]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/pci.c
HID: usbhid: Add HID_QUIRK_NOGET for Aten CS-1758 KVM switch
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH 1024
50 #define NVME_AQ_DEPTH 256
51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
53
54 /*
55 * We handle AEN commands ourselves and don't even let the
56 * block layer know about them.
57 */
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 u32 cmbloc;
103 struct nvme_ctrl ctrl;
104 struct completion ioq_wait;
105 };
106
107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108 {
109 return container_of(ctrl, struct nvme_dev, ctrl);
110 }
111
112 /*
113 * An NVM Express queue. Each device has at least two (one for admin
114 * commands and one for I/O commands).
115 */
116 struct nvme_queue {
117 struct device *q_dmadev;
118 struct nvme_dev *dev;
119 char irqname[24]; /* nvme4294967295-65535\0 */
120 spinlock_t q_lock;
121 struct nvme_command *sq_cmds;
122 struct nvme_command __iomem *sq_cmds_io;
123 volatile struct nvme_completion *cqes;
124 struct blk_mq_tags **tags;
125 dma_addr_t sq_dma_addr;
126 dma_addr_t cq_dma_addr;
127 u32 __iomem *q_db;
128 u16 q_depth;
129 s16 cq_vector;
130 u16 sq_tail;
131 u16 cq_head;
132 u16 qid;
133 u8 cq_phase;
134 u8 cqe_seen;
135 };
136
137 /*
138 * The nvme_iod describes the data in an I/O, including the list of PRP
139 * entries. You can't see it in this data structure because C doesn't let
140 * me express that. Use nvme_init_iod to ensure there's enough space
141 * allocated to store the PRP list.
142 */
143 struct nvme_iod {
144 struct nvme_request req;
145 struct nvme_queue *nvmeq;
146 int aborted;
147 int npages; /* In the PRP list. 0 means small pool in use */
148 int nents; /* Used in scatterlist */
149 int length; /* Of data, in bytes */
150 dma_addr_t first_dma;
151 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
152 struct scatterlist *sg;
153 struct scatterlist inline_sg[0];
154 };
155
156 /*
157 * Check we didin't inadvertently grow the command struct
158 */
159 static inline void _nvme_check_size(void)
160 {
161 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
173 }
174
175 /*
176 * Max size of iod being embedded in the request payload
177 */
178 #define NVME_INT_PAGES 2
179 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
180
181 /*
182 * Will slightly overestimate the number of pages needed. This is OK
183 * as it only leads to a small amount of wasted memory for the lifetime of
184 * the I/O.
185 */
186 static int nvme_npages(unsigned size, struct nvme_dev *dev)
187 {
188 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
189 dev->ctrl.page_size);
190 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191 }
192
193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
194 unsigned int size, unsigned int nseg)
195 {
196 return sizeof(__le64 *) * nvme_npages(size, dev) +
197 sizeof(struct scatterlist) * nseg;
198 }
199
200 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201 {
202 return sizeof(struct nvme_iod) +
203 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
204 }
205
206 static int nvmeq_irq(struct nvme_queue *nvmeq)
207 {
208 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
209 }
210
211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 unsigned int hctx_idx)
213 {
214 struct nvme_dev *dev = data;
215 struct nvme_queue *nvmeq = dev->queues[0];
216
217 WARN_ON(hctx_idx != 0);
218 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
219 WARN_ON(nvmeq->tags);
220
221 hctx->driver_data = nvmeq;
222 nvmeq->tags = &dev->admin_tagset.tags[0];
223 return 0;
224 }
225
226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
227 {
228 struct nvme_queue *nvmeq = hctx->driver_data;
229
230 nvmeq->tags = NULL;
231 }
232
233 static int nvme_admin_init_request(void *data, struct request *req,
234 unsigned int hctx_idx, unsigned int rq_idx,
235 unsigned int numa_node)
236 {
237 struct nvme_dev *dev = data;
238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
239 struct nvme_queue *nvmeq = dev->queues[0];
240
241 BUG_ON(!nvmeq);
242 iod->nvmeq = nvmeq;
243 return 0;
244 }
245
246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
247 unsigned int hctx_idx)
248 {
249 struct nvme_dev *dev = data;
250 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
251
252 if (!nvmeq->tags)
253 nvmeq->tags = &dev->tagset.tags[hctx_idx];
254
255 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
256 hctx->driver_data = nvmeq;
257 return 0;
258 }
259
260 static int nvme_init_request(void *data, struct request *req,
261 unsigned int hctx_idx, unsigned int rq_idx,
262 unsigned int numa_node)
263 {
264 struct nvme_dev *dev = data;
265 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268 BUG_ON(!nvmeq);
269 iod->nvmeq = nvmeq;
270 return 0;
271 }
272
273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
274 {
275 struct nvme_dev *dev = set->driver_data;
276
277 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
278 }
279
280 /**
281 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
282 * @nvmeq: The queue to use
283 * @cmd: The command to send
284 *
285 * Safe to use from interrupt context
286 */
287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
288 struct nvme_command *cmd)
289 {
290 u16 tail = nvmeq->sq_tail;
291
292 if (nvmeq->sq_cmds_io)
293 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
294 else
295 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
296
297 if (++tail == nvmeq->q_depth)
298 tail = 0;
299 writel(tail, nvmeq->q_db);
300 nvmeq->sq_tail = tail;
301 }
302
303 static __le64 **iod_list(struct request *req)
304 {
305 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
306 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
307 }
308
309 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
310 {
311 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
312 int nseg = blk_rq_nr_phys_segments(rq);
313 unsigned int size = blk_rq_payload_bytes(rq);
314
315 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
316 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
317 if (!iod->sg)
318 return BLK_MQ_RQ_QUEUE_BUSY;
319 } else {
320 iod->sg = iod->inline_sg;
321 }
322
323 iod->aborted = 0;
324 iod->npages = -1;
325 iod->nents = 0;
326 iod->length = size;
327
328 if (!(rq->rq_flags & RQF_DONTPREP)) {
329 rq->retries = 0;
330 rq->rq_flags |= RQF_DONTPREP;
331 }
332 return BLK_MQ_RQ_QUEUE_OK;
333 }
334
335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
336 {
337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
338 const int last_prp = dev->ctrl.page_size / 8 - 1;
339 int i;
340 __le64 **list = iod_list(req);
341 dma_addr_t prp_dma = iod->first_dma;
342
343 if (iod->npages == 0)
344 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345 for (i = 0; i < iod->npages; i++) {
346 __le64 *prp_list = list[i];
347 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349 prp_dma = next_prp_dma;
350 }
351
352 if (iod->sg != iod->inline_sg)
353 kfree(iod->sg);
354 }
355
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359 if (be32_to_cpu(pi->ref_tag) == v)
360 pi->ref_tag = cpu_to_be32(p);
361 }
362
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365 if (be32_to_cpu(pi->ref_tag) == p)
366 pi->ref_tag = cpu_to_be32(v);
367 }
368
369 /**
370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371 *
372 * The virtual start sector is the one that was originally submitted by the
373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374 * start sector may be different. Remap protection information to match the
375 * physical LBA on writes, and back to the original seed on reads.
376 *
377 * Type 0 and 3 do not have a ref tag, so no remapping required.
