 * reset work will see the pci device disabled when it gets the forced
1095 * cancellation error. All outstanding requests are completed on
1096 * shutdown, so we return BLK_EH_HANDLED.
1097 */
1098 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1099 dev_warn(dev->dev,
1100 "I/O %d QID %d timeout, disable controller\n",
1101 req->tag, nvmeq->qid);
1102 nvme_dev_shutdown(dev);
1103 req->errors = NVME_SC_CANCELLED;
1104 return BLK_EH_HANDLED;
1105 }
1106
1107 /*
1108 * Shutdown the controller immediately and schedule a reset if the
1109 * command was already aborted once before and still hasn't been
1110 * returned to the driver, or if this is the admin queue.
1111 */
1112 if (!nvmeq->qid || cmd_rq->aborted) {
1113 dev_warn(dev->dev,
1114 "I/O %d QID %d timeout, reset controller\n",
1115 req->tag, nvmeq->qid);
1116 nvme_dev_shutdown(dev);
1117 queue_work(nvme_workq, &dev->reset_work);
1118
1119 /*
1120 * Mark the request as handled, since the inline shutdown
1121 * forces all outstanding requests to complete.
1122 */
1123 req->errors = NVME_SC_CANCELLED;
1124 return BLK_EH_HANDLED;
1125 }
1126
1127 if (!dev->ctrl.abort_limit)
1128 return BLK_EH_RESET_TIMER;
1129
1130 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1131 BLK_MQ_REQ_NOWAIT);
1132 if (IS_ERR(abort_req))
1133 return BLK_EH_RESET_TIMER;
1134
1135 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1136 nvme_set_info(abort_cmd, abort_req, abort_completion);
1137
1138 memset(&cmd, 0, sizeof(cmd));
1139 cmd.abort.opcode = nvme_admin_abort_cmd;
1140 cmd.abort.cid = req->tag;
1141 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1142 cmd.abort.command_id = abort_req->tag;
1143
1144 --dev->ctrl.abort_limit;
1145 cmd_rq->aborted = 1;
1146
1147 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
1148 req->tag, nvmeq->qid);
1149 nvme_submit_cmd(dev->queues[0], &cmd);
1150
1151 /*
1152 * The aborted req will be completed on receiving the abort req.
1153 * We enable the timer again. If hit twice, it'll cause a device reset,
1154 * as the device then is in a faulty state.
1155 */
1156 return BLK_EH_RESET_TIMER;
1157 }
1158
1159 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1160 {
1161 struct nvme_queue *nvmeq = data;
1162 void *ctx;
1163 nvme_completion_fn fn;
1164 struct nvme_cmd_info *cmd;
1165 struct nvme_completion cqe;
1166
1167 if (!blk_mq_request_started(req))
1168 return;
1169
1170 cmd = blk_mq_rq_to_pdu(req);
1171
1172 if (cmd->ctx == CMD_CTX_CANCELLED)
1173 return;
1174
1175 if (blk_queue_dying(req->q))
1176 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1177 else
1178 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1179
1180
1181 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1182 req->tag, nvmeq->qid);
1183 ctx = cancel_cmd_info(cmd, &fn);
1184 fn(nvmeq, ctx, &cqe);
1185 }
1186
1187 static void nvme_free_queue(struct nvme_queue *nvmeq)
1188 {
1189 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1190 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1191 if (nvmeq->sq_cmds)
1192 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1193 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1194 kfree(nvmeq);
1195 }
1196
1197 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1198 {
1199 int i;
1200
1201 for (i = dev->queue_count - 1; i >= lowest; i--) {
1202 struct nvme_queue *nvmeq = dev->queues[i];
1203 dev->queue_count--;
1204 dev->queues[i] = NULL;
1205 nvme_free_queue(nvmeq);
1206 }
1207 }
1208
1209 /**
1210 * nvme_suspend_queue - put queue into suspended state
1211 * @nvmeq - queue to suspend
1212 */
1213 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1214 {
1215 int vector;
1216
1217 spin_lock_irq(&nvmeq->q_lock);
1218 if (nvmeq->cq_vector == -1) {
1219 spin_unlock_irq(&nvmeq->q_lock);
1220 return 1;
1221 }
1222 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1223 nvmeq->dev->online_queues--;
1224 nvmeq->cq_vector = -1;
1225 spin_unlock_irq(&nvmeq->q_lock);
1226
1227 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1228 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1229
1230 irq_set_affinity_hint(vector, NULL);
1231 free_irq(vector, nvmeq);
1232
1233 return 0;
1234 }
1235
1236 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1237 {
1238 spin_lock_irq(&nvmeq->q_lock);
1239 if (nvmeq->tags && *nvmeq->tags)
1240 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1241 spin_unlock_irq(&nvmeq->q_lock);
1242 }
1243
1244 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1245 {
1246 struct nvme_queue *nvmeq = dev->queues[qid];
1247
1248 if (!nvmeq)
1249 return;
1250 if (nvme_suspend_queue(nvmeq))
1251 return;
1252
1253 /* Don't tell the adapter to delete the admin queue.
