]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/errno.h>
24 #include <linux/fs.h>
25 #include <linux/genhd.h>
26 #include <linux/hdreg.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kernel.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/t10-pi.h>
43 #include <linux/timer.h>
44 #include <linux/types.h>
45 #include <linux/io-64-nonatomic-lo-hi.h>
46 #include <asm/unaligned.h>
47 #include <linux/sed-opal.h>
48
49 #include "nvme.h"
50
51 #define NVME_Q_DEPTH 1024
52 #define NVME_AQ_DEPTH 256
53 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
55
56 /*
57 * We handle AEN commands ourselves and don't even let the
58 * block layer know about them.
59 */
60 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
61
62 static int use_threaded_interrupts;
63 module_param(use_threaded_interrupts, int, 0);
64
65 static bool use_cmb_sqes = true;
66 module_param(use_cmb_sqes, bool, 0644);
67 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
68
69 static struct workqueue_struct *nvme_workq;
70
71 struct nvme_dev;
72 struct nvme_queue;
73
74 static int nvme_reset(struct nvme_dev *dev);
75 static void nvme_process_cq(struct nvme_queue *nvmeq);
76 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
77
78 /*
79 * Represents an NVM Express device. Each nvme_dev is a PCI function.
80 */
81 struct nvme_dev {
82 struct nvme_queue **queues;
83 struct blk_mq_tag_set tagset;
84 struct blk_mq_tag_set admin_tagset;
85 u32 __iomem *dbs;
86 struct device *dev;
87 struct dma_pool *prp_page_pool;
88 struct dma_pool *prp_small_pool;
89 unsigned queue_count;
90 unsigned online_queues;
91 unsigned max_qid;
92 int q_depth;
93 u32 db_stride;
94 void __iomem *bar;
95 struct work_struct reset_work;
96 struct work_struct remove_work;
97 struct timer_list watchdog_timer;
98 struct mutex shutdown_lock;
99 bool subsystem;
100 void __iomem *cmb;
101 dma_addr_t cmb_dma_addr;
102 u64 cmb_size;
103 u32 cmbsz;
104 u32 cmbloc;
105 struct nvme_ctrl ctrl;
106 struct completion ioq_wait;
107 };
108
109 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
110 {
111 return container_of(ctrl, struct nvme_dev, ctrl);
112 }
113
114 /*
115 * An NVM Express queue. Each device has at least two (one for admin
116 * commands and one for I/O commands).
117 */
118 struct nvme_queue {
119 struct device *q_dmadev;
120 struct nvme_dev *dev;
121 char irqname[24]; /* nvme4294967295-65535\0 */
122 spinlock_t q_lock;
123 struct nvme_command *sq_cmds;
124 struct nvme_command __iomem *sq_cmds_io;
125 volatile struct nvme_completion *cqes;
126 struct blk_mq_tags **tags;
127 dma_addr_t sq_dma_addr;
128 dma_addr_t cq_dma_addr;
129 u32 __iomem *q_db;
130 u16 q_depth;
131 s16 cq_vector;
132 u16 sq_tail;
133 u16 cq_head;
134 u16 qid;
135 u8 cq_phase;
136 u8 cqe_seen;
137 };
138
139 /*
140 * The nvme_iod describes the data in an I/O, including the list of PRP
141 * entries. You can't see it in this data structure because C doesn't let
142 * me express that. Use nvme_init_iod to ensure there's enough space
143 * allocated to store the PRP list.
144 */
145 struct nvme_iod {
146 struct nvme_request req;
147 struct nvme_queue *nvmeq;
148 int aborted;
149 int npages; /* In the PRP list. 0 means small pool in use */
150 int nents; /* Used in scatterlist */
151 int length; /* Of data, in bytes */
152 dma_addr_t first_dma;
153 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
154 struct scatterlist *sg;
155 struct scatterlist inline_sg[0];
156 };
157
158 /*
159 * Check we didin't inadvertently grow the command struct
160 */
161 static inline void _nvme_check_size(void)
162 {
163 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
172 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
173 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
174 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
175 }
176
177 /*
178 * Max size of iod being embedded in the request payload
179 */
180 #define NVME_INT_PAGES 2
181 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
182
183 /*
184 * Will slightly overestimate the number of pages needed. This is OK
185 * as it only leads to a small amount of wasted memory for the lifetime of
186 * the I/O.
187 */
188 static int nvme_npages(unsigned size, struct nvme_dev *dev)
189 {
190 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
191 dev->ctrl.page_size);
192 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
193 }
194
195 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
196 unsigned int size, unsigned int nseg)
197 {
198 return sizeof(__le64 *) * nvme_npages(size, dev) +
199 sizeof(struct scatterlist) * nseg;
200 }
201
202 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
203 {
204 return sizeof(struct nvme_iod) +
205 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
206 }
207
208 static int nvmeq_irq(struct nvme_queue *nvmeq)
209 {
210 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
211 }
212
213 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
214 unsigned int hctx_idx)
215 {
216 struct nvme_dev *dev = data;
217 struct nvme_queue *nvmeq = dev->queues[0];
218
219 WARN_ON(hctx_idx != 0);
220 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
221 WARN_ON(nvmeq->tags);
222
223 hctx->driver_data = nvmeq;
224 nvmeq->tags = &dev->admin_tagset.tags[0];
225 return 0;
226 }
227
228 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
229 {
230 struct nvme_queue *nvmeq = hctx->driver_data;
231
232 nvmeq->tags = NULL;
233 }
234
235 static int nvme_admin_init_request(void *data, struct request *req,
236 unsigned int hctx_idx, unsigned int rq_idx,
237 unsigned int numa_node)
238 {
239 struct nvme_dev *dev = data;
240 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
241 struct nvme_queue *nvmeq = dev->queues[0];
242
243 BUG_ON(!nvmeq);
244 iod->nvmeq = nvmeq;
245 return 0;
246 }
247
248 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
249 unsigned int hctx_idx)
250 {
251 struct nvme_dev *dev = data;
252 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
253
254 if (!nvmeq->tags)
255 nvmeq->tags = &dev->tagset.tags[hctx_idx];
256
257 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
258 hctx->driver_data = nvmeq;
259 return 0;
260 }
261
262 static int nvme_init_request(void *data, struct request *req,
263 unsigned int hctx_idx, unsigned int rq_idx,
264 unsigned int numa_node)
265 {
266 struct nvme_dev *dev = data;
267 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
268 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
269
270 BUG_ON(!nvmeq);
271 iod->nvmeq = nvmeq;
272 return 0;
273 }
274
275 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
276 {
277 struct nvme_dev *dev = set->driver_data;
278
279 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
280 }
281
282 /**
283 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
284 * @nvmeq: The queue to use
285 * @cmd: The command to send
286 *
287 * Safe to use from interrupt context
288 */
289 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
290 struct nvme_command *cmd)
291 {
292 u16 tail = nvmeq->sq_tail;
293
294 if (nvmeq->sq_cmds_io)
295 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
296 else
297 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
298
299 if (++tail == nvmeq->q_depth)
300 tail = 0;
301 writel(tail, nvmeq->q_db);
302 nvmeq->sq_tail = tail;
303 }
304
305 static __le64 **iod_list(struct request *req)
306 {
307 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
308 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
309 }
310
311 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
312 {
313 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
314 int nseg = blk_rq_nr_phys_segments(rq);
315 unsigned int size = blk_rq_payload_bytes(rq);
316
317 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
318 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
319 if (!iod->sg)
320 return BLK_MQ_RQ_QUEUE_BUSY;
321 } else {
322 iod->sg = iod->inline_sg;
323 }
324
325 iod->aborted = 0;
326 iod->npages = -1;
327 iod->nents = 0;
328 iod->length = size;
329
330 if (!(rq->rq_flags & RQF_DONTPREP)) {
331 rq->retries = 0;
332 rq->rq_flags |= RQF_DONTPREP;
333 }
334 return BLK_MQ_RQ_QUEUE_OK;
335 }
336
337 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
338 {
339 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
340 const int last_prp = dev->ctrl.page_size / 8 - 1;
341 int i;
342 __le64 **list = iod_list(req);
343 dma_addr_t prp_dma = iod->first_dma;
344
345 if (iod->npages == 0)
346 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
347 for (i = 0; i < iod->npages; i++) {
348 __le64 *prp_list = list[i];
349 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
350 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
351 prp_dma = next_prp_dma;
352 }
353
354 if (iod->sg != iod->inline_sg)
355 kfree(iod->sg);
356 }
357
358 #ifdef CONFIG_BLK_DEV_INTEGRITY
359 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
360 {
361 if (be32_to_cpu(pi->ref_tag) == v)
362 pi->ref_tag = cpu_to_be32(p);
363 }
364
365 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
366 {
367 if (be32_to_cpu(pi->ref_tag) == p)
368 pi->ref_tag = cpu_to_be32(v);
369 }
370
371 /**
372 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
373 *
374 * The virtual start sector is the one that was originally submitted by the
375 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
376 * start sector may be different. Remap protection information to match the
377 * physical LBA on writes, and back to the original seed on reads.