378 */
379 static void nvme_dif_remap(struct request *req,
380 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382 struct nvme_ns *ns = req->rq_disk->private_data;
383 struct bio_integrity_payload *bip;
384 struct t10_pi_tuple *pi;
385 void *p, *pmap;
386 u32 i, nlb, ts, phys, virt;
387
388 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389 return;
390
391 bip = bio_integrity(req->bio);
392 if (!bip)
393 return;
394
395 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396
397 p = pmap;
398 virt = bip_get_seed(bip);
399 phys = nvme_block_nr(ns, blk_rq_pos(req));
400 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401 ts = ns->disk->queue->integrity.tuple_size;
402
403 for (i = 0; i < nlb; i++, virt++, phys++) {
404 pi = (struct t10_pi_tuple *)p;
405 dif_swap(phys, virt, pi);
406 p += ts;
407 }
408 kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
424 {
425 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426 struct dma_pool *pool;
427 int length = blk_rq_payload_bytes(req);
428 struct scatterlist *sg = iod->sg;
429 int dma_len = sg_dma_len(sg);
430 u64 dma_addr = sg_dma_address(sg);
431 u32 page_size = dev->ctrl.page_size;
432 int offset = dma_addr & (page_size - 1);
433 __le64 *prp_list;
434 __le64 **list = iod_list(req);
435 dma_addr_t prp_dma;
436 int nprps, i;
437
438 length -= (page_size - offset);
439 if (length <= 0)
440 return true;
441
442 dma_len -= (page_size - offset);
443 if (dma_len) {
444 dma_addr += (page_size - offset);
445 } else {
446 sg = sg_next(sg);
447 dma_addr = sg_dma_address(sg);
448 dma_len = sg_dma_len(sg);
449 }
450
451 if (length <= page_size) {
452 iod->first_dma = dma_addr;
453 return true;
454 }
455
456 nprps = DIV_ROUND_UP(length, page_size);
457 if (nprps <= (256 / 8)) {
458 pool = dev->prp_small_pool;
459 iod->npages = 0;
460 } else {
461 pool = dev->prp_page_pool;
462 iod->npages = 1;
463 }
464
465 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
466 if (!prp_list) {
467 iod->first_dma = dma_addr;
468 iod->npages = -1;
469 return false;
470 }
471 list[0] = prp_list;
472 iod->first_dma = prp_dma;
473 i = 0;
474 for (;;) {
475 if (i == page_size >> 3) {
476 __le64 *old_prp_list = prp_list;
477 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
478 if (!prp_list)
479 return false;
480 list[iod->npages++] = prp_list;
481 prp_list[0] = old_prp_list[i - 1];
482 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
483 i = 1;
484 }
485 prp_list[i++] = cpu_to_le64(dma_addr);
486 dma_len -= page_size;
487 dma_addr += page_size;
488 length -= page_size;
489 if (length <= 0)
490 break;
491 if (dma_len > 0)
492 continue;
493 BUG_ON(dma_len < 0);
494 sg = sg_next(sg);
495 dma_addr = sg_dma_address(sg);
496 dma_len = sg_dma_len(sg);
497 }
498
499 return true;
500 }
501
502 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
503 struct nvme_command *cmnd)
504 {
505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
506 struct request_queue *q = req->q;
507 enum dma_data_direction dma_dir = rq_data_dir(req) ?
508 DMA_TO_DEVICE : DMA_FROM_DEVICE;
509 int ret = BLK_MQ_RQ_QUEUE_ERROR;
510
511 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
512 iod->nents = blk_rq_map_sg(q, req, iod->sg);
513 if (!iod->nents)
514 goto out;
515
516 ret = BLK_MQ_RQ_QUEUE_BUSY;
517 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
518 DMA_ATTR_NO_WARN))
519 goto out;
520
521 if (!nvme_setup_prps(dev, req))
522 goto out_unmap;
523
524 ret = BLK_MQ_RQ_QUEUE_ERROR;
525 if (blk_integrity_rq(req)) {
526 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
527 goto out_unmap;
528
529 sg_init_table(&iod->meta_sg, 1);
530 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
531 goto out_unmap;
532
533 if (rq_data_dir(req))
534 nvme_dif_remap(req, nvme_dif_prep);
535
536 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
537 goto out_unmap;
538 }
539
540 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
541 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
542 if (blk_integrity_rq(req))
543 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
544 return BLK_MQ_RQ_QUEUE_OK;
545
546 out_unmap:
547 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548 out:
549 return ret;
550 }
551
552 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
553 {
554 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
555 enum dma_data_direction dma_dir = rq_data_dir(req) ?
556 DMA_TO_DEVICE : DMA_FROM_DEVICE;
557
558 if (iod->nents) {
559 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
560 if (blk_integrity_rq(req)) {
561 if (!rq_data_dir(req))
562 nvme_dif_remap(req, nvme_dif_complete);
563 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
564 }
565 }
566
567 nvme_cleanup_cmd(req);
568 nvme_free_iod(dev, req);
569 }
570
571 /*
572 * NOTE: ns is NULL when called on the admin queue.
573 */
574 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
575 const struct blk_mq_queue_data *bd)
576 {
577 struct nvme_ns *ns = hctx->queue->queuedata;
578 struct nvme_queue *nvmeq = hctx->driver_data;
579 struct nvme_dev *dev = nvmeq->dev;
580 struct request *req = bd->rq;
581 struct nvme_command cmnd;
582 int ret = BLK_MQ_RQ_QUEUE_OK;
583
584 /*
585 * If formated with metadata, require the block layer provide a buffer
586 * unless this namespace is formated such that the metadata can be
587 * stripped/generated by the controller with PRACT=1.
