]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/pci.c
68ef1875e8a88cdc6e7bb67a751c6421ddbf0d17
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH 1024
50 #define NVME_AQ_DEPTH 256
51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
53
54 /*
55 * We handle AEN commands ourselves and don't even let the
56 * block layer know about them.
57 */
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 struct nvme_ctrl ctrl;
103 struct completion ioq_wait;
104 };
105
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107 {
108 return container_of(ctrl, struct nvme_dev, ctrl);
109 }
110
111 /*
112 * An NVM Express queue. Each device has at least two (one for admin
113 * commands and one for I/O commands).
114 */
115 struct nvme_queue {
116 struct device *q_dmadev;
117 struct nvme_dev *dev;
118 char irqname[24]; /* nvme4294967295-65535\0 */
119 spinlock_t q_lock;
120 struct nvme_command *sq_cmds;
121 struct nvme_command __iomem *sq_cmds_io;
122 volatile struct nvme_completion *cqes;
123 struct blk_mq_tags **tags;
124 dma_addr_t sq_dma_addr;
125 dma_addr_t cq_dma_addr;
126 u32 __iomem *q_db;
127 u16 q_depth;
128 s16 cq_vector;
129 u16 sq_tail;
130 u16 cq_head;
131 u16 qid;
132 u8 cq_phase;
133 u8 cqe_seen;
134 };
135
136 /*
137 * The nvme_iod describes the data in an I/O, including the list of PRP
138 * entries. You can't see it in this data structure because C doesn't let
139 * me express that. Use nvme_init_iod to ensure there's enough space
140 * allocated to store the PRP list.
141 */
142 struct nvme_iod {
143 struct nvme_queue *nvmeq;
144 int aborted;
145 int npages; /* In the PRP list. 0 means small pool in use */
146 int nents; /* Used in scatterlist */
147 int length; /* Of data, in bytes */
148 dma_addr_t first_dma;
149 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
150 struct scatterlist *sg;
151 struct scatterlist inline_sg[0];
152 };
153
154 /*
155 * Check we didin't inadvertently grow the command struct
156 */
157 static inline void _nvme_check_size(void)
158 {
159 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
171 }
172
173 /*
174 * Max size of iod being embedded in the request payload
175 */
176 #define NVME_INT_PAGES 2
177 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
178
179 /*
180 * Will slightly overestimate the number of pages needed. This is OK
181 * as it only leads to a small amount of wasted memory for the lifetime of
182 * the I/O.
183 */
184 static int nvme_npages(unsigned size, struct nvme_dev *dev)
185 {
186 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 dev->ctrl.page_size);
188 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189 }
190
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 unsigned int size, unsigned int nseg)
193 {
194 return sizeof(__le64 *) * nvme_npages(size, dev) +
195 sizeof(struct scatterlist) * nseg;
196 }
197
198 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199 {
200 return sizeof(struct nvme_iod) +
201 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
202 }
203
204 static int nvmeq_irq(struct nvme_queue *nvmeq)
205 {
206 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
207 }
208
209 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
210 unsigned int hctx_idx)
211 {
212 struct nvme_dev *dev = data;
213 struct nvme_queue *nvmeq = dev->queues[0];
214
215 WARN_ON(hctx_idx != 0);
216 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
217 WARN_ON(nvmeq->tags);
218
219 hctx->driver_data = nvmeq;
220 nvmeq->tags = &dev->admin_tagset.tags[0];
221 return 0;
222 }
223
224 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
225 {
226 struct nvme_queue *nvmeq = hctx->driver_data;
227
228 nvmeq->tags = NULL;
229 }
230
231 static int nvme_admin_init_request(void *data, struct request *req,
232 unsigned int hctx_idx, unsigned int rq_idx,
233 unsigned int numa_node)
234 {
235 struct nvme_dev *dev = data;
236 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
237 struct nvme_queue *nvmeq = dev->queues[0];
238
239 BUG_ON(!nvmeq);
240 iod->nvmeq = nvmeq;
241 return 0;
242 }
243
244 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
245 unsigned int hctx_idx)
246 {
247 struct nvme_dev *dev = data;
248 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
249
250 if (!nvmeq->tags)
251 nvmeq->tags = &dev->tagset.tags[hctx_idx];
252
253 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
254 hctx->driver_data = nvmeq;
255 return 0;
256 }
257
258 static int nvme_init_request(void *data, struct request *req,
259 unsigned int hctx_idx, unsigned int rq_idx,
260 unsigned int numa_node)
261 {
262 struct nvme_dev *dev = data;
263 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
264 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
265
266 BUG_ON(!nvmeq);
267 iod->nvmeq = nvmeq;
268 return 0;
269 }
270
271 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
272 {
273 struct nvme_dev *dev = set->driver_data;
274
275 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
276 }
277
278 /**
279 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
280 * @nvmeq: The queue to use
281 * @cmd: The command to send
282 *
283 * Safe to use from interrupt context
284 */
285 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
286 struct nvme_command *cmd)
287 {
288 u16 tail = nvmeq->sq_tail;
289
290 if (nvmeq->sq_cmds_io)
291 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
292 else
293 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
294
295 if (++tail == nvmeq->q_depth)
296 tail = 0;
297 writel(tail, nvmeq->q_db);
298 nvmeq->sq_tail = tail;
299 }
300
301 static __le64 **iod_list(struct request *req)
302 {
303 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
304 return (__le64 **)(iod->sg + req->nr_phys_segments);
305 }
306
307 static int nvme_init_iod(struct request *rq, unsigned size,
308 struct nvme_dev *dev)
309 {
310 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
311 int nseg = rq->nr_phys_segments;
312
313 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
314 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
315 if (!iod->sg)
316 return BLK_MQ_RQ_QUEUE_BUSY;
317 } else {
318 iod->sg = iod->inline_sg;
319 }
320
321 iod->aborted = 0;
322 iod->npages = -1;
323 iod->nents = 0;
324 iod->length = size;
325
326 if (!(rq->cmd_flags & REQ_DONTPREP)) {
327 rq->retries = 0;
328 rq->cmd_flags |= REQ_DONTPREP;
329 }
330 return 0;
331 }
332
333 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
334 {
335 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
336 const int last_prp = dev->ctrl.page_size / 8 - 1;
337 int i;
338 __le64 **list = iod_list(req);
339 dma_addr_t prp_dma = iod->first_dma;
340
341 nvme_cleanup_cmd(req);
342
343 if (iod->npages == 0)
344 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345 for (i = 0; i < iod->npages; i++) {
346 __le64 *prp_list = list[i];
347 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349 prp_dma = next_prp_dma;
350 }
351
352 if (iod->sg != iod->inline_sg)
353 kfree(iod->sg);
354 }
355
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359 if (be32_to_cpu(pi->ref_tag) == v)
360 pi->ref_tag = cpu_to_be32(p);
361 }
362
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365 if (be32_to_cpu(pi->ref_tag) == p)
366 pi->ref_tag = cpu_to_be32(v);
367 }
368
369 /**
370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371 *
372 * The virtual start sector is the one that was originally submitted by the
373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374 * start sector may be different. Remap protection information to match the
375 * physical LBA on writes, and back to the original seed on reads.