1254 * Don't tell a removed adapter to delete IO queues. */
1255 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1256 adapter_delete_sq(dev, qid);
1257 adapter_delete_cq(dev, qid);
1258 }
1259
1260 spin_lock_irq(&nvmeq->q_lock);
1261 nvme_process_cq(nvmeq);
1262 spin_unlock_irq(&nvmeq->q_lock);
1263 }
1264
1265 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1266 int entry_size)
1267 {
1268 int q_depth = dev->q_depth;
1269 unsigned q_size_aligned = roundup(q_depth * entry_size,
1270 dev->ctrl.page_size);
1271
1272 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1273 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1274 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1275 q_depth = div_u64(mem_per_q, entry_size);
1276
1277 /*
1278 * Ensure the reduced q_depth is above some threshold where it
1279 * would be better to map queues in system memory with the
1280 * original depth
1281 */
1282 if (q_depth < 64)
1283 return -ENOMEM;
1284 }
1285
1286 return q_depth;
1287 }
1288
1289 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1290 int qid, int depth)
1291 {
1292 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1293 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1294 dev->ctrl.page_size);
1295 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1296 nvmeq->sq_cmds_io = dev->cmb + offset;
1297 } else {
1298 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1299 &nvmeq->sq_dma_addr, GFP_KERNEL);
1300 if (!nvmeq->sq_cmds)
1301 return -ENOMEM;
1302 }
1303
1304 return 0;
1305 }
1306
1307 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1308 int depth)
1309 {
1310 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1311 if (!nvmeq)
1312 return NULL;
1313
1314 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1315 &nvmeq->cq_dma_addr, GFP_KERNEL);
1316 if (!nvmeq->cqes)
1317 goto free_nvmeq;
1318
1319 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1320 goto free_cqdma;
1321
1322 nvmeq->q_dmadev = dev->dev;
1323 nvmeq->dev = dev;
1324 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1325 dev->ctrl.instance, qid);
1326 spin_lock_init(&nvmeq->q_lock);
1327 nvmeq->cq_head = 0;
1328 nvmeq->cq_phase = 1;
1329 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1330 nvmeq->q_depth = depth;
1331 nvmeq->qid = qid;
1332 nvmeq->cq_vector = -1;
1333 dev->queues[qid] = nvmeq;
1334
1335 /* make sure queue descriptor is set before queue count, for kthread */
1336 mb();
1337 dev->queue_count++;
1338
1339 return nvmeq;
1340
1341 free_cqdma:
1342 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1343 nvmeq->cq_dma_addr);
1344 free_nvmeq:
1345 kfree(nvmeq);
1346 return NULL;
1347 }
1348
1349 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1350 const char *name)
1351 {
1352 if (use_threaded_interrupts)
1353 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1354 nvme_irq_check, nvme_irq, IRQF_SHARED,
1355 name, nvmeq);
1356 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1357 IRQF_SHARED, name, nvmeq);
1358 }
1359
1360 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1361 {
1362 struct nvme_dev *dev = nvmeq->dev;
1363
1364 spin_lock_irq(&nvmeq->q_lock);
1365 nvmeq->sq_tail = 0;
1366 nvmeq->cq_head = 0;
1367 nvmeq->cq_phase = 1;
1368 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1369 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1370 dev->online_queues++;
1371 spin_unlock_irq(&nvmeq->q_lock);
1372 }
1373
1374 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1375 {
1376 struct nvme_dev *dev = nvmeq->dev;
1377 int result;
1378
1379 nvmeq->cq_vector = qid - 1;
1380 result = adapter_alloc_cq(dev, qid, nvmeq);
1381 if (result < 0)
1382 return result;
1383
1384 result = adapter_alloc_sq(dev, qid, nvmeq);
1385 if (result < 0)
1386 goto release_cq;
1387
1388 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1389 if (result < 0)
1390 goto release_sq;
1391
1392 nvme_init_queue(nvmeq, qid);
1393 return result;
1394
1395 release_sq:
1396 adapter_delete_sq(dev, qid);
1397 release_cq:
1398 adapter_delete_cq(dev, qid);
1399 return result;
1400 }
1401
1402 static struct blk_mq_ops nvme_mq_admin_ops = {
1403 .queue_rq = nvme_queue_rq,
1404 .map_queue = blk_mq_map_queue,
1405 .init_hctx = nvme_admin_init_hctx,
1406 .exit_hctx = nvme_admin_exit_hctx,
1407 .init_request = nvme_admin_init_request,
1408 .timeout = nvme_timeout,
1409 };
1410
1411 static struct blk_mq_ops nvme_mq_ops = {
1412 .queue_rq = nvme_queue_rq,
1413 .map_queue = blk_mq_map_queue,
1414 .init_hctx = nvme_init_hctx,
1415 .init_request = nvme_init_request,
1416 .timeout = nvme_timeout,
1417 .poll = nvme_poll,
1418 };
1419
1420 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1421 {
1422 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1423 blk_cleanup_queue(dev->ctrl.admin_q);
1424 blk_mq_free_tag_set(&dev->admin_tagset);
1425 }
1426 }
1427
1428 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1429 {
1430 if (!dev->ctrl.admin_q) {
1431 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1432 dev->admin_tagset.nr_hw_queues = 1;
1433 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1434 dev->admin_tagset.reserved_tags = 1;
1435 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1436 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1437 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1438 dev->admin_tagset.driver_data = dev;
1439
1440 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1441 return -ENOMEM;
1442
1443 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1444 if (IS_ERR(dev->ctrl.admin_q)) {
1445 blk_mq_free_tag_set(&dev->admin_tagset);
1446 return -ENOMEM;
1447 }