588 */
589 if (ns && ns->ms && !blk_integrity_rq(req)) {
590 if (!(ns->pi_type && ns->ms == 8) &&
591 req->cmd_type != REQ_TYPE_DRV_PRIV) {
592 blk_mq_end_request(req, -EFAULT);
593 return BLK_MQ_RQ_QUEUE_OK;
594 }
595 }
596
597 ret = nvme_setup_cmd(ns, req, &cmnd);
598 if (ret != BLK_MQ_RQ_QUEUE_OK)
599 return ret;
600
601 ret = nvme_init_iod(req, dev);
602 if (ret != BLK_MQ_RQ_QUEUE_OK)
603 goto out_free_cmd;
604
605 if (blk_rq_nr_phys_segments(req))
606 ret = nvme_map_data(dev, req, &cmnd);
607
608 if (ret != BLK_MQ_RQ_QUEUE_OK)
609 goto out_cleanup_iod;
610
611 blk_mq_start_request(req);
612
613 spin_lock_irq(&nvmeq->q_lock);
614 if (unlikely(nvmeq->cq_vector < 0)) {
615 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
616 ret = BLK_MQ_RQ_QUEUE_BUSY;
617 else
618 ret = BLK_MQ_RQ_QUEUE_ERROR;
619 spin_unlock_irq(&nvmeq->q_lock);
620 goto out_cleanup_iod;
621 }
622 __nvme_submit_cmd(nvmeq, &cmnd);
623 nvme_process_cq(nvmeq);
624 spin_unlock_irq(&nvmeq->q_lock);
625 return BLK_MQ_RQ_QUEUE_OK;
626 out_cleanup_iod:
627 nvme_free_iod(dev, req);
628 out_free_cmd:
629 nvme_cleanup_cmd(req);
630 return ret;
631 }
632
633 static void nvme_complete_rq(struct request *req)
634 {
635 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
636 struct nvme_dev *dev = iod->nvmeq->dev;
637 int error = 0;
638
639 nvme_unmap_data(dev, req);
640
641 if (unlikely(req->errors)) {
642 if (nvme_req_needs_retry(req, req->errors)) {
643 req->retries++;
644 nvme_requeue_req(req);
645 return;
646 }
647
648 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
649 error = req->errors;
650 else
651 error = nvme_error_status(req->errors);
652 }
653
654 if (unlikely(iod->aborted)) {
655 dev_warn(dev->ctrl.device,
656 "completing aborted command with status: %04x\n",
657 req->errors);
658 }
659
660 blk_mq_end_request(req, error);
661 }
662
663 /* We read the CQE phase first to check if the rest of the entry is valid */
664 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
665 u16 phase)
666 {
667 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
668 }
669
670 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
671 {
672 u16 head, phase;
673
674 head = nvmeq->cq_head;
675 phase = nvmeq->cq_phase;
676
677 while (nvme_cqe_valid(nvmeq, head, phase)) {
678 struct nvme_completion cqe = nvmeq->cqes[head];
679 struct request *req;
680
681 if (++head == nvmeq->q_depth) {
682 head = 0;
683 phase = !phase;
684 }
685
686 if (tag && *tag == cqe.command_id)
687 *tag = -1;
688
689 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
690 dev_warn(nvmeq->dev->ctrl.device,
691 "invalid id %d completed on queue %d\n",
692 cqe.command_id, le16_to_cpu(cqe.sq_id));
693 continue;
694 }
695
696 /*
697 * AEN requests are special as they don't time out and can
698 * survive any kind of queue freeze and often don't respond to
699 * aborts. We don't even bother to allocate a struct request
700 * for them but rather special case them here.
701 */
702 if (unlikely(nvmeq->qid == 0 &&
703 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
704 nvme_complete_async_event(&nvmeq->dev->ctrl,
705 cqe.status, &cqe.result);
706 continue;
707 }
708
709 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
710 nvme_req(req)->result = cqe.result;
711 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
712 }
713
714 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
715 return;
716
717 if (likely(nvmeq->cq_vector >= 0))
718 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
719 nvmeq->cq_head = head;
720 nvmeq->cq_phase = phase;
721
722 nvmeq->cqe_seen = 1;
723 }
724
725 static void nvme_process_cq(struct nvme_queue *nvmeq)
726 {
727 __nvme_process_cq(nvmeq, NULL);
728 }
729
730 static irqreturn_t nvme_irq(int irq, void *data)
731 {
732 irqreturn_t result;
733 struct nvme_queue *nvmeq = data;
734 spin_lock(&nvmeq->q_lock);
735 nvme_process_cq(nvmeq);
736 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
737 nvmeq->cqe_seen = 0;
738 spin_unlock(&nvmeq->q_lock);
739 return result;
740 }
741
742 static irqreturn_t nvme_irq_check(int irq, void *data)
743 {
744 struct nvme_queue *nvmeq = data;
745 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
746 return IRQ_WAKE_THREAD;
747 return IRQ_NONE;
748 }
749
750 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
751 {
752 struct nvme_queue *nvmeq = hctx->driver_data;
753
754 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
755 spin_lock_irq(&nvmeq->q_lock);
756 __nvme_process_cq(nvmeq, &tag);
757 spin_unlock_irq(&nvmeq->q_lock);
758
759 if (tag == -1)
760 return 1;
761 }
762
763 return 0;
764 }
765
766 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
767 {
768 struct nvme_dev *dev = to_nvme_dev(ctrl);
769 struct nvme_queue *nvmeq = dev->queues[0];
770 struct nvme_command c;
771
772 memset(&c, 0, sizeof(c));
773 c.common.opcode = nvme_admin_async_event;
774 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
775
776 spin_lock_irq(&nvmeq->q_lock);
777 __nvme_submit_cmd(nvmeq, &c);
778 spin_unlock_irq(&nvmeq->q_lock);
779 }
780
781 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
782 {
783 struct nvme_command c;
784
785 memset(&c, 0, sizeof(c));
786 c.delete_queue.opcode = opcode;
787 c.delete_queue.qid = cpu_to_le16(id);
788
789 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
790 }
791
792 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
793 struct nvme_queue *nvmeq)
794 {
795 struct nvme_command c;
796 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
797
798 /*
799 * Note: we (ab)use the fact the the prp fields survive if no data
800 * is attached to the request.
801 */
802 memset(&c, 0, sizeof(c));
803 c.create_cq.opcode = nvme_admin_create_cq;
804 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
805 c.create_cq.cqid = cpu_to_le16(qid);
806 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
807 c.create_cq.cq_flags = cpu_to_le16(flags);
808 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
809
810 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
811 }
812
813 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
814 struct nvme_queue *nvmeq)
815 {
816 struct nvme_command c;
817 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
818
819 /*
820 * Note: we (ab)use the fact the the prp fields survive if no data
821 * is attached to the request.
822 */
823 memset(&c, 0, sizeof(c));
824 c.create_sq.opcode = nvme_admin_create_sq;
825 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
826 c.create_sq.sqid = cpu_to_le16(qid);
827 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
828 c.create_sq.sq_flags = cpu_to_le16(flags);
829 c.create_sq.cqid = cpu_to_le16(qid);
830
831 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
832 }
833
834 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
835 {
836 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
837 }
838
839 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
840 {
841 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
842 }
843
844 static void abort_endio(struct request *req, int error)
845 {
846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 struct nvme_queue *nvmeq = iod->nvmeq;
848 u16 status = req->errors;
849
850 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
851 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
852 blk_mq_free_request(req);
853 }
854
855 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
856 {
857 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
858 struct nvme_queue *nvmeq = iod->nvmeq;
859 struct nvme_dev *dev = nvmeq->dev;
860 struct request *abort_req;
861 struct nvme_command cmd;
862
863 /*
864 * Shutdown immediately if controller times out while starting. The
865 * reset work will see the pci device disabled when it gets the forced
866 * cancellation error. All outstanding requests are completed on
867 * shutdown, so we return BLK_EH_HANDLED.
868 */
869 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
870 dev_warn(dev->ctrl.device,
871 "I/O %d QID %d timeout, disable controller\n",
872 req->tag, nvmeq->qid);
873 nvme_dev_disable(dev, false);
874 req->errors = NVME_SC_CANCELLED;
875 return BLK_EH_HANDLED;
876 }
877
878 /*
879 * Shutdown the controller immediately and schedule a reset if the
880 * command was already aborted once before and still hasn't been
881 * returned to the driver, or if this is the admin queue.
882 */
883 if (!nvmeq->qid || iod->aborted) {
884 dev_warn(dev->ctrl.device,
885 "I/O %d QID %d timeout, reset controller\n",
886 req->tag, nvmeq->qid);
887 nvme_dev_disable(dev, false);
888 nvme_reset(dev);
889
890 /*
891 * Mark the request as handled, since the inline shutdown
892 * forces all outstanding requests to complete.