378 *
379 * Type 0 and 3 do not have a ref tag, so no remapping required.
380 */
381 static void nvme_dif_remap(struct request *req,
382 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
383 {
384 struct nvme_ns *ns = req->rq_disk->private_data;
385 struct bio_integrity_payload *bip;
386 struct t10_pi_tuple *pi;
387 void *p, *pmap;
388 u32 i, nlb, ts, phys, virt;
389
390 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
391 return;
392
393 bip = bio_integrity(req->bio);
394 if (!bip)
395 return;
396
397 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
398
399 p = pmap;
400 virt = bip_get_seed(bip);
401 phys = nvme_block_nr(ns, blk_rq_pos(req));
402 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
403 ts = ns->disk->queue->integrity.tuple_size;
404
405 for (i = 0; i < nlb; i++, virt++, phys++) {
406 pi = (struct t10_pi_tuple *)p;
407 dif_swap(phys, virt, pi);
408 p += ts;
409 }
410 kunmap_atomic(pmap);
411 }
412 #else /* CONFIG_BLK_DEV_INTEGRITY */
413 static void nvme_dif_remap(struct request *req,
414 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
415 {
416 }
417 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
418 {
419 }
420 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
421 {
422 }
423 #endif
424
425 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
426 {
427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
428 struct dma_pool *pool;
429 int length = blk_rq_payload_bytes(req);
430 struct scatterlist *sg = iod->sg;
431 int dma_len = sg_dma_len(sg);
432 u64 dma_addr = sg_dma_address(sg);
433 u32 page_size = dev->ctrl.page_size;
434 int offset = dma_addr & (page_size - 1);
435 __le64 *prp_list;
436 __le64 **list = iod_list(req);
437 dma_addr_t prp_dma;
438 int nprps, i;
439
440 length -= (page_size - offset);
441 if (length <= 0)
442 return true;
443
444 dma_len -= (page_size - offset);
445 if (dma_len) {
446 dma_addr += (page_size - offset);
447 } else {
448 sg = sg_next(sg);
449 dma_addr = sg_dma_address(sg);
450 dma_len = sg_dma_len(sg);
451 }
452
453 if (length <= page_size) {
454 iod->first_dma = dma_addr;
455 return true;
456 }
457
458 nprps = DIV_ROUND_UP(length, page_size);
459 if (nprps <= (256 / 8)) {
460 pool = dev->prp_small_pool;
461 iod->npages = 0;
462 } else {
463 pool = dev->prp_page_pool;
464 iod->npages = 1;
465 }
466
467 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
468 if (!prp_list) {
469 iod->first_dma = dma_addr;
470 iod->npages = -1;
471 return false;
472 }
473 list[0] = prp_list;
474 iod->first_dma = prp_dma;
475 i = 0;
476 for (;;) {
477 if (i == page_size >> 3) {
478 __le64 *old_prp_list = prp_list;
479 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
480 if (!prp_list)
481 return false;
482 list[iod->npages++] = prp_list;
483 prp_list[0] = old_prp_list[i - 1];
484 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
485 i = 1;
486 }
487 prp_list[i++] = cpu_to_le64(dma_addr);
488 dma_len -= page_size;
489 dma_addr += page_size;
490 length -= page_size;
491 if (length <= 0)
492 break;
493 if (dma_len > 0)
494 continue;
495 BUG_ON(dma_len < 0);
496 sg = sg_next(sg);
497 dma_addr = sg_dma_address(sg);
498 dma_len = sg_dma_len(sg);
499 }
500
501 return true;
502 }
503
504 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
505 struct nvme_command *cmnd)
506 {
507 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
508 struct request_queue *q = req->q;
509 enum dma_data_direction dma_dir = rq_data_dir(req) ?
510 DMA_TO_DEVICE : DMA_FROM_DEVICE;
511 int ret = BLK_MQ_RQ_QUEUE_ERROR;
512
513 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
514 iod->nents = blk_rq_map_sg(q, req, iod->sg);
515 if (!iod->nents)
516 goto out;
517
518 ret = BLK_MQ_RQ_QUEUE_BUSY;
519 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
520 DMA_ATTR_NO_WARN))
521 goto out;
522
523 if (!nvme_setup_prps(dev, req))
524 goto out_unmap;
525
526 ret = BLK_MQ_RQ_QUEUE_ERROR;
527 if (blk_integrity_rq(req)) {
528 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
529 goto out_unmap;
530
531 sg_init_table(&iod->meta_sg, 1);
532 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
533 goto out_unmap;
534
535 if (rq_data_dir(req))
536 nvme_dif_remap(req, nvme_dif_prep);
537
538 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
539 goto out_unmap;
540 }
541
542 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
543 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
544 if (blk_integrity_rq(req))
545 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
546 return BLK_MQ_RQ_QUEUE_OK;
547
548 out_unmap:
549 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
550 out:
551 return ret;
552 }
553
554 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
555 {
556 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
557 enum dma_data_direction dma_dir = rq_data_dir(req) ?
558 DMA_TO_DEVICE : DMA_FROM_DEVICE;
559
560 if (iod->nents) {
561 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
562 if (blk_integrity_rq(req)) {
563 if (!rq_data_dir(req))
564 nvme_dif_remap(req, nvme_dif_complete);
565 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
566 }
567 }
568
569 nvme_cleanup_cmd(req);
570 nvme_free_iod(dev, req);
571 }
572
573 /*
574 * NOTE: ns is NULL when called on the admin queue.
575 */
576 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
577 const struct blk_mq_queue_data *bd)
578 {
579 struct nvme_ns *ns = hctx->queue->queuedata;
580 struct nvme_queue *nvmeq = hctx->driver_data;
581 struct nvme_dev *dev = nvmeq->dev;
582 struct request *req = bd->rq;
583 struct nvme_command cmnd;
584 int ret = BLK_MQ_RQ_QUEUE_OK;
585
586 /*
587 * If formated with metadata, require the block layer provide a buffer
588 * unless this namespace is formated such that the metadata can be
589 * stripped/generated by the controller with PRACT=1.