1448 if (!blk_get_queue(dev->ctrl.admin_q)) {
1449 nvme_dev_remove_admin(dev);
1450 dev->ctrl.admin_q = NULL;
1451 return -ENODEV;
1452 }
1453 } else
1454 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1455
1456 return 0;
1457 }
1458
1459 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1460 {
1461 int result;
1462 u32 aqa;
1463 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1464 struct nvme_queue *nvmeq;
1465
1466 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1467 NVME_CAP_NSSRC(cap) : 0;
1468
1469 if (dev->subsystem &&
1470 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1471 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1472
1473 result = nvme_disable_ctrl(&dev->ctrl, cap);
1474 if (result < 0)
1475 return result;
1476
1477 nvmeq = dev->queues[0];
1478 if (!nvmeq) {
1479 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1480 if (!nvmeq)
1481 return -ENOMEM;
1482 }
1483
1484 aqa = nvmeq->q_depth - 1;
1485 aqa |= aqa << 16;
1486
1487 writel(aqa, dev->bar + NVME_REG_AQA);
1488 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1489 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1490
1491 result = nvme_enable_ctrl(&dev->ctrl, cap);
1492 if (result)
1493 goto free_nvmeq;
1494
1495 nvmeq->cq_vector = 0;
1496 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1497 if (result) {
1498 nvmeq->cq_vector = -1;
1499 goto free_nvmeq;
1500 }
1501
1502 return result;
1503
1504 free_nvmeq:
1505 nvme_free_queues(dev, 0);
1506 return result;
1507 }
1508
1509 static int nvme_kthread(void *data)
1510 {
1511 struct nvme_dev *dev, *next;
1512
1513 while (!kthread_should_stop()) {
1514 set_current_state(TASK_INTERRUPTIBLE);
1515 spin_lock(&dev_list_lock);
1516 list_for_each_entry_safe(dev, next, &dev_list, node) {
1517 int i;
1518 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1519
1520 /*
1521 * Skip controllers currently under reset.
1522 */
1523 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1524 continue;
1525
1526 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1527 csts & NVME_CSTS_CFS) {
1528 if (queue_work(nvme_workq, &dev->reset_work)) {
1529 dev_warn(dev->dev,
1530 "Failed status: %x, reset controller\n",
1531 readl(dev->bar + NVME_REG_CSTS));
1532 }
1533 continue;
1534 }
1535 for (i = 0; i < dev->queue_count; i++) {
1536 struct nvme_queue *nvmeq = dev->queues[i];
1537 if (!nvmeq)
1538 continue;
1539 spin_lock_irq(&nvmeq->q_lock);
1540 nvme_process_cq(nvmeq);
1541
1542 while (i == 0 && dev->ctrl.event_limit > 0) {
1543 if (nvme_submit_async_admin_req(dev))
1544 break;
1545 dev->ctrl.event_limit--;
1546 }
1547 spin_unlock_irq(&nvmeq->q_lock);
1548 }
1549 }
1550 spin_unlock(&dev_list_lock);
1551 schedule_timeout(round_jiffies_relative(HZ));
1552 }
1553 return 0;
1554 }
1555
1556 static int nvme_create_io_queues(struct nvme_dev *dev)
1557 {
1558 unsigned i;
1559 int ret = 0;
1560
1561 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1562 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1563 ret = -ENOMEM;
1564 break;
1565 }
1566 }
1567
1568 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1569 ret = nvme_create_queue(dev->queues[i], i);
1570 if (ret) {
1571 nvme_free_queues(dev, i);
1572 break;
1573 }
1574 }
1575
1576 /*
1577 * Ignore failing Create SQ/CQ commands, we can continue with less
1578 * than the desired aount of queues, and even a controller without
1579 * I/O queues an still be used to issue admin commands. This might
1580 * be useful to upgrade a buggy firmware for example.
1581 */
1582 return ret >= 0 ? 0 : ret;
1583 }
1584
1585 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1586 {
1587 u64 szu, size, offset;
1588 u32 cmbloc;
1589 resource_size_t bar_size;
1590 struct pci_dev *pdev = to_pci_dev(dev->dev);
1591 void __iomem *cmb;
1592 dma_addr_t dma_addr;
1593
1594 if (!use_cmb_sqes)
1595 return NULL;
1596
1597 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1598 if (!(NVME_CMB_SZ(dev->cmbsz)))
1599 return NULL;
1600
1601 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1602
1603 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1604 size = szu * NVME_CMB_SZ(dev->cmbsz);
1605 offset = szu * NVME_CMB_OFST(cmbloc);
1606 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1607
1608 if (offset > bar_size)
1609 return NULL;
1610
1611 /*
1612 * Controllers may support a CMB size larger than their BAR,
1613 * for example, due to being behind a bridge. Reduce the CMB to
1614 * the reported size of the BAR
1615 */
1616 if (size > bar_size - offset)
1617 size = bar_size - offset;
1618
1619 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1620 cmb = ioremap_wc(dma_addr, size);
1621 if (!cmb)
1622 return NULL;
1623
1624 dev->cmb_dma_addr = dma_addr;
1625 dev->cmb_size = size;
1626 return cmb;
1627 }
1628
1629 static inline void nvme_release_cmb(struct nvme_dev *dev)
1630 {
1631 if (dev->cmb) {
1632 iounmap(dev->cmb);
1633 dev->cmb = NULL;
1634 }
1635 }
1636
1637 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1638 {
1639 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1640 }
1641
1642 static int nvme_setup_io_queues(struct nvme_dev *dev)
1643 {
1644 struct nvme_queue *adminq = dev->queues[0];
1645 struct pci_dev *pdev = to_pci_dev(dev->dev);
1646 int result, i, vecs, nr_io_queues, size;
1647
1648 nr_io_queues = num_possible_cpus();
1649 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1650 if (result < 0)
1651 return result;
1652
1653 /*
1654 * Degraded controllers might return an error when setting the queue
1655 * count. We still want to be able to bring them online and offer
1656 * access to the admin queue, as that might be only way to fix them up.