893 */
894 req->errors = NVME_SC_CANCELLED;
895 return BLK_EH_HANDLED;
896 }
897
898 iod->aborted = 1;
899
900 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
901 atomic_inc(&dev->ctrl.abort_limit);
902 return BLK_EH_RESET_TIMER;
903 }
904
905 memset(&cmd, 0, sizeof(cmd));
906 cmd.abort.opcode = nvme_admin_abort_cmd;
907 cmd.abort.cid = req->tag;
908 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
909
910 dev_warn(nvmeq->dev->ctrl.device,
911 "I/O %d QID %d timeout, aborting\n",
912 req->tag, nvmeq->qid);
913
914 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
915 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
916 if (IS_ERR(abort_req)) {
917 atomic_inc(&dev->ctrl.abort_limit);
918 return BLK_EH_RESET_TIMER;
919 }
920
921 abort_req->timeout = ADMIN_TIMEOUT;
922 abort_req->end_io_data = NULL;
923 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
924
925 /*
926 * The aborted req will be completed on receiving the abort req.
927 * We enable the timer again. If hit twice, it'll cause a device reset,
928 * as the device then is in a faulty state.
929 */
930 return BLK_EH_RESET_TIMER;
931 }
932
933 static void nvme_free_queue(struct nvme_queue *nvmeq)
934 {
935 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
936 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
937 if (nvmeq->sq_cmds)
938 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
939 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
940 kfree(nvmeq);
941 }
942
943 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
944 {
945 int i;
946
947 for (i = dev->queue_count - 1; i >= lowest; i--) {
948 struct nvme_queue *nvmeq = dev->queues[i];
949 dev->queue_count--;
950 dev->queues[i] = NULL;
951 nvme_free_queue(nvmeq);
952 }
953 }
954
955 /**
956 * nvme_suspend_queue - put queue into suspended state
957 * @nvmeq - queue to suspend
958 */
959 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
960 {
961 int vector;
962
963 spin_lock_irq(&nvmeq->q_lock);
964 if (nvmeq->cq_vector == -1) {
965 spin_unlock_irq(&nvmeq->q_lock);
966 return 1;
967 }
968 vector = nvmeq_irq(nvmeq);
969 nvmeq->dev->online_queues--;
970 nvmeq->cq_vector = -1;
971 spin_unlock_irq(&nvmeq->q_lock);
972
973 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
974 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
975
976 free_irq(vector, nvmeq);
977
978 return 0;
979 }
980
981 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
982 {
983 struct nvme_queue *nvmeq = dev->queues[0];
984
985 if (!nvmeq)
986 return;
987 if (nvme_suspend_queue(nvmeq))
988 return;
989
990 if (shutdown)
991 nvme_shutdown_ctrl(&dev->ctrl);
992 else
993 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
994 dev->bar + NVME_REG_CAP));
995
996 spin_lock_irq(&nvmeq->q_lock);
997 nvme_process_cq(nvmeq);
998 spin_unlock_irq(&nvmeq->q_lock);
999 }
1000
1001 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1002 int entry_size)
1003 {
1004 int q_depth = dev->q_depth;
1005 unsigned q_size_aligned = roundup(q_depth * entry_size,
1006 dev->ctrl.page_size);
1007
1008 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1009 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1010 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1011 q_depth = div_u64(mem_per_q, entry_size);
1012
1013 /*
1014 * Ensure the reduced q_depth is above some threshold where it
1015 * would be better to map queues in system memory with the
1016 * original depth
1017 */
1018 if (q_depth < 64)
1019 return -ENOMEM;
1020 }
1021
1022 return q_depth;
1023 }
1024
1025 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1026 int qid, int depth)
1027 {
1028 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1029 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1030 dev->ctrl.page_size);
1031 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1032 nvmeq->sq_cmds_io = dev->cmb + offset;
1033 } else {
1034 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1035 &nvmeq->sq_dma_addr, GFP_KERNEL);
1036 if (!nvmeq->sq_cmds)
1037 return -ENOMEM;
1038 }
1039
1040 return 0;
1041 }
1042
1043 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1044 int depth)
1045 {
1046 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1047 if (!nvmeq)
1048 return NULL;
1049
1050 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1051 &nvmeq->cq_dma_addr, GFP_KERNEL);
1052 if (!nvmeq->cqes)
1053 goto free_nvmeq;
1054
1055 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1056 goto free_cqdma;
1057
1058 nvmeq->q_dmadev = dev->dev;
1059 nvmeq->dev = dev;
1060 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1061 dev->ctrl.instance, qid);
1062 spin_lock_init(&nvmeq->q_lock);
1063 nvmeq->cq_head = 0;
1064 nvmeq->cq_phase = 1;
1065 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1066 nvmeq->q_depth = depth;
1067 nvmeq->qid = qid;
1068 nvmeq->cq_vector = -1;
1069 dev->queues[qid] = nvmeq;
1070 dev->queue_count++;
1071
1072 return nvmeq;
1073
1074 free_cqdma:
1075 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1076 nvmeq->cq_dma_addr);
1077 free_nvmeq:
1078 kfree(nvmeq);
1079 return NULL;
1080 }
1081
1082 static int queue_request_irq(struct nvme_queue *nvmeq)
1083 {
1084 if (use_threaded_interrupts)
1085 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1086 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1087 else
1088 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1089 nvmeq->irqname, nvmeq);
1090 }
1091
1092 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1093 {
1094 struct nvme_dev *dev = nvmeq->dev;
1095
1096 spin_lock_irq(&nvmeq->q_lock);
1097 nvmeq->sq_tail = 0;
1098 nvmeq->cq_head = 0;
1099 nvmeq->cq_phase = 1;
1100 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1101 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1102 dev->online_queues++;
1103 spin_unlock_irq(&nvmeq->q_lock);
1104 }
1105
1106 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1107 {
1108 struct nvme_dev *dev = nvmeq->dev;
1109 int result;
1110
1111 nvmeq->cq_vector = qid - 1;
1112 result = adapter_alloc_cq(dev, qid, nvmeq);
1113 if (result < 0)
1114 return result;
1115
1116 result = adapter_alloc_sq(dev, qid, nvmeq);
1117 if (result < 0)
1118 goto release_cq;
1119
1120 result = queue_request_irq(nvmeq);
1121 if (result < 0)
1122 goto release_sq;
1123
1124 nvme_init_queue(nvmeq, qid);
1125 return result;
1126
1127 release_sq:
1128 adapter_delete_sq(dev, qid);
1129 release_cq:
1130 adapter_delete_cq(dev, qid);
1131 return result;
1132 }
1133
1134 static struct blk_mq_ops nvme_mq_admin_ops = {
1135 .queue_rq = nvme_queue_rq,
1136 .complete = nvme_complete_rq,
1137 .init_hctx = nvme_admin_init_hctx,
1138 .exit_hctx = nvme_admin_exit_hctx,
1139 .init_request = nvme_admin_init_request,
1140 .timeout = nvme_timeout,
1141 };
1142
1143 static struct blk_mq_ops nvme_mq_ops = {
1144 .queue_rq = nvme_queue_rq,
1145 .complete = nvme_complete_rq,
1146 .init_hctx = nvme_init_hctx,
1147 .init_request = nvme_init_request,
1148 .map_queues = nvme_pci_map_queues,
1149 .timeout = nvme_timeout,
1150 .poll = nvme_poll,
1151 };
1152
1153 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1154 {
1155 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1156 /*
1157 * If the controller was reset during removal, it's possible
1158 * user requests may be waiting on a stopped queue. Start the
1159 * queue to flush these to completion.