590 */
591 if (ns && ns->ms && !blk_integrity_rq(req)) {
592 if (!(ns->pi_type && ns->ms == 8) &&
593 !blk_rq_is_passthrough(req)) {
594 blk_mq_end_request(req, -EFAULT);
595 return BLK_MQ_RQ_QUEUE_OK;
596 }
597 }
598
599 ret = nvme_setup_cmd(ns, req, &cmnd);
600 if (ret != BLK_MQ_RQ_QUEUE_OK)
601 return ret;
602
603 ret = nvme_init_iod(req, dev);
604 if (ret != BLK_MQ_RQ_QUEUE_OK)
605 goto out_free_cmd;
606
607 if (blk_rq_nr_phys_segments(req))
608 ret = nvme_map_data(dev, req, &cmnd);
609
610 if (ret != BLK_MQ_RQ_QUEUE_OK)
611 goto out_cleanup_iod;
612
613 blk_mq_start_request(req);
614
615 spin_lock_irq(&nvmeq->q_lock);
616 if (unlikely(nvmeq->cq_vector < 0)) {
617 ret = BLK_MQ_RQ_QUEUE_ERROR;
618 spin_unlock_irq(&nvmeq->q_lock);
619 goto out_cleanup_iod;
620 }
621 __nvme_submit_cmd(nvmeq, &cmnd);
622 nvme_process_cq(nvmeq);
623 spin_unlock_irq(&nvmeq->q_lock);
624 return BLK_MQ_RQ_QUEUE_OK;
625 out_cleanup_iod:
626 nvme_free_iod(dev, req);
627 out_free_cmd:
628 nvme_cleanup_cmd(req);
629 return ret;
630 }
631
632 static void nvme_complete_rq(struct request *req)
633 {
634 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
635 struct nvme_dev *dev = iod->nvmeq->dev;
636 int error = 0;
637
638 nvme_unmap_data(dev, req);
639
640 if (unlikely(req->errors)) {
641 if (nvme_req_needs_retry(req, req->errors)) {
642 req->retries++;
643 nvme_requeue_req(req);
644 return;
645 }
646
647 if (blk_rq_is_passthrough(req))
648 error = req->errors;
649 else
650 error = nvme_error_status(req->errors);
651 }
652
653 if (unlikely(iod->aborted)) {
654 dev_warn(dev->ctrl.device,
655 "completing aborted command with status: %04x\n",
656 req->errors);
657 }
658
659 blk_mq_end_request(req, error);
660 }
661
662 /* We read the CQE phase first to check if the rest of the entry is valid */
663 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
664 u16 phase)
665 {
666 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
667 }
668
669 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
670 {
671 u16 head, phase;
672
673 head = nvmeq->cq_head;
674 phase = nvmeq->cq_phase;
675
676 while (nvme_cqe_valid(nvmeq, head, phase)) {
677 struct nvme_completion cqe = nvmeq->cqes[head];
678 struct request *req;
679
680 if (++head == nvmeq->q_depth) {
681 head = 0;
682 phase = !phase;
683 }
684
685 if (tag && *tag == cqe.command_id)
686 *tag = -1;
687
688 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
689 dev_warn(nvmeq->dev->ctrl.device,
690 "invalid id %d completed on queue %d\n",
691 cqe.command_id, le16_to_cpu(cqe.sq_id));
692 continue;
693 }
694
695 /*
696 * AEN requests are special as they don't time out and can
697 * survive any kind of queue freeze and often don't respond to
698 * aborts. We don't even bother to allocate a struct request
699 * for them but rather special case them here.
700 */
701 if (unlikely(nvmeq->qid == 0 &&
702 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
703 nvme_complete_async_event(&nvmeq->dev->ctrl,
704 cqe.status, &cqe.result);
705 continue;
706 }
707
708 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
709 nvme_req(req)->result = cqe.result;
710 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
711 }
712
713 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
714 return;
715
716 if (likely(nvmeq->cq_vector >= 0))
717 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
718 nvmeq->cq_head = head;
719 nvmeq->cq_phase = phase;
720
721 nvmeq->cqe_seen = 1;
722 }
723
724 static void nvme_process_cq(struct nvme_queue *nvmeq)
725 {
726 __nvme_process_cq(nvmeq, NULL);
727 }
728
729 static irqreturn_t nvme_irq(int irq, void *data)
730 {
731 irqreturn_t result;
732 struct nvme_queue *nvmeq = data;
733 spin_lock(&nvmeq->q_lock);
734 nvme_process_cq(nvmeq);
735 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
736 nvmeq->cqe_seen = 0;
737 spin_unlock(&nvmeq->q_lock);
738 return result;
739 }
740
741 static irqreturn_t nvme_irq_check(int irq, void *data)
742 {
743 struct nvme_queue *nvmeq = data;
744 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
745 return IRQ_WAKE_THREAD;
746 return IRQ_NONE;
747 }
748
749 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
750 {
751 struct nvme_queue *nvmeq = hctx->driver_data;
752
753 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
754 spin_lock_irq(&nvmeq->q_lock);
755 __nvme_process_cq(nvmeq, &tag);
756 spin_unlock_irq(&nvmeq->q_lock);
757
758 if (tag == -1)
759 return 1;
760 }
761
762 return 0;
763 }
764
765 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
766 {
767 struct nvme_dev *dev = to_nvme_dev(ctrl);
768 struct nvme_queue *nvmeq = dev->queues[0];
769 struct nvme_command c;
770
771 memset(&c, 0, sizeof(c));
772 c.common.opcode = nvme_admin_async_event;
773 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
774
775 spin_lock_irq(&nvmeq->q_lock);
776 __nvme_submit_cmd(nvmeq, &c);
777 spin_unlock_irq(&nvmeq->q_lock);
778 }
779
780 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
781 {
782 struct nvme_command c;
783
784 memset(&c, 0, sizeof(c));
785 c.delete_queue.opcode = opcode;
786 c.delete_queue.qid = cpu_to_le16(id);
787
788 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
789 }
790
791 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
792 struct nvme_queue *nvmeq)
793 {
794 struct nvme_command c;
795 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
796
797 /*
798 * Note: we (ab)use the fact the the prp fields survive if no data
799 * is attached to the request.
800 */
801 memset(&c, 0, sizeof(c));
802 c.create_cq.opcode = nvme_admin_create_cq;
803 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
804 c.create_cq.cqid = cpu_to_le16(qid);
805 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
806 c.create_cq.cq_flags = cpu_to_le16(flags);
807 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
808
809 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
810 }
811
812 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
813 struct nvme_queue *nvmeq)
814 {
815 struct nvme_command c;
816 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
817
818 /*
819 * Note: we (ab)use the fact the the prp fields survive if no data
820 * is attached to the request.
821 */
822 memset(&c, 0, sizeof(c));
823 c.create_sq.opcode = nvme_admin_create_sq;
824 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
825 c.create_sq.sqid = cpu_to_le16(qid);
826 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
827 c.create_sq.sq_flags = cpu_to_le16(flags);
828 c.create_sq.cqid = cpu_to_le16(qid);
829
830 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
831 }
832
833 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
834 {
835 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
836 }
837
838 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
839 {
840 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
841 }
842
843 static void abort_endio(struct request *req, int error)
844 {
845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 struct nvme_queue *nvmeq = iod->nvmeq;
847 u16 status = req->errors;
848
849 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
850 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
851 blk_mq_free_request(req);
852 }
853
854 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
855 {
856 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
857 struct nvme_queue *nvmeq = iod->nvmeq;
858 struct nvme_dev *dev = nvmeq->dev;
859 struct request *abort_req;
860 struct nvme_command cmd;
861
862 /*
863 * Shutdown immediately if controller times out while starting. The
864 * reset work will see the pci device disabled when it gets the forced
865 * cancellation error. All outstanding requests are completed on
866 * shutdown, so we return BLK_EH_HANDLED.
867 */
868 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
869 dev_warn(dev->ctrl.device,
870 "I/O %d QID %d timeout, disable controller\n",
871 req->tag, nvmeq->qid);
872 nvme_dev_disable(dev, false);
873 req->errors = NVME_SC_CANCELLED;
874 return BLK_EH_HANDLED;
875 }
876
877 /*
878 * Shutdown the controller immediately and schedule a reset if the
879 * command was already aborted once before and still hasn't been
880 * returned to the driver, or if this is the admin queue.