1657 */
1658 if (result > 0) {
1659 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1660 nr_io_queues = 0;
1661 result = 0;
1662 }
1663
1664 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1665 result = nvme_cmb_qdepth(dev, nr_io_queues,
1666 sizeof(struct nvme_command));
1667 if (result > 0)
1668 dev->q_depth = result;
1669 else
1670 nvme_release_cmb(dev);
1671 }
1672
1673 size = db_bar_size(dev, nr_io_queues);
1674 if (size > 8192) {
1675 iounmap(dev->bar);
1676 do {
1677 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1678 if (dev->bar)
1679 break;
1680 if (!--nr_io_queues)
1681 return -ENOMEM;
1682 size = db_bar_size(dev, nr_io_queues);
1683 } while (1);
1684 dev->dbs = dev->bar + 4096;
1685 adminq->q_db = dev->dbs;
1686 }
1687
1688 /* Deregister the admin queue's interrupt */
1689 free_irq(dev->entry[0].vector, adminq);
1690
1691 /*
1692 * If we enable msix early due to not intx, disable it again before
1693 * setting up the full range we need.
1694 */
1695 if (!pdev->irq)
1696 pci_disable_msix(pdev);
1697
1698 for (i = 0; i < nr_io_queues; i++)
1699 dev->entry[i].entry = i;
1700 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1701 if (vecs < 0) {
1702 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1703 if (vecs < 0) {
1704 vecs = 1;
1705 } else {
1706 for (i = 0; i < vecs; i++)
1707 dev->entry[i].vector = i + pdev->irq;
1708 }
1709 }
1710
1711 /*
1712 * Should investigate if there's a performance win from allocating
1713 * more queues than interrupt vectors; it might allow the submission
1714 * path to scale better, even if the receive path is limited by the
1715 * number of interrupts.
1716 */
1717 nr_io_queues = vecs;
1718 dev->max_qid = nr_io_queues;
1719
1720 result = queue_request_irq(dev, adminq, adminq->irqname);
1721 if (result) {
1722 adminq->cq_vector = -1;
1723 goto free_queues;
1724 }
1725
1726 /* Free previously allocated queues that are no longer usable */
1727 nvme_free_queues(dev, nr_io_queues + 1);
1728 return nvme_create_io_queues(dev);
1729
1730 free_queues:
1731 nvme_free_queues(dev, 1);
1732 return result;
1733 }
1734
1735 static void nvme_set_irq_hints(struct nvme_dev *dev)
1736 {
1737 struct nvme_queue *nvmeq;
1738 int i;
1739
1740 for (i = 0; i < dev->online_queues; i++) {
1741 nvmeq = dev->queues[i];
1742
1743 if (!nvmeq->tags || !(*nvmeq->tags))
1744 continue;
1745
1746 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1747 blk_mq_tags_cpumask(*nvmeq->tags));
1748 }
1749 }
1750
1751 static void nvme_dev_scan(struct work_struct *work)
1752 {
1753 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1754
1755 if (!dev->tagset.tags)
1756 return;
1757 nvme_scan_namespaces(&dev->ctrl);
1758 nvme_set_irq_hints(dev);
1759 }
1760
1761 /*
1762 * Return: error value if an error occurred setting up the queues or calling
1763 * Identify Device. 0 if these succeeded, even if adding some of the
1764 * namespaces failed. At the moment, these failures are silent. TBD which
1765 * failures should be reported.