1160 */
1161 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1162 blk_cleanup_queue(dev->ctrl.admin_q);
1163 blk_mq_free_tag_set(&dev->admin_tagset);
1164 }
1165 }
1166
1167 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1168 {
1169 if (!dev->ctrl.admin_q) {
1170 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1171 dev->admin_tagset.nr_hw_queues = 1;
1172
1173 /*
1174 * Subtract one to leave an empty queue entry for 'Full Queue'
1175 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1176 */
1177 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1178 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1179 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1180 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1181 dev->admin_tagset.driver_data = dev;
1182
1183 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1184 return -ENOMEM;
1185
1186 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1187 if (IS_ERR(dev->ctrl.admin_q)) {
1188 blk_mq_free_tag_set(&dev->admin_tagset);
1189 return -ENOMEM;
1190 }
1191 if (!blk_get_queue(dev->ctrl.admin_q)) {
1192 nvme_dev_remove_admin(dev);
1193 dev->ctrl.admin_q = NULL;
1194 return -ENODEV;
1195 }
1196 } else
1197 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1198
1199 return 0;
1200 }
1201
1202 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1203 {
1204 int result;
1205 u32 aqa;
1206 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1207 struct nvme_queue *nvmeq;
1208
1209 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1210 NVME_CAP_NSSRC(cap) : 0;
1211
1212 if (dev->subsystem &&
1213 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1214 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1215
1216 result = nvme_disable_ctrl(&dev->ctrl, cap);
1217 if (result < 0)
1218 return result;
1219
1220 nvmeq = dev->queues[0];
1221 if (!nvmeq) {
1222 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1223 if (!nvmeq)
1224 return -ENOMEM;
1225 }
1226
1227 aqa = nvmeq->q_depth - 1;
1228 aqa |= aqa << 16;
1229
1230 writel(aqa, dev->bar + NVME_REG_AQA);
1231 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1232 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1233
1234 result = nvme_enable_ctrl(&dev->ctrl, cap);
1235 if (result)
1236 return result;
1237
1238 nvmeq->cq_vector = 0;
1239 result = queue_request_irq(nvmeq);
1240 if (result) {
1241 nvmeq->cq_vector = -1;
1242 return result;
1243 }
1244
1245 return result;
1246 }
1247
1248 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1249 {
1250
1251 /* If true, indicates loss of adapter communication, possibly by a
1252 * NVMe Subsystem reset.
1253 */
1254 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1255
1256 /* If there is a reset ongoing, we shouldn't reset again. */
1257 if (work_busy(&dev->reset_work))
1258 return false;
1259
1260 /* We shouldn't reset unless the controller is on fatal error state
1261 * _or_ if we lost the communication with it.
1262 */
1263 if (!(csts & NVME_CSTS_CFS) && !nssro)
1264 return false;
1265
1266 /* If PCI error recovery process is happening, we cannot reset or
1267 * the recovery mechanism will surely fail.
1268 */
1269 if (pci_channel_offline(to_pci_dev(dev->dev)))
1270 return false;
1271
1272 return true;
1273 }
1274
1275 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1276 {
1277 /* Read a config register to help see what died. */
1278 u16 pci_status;
1279 int result;
1280
1281 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1282 &pci_status);
1283 if (result == PCIBIOS_SUCCESSFUL)
1284 dev_warn(dev->dev,
1285 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1286 csts, pci_status);
1287 else
1288 dev_warn(dev->dev,
1289 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1290 csts, result);
1291 }
1292
1293 static void nvme_watchdog_timer(unsigned long data)
1294 {
1295 struct nvme_dev *dev = (struct nvme_dev *)data;
1296 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1297
1298 /* Skip controllers under certain specific conditions. */
1299 if (nvme_should_reset(dev, csts)) {
1300 if (!nvme_reset(dev))
1301 nvme_warn_reset(dev, csts);
1302 return;
1303 }
1304
1305 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1306 }
1307
1308 static int nvme_create_io_queues(struct nvme_dev *dev)
1309 {
1310 unsigned i, max;
1311 int ret = 0;
1312
1313 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1314 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1315 ret = -ENOMEM;
1316 break;
1317 }
1318 }
1319
1320 max = min(dev->max_qid, dev->queue_count - 1);
1321 for (i = dev->online_queues; i <= max; i++) {
1322 ret = nvme_create_queue(dev->queues[i], i);
1323 if (ret)
1324 break;
1325 }
1326
1327 /*
1328 * Ignore failing Create SQ/CQ commands, we can continue with less
1329 * than the desired aount of queues, and even a controller without
1330 * I/O queues an still be used to issue admin commands. This might
1331 * be useful to upgrade a buggy firmware for example.
1332 */
1333 return ret >= 0 ? 0 : ret;
1334 }
1335
1336 static ssize_t nvme_cmb_show(struct device *dev,
1337 struct device_attribute *attr,
1338 char *buf)
1339 {
1340 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1341
1342 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1343 ndev->cmbloc, ndev->cmbsz);
1344 }
1345 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1346
1347 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1348 {
1349 u64 szu, size, offset;
1350 resource_size_t bar_size;
1351 struct pci_dev *pdev = to_pci_dev(dev->dev);
1352 void __iomem *cmb;
1353 dma_addr_t dma_addr;
1354
1355 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1356 if (!(NVME_CMB_SZ(dev->cmbsz)))
1357 return NULL;
1358 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1359
1360 if (!use_cmb_sqes)
1361 return NULL;
1362
1363 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1364 size = szu * NVME_CMB_SZ(dev->cmbsz);
1365 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1366 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1367
1368 if (offset > bar_size)
1369 return NULL;
1370
1371 /*
1372 * Controllers may support a CMB size larger than their BAR,
1373 * for example, due to being behind a bridge. Reduce the CMB to
1374 * the reported size of the BAR
1375 */
1376 if (size > bar_size - offset)
1377 size = bar_size - offset;
1378
1379 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1380 cmb = ioremap_wc(dma_addr, size);
1381 if (!cmb)
1382 return NULL;
1383
1384 dev->cmb_dma_addr = dma_addr;
1385 dev->cmb_size = size;
1386 return cmb;
1387 }
1388
1389 static inline void nvme_release_cmb(struct nvme_dev *dev)
1390 {
1391 if (dev->cmb) {
1392 iounmap(dev->cmb);
1393 dev->cmb = NULL;
1394 }
1395 }
1396
1397 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1398 {
1399 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1400 }
1401
1402 static int nvme_setup_io_queues(struct nvme_dev *dev)
1403 {
1404 struct nvme_queue *adminq = dev->queues[0];
1405 struct pci_dev *pdev = to_pci_dev(dev->dev);
1406 int result, nr_io_queues, size;
1407
1408 nr_io_queues = num_online_cpus();
1409 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1410 if (result < 0)
1411 return result;
1412
1413 if (nr_io_queues == 0)
1414 return 0;
1415
1416 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1417 result = nvme_cmb_qdepth(dev, nr_io_queues,
1418 sizeof(struct nvme_command));
1419 if (result > 0)
1420 dev->q_depth = result;
1421 else
1422 nvme_release_cmb(dev);
1423 }
1424
1425 size = db_bar_size(dev, nr_io_queues);
1426 if (size > 8192) {
1427 iounmap(dev->bar);
1428 do {
1429 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1430 if (dev->bar)
1431 break;
1432 if (!--nr_io_queues)
1433 return -ENOMEM;
1434 size = db_bar_size(dev, nr_io_queues);
1435 } while (1);
1436 dev->dbs = dev->bar + 4096;
1437 adminq->q_db = dev->dbs;
1438 }
1439
1440 /* Deregister the admin queue's interrupt */
1441 free_irq(pci_irq_vector(pdev, 0), adminq);
1442
1443 /*
1444 * If we enable msix early due to not intx, disable it again before
1445 * setting up the full range we need.