376 *
377 * Type 0 and 3 do not have a ref tag, so no remapping required.
378 */
379 static void nvme_dif_remap(struct request *req,
380 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382 struct nvme_ns *ns = req->rq_disk->private_data;
383 struct bio_integrity_payload *bip;
384 struct t10_pi_tuple *pi;
385 void *p, *pmap;
386 u32 i, nlb, ts, phys, virt;
387
388 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389 return;
390
391 bip = bio_integrity(req->bio);
392 if (!bip)
393 return;
394
395 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396
397 p = pmap;
398 virt = bip_get_seed(bip);
399 phys = nvme_block_nr(ns, blk_rq_pos(req));
400 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401 ts = ns->disk->queue->integrity.tuple_size;
402
403 for (i = 0; i < nlb; i++, virt++, phys++) {
404 pi = (struct t10_pi_tuple *)p;
405 dif_swap(phys, virt, pi);
406 p += ts;
407 }
408 kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
424 int total_len)
425 {
426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427 struct dma_pool *pool;
428 int length = total_len;
429 struct scatterlist *sg = iod->sg;
430 int dma_len = sg_dma_len(sg);
431 u64 dma_addr = sg_dma_address(sg);
432 u32 page_size = dev->ctrl.page_size;
433 int offset = dma_addr & (page_size - 1);
434 __le64 *prp_list;
435 __le64 **list = iod_list(req);
436 dma_addr_t prp_dma;
437 int nprps, i;
438
439 length -= (page_size - offset);
440 if (length <= 0)
441 return true;
442
443 dma_len -= (page_size - offset);
444 if (dma_len) {
445 dma_addr += (page_size - offset);
446 } else {
447 sg = sg_next(sg);
448 dma_addr = sg_dma_address(sg);
449 dma_len = sg_dma_len(sg);
450 }
451
452 if (length <= page_size) {
453 iod->first_dma = dma_addr;
454 return true;
455 }
456
457 nprps = DIV_ROUND_UP(length, page_size);
458 if (nprps <= (256 / 8)) {
459 pool = dev->prp_small_pool;
460 iod->npages = 0;
461 } else {
462 pool = dev->prp_page_pool;
463 iod->npages = 1;
464 }
465
466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467 if (!prp_list) {
468 iod->first_dma = dma_addr;
469 iod->npages = -1;
470 return false;
471 }
472 list[0] = prp_list;
473 iod->first_dma = prp_dma;
474 i = 0;
475 for (;;) {
476 if (i == page_size >> 3) {
477 __le64 *old_prp_list = prp_list;
478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
479 if (!prp_list)
480 return false;
481 list[iod->npages++] = prp_list;
482 prp_list[0] = old_prp_list[i - 1];
483 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484 i = 1;
485 }
486 prp_list[i++] = cpu_to_le64(dma_addr);
487 dma_len -= page_size;
488 dma_addr += page_size;
489 length -= page_size;
490 if (length <= 0)
491 break;
492 if (dma_len > 0)
493 continue;
494 BUG_ON(dma_len < 0);
495 sg = sg_next(sg);
496 dma_addr = sg_dma_address(sg);
497 dma_len = sg_dma_len(sg);
498 }
499
500 return true;
501 }
502
503 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
504 unsigned size, struct nvme_command *cmnd)
505 {
506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507 struct request_queue *q = req->q;
508 enum dma_data_direction dma_dir = rq_data_dir(req) ?
509 DMA_TO_DEVICE : DMA_FROM_DEVICE;
510 int ret = BLK_MQ_RQ_QUEUE_ERROR;
511
512 sg_init_table(iod->sg, req->nr_phys_segments);
513 iod->nents = blk_rq_map_sg(q, req, iod->sg);
514 if (!iod->nents)
515 goto out;
516
517 ret = BLK_MQ_RQ_QUEUE_BUSY;
518 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
519 goto out;
520
521 if (!nvme_setup_prps(dev, req, size))
522 goto out_unmap;
523
524 ret = BLK_MQ_RQ_QUEUE_ERROR;
525 if (blk_integrity_rq(req)) {
526 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
527 goto out_unmap;
528
529 sg_init_table(&iod->meta_sg, 1);
530 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
531 goto out_unmap;
532
533 if (rq_data_dir(req))
534 nvme_dif_remap(req, nvme_dif_prep);
535
536 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
537 goto out_unmap;
538 }
539
540 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
541 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
542 if (blk_integrity_rq(req))
543 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
544 return BLK_MQ_RQ_QUEUE_OK;
545
546 out_unmap:
547 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548 out:
549 return ret;
550 }
551
552 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
553 {
554 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
555 enum dma_data_direction dma_dir = rq_data_dir(req) ?
556 DMA_TO_DEVICE : DMA_FROM_DEVICE;
557
558 if (iod->nents) {
559 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
560 if (blk_integrity_rq(req)) {
561 if (!rq_data_dir(req))
562 nvme_dif_remap(req, nvme_dif_complete);
563 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
564 }
565 }
566
567 nvme_free_iod(dev, req);
568 }
569
570 /*
571 * NOTE: ns is NULL when called on the admin queue.
572 */
573 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
574 const struct blk_mq_queue_data *bd)
575 {
576 struct nvme_ns *ns = hctx->queue->queuedata;
577 struct nvme_queue *nvmeq = hctx->driver_data;
578 struct nvme_dev *dev = nvmeq->dev;
579 struct request *req = bd->rq;
580 struct nvme_command cmnd;
581 unsigned map_len;
582 int ret = BLK_MQ_RQ_QUEUE_OK;
583
584 /*
585 * If formated with metadata, require the block layer provide a buffer
586 * unless this namespace is formated such that the metadata can be
587 * stripped/generated by the controller with PRACT=1.