1766 */
1767 static int nvme_dev_add(struct nvme_dev *dev)
1768 {
1769 if (!dev->ctrl.tagset) {
1770 dev->tagset.ops = &nvme_mq_ops;
1771 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1772 dev->tagset.timeout = NVME_IO_TIMEOUT;
1773 dev->tagset.numa_node = dev_to_node(dev->dev);
1774 dev->tagset.queue_depth =
1775 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1776 dev->tagset.cmd_size = nvme_cmd_size(dev);
1777 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1778 dev->tagset.driver_data = dev;
1779
1780 if (blk_mq_alloc_tag_set(&dev->tagset))
1781 return 0;
1782 dev->ctrl.tagset = &dev->tagset;
1783 }
1784 schedule_work(&dev->scan_work);
1785 return 0;
1786 }
1787
1788 static int nvme_dev_map(struct nvme_dev *dev)
1789 {
1790 u64 cap;
1791 int bars, result = -ENOMEM;
1792 struct pci_dev *pdev = to_pci_dev(dev->dev);
1793
1794 if (pci_enable_device_mem(pdev))
1795 return result;
1796
1797 dev->entry[0].vector = pdev->irq;
1798 pci_set_master(pdev);
1799 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1800 if (!bars)
1801 goto disable_pci;
1802
1803 if (pci_request_selected_regions(pdev, bars, "nvme"))
1804 goto disable_pci;
1805
1806 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1807 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1808 goto disable;
1809
1810 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1811 if (!dev->bar)
1812 goto disable;
1813
1814 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1815 result = -ENODEV;
1816 goto unmap;
1817 }
1818
1819 /*
1820 * Some devices don't advertse INTx interrupts, pre-enable a single
1821 * MSIX vec for setup. We'll adjust this later.
1822 */
1823 if (!pdev->irq) {
1824 result = pci_enable_msix(pdev, dev->entry, 1);
1825 if (result < 0)
1826 goto unmap;
1827 }
1828
1829 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1830
1831 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1832 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1833 dev->dbs = dev->bar + 4096;
1834 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1835 dev->cmb = nvme_map_cmb(dev);
1836
1837 return 0;
1838
1839 unmap:
1840 iounmap(dev->bar);
1841 dev->bar = NULL;
1842 disable:
1843 pci_release_regions(pdev);
1844 disable_pci:
1845 pci_disable_device(pdev);
1846 return result;
1847 }
1848
1849 static void nvme_dev_unmap(struct nvme_dev *dev)
1850 {
1851 struct pci_dev *pdev = to_pci_dev(dev->dev);
1852
1853 if (pdev->msi_enabled)
1854 pci_disable_msi(pdev);
1855 else if (pdev->msix_enabled)
1856 pci_disable_msix(pdev);
1857
1858 if (dev->bar) {
1859 iounmap(dev->bar);
1860 dev->bar = NULL;
1861 pci_release_regions(pdev);
1862 }
1863
1864 if (pci_is_enabled(pdev))
1865 pci_disable_device(pdev);
1866 }
1867
1868 struct nvme_delq_ctx {
1869 struct task_struct *waiter;
1870 struct kthread_worker *worker;
1871 atomic_t refcount;
1872 };
1873
1874 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1875 {
1876 dq->waiter = current;
1877 mb();
1878
1879 for (;;) {
1880 set_current_state(TASK_KILLABLE);
1881 if (!atomic_read(&dq->refcount))
1882 break;
1883 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1884 fatal_signal_pending(current)) {
1885 /*
1886 * Disable the controller first since we can't trust it
1887 * at this point, but leave the admin queue enabled
1888 * until all queue deletion requests are flushed.
1889 * FIXME: This may take a while if there are more h/w
1890 * queues than admin tags.
1891 */
1892 set_current_state(TASK_RUNNING);
1893 nvme_disable_ctrl(&dev->ctrl,
1894 lo_hi_readq(dev->bar + NVME_REG_CAP));
1895 nvme_clear_queue(dev->queues[0]);
1896 flush_kthread_worker(dq->worker);
1897 nvme_disable_queue(dev, 0);
1898 return;
1899 }
1900 }
1901 set_current_state(TASK_RUNNING);
1902 }
1903
1904 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1905 {
1906 atomic_dec(&dq->refcount);
1907 if (dq->waiter)
1908 wake_up_process(dq->waiter);
1909 }
1910
1911 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1912 {
1913 atomic_inc(&dq->refcount);
1914 return dq;
1915 }
1916
1917 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1918 {
1919 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1920 nvme_put_dq(dq);
1921
1922 spin_lock_irq(&nvmeq->q_lock);
1923 nvme_process_cq(nvmeq);
1924 spin_unlock_irq(&nvmeq->q_lock);
1925 }
1926
1927 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1928 kthread_work_func_t fn)
1929 {
1930 struct nvme_command c;
1931
1932 memset(&c, 0, sizeof(c));
1933 c.delete_queue.opcode = opcode;
1934 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1935
1936 init_kthread_work(&nvmeq->cmdinfo.work, fn);
1937 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1938 ADMIN_TIMEOUT);
1939 }
1940
1941 static void nvme_del_cq_work_handler(struct kthread_work *work)
1942 {
1943 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1944 cmdinfo.work);
1945 nvme_del_queue_end(nvmeq);
1946 }
1947
1948 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1949 {
1950 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1951 nvme_del_cq_work_handler);
1952 }
1953
1954 static void nvme_del_sq_work_handler(struct kthread_work *work)
1955 {
1956 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1957 cmdinfo.work);
1958 int status = nvmeq->cmdinfo.status;
1959
1960 if (!status)
1961 status = nvme_delete_cq(nvmeq);
1962 if (status)
1963 nvme_del_queue_end(nvmeq);
1964 }
1965
1966 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1967 {