1446 */
1447 pci_free_irq_vectors(pdev);
1448 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1449 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1450 if (nr_io_queues <= 0)
1451 return -EIO;
1452 dev->max_qid = nr_io_queues;
1453
1454 /*
1455 * Should investigate if there's a performance win from allocating
1456 * more queues than interrupt vectors; it might allow the submission
1457 * path to scale better, even if the receive path is limited by the
1458 * number of interrupts.
1459 */
1460
1461 result = queue_request_irq(adminq);
1462 if (result) {
1463 adminq->cq_vector = -1;
1464 return result;
1465 }
1466 return nvme_create_io_queues(dev);
1467 }
1468
1469 static void nvme_del_queue_end(struct request *req, int error)
1470 {
1471 struct nvme_queue *nvmeq = req->end_io_data;
1472
1473 blk_mq_free_request(req);
1474 complete(&nvmeq->dev->ioq_wait);
1475 }
1476
1477 static void nvme_del_cq_end(struct request *req, int error)
1478 {
1479 struct nvme_queue *nvmeq = req->end_io_data;
1480
1481 if (!error) {
1482 unsigned long flags;
1483
1484 /*
1485 * We might be called with the AQ q_lock held
1486 * and the I/O queue q_lock should always
1487 * nest inside the AQ one.
1488 */
1489 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1490 SINGLE_DEPTH_NESTING);
1491 nvme_process_cq(nvmeq);
1492 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1493 }
1494
1495 nvme_del_queue_end(req, error);
1496 }
1497
1498 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1499 {
1500 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1501 struct request *req;
1502 struct nvme_command cmd;
1503
1504 memset(&cmd, 0, sizeof(cmd));
1505 cmd.delete_queue.opcode = opcode;
1506 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1507
1508 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1509 if (IS_ERR(req))
1510 return PTR_ERR(req);
1511
1512 req->timeout = ADMIN_TIMEOUT;
1513 req->end_io_data = nvmeq;
1514
1515 blk_execute_rq_nowait(q, NULL, req, false,
1516 opcode == nvme_admin_delete_cq ?
1517 nvme_del_cq_end : nvme_del_queue_end);
1518 return 0;
1519 }
1520
1521 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1522 {
1523 int pass;
1524 unsigned long timeout;
1525 u8 opcode = nvme_admin_delete_sq;
1526
1527 for (pass = 0; pass < 2; pass++) {
1528 int sent = 0, i = queues;
1529
1530 reinit_completion(&dev->ioq_wait);
1531 retry:
1532 timeout = ADMIN_TIMEOUT;
1533 for (; i > 0; i--, sent++)
1534 if (nvme_delete_queue(dev->queues[i], opcode))
1535 break;
1536
1537 while (sent--) {
1538 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1539 if (timeout == 0)
1540 return;
1541 if (i)
1542 goto retry;
1543 }
1544 opcode = nvme_admin_delete_cq;
1545 }
1546 }
1547
1548 /*
1549 * Return: error value if an error occurred setting up the queues or calling
1550 * Identify Device. 0 if these succeeded, even if adding some of the
1551 * namespaces failed. At the moment, these failures are silent. TBD which
1552 * failures should be reported.
1553 */
1554 static int nvme_dev_add(struct nvme_dev *dev)
1555 {
1556 if (!dev->ctrl.tagset) {
1557 dev->tagset.ops = &nvme_mq_ops;
1558 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1559 dev->tagset.timeout = NVME_IO_TIMEOUT;
1560 dev->tagset.numa_node = dev_to_node(dev->dev);
1561 dev->tagset.queue_depth =
1562 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1563 dev->tagset.cmd_size = nvme_cmd_size(dev);
1564 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1565 dev->tagset.driver_data = dev;
1566
1567 if (blk_mq_alloc_tag_set(&dev->tagset))
1568 return 0;
1569 dev->ctrl.tagset = &dev->tagset;
1570 } else {
1571 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1572
1573 /* Free previously allocated queues that are no longer usable */
1574 nvme_free_queues(dev, dev->online_queues);
1575 }
1576
1577 return 0;
1578 }
1579
1580 static int nvme_pci_enable(struct nvme_dev *dev)
1581 {
1582 u64 cap;
1583 int result = -ENOMEM;
1584 struct pci_dev *pdev = to_pci_dev(dev->dev);
1585
1586 if (pci_enable_device_mem(pdev))
1587 return result;
1588
1589 pci_set_master(pdev);
1590
1591 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1592 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1593 goto disable;
1594
1595 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1596 result = -ENODEV;
1597 goto disable;
1598 }
1599
1600 /*
1601 * Some devices and/or platforms don't advertise or work with INTx
1602 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1603 * adjust this later.
1604 */
1605 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1606 if (result < 0)
1607 return result;
1608
1609 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1610
1611 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1612 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1613 dev->dbs = dev->bar + 4096;
1614
1615 /*
1616 * Temporary fix for the Apple controller found in the MacBook8,1 and
1617 * some MacBook7,1 to avoid controller resets and data loss.
1618 */
1619 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1620 dev->q_depth = 2;
1621 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1622 "queue depth=%u to work around controller resets\n",
1623 dev->q_depth);
1624 }
1625
1626 /*
1627 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1628 * populate sysfs if a CMB is implemented. Note that we add the
1629 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1630 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1631 * NULL as final argument to sysfs_add_file_to_group.
1632 */
1633
1634 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1635 dev->cmb = nvme_map_cmb(dev);
1636
1637 if (dev->cmbsz) {
1638 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1639 &dev_attr_cmb.attr, NULL))
1640 dev_warn(dev->dev,
1641 "failed to add sysfs attribute for CMB\n");
1642 }
1643 }
1644
1645 pci_enable_pcie_error_reporting(pdev);
1646 pci_save_state(pdev);
1647 return 0;
1648
1649 disable:
1650 pci_disable_device(pdev);
1651 return result;
1652 }
1653
1654 static void nvme_dev_unmap(struct nvme_dev *dev)
1655 {
1656 if (dev->bar)
1657 iounmap(dev->bar);
1658 pci_release_mem_regions(to_pci_dev(dev->dev));
1659 }
1660
1661 static void nvme_pci_disable(struct nvme_dev *dev)
1662 {
1663 struct pci_dev *pdev = to_pci_dev(dev->dev);
1664
1665 pci_free_irq_vectors(pdev);
1666
1667 if (pci_is_enabled(pdev)) {
1668 pci_disable_pcie_error_reporting(pdev);
1669 pci_disable_device(pdev);
1670 }
1671 }
1672
1673 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1674 {
1675 int i, queues;
1676 u32 csts = -1;
1677
1678 del_timer_sync(&dev->watchdog_timer);
1679
1680 mutex_lock(&dev->shutdown_lock);
1681 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1682 nvme_stop_queues(&dev->ctrl);
1683 csts = readl(dev->bar + NVME_REG_CSTS);
1684 }
1685
1686 queues = dev->online_queues - 1;
1687 for (i = dev->queue_count - 1; i > 0; i--)
1688 nvme_suspend_queue(dev->queues[i]);
1689
1690 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1691 /* A device might become IO incapable very soon during
1692 * probe, before the admin queue is configured. Thus,
1693 * queue_count can be 0 here.