881 */
882 if (!nvmeq->qid || iod->aborted) {
883 dev_warn(dev->ctrl.device,
884 "I/O %d QID %d timeout, reset controller\n",
885 req->tag, nvmeq->qid);
886 nvme_dev_disable(dev, false);
887 nvme_reset(dev);
888
889 /*
890 * Mark the request as handled, since the inline shutdown
891 * forces all outstanding requests to complete.
892 */
893 req->errors = NVME_SC_CANCELLED;
894 return BLK_EH_HANDLED;
895 }
896
897 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
898 atomic_inc(&dev->ctrl.abort_limit);
899 return BLK_EH_RESET_TIMER;
900 }
901 iod->aborted = 1;
902
903 memset(&cmd, 0, sizeof(cmd));
904 cmd.abort.opcode = nvme_admin_abort_cmd;
905 cmd.abort.cid = req->tag;
906 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
907
908 dev_warn(nvmeq->dev->ctrl.device,
909 "I/O %d QID %d timeout, aborting\n",
910 req->tag, nvmeq->qid);
911
912 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
913 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
914 if (IS_ERR(abort_req)) {
915 atomic_inc(&dev->ctrl.abort_limit);
916 return BLK_EH_RESET_TIMER;
917 }
918
919 abort_req->timeout = ADMIN_TIMEOUT;
920 abort_req->end_io_data = NULL;
921 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
922
923 /*
924 * The aborted req will be completed on receiving the abort req.
925 * We enable the timer again. If hit twice, it'll cause a device reset,
926 * as the device then is in a faulty state.
927 */
928 return BLK_EH_RESET_TIMER;
929 }
930
931 static void nvme_free_queue(struct nvme_queue *nvmeq)
932 {
933 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
934 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
935 if (nvmeq->sq_cmds)
936 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
937 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
938 kfree(nvmeq);
939 }
940
941 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
942 {
943 int i;
944
945 for (i = dev->queue_count - 1; i >= lowest; i--) {
946 struct nvme_queue *nvmeq = dev->queues[i];
947 dev->queue_count--;
948 dev->queues[i] = NULL;
949 nvme_free_queue(nvmeq);
950 }
951 }
952
953 /**
954 * nvme_suspend_queue - put queue into suspended state
955 * @nvmeq - queue to suspend
956 */
957 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
958 {
959 int vector;
960
961 spin_lock_irq(&nvmeq->q_lock);
962 if (nvmeq->cq_vector == -1) {
963 spin_unlock_irq(&nvmeq->q_lock);
964 return 1;
965 }
966 vector = nvmeq_irq(nvmeq);
967 nvmeq->dev->online_queues--;
968 nvmeq->cq_vector = -1;
969 spin_unlock_irq(&nvmeq->q_lock);
970
971 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
972 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
973
974 free_irq(vector, nvmeq);
975
976 return 0;
977 }
978
979 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
980 {
981 struct nvme_queue *nvmeq = dev->queues[0];
982
983 if (!nvmeq)
984 return;
985 if (nvme_suspend_queue(nvmeq))
986 return;
987
988 if (shutdown)
989 nvme_shutdown_ctrl(&dev->ctrl);
990 else
991 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
992 dev->bar + NVME_REG_CAP));
993
994 spin_lock_irq(&nvmeq->q_lock);
995 nvme_process_cq(nvmeq);
996 spin_unlock_irq(&nvmeq->q_lock);
997 }
998
999 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1000 int entry_size)
1001 {
1002 int q_depth = dev->q_depth;
1003 unsigned q_size_aligned = roundup(q_depth * entry_size,
1004 dev->ctrl.page_size);
1005
1006 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1007 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1008 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1009 q_depth = div_u64(mem_per_q, entry_size);
1010
1011 /*
1012 * Ensure the reduced q_depth is above some threshold where it
1013 * would be better to map queues in system memory with the
1014 * original depth
1015 */
1016 if (q_depth < 64)
1017 return -ENOMEM;
1018 }
1019
1020 return q_depth;
1021 }
1022
1023 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1024 int qid, int depth)
1025 {
1026 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1027 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1028 dev->ctrl.page_size);
1029 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1030 nvmeq->sq_cmds_io = dev->cmb + offset;
1031 } else {
1032 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1033 &nvmeq->sq_dma_addr, GFP_KERNEL);
1034 if (!nvmeq->sq_cmds)
1035 return -ENOMEM;
1036 }
1037
1038 return 0;
1039 }
1040
1041 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1042 int depth, int node)
1043 {
1044 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1045 node);
1046 if (!nvmeq)
1047 return NULL;
1048
1049 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1050 &nvmeq->cq_dma_addr, GFP_KERNEL);
1051 if (!nvmeq->cqes)
1052 goto free_nvmeq;
1053
1054 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1055 goto free_cqdma;
1056
1057 nvmeq->q_dmadev = dev->dev;
1058 nvmeq->dev = dev;
1059 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1060 dev->ctrl.instance, qid);
1061 spin_lock_init(&nvmeq->q_lock);
1062 nvmeq->cq_head = 0;
1063 nvmeq->cq_phase = 1;
1064 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1065 nvmeq->q_depth = depth;
1066 nvmeq->qid = qid;
1067 nvmeq->cq_vector = -1;
1068 dev->queues[qid] = nvmeq;
1069 dev->queue_count++;
1070
1071 return nvmeq;
1072
1073 free_cqdma:
1074 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1075 nvmeq->cq_dma_addr);
1076 free_nvmeq:
1077 kfree(nvmeq);
1078 return NULL;
1079 }
1080
1081 static int queue_request_irq(struct nvme_queue *nvmeq)
1082 {
1083 if (use_threaded_interrupts)
1084 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1085 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1086 else
1087 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1088 nvmeq->irqname, nvmeq);
1089 }
1090
1091 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1092 {
1093 struct nvme_dev *dev = nvmeq->dev;
1094
1095 spin_lock_irq(&nvmeq->q_lock);
1096 nvmeq->sq_tail = 0;
1097 nvmeq->cq_head = 0;
1098 nvmeq->cq_phase = 1;
1099 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1100 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1101 dev->online_queues++;
1102 spin_unlock_irq(&nvmeq->q_lock);
1103 }
1104
1105 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1106 {
1107 struct nvme_dev *dev = nvmeq->dev;
1108 int result;
1109
1110 nvmeq->cq_vector = qid - 1;
1111 result = adapter_alloc_cq(dev, qid, nvmeq);
1112 if (result < 0)
1113 return result;
1114
1115 result = adapter_alloc_sq(dev, qid, nvmeq);
1116 if (result < 0)
1117 goto release_cq;
1118
1119 result = queue_request_irq(nvmeq);
1120 if (result < 0)
1121 goto release_sq;
1122
1123 nvme_init_queue(nvmeq, qid);
1124 return result;
1125
1126 release_sq:
1127 adapter_delete_sq(dev, qid);
1128 release_cq:
1129 adapter_delete_cq(dev, qid);
1130 return result;
1131 }
1132
1133 static struct blk_mq_ops nvme_mq_admin_ops = {
1134 .queue_rq = nvme_queue_rq,
1135 .complete = nvme_complete_rq,
1136 .init_hctx = nvme_admin_init_hctx,
1137 .exit_hctx = nvme_admin_exit_hctx,
1138 .init_request = nvme_admin_init_request,
1139 .timeout = nvme_timeout,
1140 };
1141
1142 static struct blk_mq_ops nvme_mq_ops = {
1143 .queue_rq = nvme_queue_rq,
1144 .complete = nvme_complete_rq,
1145 .init_hctx = nvme_init_hctx,
1146 .init_request = nvme_init_request,
1147 .map_queues = nvme_pci_map_queues,
1148 .timeout = nvme_timeout,
1149 .poll = nvme_poll,
1150 };
1151
1152 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1153 {
1154 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1155 /*
1156 * If the controller was reset during removal, it's possible
1157 * user requests may be waiting on a stopped queue. Start the
1158 * queue to flush these to completion.