1968 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1969 nvme_del_sq_work_handler);
1970 }
1971
1972 static void nvme_del_queue_start(struct kthread_work *work)
1973 {
1974 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1975 cmdinfo.work);
1976 if (nvme_delete_sq(nvmeq))
1977 nvme_del_queue_end(nvmeq);
1978 }
1979
1980 static void nvme_disable_io_queues(struct nvme_dev *dev)
1981 {
1982 int i;
1983 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1984 struct nvme_delq_ctx dq;
1985 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1986 &worker, "nvme%d", dev->ctrl.instance);
1987
1988 if (IS_ERR(kworker_task)) {
1989 dev_err(dev->dev,
1990 "Failed to create queue del task\n");
1991 for (i = dev->queue_count - 1; i > 0; i--)
1992 nvme_disable_queue(dev, i);
1993 return;
1994 }
1995
1996 dq.waiter = NULL;
1997 atomic_set(&dq.refcount, 0);
1998 dq.worker = &worker;
1999 for (i = dev->queue_count - 1; i > 0; i--) {
2000 struct nvme_queue *nvmeq = dev->queues[i];
2001
2002 if (nvme_suspend_queue(nvmeq))
2003 continue;
2004 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2005 nvmeq->cmdinfo.worker = dq.worker;
2006 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2007 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2008 }
2009 nvme_wait_dq(&dq, dev);
2010 kthread_stop(kworker_task);
2011 }
2012
2013 static int nvme_dev_list_add(struct nvme_dev *dev)
2014 {
2015 bool start_thread = false;
2016
2017 spin_lock(&dev_list_lock);
2018 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2019 start_thread = true;
2020 nvme_thread = NULL;
2021 }
2022 list_add(&dev->node, &dev_list);
2023 spin_unlock(&dev_list_lock);
2024
2025 if (start_thread) {
2026 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2027 wake_up_all(&nvme_kthread_wait);
2028 } else
2029 wait_event_killable(nvme_kthread_wait, nvme_thread);
2030
2031 if (IS_ERR_OR_NULL(nvme_thread))
2032 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2033
2034 return 0;
2035 }
2036
2037 /*
2038 * Remove the node from the device list and check
2039 * for whether or not we need to stop the nvme_thread.
2040 */
2041 static void nvme_dev_list_remove(struct nvme_dev *dev)
2042 {
2043 struct task_struct *tmp = NULL;
2044
2045 spin_lock(&dev_list_lock);
2046 list_del_init(&dev->node);
2047 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2048 tmp = nvme_thread;
2049 nvme_thread = NULL;
2050 }
2051 spin_unlock(&dev_list_lock);
2052
2053 if (tmp)
2054 kthread_stop(tmp);
2055 }
2056
2057 static void nvme_freeze_queues(struct nvme_dev *dev)
2058 {
2059 struct nvme_ns *ns;
2060
2061 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2062 blk_mq_freeze_queue_start(ns->queue);
2063
2064 spin_lock_irq(ns->queue->queue_lock);
2065 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2066 spin_unlock_irq(ns->queue->queue_lock);
2067
2068 blk_mq_cancel_requeue_work(ns->queue);
2069 blk_mq_stop_hw_queues(ns->queue);
2070 }
2071 }
2072
2073 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2074 {
2075 struct nvme_ns *ns;
2076
2077 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2078 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2079 blk_mq_unfreeze_queue(ns->queue);
2080 blk_mq_start_stopped_hw_queues(ns->queue, true);
2081 blk_mq_kick_requeue_list(ns->queue);
2082 }
2083 }
2084
2085 static void nvme_dev_shutdown(struct nvme_dev *dev)
2086 {
2087 int i;
2088 u32 csts = -1;
2089
2090 nvme_dev_list_remove(dev);
2091
2092 mutex_lock(&dev->shutdown_lock);
2093 if (dev->bar) {
2094 nvme_freeze_queues(dev);
2095 csts = readl(dev->bar + NVME_REG_CSTS);
2096 }
2097 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2098 for (i = dev->queue_count - 1; i >= 0; i--) {
2099 struct nvme_queue *nvmeq = dev->queues[i];
2100 nvme_suspend_queue(nvmeq);
2101 }
2102 } else {
2103 nvme_disable_io_queues(dev);
2104 nvme_shutdown_ctrl(&dev->ctrl);
2105 nvme_disable_queue(dev, 0);
2106 }
2107 nvme_dev_unmap(dev);
2108
2109 for (i = dev->queue_count - 1; i >= 0; i--)
2110 nvme_clear_queue(dev->queues[i]);
2111 mutex_unlock(&dev->shutdown_lock);
2112 }
2113
2114 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2115 {
2116 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2117 PAGE_SIZE, PAGE_SIZE, 0);
2118 if (!dev->prp_page_pool)
2119 return -ENOMEM;
2120
2121 /* Optimisation for I/Os between 4k and 128k */
2122 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2123 256, 256, 0);
2124 if (!dev->prp_small_pool) {
2125 dma_pool_destroy(dev->prp_page_pool);
2126 return -ENOMEM;
2127 }
2128 return 0;
2129 }
2130
2131 static void nvme_release_prp_pools(struct nvme_dev *dev)
2132 {
2133 dma_pool_destroy(dev->prp_page_pool);
2134 dma_pool_destroy(dev->prp_small_pool);
2135 }
2136
2137 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2138 {
2139 struct nvme_dev *dev = to_nvme_dev(ctrl);
2140
2141 put_device(dev->dev);
2142 if (dev->tagset.tags)
2143 blk_mq_free_tag_set(&dev->tagset);
2144 if (dev->ctrl.admin_q)
2145 blk_put_queue(dev->ctrl.admin_q);
2146 kfree(dev->queues);
2147 kfree(dev->entry);
2148 kfree(dev);
2149 }
2150
2151 static void nvme_reset_work(struct work_struct *work)
2152 {
2153 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2154 int result;
2155
2156 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
2157 goto out;
2158
2159 /*
2160 * If we're called to reset a live controller first shut it down before
2161 * moving on.