588 */
589 if (ns && ns->ms && !blk_integrity_rq(req)) {
590 if (!(ns->pi_type && ns->ms == 8) &&
591 req->cmd_type != REQ_TYPE_DRV_PRIV) {
592 blk_mq_end_request(req, -EFAULT);
593 return BLK_MQ_RQ_QUEUE_OK;
594 }
595 }
596
597 map_len = nvme_map_len(req);
598 ret = nvme_init_iod(req, map_len, dev);
599 if (ret)
600 return ret;
601
602 ret = nvme_setup_cmd(ns, req, &cmnd);
603 if (ret)
604 goto out;
605
606 if (req->nr_phys_segments)
607 ret = nvme_map_data(dev, req, map_len, &cmnd);
608
609 if (ret)
610 goto out;
611
612 cmnd.common.command_id = req->tag;
613 blk_mq_start_request(req);
614
615 spin_lock_irq(&nvmeq->q_lock);
616 if (unlikely(nvmeq->cq_vector < 0)) {
617 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
618 ret = BLK_MQ_RQ_QUEUE_BUSY;
619 else
620 ret = BLK_MQ_RQ_QUEUE_ERROR;
621 spin_unlock_irq(&nvmeq->q_lock);
622 goto out;
623 }
624 __nvme_submit_cmd(nvmeq, &cmnd);
625 nvme_process_cq(nvmeq);
626 spin_unlock_irq(&nvmeq->q_lock);
627 return BLK_MQ_RQ_QUEUE_OK;
628 out:
629 nvme_free_iod(dev, req);
630 return ret;
631 }
632
633 static void nvme_complete_rq(struct request *req)
634 {
635 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
636 struct nvme_dev *dev = iod->nvmeq->dev;
637 int error = 0;
638
639 nvme_unmap_data(dev, req);
640
641 if (unlikely(req->errors)) {
642 if (nvme_req_needs_retry(req, req->errors)) {
643 req->retries++;
644 nvme_requeue_req(req);
645 return;
646 }
647
648 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
649 error = req->errors;
650 else
651 error = nvme_error_status(req->errors);
652 }
653
654 if (unlikely(iod->aborted)) {
655 dev_warn(dev->ctrl.device,
656 "completing aborted command with status: %04x\n",
657 req->errors);
658 }
659
660 blk_mq_end_request(req, error);
661 }
662
663 /* We read the CQE phase first to check if the rest of the entry is valid */
664 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
665 u16 phase)
666 {
667 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
668 }
669
670 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
671 {
672 u16 head, phase;
673
674 head = nvmeq->cq_head;
675 phase = nvmeq->cq_phase;
676
677 while (nvme_cqe_valid(nvmeq, head, phase)) {
678 struct nvme_completion cqe = nvmeq->cqes[head];
679 struct request *req;
680
681 if (++head == nvmeq->q_depth) {
682 head = 0;
683 phase = !phase;
684 }
685
686 if (tag && *tag == cqe.command_id)
687 *tag = -1;
688
689 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
690 dev_warn(nvmeq->dev->ctrl.device,
691 "invalid id %d completed on queue %d\n",
692 cqe.command_id, le16_to_cpu(cqe.sq_id));
693 continue;
694 }
695
696 /*
697 * AEN requests are special as they don't time out and can
698 * survive any kind of queue freeze and often don't respond to
699 * aborts. We don't even bother to allocate a struct request
700 * for them but rather special case them here.
701 */
702 if (unlikely(nvmeq->qid == 0 &&
703 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
704 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
705 continue;
706 }
707
708 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
709 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
710 memcpy(req->special, &cqe, sizeof(cqe));
711 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
712
713 }
714
715 /* If the controller ignores the cq head doorbell and continuously
716 * writes to the queue, it is theoretically possible to wrap around
717 * the queue twice and mistakenly return IRQ_NONE. Linux only
718 * requires that 0.1% of your interrupts are handled, so this isn't
719 * a big problem.
720 */
721 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
722 return;
723
724 if (likely(nvmeq->cq_vector >= 0))
725 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
726 nvmeq->cq_head = head;
727 nvmeq->cq_phase = phase;
728
729 nvmeq->cqe_seen = 1;
730 }
731
732 static void nvme_process_cq(struct nvme_queue *nvmeq)
733 {
734 __nvme_process_cq(nvmeq, NULL);
735 }
736
737 static irqreturn_t nvme_irq(int irq, void *data)
738 {
739 irqreturn_t result;
740 struct nvme_queue *nvmeq = data;
741 spin_lock(&nvmeq->q_lock);
742 nvme_process_cq(nvmeq);
743 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
744 nvmeq->cqe_seen = 0;
745 spin_unlock(&nvmeq->q_lock);
746 return result;
747 }
748
749 static irqreturn_t nvme_irq_check(int irq, void *data)
750 {
751 struct nvme_queue *nvmeq = data;
752 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
753 return IRQ_WAKE_THREAD;
754 return IRQ_NONE;
755 }
756
757 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
758 {
759 struct nvme_queue *nvmeq = hctx->driver_data;
760
761 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
762 spin_lock_irq(&nvmeq->q_lock);
763 __nvme_process_cq(nvmeq, &tag);
764 spin_unlock_irq(&nvmeq->q_lock);
765
766 if (tag == -1)
767 return 1;
768 }
769
770 return 0;
771 }
772
773 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
774 {
775 struct nvme_dev *dev = to_nvme_dev(ctrl);
776 struct nvme_queue *nvmeq = dev->queues[0];
777 struct nvme_command c;
778
779 memset(&c, 0, sizeof(c));
780 c.common.opcode = nvme_admin_async_event;
781 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
782
783 spin_lock_irq(&nvmeq->q_lock);
784 __nvme_submit_cmd(nvmeq, &c);
785 spin_unlock_irq(&nvmeq->q_lock);
786 }
787
788 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
789 {
790 struct nvme_command c;
791
792 memset(&c, 0, sizeof(c));
793 c.delete_queue.opcode = opcode;
794 c.delete_queue.qid = cpu_to_le16(id);
795
796 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
797 }
798
799 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
800 struct nvme_queue *nvmeq)
801 {
802 struct nvme_command c;
803 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
804
805 /*
806 * Note: we (ab)use the fact the the prp fields survive if no data
807 * is attached to the request.
808 */
809 memset(&c, 0, sizeof(c));
810 c.create_cq.opcode = nvme_admin_create_cq;
811 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
812 c.create_cq.cqid = cpu_to_le16(qid);
813 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
814 c.create_cq.cq_flags = cpu_to_le16(flags);
815 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
816
817 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
818 }
819
820 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
821 struct nvme_queue *nvmeq)
822 {
823 struct nvme_command c;
824 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
825
826 /*
827 * Note: we (ab)use the fact the the prp fields survive if no data
828 * is attached to the request.
829 */
830 memset(&c, 0, sizeof(c));
831 c.create_sq.opcode = nvme_admin_create_sq;
832 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
833 c.create_sq.sqid = cpu_to_le16(qid);
834 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
835 c.create_sq.sq_flags = cpu_to_le16(flags);
836 c.create_sq.cqid = cpu_to_le16(qid);
837
838 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
839 }
840
841 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
842 {
843 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
844 }
845
846 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
847 {
848 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
849 }
850
851 static void abort_endio(struct request *req, int error)
852 {
853 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
854 struct nvme_queue *nvmeq = iod->nvmeq;
855 u16 status = req->errors;
856
857 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
858 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
859 blk_mq_free_request(req);
860 }
861
862 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
863 {
864 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
865 struct nvme_queue *nvmeq = iod->nvmeq;
866 struct nvme_dev *dev = nvmeq->dev;
867 struct request *abort_req;
868 struct nvme_command cmd;
869
870 /*
871 * Shutdown immediately if controller times out while starting. The
872 * reset work will see the pci device disabled when it gets the forced
873 * cancellation error. All outstanding requests are completed on
874 * shutdown, so we return BLK_EH_HANDLED.
875 */
876 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
877 dev_warn(dev->ctrl.device,
878 "I/O %d QID %d timeout, disable controller\n",
879 req->tag, nvmeq->qid);
880 nvme_dev_disable(dev, false);
881 req->errors = NVME_SC_CANCELLED;
882 return BLK_EH_HANDLED;
883 }
884
885 /*
886 * Shutdown the controller immediately and schedule a reset if the
887 * command was already aborted once before and still hasn't been
888 * returned to the driver, or if this is the admin queue.
889 */
890 if (!nvmeq->qid || iod->aborted) {
891 dev_warn(dev->ctrl.device,
892 "I/O %d QID %d timeout, reset controller\n",
893 req->tag, nvmeq->qid);
894 nvme_dev_disable(dev, false);
895 queue_work(nvme_workq, &dev->reset_work);
896
897 /*
898 * Mark the request as handled, since the inline shutdown
899 * forces all outstanding requests to complete.