1159 */
1160 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1161 blk_cleanup_queue(dev->ctrl.admin_q);
1162 blk_mq_free_tag_set(&dev->admin_tagset);
1163 }
1164 }
1165
1166 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1167 {
1168 if (!dev->ctrl.admin_q) {
1169 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1170 dev->admin_tagset.nr_hw_queues = 1;
1171
1172 /*
1173 * Subtract one to leave an empty queue entry for 'Full Queue'
1174 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1175 */
1176 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1177 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1178 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1179 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1180 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1181 dev->admin_tagset.driver_data = dev;
1182
1183 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1184 return -ENOMEM;
1185
1186 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1187 if (IS_ERR(dev->ctrl.admin_q)) {
1188 blk_mq_free_tag_set(&dev->admin_tagset);
1189 return -ENOMEM;
1190 }
1191 if (!blk_get_queue(dev->ctrl.admin_q)) {
1192 nvme_dev_remove_admin(dev);
1193 dev->ctrl.admin_q = NULL;
1194 return -ENODEV;
1195 }
1196 } else
1197 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1198
1199 return 0;
1200 }
1201
1202 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1203 {
1204 int result;
1205 u32 aqa;
1206 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1207 struct nvme_queue *nvmeq;
1208
1209 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1210 NVME_CAP_NSSRC(cap) : 0;
1211
1212 if (dev->subsystem &&
1213 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1214 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1215
1216 result = nvme_disable_ctrl(&dev->ctrl, cap);
1217 if (result < 0)
1218 return result;
1219
1220 nvmeq = dev->queues[0];
1221 if (!nvmeq) {
1222 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1223 dev_to_node(dev->dev));
1224 if (!nvmeq)
1225 return -ENOMEM;
1226 }
1227
1228 aqa = nvmeq->q_depth - 1;
1229 aqa |= aqa << 16;
1230
1231 writel(aqa, dev->bar + NVME_REG_AQA);
1232 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1233 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1234
1235 result = nvme_enable_ctrl(&dev->ctrl, cap);
1236 if (result)
1237 return result;
1238
1239 nvmeq->cq_vector = 0;
1240 result = queue_request_irq(nvmeq);
1241 if (result) {
1242 nvmeq->cq_vector = -1;
1243 return result;
1244 }
1245
1246 return result;
1247 }
1248
1249 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1250 {
1251
1252 /* If true, indicates loss of adapter communication, possibly by a
1253 * NVMe Subsystem reset.
1254 */
1255 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1256
1257 /* If there is a reset ongoing, we shouldn't reset again. */
1258 if (work_busy(&dev->reset_work))
1259 return false;
1260
1261 /* We shouldn't reset unless the controller is on fatal error state
1262 * _or_ if we lost the communication with it.
1263 */
1264 if (!(csts & NVME_CSTS_CFS) && !nssro)
1265 return false;
1266
1267 /* If PCI error recovery process is happening, we cannot reset or
1268 * the recovery mechanism will surely fail.
1269 */
1270 if (pci_channel_offline(to_pci_dev(dev->dev)))
1271 return false;
1272
1273 return true;
1274 }
1275
1276 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1277 {
1278 /* Read a config register to help see what died. */
1279 u16 pci_status;
1280 int result;
1281
1282 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1283 &pci_status);
1284 if (result == PCIBIOS_SUCCESSFUL)
1285 dev_warn(dev->dev,
1286 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1287 csts, pci_status);
1288 else
1289 dev_warn(dev->dev,
1290 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1291 csts, result);
1292 }
1293
1294 static void nvme_watchdog_timer(unsigned long data)
1295 {
1296 struct nvme_dev *dev = (struct nvme_dev *)data;
1297 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1298
1299 /* Skip controllers under certain specific conditions. */
1300 if (nvme_should_reset(dev, csts)) {
1301 if (!nvme_reset(dev))
1302 nvme_warn_reset(dev, csts);
1303 return;
1304 }
1305
1306 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1307 }
1308
1309 static int nvme_create_io_queues(struct nvme_dev *dev)
1310 {
1311 unsigned i, max;
1312 int ret = 0;
1313
1314 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1315 /* vector == qid - 1, match nvme_create_queue */
1316 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1317 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1318 ret = -ENOMEM;
1319 break;
1320 }
1321 }
1322
1323 max = min(dev->max_qid, dev->queue_count - 1);
1324 for (i = dev->online_queues; i <= max; i++) {
1325 ret = nvme_create_queue(dev->queues[i], i);
1326 if (ret)
1327 break;
1328 }
1329
1330 /*
1331 * Ignore failing Create SQ/CQ commands, we can continue with less
1332 * than the desired aount of queues, and even a controller without
1333 * I/O queues an still be used to issue admin commands. This might
1334 * be useful to upgrade a buggy firmware for example.
1335 */
1336 return ret >= 0 ? 0 : ret;
1337 }
1338
1339 static ssize_t nvme_cmb_show(struct device *dev,
1340 struct device_attribute *attr,
1341 char *buf)
1342 {
1343 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1344
1345 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1346 ndev->cmbloc, ndev->cmbsz);
1347 }
1348 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1349
1350 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1351 {
1352 u64 szu, size, offset;
1353 resource_size_t bar_size;
1354 struct pci_dev *pdev = to_pci_dev(dev->dev);
1355 void __iomem *cmb;
1356 dma_addr_t dma_addr;
1357
1358 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1359 if (!(NVME_CMB_SZ(dev->cmbsz)))
1360 return NULL;
1361 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1362
1363 if (!use_cmb_sqes)
1364 return NULL;
1365
1366 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1367 size = szu * NVME_CMB_SZ(dev->cmbsz);
1368 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1369 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1370
1371 if (offset > bar_size)
1372 return NULL;
1373
1374 /*
1375 * Controllers may support a CMB size larger than their BAR,
1376 * for example, due to being behind a bridge. Reduce the CMB to
1377 * the reported size of the BAR
1378 */
1379 if (size > bar_size - offset)
1380 size = bar_size - offset;
1381
1382 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1383 cmb = ioremap_wc(dma_addr, size);
1384 if (!cmb)
1385 return NULL;
1386
1387 dev->cmb_dma_addr = dma_addr;
1388 dev->cmb_size = size;
1389 return cmb;
1390 }
1391
1392 static inline void nvme_release_cmb(struct nvme_dev *dev)
1393 {
1394 if (dev->cmb) {
1395 iounmap(dev->cmb);
1396 dev->cmb = NULL;
1397 }
1398 }
1399
1400 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1401 {
1402 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1403 }
1404
1405 static int nvme_setup_io_queues(struct nvme_dev *dev)
1406 {
1407 struct nvme_queue *adminq = dev->queues[0];
1408 struct pci_dev *pdev = to_pci_dev(dev->dev);
1409 int result, nr_io_queues, size;
1410
1411 nr_io_queues = num_online_cpus();
1412 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1413 if (result < 0)
1414 return result;
1415
1416 if (nr_io_queues == 0)
1417 return 0;
1418
1419 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1420 result = nvme_cmb_qdepth(dev, nr_io_queues,
1421 sizeof(struct nvme_command));
1422 if (result > 0)
1423 dev->q_depth = result;
1424 else
1425 nvme_release_cmb(dev);
1426 }
1427
1428 size = db_bar_size(dev, nr_io_queues);
1429 if (size > 8192) {
1430 iounmap(dev->bar);
1431 do {
1432 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1433 if (dev->bar)
1434 break;
1435 if (!--nr_io_queues)
1436 return -ENOMEM;
1437 size = db_bar_size(dev, nr_io_queues);
1438 } while (1);
1439 dev->dbs = dev->bar + 4096;
1440 adminq->q_db = dev->dbs;
1441 }
1442
1443 /* Deregister the admin queue's interrupt */
1444 free_irq(pci_irq_vector(pdev, 0), adminq);
1445
1446 /*
1447 * If we enable msix early due to not intx, disable it again before
1448 * setting up the full range we need.