2162 */
2163 if (dev->bar)
2164 nvme_dev_shutdown(dev);
2165
2166 set_bit(NVME_CTRL_RESETTING, &dev->flags);
2167
2168 result = nvme_dev_map(dev);
2169 if (result)
2170 goto out;
2171
2172 result = nvme_configure_admin_queue(dev);
2173 if (result)
2174 goto unmap;
2175
2176 nvme_init_queue(dev->queues[0], 0);
2177 result = nvme_alloc_admin_tags(dev);
2178 if (result)
2179 goto disable;
2180
2181 result = nvme_init_identify(&dev->ctrl);
2182 if (result)
2183 goto free_tags;
2184
2185 result = nvme_setup_io_queues(dev);
2186 if (result)
2187 goto free_tags;
2188
2189 dev->ctrl.event_limit = 1;
2190
2191 result = nvme_dev_list_add(dev);
2192 if (result)
2193 goto remove;
2194
2195 /*
2196 * Keep the controller around but remove all namespaces if we don't have
2197 * any working I/O queue.
2198 */
2199 if (dev->online_queues < 2) {
2200 dev_warn(dev->dev, "IO queues not created\n");
2201 nvme_remove_namespaces(&dev->ctrl);
2202 } else {
2203 nvme_unfreeze_queues(dev);
2204 nvme_dev_add(dev);
2205 }
2206
2207 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
2208 return;
2209
2210 remove:
2211 nvme_dev_list_remove(dev);
2212 free_tags:
2213 nvme_dev_remove_admin(dev);
2214 blk_put_queue(dev->ctrl.admin_q);
2215 dev->ctrl.admin_q = NULL;
2216 dev->queues[0]->tags = NULL;
2217 disable:
2218 nvme_disable_queue(dev, 0);
2219 unmap:
2220 nvme_dev_unmap(dev);
2221 out:
2222 nvme_remove_dead_ctrl(dev);
2223 }
2224
2225 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2226 {
2227 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2228 struct pci_dev *pdev = to_pci_dev(dev->dev);
2229
2230 if (pci_get_drvdata(pdev))
2231 pci_stop_and_remove_bus_device_locked(pdev);
2232 nvme_put_ctrl(&dev->ctrl);
2233 }
2234
2235 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2236 {
2237 dev_warn(dev->dev, "Removing after probe failure\n");
2238 kref_get(&dev->ctrl.kref);
2239 if (!schedule_work(&dev->remove_work))
2240 nvme_put_ctrl(&dev->ctrl);
2241 }
2242
2243 static int nvme_reset(struct nvme_dev *dev)
2244 {
2245 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2246 return -ENODEV;
2247
2248 if (!queue_work(nvme_workq, &dev->reset_work))
2249 return -EBUSY;
2250
2251 flush_work(&dev->reset_work);
2252 return 0;
2253 }
2254
2255 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2256 {
2257 *val = readl(to_nvme_dev(ctrl)->bar + off);
2258 return 0;
2259 }
2260
2261 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2262 {
2263 writel(val, to_nvme_dev(ctrl)->bar + off);
2264 return 0;
2265 }
2266
2267 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2268 {
2269 *val = readq(to_nvme_dev(ctrl)->bar + off);
2270 return 0;
2271 }
2272
2273 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2274 {
2275 struct nvme_dev *dev = to_nvme_dev(ctrl);
2276
2277 return !dev->bar || dev->online_queues < 2;
2278 }
2279
2280 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2281 {
2282 return nvme_reset(to_nvme_dev(ctrl));
2283 }
2284
2285 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2286 .reg_read32 = nvme_pci_reg_read32,
2287 .reg_write32 = nvme_pci_reg_write32,
2288 .reg_read64 = nvme_pci_reg_read64,
2289 .io_incapable = nvme_pci_io_incapable,
2290 .reset_ctrl = nvme_pci_reset_ctrl,
2291 .free_ctrl = nvme_pci_free_ctrl,
2292 };
2293
2294 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2295 {
2296 int node, result = -ENOMEM;
2297 struct nvme_dev *dev;
2298
2299 node = dev_to_node(&pdev->dev);
2300 if (node == NUMA_NO_NODE)
2301 set_dev_node(&pdev->dev, 0);
2302
2303 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2304 if (!dev)
2305 return -ENOMEM;
2306 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2307 GFP_KERNEL, node);
2308 if (!dev->entry)
2309 goto free;
2310 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2311 GFP_KERNEL, node);
2312 if (!dev->queues)
2313 goto free;
2314
2315 dev->dev = get_device(&pdev->dev);
2316 pci_set_drvdata(pdev, dev);
2317
2318 INIT_LIST_HEAD(&dev->node);
2319 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2320 INIT_WORK(&dev->reset_work, nvme_reset_work);
2321 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2322 mutex_init(&dev->shutdown_lock);
2323