900 */
901 req->errors = NVME_SC_CANCELLED;
902 return BLK_EH_HANDLED;
903 }
904
905 iod->aborted = 1;
906
907 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
908 atomic_inc(&dev->ctrl.abort_limit);
909 return BLK_EH_RESET_TIMER;
910 }
911
912 memset(&cmd, 0, sizeof(cmd));
913 cmd.abort.opcode = nvme_admin_abort_cmd;
914 cmd.abort.cid = req->tag;
915 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
916
917 dev_warn(nvmeq->dev->ctrl.device,
918 "I/O %d QID %d timeout, aborting\n",
919 req->tag, nvmeq->qid);
920
921 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
922 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
923 if (IS_ERR(abort_req)) {
924 atomic_inc(&dev->ctrl.abort_limit);
925 return BLK_EH_RESET_TIMER;
926 }
927
928 abort_req->timeout = ADMIN_TIMEOUT;
929 abort_req->end_io_data = NULL;
930 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
931
932 /*
933 * The aborted req will be completed on receiving the abort req.
934 * We enable the timer again. If hit twice, it'll cause a device reset,
935 * as the device then is in a faulty state.
936 */
937 return BLK_EH_RESET_TIMER;
938 }
939
940 static void nvme_free_queue(struct nvme_queue *nvmeq)
941 {
942 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
943 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
944 if (nvmeq->sq_cmds)
945 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
946 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
947 kfree(nvmeq);
948 }
949
950 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
951 {
952 int i;
953
954 for (i = dev->queue_count - 1; i >= lowest; i--) {
955 struct nvme_queue *nvmeq = dev->queues[i];
956 dev->queue_count--;
957 dev->queues[i] = NULL;
958 nvme_free_queue(nvmeq);
959 }
960 }
961
962 /**
963 * nvme_suspend_queue - put queue into suspended state
964 * @nvmeq - queue to suspend
965 */
966 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
967 {
968 int vector;
969
970 spin_lock_irq(&nvmeq->q_lock);
971 if (nvmeq->cq_vector == -1) {
972 spin_unlock_irq(&nvmeq->q_lock);
973 return 1;
974 }
975 vector = nvmeq_irq(nvmeq);
976 nvmeq->dev->online_queues--;
977 nvmeq->cq_vector = -1;
978 spin_unlock_irq(&nvmeq->q_lock);
979
980 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
981 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
982
983 free_irq(vector, nvmeq);
984
985 return 0;
986 }
987
988 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
989 {
990 struct nvme_queue *nvmeq = dev->queues[0];
991
992 if (!nvmeq)
993 return;
994 if (nvme_suspend_queue(nvmeq))
995 return;
996
997 if (shutdown)
998 nvme_shutdown_ctrl(&dev->ctrl);
999 else
1000 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1001 dev->bar + NVME_REG_CAP));
1002
1003 spin_lock_irq(&nvmeq->q_lock);
1004 nvme_process_cq(nvmeq);
1005 spin_unlock_irq(&nvmeq->q_lock);
1006 }
1007
1008 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1009 int entry_size)
1010 {
1011 int q_depth = dev->q_depth;
1012 unsigned q_size_aligned = roundup(q_depth * entry_size,
1013 dev->ctrl.page_size);
1014
1015 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1016 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1017 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1018 q_depth = div_u64(mem_per_q, entry_size);
1019
1020 /*
1021 * Ensure the reduced q_depth is above some threshold where it
1022 * would be better to map queues in system memory with the
1023 * original depth
1024 */
1025 if (q_depth < 64)
1026 return -ENOMEM;
1027 }
1028
1029 return q_depth;
1030 }
1031
1032 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1033 int qid, int depth)
1034 {
1035 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1036 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1037 dev->ctrl.page_size);
1038 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1039 nvmeq->sq_cmds_io = dev->cmb + offset;
1040 } else {
1041 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1042 &nvmeq->sq_dma_addr, GFP_KERNEL);
1043 if (!nvmeq->sq_cmds)
1044 return -ENOMEM;
1045 }
1046
1047 return 0;
1048 }
1049
1050 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1051 int depth)
1052 {
1053 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1054 if (!nvmeq)
1055 return NULL;
1056
1057 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1058 &nvmeq->cq_dma_addr, GFP_KERNEL);
1059 if (!nvmeq->cqes)
1060 goto free_nvmeq;
1061
1062 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1063 goto free_cqdma;
1064
1065 nvmeq->q_dmadev = dev->dev;
1066 nvmeq->dev = dev;
1067 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1068 dev->ctrl.instance, qid);
1069 spin_lock_init(&nvmeq->q_lock);
1070 nvmeq->cq_head = 0;
1071 nvmeq->cq_phase = 1;
1072 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1073 nvmeq->q_depth = depth;
1074 nvmeq->qid = qid;
1075 nvmeq->cq_vector = -1;
1076 dev->queues[qid] = nvmeq;
1077 dev->queue_count++;
1078
1079 return nvmeq;
1080
1081 free_cqdma:
1082 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1083 nvmeq->cq_dma_addr);
1084 free_nvmeq:
1085 kfree(nvmeq);
1086 return NULL;
1087 }
1088
1089 static int queue_request_irq(struct nvme_queue *nvmeq)
1090 {
1091 if (use_threaded_interrupts)
1092 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1093 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1094 else
1095 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1096 nvmeq->irqname, nvmeq);
1097 }
1098
1099 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1100 {
1101 struct nvme_dev *dev = nvmeq->dev;
1102
1103 spin_lock_irq(&nvmeq->q_lock);
1104 nvmeq->sq_tail = 0;
1105 nvmeq->cq_head = 0;
1106 nvmeq->cq_phase = 1;
1107 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1108 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1109 dev->online_queues++;
1110 spin_unlock_irq(&nvmeq->q_lock);
1111 }
1112
1113 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1114 {
1115 struct nvme_dev *dev = nvmeq->dev;
1116 int result;
1117
1118 nvmeq->cq_vector = qid - 1;
1119 result = adapter_alloc_cq(dev, qid, nvmeq);
1120 if (result < 0)
1121 return result;
1122
1123 result = adapter_alloc_sq(dev, qid, nvmeq);
1124 if (result < 0)
1125 goto release_cq;
1126
1127 result = queue_request_irq(nvmeq);
1128 if (result < 0)
1129 goto release_sq;
1130
1131 nvme_init_queue(nvmeq, qid);
1132 return result;
1133
1134 release_sq:
1135 adapter_delete_sq(dev, qid);
1136 release_cq:
1137 adapter_delete_cq(dev, qid);
1138 return result;
1139 }
1140
1141 static struct blk_mq_ops nvme_mq_admin_ops = {
1142 .queue_rq = nvme_queue_rq,
1143 .complete = nvme_complete_rq,
1144 .init_hctx = nvme_admin_init_hctx,
1145 .exit_hctx = nvme_admin_exit_hctx,
1146 .init_request = nvme_admin_init_request,
1147 .timeout = nvme_timeout,
1148 };
1149
1150 static struct blk_mq_ops nvme_mq_ops = {
1151 .queue_rq = nvme_queue_rq,
1152 .complete = nvme_complete_rq,
1153 .init_hctx = nvme_init_hctx,
1154 .init_request = nvme_init_request,
1155 .map_queues = nvme_pci_map_queues,
1156 .timeout = nvme_timeout,
1157 .poll = nvme_poll,
1158 };
1159
1160 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1161 {
1162 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1163 /*
1164 * If the controller was reset during removal, it's possible
1165 * user requests may be waiting on a stopped queue. Start the
1166 * queue to flush these to completion.