1449 */
1450 pci_free_irq_vectors(pdev);
1451 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1452 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1453 if (nr_io_queues <= 0)
1454 return -EIO;
1455 dev->max_qid = nr_io_queues;
1456
1457 /*
1458 * Should investigate if there's a performance win from allocating
1459 * more queues than interrupt vectors; it might allow the submission
1460 * path to scale better, even if the receive path is limited by the
1461 * number of interrupts.
1462 */
1463
1464 result = queue_request_irq(adminq);
1465 if (result) {
1466 adminq->cq_vector = -1;
1467 return result;
1468 }
1469 return nvme_create_io_queues(dev);
1470 }
1471
1472 static void nvme_del_queue_end(struct request *req, int error)
1473 {
1474 struct nvme_queue *nvmeq = req->end_io_data;
1475
1476 blk_mq_free_request(req);
1477 complete(&nvmeq->dev->ioq_wait);
1478 }
1479
1480 static void nvme_del_cq_end(struct request *req, int error)
1481 {
1482 struct nvme_queue *nvmeq = req->end_io_data;
1483
1484 if (!error) {
1485 unsigned long flags;
1486
1487 /*
1488 * We might be called with the AQ q_lock held
1489 * and the I/O queue q_lock should always
1490 * nest inside the AQ one.
1491 */
1492 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1493 SINGLE_DEPTH_NESTING);
1494 nvme_process_cq(nvmeq);
1495 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1496 }
1497
1498 nvme_del_queue_end(req, error);
1499 }
1500
1501 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1502 {
1503 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1504 struct request *req;
1505 struct nvme_command cmd;
1506
1507 memset(&cmd, 0, sizeof(cmd));
1508 cmd.delete_queue.opcode = opcode;
1509 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1510
1511 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1512 if (IS_ERR(req))
1513 return PTR_ERR(req);
1514
1515 req->timeout = ADMIN_TIMEOUT;
1516 req->end_io_data = nvmeq;
1517
1518 blk_execute_rq_nowait(q, NULL, req, false,
1519 opcode == nvme_admin_delete_cq ?
1520 nvme_del_cq_end : nvme_del_queue_end);
1521 return 0;
1522 }
1523
1524 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1525 {
1526 int pass;
1527 unsigned long timeout;
1528 u8 opcode = nvme_admin_delete_sq;
1529
1530 for (pass = 0; pass < 2; pass++) {
1531 int sent = 0, i = queues;
1532
1533 reinit_completion(&dev->ioq_wait);
1534 retry:
1535 timeout = ADMIN_TIMEOUT;
1536 for (; i > 0; i--, sent++)
1537 if (nvme_delete_queue(dev->queues[i], opcode))
1538 break;
1539
1540 while (sent--) {
1541 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1542 if (timeout == 0)
1543 return;
1544 if (i)
1545 goto retry;
1546 }
1547 opcode = nvme_admin_delete_cq;
1548 }
1549 }
1550
1551 /*
1552 * Return: error value if an error occurred setting up the queues or calling
1553 * Identify Device. 0 if these succeeded, even if adding some of the
1554 * namespaces failed. At the moment, these failures are silent. TBD which
1555 * failures should be reported.
1556 */
1557 static int nvme_dev_add(struct nvme_dev *dev)
1558 {
1559 if (!dev->ctrl.tagset) {
1560 dev->tagset.ops = &nvme_mq_ops;
1561 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1562 dev->tagset.timeout = NVME_IO_TIMEOUT;
1563 dev->tagset.numa_node = dev_to_node(dev->dev);
1564 dev->tagset.queue_depth =
1565 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1566 dev->tagset.cmd_size = nvme_cmd_size(dev);
1567 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1568 dev->tagset.driver_data = dev;
1569
1570 if (blk_mq_alloc_tag_set(&dev->tagset))
1571 return 0;
1572 dev->ctrl.tagset = &dev->tagset;
1573 } else {
1574 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1575
1576 /* Free previously allocated queues that are no longer usable */
1577 nvme_free_queues(dev, dev->online_queues);
1578 }
1579
1580 return 0;
1581 }
1582
1583 static int nvme_pci_enable(struct nvme_dev *dev)
1584 {
1585 u64 cap;
1586 int result = -ENOMEM;
1587 struct pci_dev *pdev = to_pci_dev(dev->dev);
1588
1589 if (pci_enable_device_mem(pdev))
1590 return result;
1591
1592 pci_set_master(pdev);
1593
1594 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1595 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1596 goto disable;
1597
1598 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1599 result = -ENODEV;
1600 goto disable;
1601 }
1602
1603 /*
1604 * Some devices and/or platforms don't advertise or work with INTx
1605 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1606 * adjust this later.
1607 */
1608 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1609 if (result < 0)
1610 return result;
1611
1612 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1613
1614 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1615 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1616 dev->dbs = dev->bar + 4096;
1617
1618 /*
1619 * Temporary fix for the Apple controller found in the MacBook8,1 and
1620 * some MacBook7,1 to avoid controller resets and data loss.
1621 */
1622 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1623 dev->q_depth = 2;
1624 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1625 "queue depth=%u to work around controller resets\n",
1626 dev->q_depth);
1627 }
1628
1629 /*
1630 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1631 * populate sysfs if a CMB is implemented. Note that we add the
1632 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1633 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1634 * NULL as final argument to sysfs_add_file_to_group.
1635 */
1636
1637 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1638 dev->cmb = nvme_map_cmb(dev);
1639
1640 if (dev->cmbsz) {
1641 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1642 &dev_attr_cmb.attr, NULL))
1643 dev_warn(dev->dev,
1644 "failed to add sysfs attribute for CMB\n");
1645 }
1646 }
1647
1648 pci_enable_pcie_error_reporting(pdev);
1649 pci_save_state(pdev);
1650 return 0;
1651
1652 disable:
1653 pci_disable_device(pdev);
1654 return result;
1655 }
1656
1657 static void nvme_dev_unmap(struct nvme_dev *dev)
1658 {
1659 if (dev->bar)
1660 iounmap(dev->bar);
1661 pci_release_mem_regions(to_pci_dev(dev->dev));
1662 }
1663
1664 static void nvme_pci_disable(struct nvme_dev *dev)
1665 {
1666 struct pci_dev *pdev = to_pci_dev(dev->dev);
1667
1668 pci_free_irq_vectors(pdev);
1669
1670 if (pci_is_enabled(pdev)) {
1671 pci_disable_pcie_error_reporting(pdev);
1672 pci_disable_device(pdev);
1673 }
1674 }
1675
1676 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1677 {
1678 int i, queues;
1679 bool dead = true;
1680 struct pci_dev *pdev = to_pci_dev(dev->dev);
1681
1682 del_timer_sync(&dev->watchdog_timer);
1683
1684 mutex_lock(&dev->shutdown_lock);
1685 if (pci_is_enabled(pdev)) {
1686 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1687
1688 if (dev->ctrl.state == NVME_CTRL_LIVE)
1689 nvme_start_freeze(&dev->ctrl);
1690 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1691 pdev->error_state != pci_channel_io_normal);
1692 }
1693
1694 /*
1695 * Give the controller a chance to complete all entered requests if
1696 * doing a safe shutdown.