2324 result = nvme_setup_prp_pools(dev);
2325 if (result)
2326 goto put_pci;
2327
2328 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2329 id->driver_data);
2330 if (result)
2331 goto release_pools;
2332
2333 schedule_work(&dev->reset_work);
2334 return 0;
2335
2336 release_pools:
2337 nvme_release_prp_pools(dev);
2338 put_pci:
2339 put_device(dev->dev);
2340 free:
2341 kfree(dev->queues);
2342 kfree(dev->entry);
2343 kfree(dev);
2344 return result;
2345 }
2346
2347 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2348 {
2349 struct nvme_dev *dev = pci_get_drvdata(pdev);
2350
2351 if (prepare)
2352 nvme_dev_shutdown(dev);
2353 else
2354 schedule_work(&dev->reset_work);
2355 }
2356
2357 static void nvme_shutdown(struct pci_dev *pdev)
2358 {
2359 struct nvme_dev *dev = pci_get_drvdata(pdev);
2360 nvme_dev_shutdown(dev);
2361 }
2362
2363 static void nvme_remove(struct pci_dev *pdev)
2364 {
2365 struct nvme_dev *dev = pci_get_drvdata(pdev);
2366
2367 spin_lock(&dev_list_lock);
2368 list_del_init(&dev->node);
2369 spin_unlock(&dev_list_lock);
2370
2371 pci_set_drvdata(pdev, NULL);
2372 flush_work(&dev->reset_work);
2373 flush_work(&dev->scan_work);
2374 nvme_remove_namespaces(&dev->ctrl);
2375 nvme_dev_shutdown(dev);
2376 nvme_dev_remove_admin(dev);
2377 nvme_free_queues(dev, 0);
2378 nvme_release_cmb(dev);
2379 nvme_release_prp_pools(dev);
2380 nvme_put_ctrl(&dev->ctrl);
2381 }
2382
2383 /* These functions are yet to be implemented */
2384 #define nvme_error_detected NULL
2385 #define nvme_dump_registers NULL
2386 #define nvme_link_reset NULL
2387 #define nvme_slot_reset NULL
2388 #define nvme_error_resume NULL
2389
2390 #ifdef CONFIG_PM_SLEEP
2391 static int nvme_suspend(struct device *dev)
2392 {
2393 struct pci_dev *pdev = to_pci_dev(dev);
2394 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2395
2396 nvme_dev_shutdown(ndev);
2397 return 0;
2398 }
2399
2400 static int nvme_resume(struct device *dev)
2401 {
2402 struct pci_dev *pdev = to_pci_dev(dev);
2403 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2404
2405 schedule_work(&ndev->reset_work);
2406 return 0;
2407 }
2408 #endif
2409
2410 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2411
2412 static const struct pci_error_handlers nvme_err_handler = {
2413 .error_detected = nvme_error_detected,
2414 .mmio_enabled = nvme_dump_registers,
2415 .link_reset = nvme_link_reset,
2416 .slot_reset = nvme_slot_reset,
2417 .resume = nvme_error_resume,
2418 .reset_notify = nvme_reset_notify,
2419 };
2420
2421 /* Move to pci_ids.h later */
2422 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2423
2424 static const struct pci_device_id nvme_id_table[] = {
2425 { PCI_VDEVICE(INTEL, 0x0953),
2426 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2427 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2428 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2429 { 0, }
2430 };
2431 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2432
2433 static struct pci_driver nvme_driver = {
2434 .name = "nvme",
2435 .id_table = nvme_id_table,
2436 .probe = nvme_probe,
2437 .remove = nvme_remove,
2438 .shutdown = nvme_shutdown,
2439 .driver = {
2440 .pm = &nvme_dev_pm_ops,
2441 },
2442 .err_handler = &nvme_err_handler,
2443 };
2444
2445 static int __init nvme_init(void)
2446 {
2447 int result;
2448
2449 init_waitqueue_head(&nvme_kthread_wait);
2450
2451 nvme_workq = create_singlethread_workqueue("nvme");
2452 if (!nvme_workq)
2453 return -ENOMEM;
2454
2455 result = nvme_core_init();
2456 if (result < 0)
2457 goto kill_workq;
2458
2459 result = pci_register_driver(&nvme_driver);
2460 if (result)
2461 goto core_exit;
2462 return 0;
2463
2464 core_exit:
2465 nvme_core_exit();
2466 kill_workq:
2467 destroy_workqueue(nvme_workq);
2468 return result;
2469 }
2470
2471 static void __exit nvme_exit(void)
2472 {
2473 pci_unregister_driver(&nvme_driver);
2474 nvme_core_exit();
2475 destroy_workqueue(nvme_workq);
2476 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2477 _nvme_check_size();
2478 }
2479
2480 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2481 MODULE_LICENSE("GPL");
2482 MODULE_VERSION("1.0");
2483 module_init(nvme_init);
2484 module_exit(nvme_exit);