1167 */
1168 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1169 blk_cleanup_queue(dev->ctrl.admin_q);
1170 blk_mq_free_tag_set(&dev->admin_tagset);
1171 }
1172 }
1173
1174 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1175 {
1176 if (!dev->ctrl.admin_q) {
1177 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1178 dev->admin_tagset.nr_hw_queues = 1;
1179
1180 /*
1181 * Subtract one to leave an empty queue entry for 'Full Queue'
1182 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1183 */
1184 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1185 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1186 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1187 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1188 dev->admin_tagset.driver_data = dev;
1189
1190 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1191 return -ENOMEM;
1192
1193 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1194 if (IS_ERR(dev->ctrl.admin_q)) {
1195 blk_mq_free_tag_set(&dev->admin_tagset);
1196 return -ENOMEM;
1197 }
1198 if (!blk_get_queue(dev->ctrl.admin_q)) {
1199 nvme_dev_remove_admin(dev);
1200 dev->ctrl.admin_q = NULL;
1201 return -ENODEV;
1202 }
1203 } else
1204 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1205
1206 return 0;
1207 }
1208
1209 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1210 {
1211 int result;
1212 u32 aqa;
1213 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1214 struct nvme_queue *nvmeq;
1215
1216 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1217 NVME_CAP_NSSRC(cap) : 0;
1218
1219 if (dev->subsystem &&
1220 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1221 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1222
1223 result = nvme_disable_ctrl(&dev->ctrl, cap);
1224 if (result < 0)
1225 return result;
1226
1227 nvmeq = dev->queues[0];
1228 if (!nvmeq) {
1229 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1230 if (!nvmeq)
1231 return -ENOMEM;
1232 }
1233
1234 aqa = nvmeq->q_depth - 1;
1235 aqa |= aqa << 16;
1236
1237 writel(aqa, dev->bar + NVME_REG_AQA);
1238 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1239 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1240
1241 result = nvme_enable_ctrl(&dev->ctrl, cap);
1242 if (result)
1243 goto free_nvmeq;
1244
1245 nvmeq->cq_vector = 0;
1246 result = queue_request_irq(nvmeq);
1247 if (result) {
1248 nvmeq->cq_vector = -1;
1249 goto free_nvmeq;
1250 }
1251
1252 return result;
1253
1254 free_nvmeq:
1255 nvme_free_queues(dev, 0);
1256 return result;
1257 }
1258
1259 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1260 {
1261
1262 /* If true, indicates loss of adapter communication, possibly by a
1263 * NVMe Subsystem reset.
1264 */
1265 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1266
1267 /* If there is a reset ongoing, we shouldn't reset again. */
1268 if (work_busy(&dev->reset_work))
1269 return false;
1270
1271 /* We shouldn't reset unless the controller is on fatal error state
1272 * _or_ if we lost the communication with it.
1273 */
1274 if (!(csts & NVME_CSTS_CFS) && !nssro)
1275 return false;
1276
1277 /* If PCI error recovery process is happening, we cannot reset or
1278 * the recovery mechanism will surely fail.
1279 */
1280 if (pci_channel_offline(to_pci_dev(dev->dev)))
1281 return false;
1282
1283 return true;
1284 }
1285
1286 static void nvme_watchdog_timer(unsigned long data)
1287 {
1288 struct nvme_dev *dev = (struct nvme_dev *)data;
1289 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1290
1291 /* Skip controllers under certain specific conditions. */
1292 if (nvme_should_reset(dev, csts)) {
1293 if (queue_work(nvme_workq, &dev->reset_work))
1294 dev_warn(dev->dev,
1295 "Failed status: 0x%x, reset controller.\n",
1296 csts);
1297 return;
1298 }
1299
1300 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1301 }
1302
1303 static int nvme_create_io_queues(struct nvme_dev *dev)
1304 {
1305 unsigned i, max;
1306 int ret = 0;
1307
1308 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1309 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1310 ret = -ENOMEM;
1311 break;
1312 }
1313 }
1314
1315 max = min(dev->max_qid, dev->queue_count - 1);
1316 for (i = dev->online_queues; i <= max; i++) {
1317 ret = nvme_create_queue(dev->queues[i], i);
1318 if (ret) {
1319 nvme_free_queues(dev, i);
1320 break;
1321 }
1322 }
1323
1324 /*
1325 * Ignore failing Create SQ/CQ commands, we can continue with less
1326 * than the desired aount of queues, and even a controller without
1327 * I/O queues an still be used to issue admin commands. This might
1328 * be useful to upgrade a buggy firmware for example.
1329 */
1330 return ret >= 0 ? 0 : ret;
1331 }
1332
1333 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1334 {
1335 u64 szu, size, offset;
1336 u32 cmbloc;
1337 resource_size_t bar_size;
1338 struct pci_dev *pdev = to_pci_dev(dev->dev);
1339 void __iomem *cmb;
1340 dma_addr_t dma_addr;
1341
1342 if (!use_cmb_sqes)
1343 return NULL;
1344
1345 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1346 if (!(NVME_CMB_SZ(dev->cmbsz)))
1347 return NULL;
1348
1349 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1350
1351 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1352 size = szu * NVME_CMB_SZ(dev->cmbsz);
1353 offset = szu * NVME_CMB_OFST(cmbloc);
1354 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1355
1356 if (offset > bar_size)
1357 return NULL;
1358
1359 /*
1360 * Controllers may support a CMB size larger than their BAR,
1361 * for example, due to being behind a bridge. Reduce the CMB to
1362 * the reported size of the BAR
1363 */
1364 if (size > bar_size - offset)
1365 size = bar_size - offset;
1366
1367 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1368 cmb = ioremap_wc(dma_addr, size);
1369 if (!cmb)
1370 return NULL;
1371
1372 dev->cmb_dma_addr = dma_addr;
1373 dev->cmb_size = size;
1374 return cmb;
1375 }
1376
1377 static inline void nvme_release_cmb(struct nvme_dev *dev)
1378 {
1379 if (dev->cmb) {
1380 iounmap(dev->cmb);
1381 dev->cmb = NULL;
1382 }
1383 }
1384
1385 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1386 {
1387 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1388 }
1389
1390 static int nvme_setup_io_queues(struct nvme_dev *dev)
1391 {
1392 struct nvme_queue *adminq = dev->queues[0];
1393 struct pci_dev *pdev = to_pci_dev(dev->dev);
1394 int result, nr_io_queues, size;
1395
1396 nr_io_queues = num_online_cpus();
1397 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1398 if (result < 0)
1399 return result;
1400
1401 if (nr_io_queues == 0)
1402 return 0;
1403
1404 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1405 result = nvme_cmb_qdepth(dev, nr_io_queues,
1406 sizeof(struct nvme_command));
1407 if (result > 0)
1408 dev->q_depth = result;
1409 else
1410 nvme_release_cmb(dev);
1411 }
1412
1413 size = db_bar_size(dev, nr_io_queues);
1414 if (size > 8192) {
1415 iounmap(dev->bar);
1416 do {
1417 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1418 if (dev->bar)
1419 break;
1420 if (!--nr_io_queues)
1421 return -ENOMEM;
1422 size = db_bar_size(dev, nr_io_queues);
1423 } while (1);
1424 dev->dbs = dev->bar + 4096;
1425 adminq->q_db = dev->dbs;
1426 }
1427
1428 /* Deregister the admin queue's interrupt */
1429 free_irq(pci_irq_vector(pdev, 0), adminq);
1430
1431 /*
1432 * If we enable msix early due to not intx, disable it again before
1433 * setting up the full range we need.