1697 */
1698 if (!dead && shutdown)
1699 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1700 nvme_stop_queues(&dev->ctrl);
1701
1702 queues = dev->online_queues - 1;
1703 for (i = dev->queue_count - 1; i > 0; i--)
1704 nvme_suspend_queue(dev->queues[i]);
1705
1706 if (dead) {
1707 /* A device might become IO incapable very soon during
1708 * probe, before the admin queue is configured. Thus,
1709 * queue_count can be 0 here.
1710 */
1711 if (dev->queue_count)
1712 nvme_suspend_queue(dev->queues[0]);
1713 } else {
1714 nvme_disable_io_queues(dev, queues);
1715 nvme_disable_admin_queue(dev, shutdown);
1716 }
1717 nvme_pci_disable(dev);
1718
1719 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1720 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1721
1722 /*
1723 * The driver will not be starting up queues again if shutting down so
1724 * must flush all entered requests to their failed completion to avoid
1725 * deadlocking blk-mq hot-cpu notifier.
1726 */
1727 if (shutdown)
1728 nvme_start_queues(&dev->ctrl);
1729 mutex_unlock(&dev->shutdown_lock);
1730 }
1731
1732 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1733 {
1734 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1735 PAGE_SIZE, PAGE_SIZE, 0);
1736 if (!dev->prp_page_pool)
1737 return -ENOMEM;
1738
1739 /* Optimisation for I/Os between 4k and 128k */
1740 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1741 256, 256, 0);
1742 if (!dev->prp_small_pool) {
1743 dma_pool_destroy(dev->prp_page_pool);
1744 return -ENOMEM;
1745 }
1746 return 0;
1747 }
1748
1749 static void nvme_release_prp_pools(struct nvme_dev *dev)
1750 {
1751 dma_pool_destroy(dev->prp_page_pool);
1752 dma_pool_destroy(dev->prp_small_pool);
1753 }
1754
1755 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1756 {
1757 struct nvme_dev *dev = to_nvme_dev(ctrl);
1758
1759 put_device(dev->dev);
1760 if (dev->tagset.tags)
1761 blk_mq_free_tag_set(&dev->tagset);
1762 if (dev->ctrl.admin_q)
1763 blk_put_queue(dev->ctrl.admin_q);
1764 kfree(dev->queues);
1765 free_opal_dev(dev->ctrl.opal_dev);
1766 kfree(dev);
1767 }
1768
1769 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1770 {
1771 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1772
1773 kref_get(&dev->ctrl.kref);
1774 nvme_dev_disable(dev, false);
1775 if (!schedule_work(&dev->remove_work))
1776 nvme_put_ctrl(&dev->ctrl);
1777 }
1778
1779 static void nvme_reset_work(struct work_struct *work)
1780 {
1781 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1782 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1783 int result = -ENODEV;
1784
1785 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1786 goto out;
1787
1788 /*
1789 * If we're called to reset a live controller first shut it down before
1790 * moving on.
1791 */
1792 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1793 nvme_dev_disable(dev, false);
1794
1795 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1796 goto out;
1797
1798 result = nvme_pci_enable(dev);
1799 if (result)
1800 goto out;
1801
1802 result = nvme_configure_admin_queue(dev);
1803 if (result)
1804 goto out;
1805
1806 nvme_init_queue(dev->queues[0], 0);
1807 result = nvme_alloc_admin_tags(dev);
1808 if (result)
1809 goto out;
1810
1811 result = nvme_init_identify(&dev->ctrl);
1812 if (result)
1813 goto out;
1814
1815 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1816 if (!dev->ctrl.opal_dev)
1817 dev->ctrl.opal_dev =
1818 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1819 else if (was_suspend)
1820 opal_unlock_from_suspend(dev->ctrl.opal_dev);
1821 } else {
1822 free_opal_dev(dev->ctrl.opal_dev);
1823 dev->ctrl.opal_dev = NULL;
1824 }
1825
1826 result = nvme_setup_io_queues(dev);
1827 if (result)
1828 goto out;
1829
1830 /*
1831 * A controller that can not execute IO typically requires user
1832 * intervention to correct. For such degraded controllers, the driver
1833 * should not submit commands the user did not request, so skip
1834 * registering for asynchronous event notification on this condition.
1835 */
1836 if (dev->online_queues > 1)
1837 nvme_queue_async_events(&dev->ctrl);
1838
1839 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1840
1841 /*
1842 * Keep the controller around but remove all namespaces if we don't have
1843 * any working I/O queue.
1844 */
1845 if (dev->online_queues < 2) {
1846 dev_warn(dev->ctrl.device, "IO queues not created\n");
1847 nvme_kill_queues(&dev->ctrl);
1848 nvme_remove_namespaces(&dev->ctrl);
1849 } else {
1850 nvme_start_queues(&dev->ctrl);
1851 nvme_wait_freeze(&dev->ctrl);
1852 nvme_dev_add(dev);
1853 nvme_unfreeze(&dev->ctrl);
1854 }
1855
1856 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1857 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1858 goto out;
1859 }
1860
1861 if (dev->online_queues > 1)
1862 nvme_queue_scan(&dev->ctrl);
1863 return;
1864
1865 out:
1866 nvme_remove_dead_ctrl(dev, result);
1867 }
1868
1869 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1870 {
1871 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1872 struct pci_dev *pdev = to_pci_dev(dev->dev);
1873
1874 nvme_kill_queues(&dev->ctrl);
1875 if (pci_get_drvdata(pdev))
1876 device_release_driver(&pdev->dev);
1877 nvme_put_ctrl(&dev->ctrl);
1878 }
1879
1880 static int nvme_reset(struct nvme_dev *dev)
1881 {
1882 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1883 return -ENODEV;
1884 if (work_busy(&dev->reset_work))
1885 return -ENODEV;
1886 if (!queue_work(nvme_workq, &dev->reset_work))
1887 return -EBUSY;
1888 return 0;
1889 }
1890
1891 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1892 {
1893 *val = readl(to_nvme_dev(ctrl)->bar + off);
1894 return 0;
1895 }
1896
1897 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1898 {
1899 writel(val, to_nvme_dev(ctrl)->bar + off);
1900 return 0;
1901 }
1902
1903 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1904 {
1905 *val = readq(to_nvme_dev(ctrl)->bar + off);
1906 return 0;
1907 }
1908
1909 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1910 {
1911 struct nvme_dev *dev = to_nvme_dev(ctrl);
1912 int ret = nvme_reset(dev);
1913
1914 if (!ret)
1915 flush_work(&dev->reset_work);
1916 return ret;
1917 }
1918
1919 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1920 .name = "pcie",
1921 .module = THIS_MODULE,
1922 .reg_read32 = nvme_pci_reg_read32,
1923 .reg_write32 = nvme_pci_reg_write32,
1924 .reg_read64 = nvme_pci_reg_read64,
1925 .reset_ctrl = nvme_pci_reset_ctrl,
1926 .free_ctrl = nvme_pci_free_ctrl,
1927 .submit_async_event = nvme_pci_submit_async_event,
1928 };
1929
1930 static int nvme_dev_map(struct nvme_dev *dev)
1931 {
1932 struct pci_dev *pdev = to_pci_dev(dev->dev);
1933
1934 if (pci_request_mem_regions(pdev, "nvme"))
1935 return -ENODEV;
1936
1937 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1938 if (!dev->bar)
1939 goto release;
1940
1941 return 0;
1942 release:
1943 pci_release_mem_regions(pdev);
1944 return -ENODEV;
1945 }
1946
1947 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
1948 {
1949 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
1950 /*
1951 * Several Samsung devices seem to drop off the PCIe bus
1952 * randomly when APST is on and uses the deepest sleep state.
1953 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
1954 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
1955 * 950 PRO 256GB", but it seems to be restricted to two Dell
1956 * laptops.