1694 */
1695 if (dev->queue_count)
1696 nvme_suspend_queue(dev->queues[0]);
1697 } else {
1698 nvme_disable_io_queues(dev, queues);
1699 nvme_disable_admin_queue(dev, shutdown);
1700 }
1701 nvme_pci_disable(dev);
1702
1703 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1704 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1705 mutex_unlock(&dev->shutdown_lock);
1706 }
1707
1708 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1709 {
1710 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1711 PAGE_SIZE, PAGE_SIZE, 0);
1712 if (!dev->prp_page_pool)
1713 return -ENOMEM;
1714
1715 /* Optimisation for I/Os between 4k and 128k */
1716 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1717 256, 256, 0);
1718 if (!dev->prp_small_pool) {
1719 dma_pool_destroy(dev->prp_page_pool);
1720 return -ENOMEM;
1721 }
1722 return 0;
1723 }
1724
1725 static void nvme_release_prp_pools(struct nvme_dev *dev)
1726 {
1727 dma_pool_destroy(dev->prp_page_pool);
1728 dma_pool_destroy(dev->prp_small_pool);
1729 }
1730
1731 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1732 {
1733 struct nvme_dev *dev = to_nvme_dev(ctrl);
1734
1735 put_device(dev->dev);
1736 if (dev->tagset.tags)
1737 blk_mq_free_tag_set(&dev->tagset);
1738 if (dev->ctrl.admin_q)
1739 blk_put_queue(dev->ctrl.admin_q);
1740 kfree(dev->queues);
1741 kfree(dev);
1742 }
1743
1744 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1745 {
1746 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1747
1748 kref_get(&dev->ctrl.kref);
1749 nvme_dev_disable(dev, false);
1750 if (!schedule_work(&dev->remove_work))
1751 nvme_put_ctrl(&dev->ctrl);
1752 }
1753
1754 static void nvme_reset_work(struct work_struct *work)
1755 {
1756 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1757 int result = -ENODEV;
1758
1759 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1760 goto out;
1761
1762 /*
1763 * If we're called to reset a live controller first shut it down before
1764 * moving on.
1765 */
1766 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1767 nvme_dev_disable(dev, false);
1768
1769 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1770 goto out;
1771
1772 result = nvme_pci_enable(dev);
1773 if (result)
1774 goto out;
1775
1776 result = nvme_configure_admin_queue(dev);
1777 if (result)
1778 goto out;
1779
1780 nvme_init_queue(dev->queues[0], 0);
1781 result = nvme_alloc_admin_tags(dev);
1782 if (result)
1783 goto out;
1784
1785 result = nvme_init_identify(&dev->ctrl);
1786 if (result)
1787 goto out;
1788
1789 result = nvme_setup_io_queues(dev);
1790 if (result)
1791 goto out;
1792
1793 /*
1794 * A controller that can not execute IO typically requires user
1795 * intervention to correct. For such degraded controllers, the driver
1796 * should not submit commands the user did not request, so skip
1797 * registering for asynchronous event notification on this condition.
1798 */
1799 if (dev->online_queues > 1)
1800 nvme_queue_async_events(&dev->ctrl);
1801
1802 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1803
1804 /*
1805 * Keep the controller around but remove all namespaces if we don't have
1806 * any working I/O queue.
1807 */
1808 if (dev->online_queues < 2) {
1809 dev_warn(dev->ctrl.device, "IO queues not created\n");
1810 nvme_kill_queues(&dev->ctrl);
1811 nvme_remove_namespaces(&dev->ctrl);
1812 } else {
1813 nvme_start_queues(&dev->ctrl);
1814 nvme_dev_add(dev);
1815 }
1816
1817 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1818 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1819 goto out;
1820 }
1821
1822 if (dev->online_queues > 1)
1823 nvme_queue_scan(&dev->ctrl);
1824 return;
1825
1826 out:
1827 nvme_remove_dead_ctrl(dev, result);
1828 }
1829
1830 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1831 {
1832 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1833 struct pci_dev *pdev = to_pci_dev(dev->dev);
1834
1835 nvme_kill_queues(&dev->ctrl);
1836 if (pci_get_drvdata(pdev))
1837 device_release_driver(&pdev->dev);
1838 nvme_put_ctrl(&dev->ctrl);
1839 }
1840
1841 static int nvme_reset(struct nvme_dev *dev)
1842 {
1843 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1844 return -ENODEV;
1845 if (work_busy(&dev->reset_work))
1846 return -ENODEV;
1847 if (!queue_work(nvme_workq, &dev->reset_work))
1848 return -EBUSY;
1849 return 0;
1850 }
1851
1852 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1853 {
1854 *val = readl(to_nvme_dev(ctrl)->bar + off);
1855 return 0;
1856 }
1857
1858 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1859 {
1860 writel(val, to_nvme_dev(ctrl)->bar + off);
1861 return 0;
1862 }
1863
1864 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1865 {
1866 *val = readq(to_nvme_dev(ctrl)->bar + off);
1867 return 0;
1868 }
1869
1870 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1871 {
1872 struct nvme_dev *dev = to_nvme_dev(ctrl);
1873 int ret = nvme_reset(dev);
1874
1875 if (!ret)
1876 flush_work(&dev->reset_work);
1877 return ret;
1878 }
1879
1880 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1881 .name = "pcie",
1882 .module = THIS_MODULE,
1883 .reg_read32 = nvme_pci_reg_read32,
1884 .reg_write32 = nvme_pci_reg_write32,
1885 .reg_read64 = nvme_pci_reg_read64,
1886 .reset_ctrl = nvme_pci_reset_ctrl,
1887 .free_ctrl = nvme_pci_free_ctrl,
1888 .submit_async_event = nvme_pci_submit_async_event,
1889 };
1890
1891 static int nvme_dev_map(struct nvme_dev *dev)
1892 {
1893 struct pci_dev *pdev = to_pci_dev(dev->dev);
1894
1895 if (pci_request_mem_regions(pdev, "nvme"))
1896 return -ENODEV;
1897
1898 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1899 if (!dev->bar)
1900 goto release;
1901
1902 return 0;
1903 release:
1904 pci_release_mem_regions(pdev);
1905 return -ENODEV;
1906 }
1907
1908 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1909 {
1910 int node, result = -ENOMEM;
1911 struct nvme_dev *dev;
1912
1913 node = dev_to_node(&pdev->dev);
1914 if (node == NUMA_NO_NODE)
1915 set_dev_node(&pdev->dev, first_memory_node);
1916
1917 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1918 if (!dev)
1919 return -ENOMEM;
1920 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1921 GFP_KERNEL, node);
1922 if (!dev->queues)
1923 goto free;
1924
1925 dev->dev = get_device(&pdev->dev);
1926 pci_set_drvdata(pdev, dev);
1927
1928 result = nvme_dev_map(dev);
1929 if (result)
1930 goto free;
1931
1932 INIT_WORK(&dev->reset_work, nvme_reset_work);
1933 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1934 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1935 (unsigned long)dev);
1936 mutex_init(&dev->shutdown_lock);
1937 init_completion(&dev->ioq_wait);
1938
1939 result = nvme_setup_prp_pools(dev);
1940 if (result)
1941 goto put_pci;
1942
1943 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1944 id->driver_data);
1945 if (result)
1946 goto release_pools;
1947
1948 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1949
1950 queue_work(nvme_workq, &dev->reset_work);
1951 return 0;
1952
1953 release_pools:
1954 nvme_release_prp_pools(dev);
1955 put_pci:
1956 put_device(dev->dev);
1957 nvme_dev_unmap(dev);
1958 free:
1959 kfree(dev->queues);
1960 kfree(dev);
1961 return result;
1962 }
1963
1964 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1965 {
1966 struct nvme_dev *dev = pci_get_drvdata(pdev);
1967
1968 if (prepare)
1969 nvme_dev_disable(dev, false);
1970 else
1971 nvme_reset(dev);
1972 }
1973
1974 static void nvme_shutdown(struct pci_dev *pdev)
1975 {
1976 struct nvme_dev *dev = pci_get_drvdata(pdev);
1977 nvme_dev_disable(dev, true);
1978 }
1979
1980 /*
1981 * The driver's remove may be called on a device in a partially initialized
1982 * state. This function must not have any dependencies on the device state in
1983 * order to proceed.