1434 */
1435 pci_free_irq_vectors(pdev);
1436 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1437 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1438 if (nr_io_queues <= 0)
1439 return -EIO;
1440 dev->max_qid = nr_io_queues;
1441
1442 /*
1443 * Should investigate if there's a performance win from allocating
1444 * more queues than interrupt vectors; it might allow the submission
1445 * path to scale better, even if the receive path is limited by the
1446 * number of interrupts.
1447 */
1448
1449 result = queue_request_irq(adminq);
1450 if (result) {
1451 adminq->cq_vector = -1;
1452 goto free_queues;
1453 }
1454 return nvme_create_io_queues(dev);
1455
1456 free_queues:
1457 nvme_free_queues(dev, 1);
1458 return result;
1459 }
1460
1461 static void nvme_del_queue_end(struct request *req, int error)
1462 {
1463 struct nvme_queue *nvmeq = req->end_io_data;
1464
1465 blk_mq_free_request(req);
1466 complete(&nvmeq->dev->ioq_wait);
1467 }
1468
1469 static void nvme_del_cq_end(struct request *req, int error)
1470 {
1471 struct nvme_queue *nvmeq = req->end_io_data;
1472
1473 if (!error) {
1474 unsigned long flags;
1475
1476 /*
1477 * We might be called with the AQ q_lock held
1478 * and the I/O queue q_lock should always
1479 * nest inside the AQ one.
1480 */
1481 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1482 SINGLE_DEPTH_NESTING);
1483 nvme_process_cq(nvmeq);
1484 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1485 }
1486
1487 nvme_del_queue_end(req, error);
1488 }
1489
1490 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1491 {
1492 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1493 struct request *req;
1494 struct nvme_command cmd;
1495
1496 memset(&cmd, 0, sizeof(cmd));
1497 cmd.delete_queue.opcode = opcode;
1498 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1499
1500 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1501 if (IS_ERR(req))
1502 return PTR_ERR(req);
1503
1504 req->timeout = ADMIN_TIMEOUT;
1505 req->end_io_data = nvmeq;
1506
1507 blk_execute_rq_nowait(q, NULL, req, false,
1508 opcode == nvme_admin_delete_cq ?
1509 nvme_del_cq_end : nvme_del_queue_end);
1510 return 0;
1511 }
1512
1513 static void nvme_disable_io_queues(struct nvme_dev *dev)
1514 {
1515 int pass, queues = dev->online_queues - 1;
1516 unsigned long timeout;
1517 u8 opcode = nvme_admin_delete_sq;
1518
1519 for (pass = 0; pass < 2; pass++) {
1520 int sent = 0, i = queues;
1521
1522 reinit_completion(&dev->ioq_wait);
1523 retry:
1524 timeout = ADMIN_TIMEOUT;
1525 for (; i > 0; i--, sent++)
1526 if (nvme_delete_queue(dev->queues[i], opcode))
1527 break;
1528
1529 while (sent--) {
1530 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1531 if (timeout == 0)
1532 return;
1533 if (i)
1534 goto retry;
1535 }
1536 opcode = nvme_admin_delete_cq;
1537 }
1538 }
1539
1540 /*
1541 * Return: error value if an error occurred setting up the queues or calling
1542 * Identify Device. 0 if these succeeded, even if adding some of the
1543 * namespaces failed. At the moment, these failures are silent. TBD which
1544 * failures should be reported.
1545 */
1546 static int nvme_dev_add(struct nvme_dev *dev)
1547 {
1548 if (!dev->ctrl.tagset) {
1549 dev->tagset.ops = &nvme_mq_ops;
1550 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1551 dev->tagset.timeout = NVME_IO_TIMEOUT;
1552 dev->tagset.numa_node = dev_to_node(dev->dev);
1553 dev->tagset.queue_depth =
1554 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1555 dev->tagset.cmd_size = nvme_cmd_size(dev);
1556 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1557 dev->tagset.driver_data = dev;
1558
1559 if (blk_mq_alloc_tag_set(&dev->tagset))
1560 return 0;
1561 dev->ctrl.tagset = &dev->tagset;
1562 } else {
1563 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1564
1565 /* Free previously allocated queues that are no longer usable */
1566 nvme_free_queues(dev, dev->online_queues);
1567 }
1568
1569 return 0;
1570 }
1571
1572 static int nvme_pci_enable(struct nvme_dev *dev)
1573 {
1574 u64 cap;
1575 int result = -ENOMEM;
1576 struct pci_dev *pdev = to_pci_dev(dev->dev);
1577
1578 if (pci_enable_device_mem(pdev))
1579 return result;
1580
1581 pci_set_master(pdev);
1582
1583 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1584 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1585 goto disable;
1586
1587 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1588 result = -ENODEV;
1589 goto disable;
1590 }
1591
1592 /*
1593 * Some devices and/or platforms don't advertise or work with INTx
1594 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1595 * adjust this later.
1596 */
1597 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1598 if (result < 0)
1599 return result;
1600
1601 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1602
1603 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1604 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1605 dev->dbs = dev->bar + 4096;
1606
1607 /*
1608 * Temporary fix for the Apple controller found in the MacBook8,1 and
1609 * some MacBook7,1 to avoid controller resets and data loss.
1610 */
1611 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1612 dev->q_depth = 2;
1613 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1614 "queue depth=%u to work around controller resets\n",
1615 dev->q_depth);
1616 }
1617
1618 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1619 dev->cmb = nvme_map_cmb(dev);
1620
1621 pci_enable_pcie_error_reporting(pdev);
1622 pci_save_state(pdev);
1623 return 0;
1624
1625 disable:
1626 pci_disable_device(pdev);
1627 return result;
1628 }
1629
1630 static void nvme_dev_unmap(struct nvme_dev *dev)
1631 {
1632 if (dev->bar)
1633 iounmap(dev->bar);
1634 pci_release_mem_regions(to_pci_dev(dev->dev));
1635 }
1636
1637 static void nvme_pci_disable(struct nvme_dev *dev)
1638 {
1639 struct pci_dev *pdev = to_pci_dev(dev->dev);
1640
1641 pci_free_irq_vectors(pdev);
1642
1643 if (pci_is_enabled(pdev)) {
1644 pci_disable_pcie_error_reporting(pdev);
1645 pci_disable_device(pdev);
1646 }
1647 }
1648
1649 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1650 {
1651 int i;
1652 u32 csts = -1;
1653
1654 del_timer_sync(&dev->watchdog_timer);
1655
1656 mutex_lock(&dev->shutdown_lock);
1657 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1658 nvme_stop_queues(&dev->ctrl);
1659 csts = readl(dev->bar + NVME_REG_CSTS);
1660 }
1661
1662 for (i = dev->queue_count - 1; i > 0; i--)
1663 nvme_suspend_queue(dev->queues[i]);
1664
1665 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1666 /* A device might become IO incapable very soon during
1667 * probe, before the admin queue is configured. Thus,
1668 * queue_count can be 0 here.