1957 */
1958 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
1959 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
1960 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
1961 return NVME_QUIRK_NO_DEEPEST_PS;
1962 }
1963
1964 return 0;
1965 }
1966
1967 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1968 {
1969 int node, result = -ENOMEM;
1970 struct nvme_dev *dev;
1971 unsigned long quirks = id->driver_data;
1972
1973 node = dev_to_node(&pdev->dev);
1974 if (node == NUMA_NO_NODE)
1975 set_dev_node(&pdev->dev, first_memory_node);
1976
1977 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1978 if (!dev)
1979 return -ENOMEM;
1980 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1981 GFP_KERNEL, node);
1982 if (!dev->queues)
1983 goto free;
1984
1985 dev->dev = get_device(&pdev->dev);
1986 pci_set_drvdata(pdev, dev);
1987
1988 result = nvme_dev_map(dev);
1989 if (result)
1990 goto free;
1991
1992 INIT_WORK(&dev->reset_work, nvme_reset_work);
1993 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1994 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1995 (unsigned long)dev);
1996 mutex_init(&dev->shutdown_lock);
1997 init_completion(&dev->ioq_wait);
1998
1999 result = nvme_setup_prp_pools(dev);
2000 if (result)
2001 goto put_pci;
2002
2003 quirks |= check_dell_samsung_bug(pdev);
2004
2005 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2006 quirks);
2007 if (result)
2008 goto release_pools;
2009
2010 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2011
2012 queue_work(nvme_workq, &dev->reset_work);
2013 return 0;
2014
2015 release_pools:
2016 nvme_release_prp_pools(dev);
2017 put_pci:
2018 put_device(dev->dev);
2019 nvme_dev_unmap(dev);
2020 free:
2021 kfree(dev->queues);
2022 kfree(dev);
2023 return result;
2024 }
2025
2026 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2027 {
2028 struct nvme_dev *dev = pci_get_drvdata(pdev);
2029
2030 if (prepare)
2031 nvme_dev_disable(dev, false);
2032 else
2033 nvme_reset(dev);
2034 }
2035
2036 static void nvme_shutdown(struct pci_dev *pdev)
2037 {
2038 struct nvme_dev *dev = pci_get_drvdata(pdev);
2039 nvme_dev_disable(dev, true);
2040 }
2041
2042 /*
2043 * The driver's remove may be called on a device in a partially initialized
2044 * state. This function must not have any dependencies on the device state in
2045 * order to proceed.
2046 */
2047 static void nvme_remove(struct pci_dev *pdev)
2048 {
2049 struct nvme_dev *dev = pci_get_drvdata(pdev);
2050
2051 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2052
2053 pci_set_drvdata(pdev, NULL);
2054
2055 if (!pci_device_is_present(pdev)) {
2056 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2057 nvme_dev_disable(dev, false);
2058 }
2059
2060 flush_work(&dev->reset_work);
2061 nvme_uninit_ctrl(&dev->ctrl);
2062 nvme_dev_disable(dev, true);
2063 nvme_dev_remove_admin(dev);
2064 nvme_free_queues(dev, 0);
2065 nvme_release_cmb(dev);
2066 nvme_release_prp_pools(dev);
2067 nvme_dev_unmap(dev);
2068 nvme_put_ctrl(&dev->ctrl);
2069 }
2070
2071 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2072 {
2073 int ret = 0;
2074
2075 if (numvfs == 0) {
2076 if (pci_vfs_assigned(pdev)) {
2077 dev_warn(&pdev->dev,
2078 "Cannot disable SR-IOV VFs while assigned\n");
2079 return -EPERM;
2080 }
2081 pci_disable_sriov(pdev);
2082 return 0;
2083 }
2084
2085 ret = pci_enable_sriov(pdev, numvfs);
2086 return ret ? ret : numvfs;
2087 }
2088
2089 #ifdef CONFIG_PM_SLEEP
2090 static int nvme_suspend(struct device *dev)
2091 {
2092 struct pci_dev *pdev = to_pci_dev(dev);
2093 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2094
2095 nvme_dev_disable(ndev, true);
2096 return 0;
2097 }
2098
2099 static int nvme_resume(struct device *dev)
2100 {
2101 struct pci_dev *pdev = to_pci_dev(dev);
2102 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2103
2104 nvme_reset(ndev);
2105 return 0;
2106 }
2107 #endif
2108
2109 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2110
2111 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2112 pci_channel_state_t state)
2113 {
2114 struct nvme_dev *dev = pci_get_drvdata(pdev);
2115
2116 /*
2117 * A frozen channel requires a reset. When detected, this method will
2118 * shutdown the controller to quiesce. The controller will be restarted
2119 * after the slot reset through driver's slot_reset callback.
2120 */
2121 switch (state) {
2122 case pci_channel_io_normal:
2123 return PCI_ERS_RESULT_CAN_RECOVER;
2124 case pci_channel_io_frozen:
2125 dev_warn(dev->ctrl.device,
2126 "frozen state error detected, reset controller\n");
2127 nvme_dev_disable(dev, false);
2128 return PCI_ERS_RESULT_NEED_RESET;
2129 case pci_channel_io_perm_failure:
2130 dev_warn(dev->ctrl.device,
2131 "failure state error detected, request disconnect\n");
2132 return PCI_ERS_RESULT_DISCONNECT;
2133 }
2134 return PCI_ERS_RESULT_NEED_RESET;
2135 }
2136
2137 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2138 {
2139 struct nvme_dev *dev = pci_get_drvdata(pdev);
2140
2141 dev_info(dev->ctrl.device, "restart after slot reset\n");
2142 pci_restore_state(pdev);
2143 nvme_reset(dev);
2144 return PCI_ERS_RESULT_RECOVERED;
2145 }
2146
2147 static void nvme_error_resume(struct pci_dev *pdev)
2148 {
2149 pci_cleanup_aer_uncorrect_error_status(pdev);
2150 }
2151
2152 static const struct pci_error_handlers nvme_err_handler = {
2153 .error_detected = nvme_error_detected,
2154 .slot_reset = nvme_slot_reset,
2155 .resume = nvme_error_resume,
2156 .reset_notify = nvme_reset_notify,
2157 };
2158
2159 static const struct pci_device_id nvme_id_table[] = {
2160 { PCI_VDEVICE(INTEL, 0x0953),
2161 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2162 NVME_QUIRK_DISCARD_ZEROES, },
2163 { PCI_VDEVICE(INTEL, 0x0a53),
2164 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2165 NVME_QUIRK_DISCARD_ZEROES, },
2166 { PCI_VDEVICE(INTEL, 0x0a54),
2167 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2168 NVME_QUIRK_DISCARD_ZEROES, },
2169 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2170 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2171 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2172 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2173 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2174 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2175 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2176 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2177 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2178 { 0, }
2179 };
2180 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2181
2182 static struct pci_driver nvme_driver = {
2183 .name = "nvme",
2184 .id_table = nvme_id_table,
2185 .probe = nvme_probe,
2186 .remove = nvme_remove,
2187 .shutdown = nvme_shutdown,
2188 .driver = {
2189 .pm = &nvme_dev_pm_ops,
2190 },
2191 .sriov_configure = nvme_pci_sriov_configure,
2192 .err_handler = &nvme_err_handler,
2193 };
2194
2195 static int __init nvme_init(void)
2196 {
2197 int result;
2198
2199 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2200 if (!nvme_workq)
2201 return -ENOMEM;
2202
2203 result = pci_register_driver(&nvme_driver);
2204 if (result)
2205 destroy_workqueue(nvme_workq);
2206 return result;
2207 }
2208
2209 static void __exit nvme_exit(void)
2210 {
2211 pci_unregister_driver(&nvme_driver);
2212 destroy_workqueue(nvme_workq);
2213 _nvme_check_size();
2214 }
2215
2216 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2217 MODULE_LICENSE("GPL");
2218 MODULE_VERSION("1.0");
2219 module_init(nvme_init);
2220 module_exit(nvme_exit);