1984 */
1985 static void nvme_remove(struct pci_dev *pdev)
1986 {
1987 struct nvme_dev *dev = pci_get_drvdata(pdev);
1988
1989 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1990
1991 pci_set_drvdata(pdev, NULL);
1992
1993 if (!pci_device_is_present(pdev))
1994 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1995
1996 flush_work(&dev->reset_work);
1997 nvme_uninit_ctrl(&dev->ctrl);
1998 nvme_dev_disable(dev, true);
1999 nvme_dev_remove_admin(dev);
2000 nvme_free_queues(dev, 0);
2001 nvme_release_cmb(dev);
2002 nvme_release_prp_pools(dev);
2003 nvme_dev_unmap(dev);
2004 nvme_put_ctrl(&dev->ctrl);
2005 }
2006
2007 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2008 {
2009 int ret = 0;
2010
2011 if (numvfs == 0) {
2012 if (pci_vfs_assigned(pdev)) {
2013 dev_warn(&pdev->dev,
2014 "Cannot disable SR-IOV VFs while assigned\n");
2015 return -EPERM;
2016 }
2017 pci_disable_sriov(pdev);
2018 return 0;
2019 }
2020
2021 ret = pci_enable_sriov(pdev, numvfs);
2022 return ret ? ret : numvfs;
2023 }
2024
2025 #ifdef CONFIG_PM_SLEEP
2026 static int nvme_suspend(struct device *dev)
2027 {
2028 struct pci_dev *pdev = to_pci_dev(dev);
2029 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2030
2031 nvme_dev_disable(ndev, true);
2032 return 0;
2033 }
2034
2035 static int nvme_resume(struct device *dev)
2036 {
2037 struct pci_dev *pdev = to_pci_dev(dev);
2038 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2039
2040 nvme_reset(ndev);
2041 return 0;
2042 }
2043 #endif
2044
2045 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2046
2047 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2048 pci_channel_state_t state)
2049 {
2050 struct nvme_dev *dev = pci_get_drvdata(pdev);
2051
2052 /*
2053 * A frozen channel requires a reset. When detected, this method will
2054 * shutdown the controller to quiesce. The controller will be restarted
2055 * after the slot reset through driver's slot_reset callback.
2056 */
2057 switch (state) {
2058 case pci_channel_io_normal:
2059 return PCI_ERS_RESULT_CAN_RECOVER;
2060 case pci_channel_io_frozen:
2061 dev_warn(dev->ctrl.device,
2062 "frozen state error detected, reset controller\n");
2063 nvme_dev_disable(dev, false);
2064 return PCI_ERS_RESULT_NEED_RESET;
2065 case pci_channel_io_perm_failure:
2066 dev_warn(dev->ctrl.device,
2067 "failure state error detected, request disconnect\n");
2068 return PCI_ERS_RESULT_DISCONNECT;
2069 }
2070 return PCI_ERS_RESULT_NEED_RESET;
2071 }
2072
2073 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2074 {
2075 struct nvme_dev *dev = pci_get_drvdata(pdev);
2076
2077 dev_info(dev->ctrl.device, "restart after slot reset\n");
2078 pci_restore_state(pdev);
2079 nvme_reset(dev);
2080 return PCI_ERS_RESULT_RECOVERED;
2081 }
2082
2083 static void nvme_error_resume(struct pci_dev *pdev)
2084 {
2085 pci_cleanup_aer_uncorrect_error_status(pdev);
2086 }
2087
2088 static const struct pci_error_handlers nvme_err_handler = {
2089 .error_detected = nvme_error_detected,
2090 .slot_reset = nvme_slot_reset,
2091 .resume = nvme_error_resume,
2092 .reset_notify = nvme_reset_notify,
2093 };
2094
2095 static const struct pci_device_id nvme_id_table[] = {
2096 { PCI_VDEVICE(INTEL, 0x0953),
2097 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2098 NVME_QUIRK_DISCARD_ZEROES, },
2099 { PCI_VDEVICE(INTEL, 0x0a53),
2100 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2101 NVME_QUIRK_DISCARD_ZEROES, },
2102 { PCI_VDEVICE(INTEL, 0x0a54),
2103 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2104 NVME_QUIRK_DISCARD_ZEROES, },
2105 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2106 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2107 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2108 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2109 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2110 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2111 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2112 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2113 { 0, }
2114 };
2115 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2116
2117 static struct pci_driver nvme_driver = {
2118 .name = "nvme",
2119 .id_table = nvme_id_table,
2120 .probe = nvme_probe,
2121 .remove = nvme_remove,
2122 .shutdown = nvme_shutdown,
2123 .driver = {
2124 .pm = &nvme_dev_pm_ops,
2125 },
2126 .sriov_configure = nvme_pci_sriov_configure,
2127 .err_handler = &nvme_err_handler,
2128 };
2129
2130 static int __init nvme_init(void)
2131 {
2132 int result;
2133
2134 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2135 if (!nvme_workq)
2136 return -ENOMEM;
2137
2138 result = pci_register_driver(&nvme_driver);
2139 if (result)
2140 destroy_workqueue(nvme_workq);
2141 return result;
2142 }
2143
2144 static void __exit nvme_exit(void)
2145 {
2146 pci_unregister_driver(&nvme_driver);
2147 destroy_workqueue(nvme_workq);
2148 _nvme_check_size();
2149 }
2150
2151 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2152 MODULE_LICENSE("GPL");
2153 MODULE_VERSION("1.0");
2154 module_init(nvme_init);
2155 module_exit(nvme_exit);