1669 */
1670 if (dev->queue_count)
1671 nvme_suspend_queue(dev->queues[0]);
1672 } else {
1673 nvme_disable_io_queues(dev);
1674 nvme_disable_admin_queue(dev, shutdown);
1675 }
1676 nvme_pci_disable(dev);
1677
1678 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1679 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1680 mutex_unlock(&dev->shutdown_lock);
1681 }
1682
1683 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1684 {
1685 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1686 PAGE_SIZE, PAGE_SIZE, 0);
1687 if (!dev->prp_page_pool)
1688 return -ENOMEM;
1689
1690 /* Optimisation for I/Os between 4k and 128k */
1691 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1692 256, 256, 0);
1693 if (!dev->prp_small_pool) {
1694 dma_pool_destroy(dev->prp_page_pool);
1695 return -ENOMEM;
1696 }
1697 return 0;
1698 }
1699
1700 static void nvme_release_prp_pools(struct nvme_dev *dev)
1701 {
1702 dma_pool_destroy(dev->prp_page_pool);
1703 dma_pool_destroy(dev->prp_small_pool);
1704 }
1705
1706 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1707 {
1708 struct nvme_dev *dev = to_nvme_dev(ctrl);
1709
1710 put_device(dev->dev);
1711 if (dev->tagset.tags)
1712 blk_mq_free_tag_set(&dev->tagset);
1713 if (dev->ctrl.admin_q)
1714 blk_put_queue(dev->ctrl.admin_q);
1715 kfree(dev->queues);
1716 kfree(dev);
1717 }
1718
1719 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1720 {
1721 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1722
1723 kref_get(&dev->ctrl.kref);
1724 nvme_dev_disable(dev, false);
1725 if (!schedule_work(&dev->remove_work))
1726 nvme_put_ctrl(&dev->ctrl);
1727 }
1728
1729 static void nvme_reset_work(struct work_struct *work)
1730 {
1731 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1732 int result = -ENODEV;
1733
1734 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1735 goto out;
1736
1737 /*
1738 * If we're called to reset a live controller first shut it down before
1739 * moving on.
1740 */
1741 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1742 nvme_dev_disable(dev, false);
1743
1744 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1745 goto out;
1746
1747 result = nvme_pci_enable(dev);
1748 if (result)
1749 goto out;
1750
1751 result = nvme_configure_admin_queue(dev);
1752 if (result)
1753 goto out;
1754
1755 nvme_init_queue(dev->queues[0], 0);
1756 result = nvme_alloc_admin_tags(dev);
1757 if (result)
1758 goto out;
1759
1760 result = nvme_init_identify(&dev->ctrl);
1761 if (result)
1762 goto out;
1763
1764 result = nvme_setup_io_queues(dev);
1765 if (result)
1766 goto out;
1767
1768 /*
1769 * A controller that can not execute IO typically requires user
1770 * intervention to correct. For such degraded controllers, the driver
1771 * should not submit commands the user did not request, so skip
1772 * registering for asynchronous event notification on this condition.
1773 */
1774 if (dev->online_queues > 1)
1775 nvme_queue_async_events(&dev->ctrl);
1776
1777 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1778
1779 /*
1780 * Keep the controller around but remove all namespaces if we don't have
1781 * any working I/O queue.
1782 */
1783 if (dev->online_queues < 2) {
1784 dev_warn(dev->ctrl.device, "IO queues not created\n");
1785 nvme_kill_queues(&dev->ctrl);
1786 nvme_remove_namespaces(&dev->ctrl);
1787 } else {
1788 nvme_start_queues(&dev->ctrl);
1789 nvme_dev_add(dev);
1790 }
1791
1792 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1793 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1794 goto out;
1795 }
1796
1797 if (dev->online_queues > 1)
1798 nvme_queue_scan(&dev->ctrl);
1799 return;
1800
1801 out:
1802 nvme_remove_dead_ctrl(dev, result);
1803 }
1804
1805 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1806 {
1807 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1808 struct pci_dev *pdev = to_pci_dev(dev->dev);
1809
1810 nvme_kill_queues(&dev->ctrl);
1811 if (pci_get_drvdata(pdev))
1812 device_release_driver(&pdev->dev);
1813 nvme_put_ctrl(&dev->ctrl);
1814 }
1815
1816 static int nvme_reset(struct nvme_dev *dev)
1817 {
1818 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1819 return -ENODEV;
1820
1821 if (!queue_work(nvme_workq, &dev->reset_work))
1822 return -EBUSY;
1823
1824 flush_work(&dev->reset_work);
1825 return 0;
1826 }
1827
1828 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1829 {
1830 *val = readl(to_nvme_dev(ctrl)->bar + off);
1831 return 0;
1832 }
1833
1834 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1835 {
1836 writel(val, to_nvme_dev(ctrl)->bar + off);
1837 return 0;
1838 }
1839
1840 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1841 {
1842 *val = readq(to_nvme_dev(ctrl)->bar + off);
1843 return 0;
1844 }
1845
1846 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1847 {
1848 return nvme_reset(to_nvme_dev(ctrl));
1849 }
1850
1851 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1852 .name = "pcie",
1853 .module = THIS_MODULE,
1854 .reg_read32 = nvme_pci_reg_read32,
1855 .reg_write32 = nvme_pci_reg_write32,
1856 .reg_read64 = nvme_pci_reg_read64,
1857 .reset_ctrl = nvme_pci_reset_ctrl,
1858 .free_ctrl = nvme_pci_free_ctrl,
1859 .submit_async_event = nvme_pci_submit_async_event,
1860 };
1861
1862 static int nvme_dev_map(struct nvme_dev *dev)
1863 {
1864 struct pci_dev *pdev = to_pci_dev(dev->dev);
1865
1866 if (pci_request_mem_regions(pdev, "nvme"))
1867 return -ENODEV;
1868
1869 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1870 if (!dev->bar)
1871 goto release;
1872
1873 return 0;
1874 release:
1875 pci_release_mem_regions(pdev);
1876 return -ENODEV;
1877 }
1878
1879 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1880 {
1881 int node, result = -ENOMEM;
1882 struct nvme_dev *dev;
1883
1884 node = dev_to_node(&pdev->dev);
1885 if (node == NUMA_NO_NODE)
1886 set_dev_node(&pdev->dev, first_memory_node);
1887
1888 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1889 if (!dev)
1890 return -ENOMEM;
1891 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1892 GFP_KERNEL, node);
1893 if (!dev->queues)
1894 goto free;
1895
1896 dev->dev = get_device(&pdev->dev);
1897 pci_set_drvdata(pdev, dev);
1898
1899 result = nvme_dev_map(dev);
1900 if (result)
1901 goto free;
1902
1903 INIT_WORK(&dev->reset_work, nvme_reset_work);
1904 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1905 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1906 (unsigned long)dev);
1907 mutex_init(&dev->shutdown_lock);
1908 init_completion(&dev->ioq_wait);
1909
1910 result = nvme_setup_prp_pools(dev);
1911 if (result)
1912 goto put_pci;
1913
1914 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1915 id->driver_data);
1916 if (result)
1917 goto release_pools;
1918
1919 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1920
1921 queue_work(nvme_workq, &dev->reset_work);
1922 return 0;
1923
1924 release_pools:
1925 nvme_release_prp_pools(dev);
1926 put_pci:
1927 put_device(dev->dev);
1928 nvme_dev_unmap(dev);
1929 free:
1930 kfree(dev->queues);
1931 kfree(dev);
1932 return result;
1933 }
1934
1935 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1936 {
1937 struct nvme_dev *dev = pci_get_drvdata(pdev);
1938
1939 if (prepare)
1940 nvme_dev_disable(dev, false);
1941 else
1942 queue_work(nvme_workq, &dev->reset_work);
1943 }
1944
1945 static void nvme_shutdown(struct pci_dev *pdev)
1946 {
1947 struct nvme_dev *dev = pci_get_drvdata(pdev);
1948 nvme_dev_disable(dev, true);
1949 }
1950
1951 /*
1952 * The driver's remove may be called on a device in a partially initialized
1953 * state. This function must not have any dependencies on the device state in
1954 * order to proceed.
1955 */
1956 static void nvme_remove(struct pci_dev *pdev)
1957 {
1958 struct nvme_dev *dev = pci_get_drvdata(pdev);
1959
1960 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1961
1962 pci_set_drvdata(pdev, NULL);
1963
1964 if (!pci_device_is_present(pdev))
1965 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1966
1967 flush_work(&dev->reset_work);
1968 nvme_uninit_ctrl(&dev->ctrl);
1969 nvme_dev_disable(dev, true);
1970 nvme_dev_remove_admin(dev);
1971 nvme_free_queues(dev, 0);
1972 nvme_release_cmb(dev);
1973 nvme_release_prp_pools(dev);
1974 nvme_dev_unmap(dev);
1975 nvme_put_ctrl(&dev->ctrl);
1976 }
1977
1978 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
1979 {
1980 int ret = 0;
1981
1982 if (numvfs == 0) {
1983 if (pci_vfs_assigned(pdev)) {
1984 dev_warn(&pdev->dev,
1985 "Cannot disable SR-IOV VFs while assigned\n");
1986 return -EPERM;
1987 }
1988 pci_disable_sriov(pdev);
1989 return 0;
1990 }
1991
1992 ret = pci_enable_sriov(pdev, numvfs);
1993 return ret ? ret : numvfs;
1994 }
1995
1996 #ifdef CONFIG_PM_SLEEP
1997 static int nvme_suspend(struct device *dev)
1998 {
1999 struct pci_dev *pdev = to_pci_dev(dev);
2000 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2001
2002 nvme_dev_disable(ndev, true);
2003 return 0;
2004 }
2005
2006 static int nvme_resume(struct device *dev)
2007 {
2008 struct pci_dev *pdev = to_pci_dev(dev);
2009 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2010
2011 queue_work(nvme_workq, &ndev->reset_work);
2012 return 0;
2013 }
2014 #endif
2015
2016 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2017
2018 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2019 pci_channel_state_t state)
2020 {
2021 struct nvme_dev *dev = pci_get_drvdata(pdev);
2022
2023 /*
2024 * A frozen channel requires a reset. When detected, this method will
2025 * shutdown the controller to quiesce. The controller will be restarted
2026 * after the slot reset through driver's slot_reset callback.
2027 */
2028 switch (state) {
2029 case pci_channel_io_normal:
2030 return PCI_ERS_RESULT_CAN_RECOVER;
2031 case pci_channel_io_frozen:
2032 dev_warn(dev->ctrl.device,
2033 "frozen state error detected, reset controller\n");
2034 nvme_dev_disable(dev, false);
2035 return PCI_ERS_RESULT_NEED_RESET;
2036 case pci_channel_io_perm_failure:
2037 dev_warn(dev->ctrl.device,
2038 "failure state error detected, request disconnect\n");
2039 return PCI_ERS_RESULT_DISCONNECT;
2040 }
2041 return PCI_ERS_RESULT_NEED_RESET;
2042 }
2043
2044 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2045 {
2046 struct nvme_dev *dev = pci_get_drvdata(pdev);
2047
2048 dev_info(dev->ctrl.device, "restart after slot reset\n");
2049 pci_restore_state(pdev);
2050 queue_work(nvme_workq, &dev->reset_work);
2051 return PCI_ERS_RESULT_RECOVERED;
2052 }
2053
2054 static void nvme_error_resume(struct pci_dev *pdev)
2055 {
2056 pci_cleanup_aer_uncorrect_error_status(pdev);
2057 }
2058
2059 static const struct pci_error_handlers nvme_err_handler = {
2060 .error_detected = nvme_error_detected,
2061 .slot_reset = nvme_slot_reset,
2062 .resume = nvme_error_resume,
2063 .reset_notify = nvme_reset_notify,
2064 };
2065
2066 /* Move to pci_ids.h later */
2067 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2068
2069 static const struct pci_device_id nvme_id_table[] = {
2070 { PCI_VDEVICE(INTEL, 0x0953),
2071 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2072 NVME_QUIRK_DISCARD_ZEROES, },
2073 { PCI_VDEVICE(INTEL, 0x0a53),
2074 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2075 NVME_QUIRK_DISCARD_ZEROES, },
2076 { PCI_VDEVICE(INTEL, 0x0a54),
2077 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2078 NVME_QUIRK_DISCARD_ZEROES, },
2079 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2080 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2081 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2082 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2083 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2084 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2085 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2086 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2087 { 0, }
2088 };
2089 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2090
2091 static struct pci_driver nvme_driver = {
2092 .name = "nvme",
2093 .id_table = nvme_id_table,
2094 .probe = nvme_probe,
2095 .remove = nvme_remove,
2096 .shutdown = nvme_shutdown,
2097 .driver = {
2098 .pm = &nvme_dev_pm_ops,
2099 },
2100 .sriov_configure = nvme_pci_sriov_configure,
2101 .err_handler = &nvme_err_handler,
2102 };
2103
2104 static int __init nvme_init(void)
2105 {
2106 int result;
2107
2108 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2109 if (!nvme_workq)
2110 return -ENOMEM;
2111
2112 result = pci_register_driver(&nvme_driver);
2113 if (result)
2114 destroy_workqueue(nvme_workq);
2115 return result;
2116 }
2117
2118 static void __exit nvme_exit(void)
2119 {
2120 pci_unregister_driver(&nvme_driver);
2121 destroy_workqueue(nvme_workq);
2122 _nvme_check_size();
2123 }
2124
2125 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2126 MODULE_LICENSE("GPL");
2127 MODULE_VERSION("1.0");
2128 module_init(nvme_init);
2129 module_exit(nvme_exit);