]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
nvme-pci: compile warnings in nvme_alloc_host_mem()
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define NVME_Q_DEPTH 1024
39 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
40 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
41
42 /*
43 * We handle AEN commands ourselves and don't even let the
44 * block layer know about them.
45 */
46 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0644);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 struct nvme_dev;
61 struct nvme_queue;
62
63 static void nvme_process_cq(struct nvme_queue *nvmeq);
64 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
65
66 /*
67 * Represents an NVM Express device. Each nvme_dev is a PCI function.
68 */
69 struct nvme_dev {
70 struct nvme_queue **queues;
71 struct blk_mq_tag_set tagset;
72 struct blk_mq_tag_set admin_tagset;
73 u32 __iomem *dbs;
74 struct device *dev;
75 struct dma_pool *prp_page_pool;
76 struct dma_pool *prp_small_pool;
77 unsigned online_queues;
78 unsigned max_qid;
79 int q_depth;
80 u32 db_stride;
81 void __iomem *bar;
82 unsigned long bar_mapped_size;
83 struct work_struct remove_work;
84 struct mutex shutdown_lock;
85 bool subsystem;
86 void __iomem *cmb;
87 dma_addr_t cmb_dma_addr;
88 u64 cmb_size;
89 u32 cmbsz;
90 u32 cmbloc;
91 struct nvme_ctrl ctrl;
92 struct completion ioq_wait;
93
94 /* shadow doorbell buffer support: */
95 u32 *dbbuf_dbs;
96 dma_addr_t dbbuf_dbs_dma_addr;
97 u32 *dbbuf_eis;
98 dma_addr_t dbbuf_eis_dma_addr;
99
100 /* host memory buffer support: */
101 u64 host_mem_size;
102 u32 nr_host_mem_descs;
103 struct nvme_host_mem_buf_desc *host_mem_descs;
104 void **host_mem_desc_bufs;
105 };
106
107 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
108 {
109 return qid * 2 * stride;
110 }
111
112 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
113 {
114 return (qid * 2 + 1) * stride;
115 }
116
117 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
118 {
119 return container_of(ctrl, struct nvme_dev, ctrl);
120 }
121
122 /*
123 * An NVM Express queue. Each device has at least two (one for admin
124 * commands and one for I/O commands).
125 */
126 struct nvme_queue {
127 struct device *q_dmadev;
128 struct nvme_dev *dev;
129 spinlock_t q_lock;
130 struct nvme_command *sq_cmds;
131 struct nvme_command __iomem *sq_cmds_io;
132 volatile struct nvme_completion *cqes;
133 struct blk_mq_tags **tags;
134 dma_addr_t sq_dma_addr;
135 dma_addr_t cq_dma_addr;
136 u32 __iomem *q_db;
137 u16 q_depth;
138 s16 cq_vector;
139 u16 sq_tail;
140 u16 cq_head;
141 u16 qid;
142 u8 cq_phase;
143 u8 cqe_seen;
144 u32 *dbbuf_sq_db;
145 u32 *dbbuf_cq_db;
146 u32 *dbbuf_sq_ei;
147 u32 *dbbuf_cq_ei;
148 };
149
150 /*
151 * The nvme_iod describes the data in an I/O, including the list of PRP
152 * entries. You can't see it in this data structure because C doesn't let
153 * me express that. Use nvme_init_iod to ensure there's enough space
154 * allocated to store the PRP list.
155 */
156 struct nvme_iod {
157 struct nvme_request req;
158 struct nvme_queue *nvmeq;
159 int aborted;
160 int npages; /* In the PRP list. 0 means small pool in use */
161 int nents; /* Used in scatterlist */
162 int length; /* Of data, in bytes */
163 dma_addr_t first_dma;
164 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
165 struct scatterlist *sg;
166 struct scatterlist inline_sg[0];
167 };
168
169 /*
170 * Check we didin't inadvertently grow the command struct
171 */
172 static inline void _nvme_check_size(void)
173 {
174 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
175 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
176 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
177 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
178 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
179 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
180 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
181 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
182 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
183 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
184 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
186 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
187 }
188
189 static inline unsigned int nvme_dbbuf_size(u32 stride)
190 {
191 return ((num_possible_cpus() + 1) * 8 * stride);
192 }
193
194 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
195 {
196 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
197
198 if (dev->dbbuf_dbs)
199 return 0;
200
201 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
202 &dev->dbbuf_dbs_dma_addr,
203 GFP_KERNEL);
204 if (!dev->dbbuf_dbs)
205 return -ENOMEM;
206 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
207 &dev->dbbuf_eis_dma_addr,
208 GFP_KERNEL);
209 if (!dev->dbbuf_eis) {
210 dma_free_coherent(dev->dev, mem_size,
211 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
212 dev->dbbuf_dbs = NULL;
213 return -ENOMEM;
214 }
215
216 return 0;
217 }
218
219 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
220 {
221 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
222
223 if (dev->dbbuf_dbs) {
224 dma_free_coherent(dev->dev, mem_size,
225 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
226 dev->dbbuf_dbs = NULL;
227 }
228 if (dev->dbbuf_eis) {
229 dma_free_coherent(dev->dev, mem_size,
230 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
231 dev->dbbuf_eis = NULL;
232 }
233 }
234
235 static void nvme_dbbuf_init(struct nvme_dev *dev,
236 struct nvme_queue *nvmeq, int qid)
237 {
238 if (!dev->dbbuf_dbs || !qid)
239 return;
240
241 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
242 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
243 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
244 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
245 }
246
247 static void nvme_dbbuf_set(struct nvme_dev *dev)
248 {
249 struct nvme_command c;
250
251 if (!dev->dbbuf_dbs)
252 return;
253
254 memset(&c, 0, sizeof(c));
255 c.dbbuf.opcode = nvme_admin_dbbuf;
256 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
257 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
258
259 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
260 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
261 /* Free memory and continue on */
262 nvme_dbbuf_dma_free(dev);
263 }
264 }
265
266 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
267 {
268 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
269 }
270
271 /* Update dbbuf and return true if an MMIO is required */
272 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
273 volatile u32 *dbbuf_ei)
274 {
275 if (dbbuf_db) {
276 u16 old_value;
277
278 /*
279 * Ensure that the queue is written before updating
280 * the doorbell in memory
281 */
282 wmb();
283
284 old_value = *dbbuf_db;
285 *dbbuf_db = value;
286
287 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
288 return false;
289 }
290
291 return true;
292 }
293
294 /*
295 * Max size of iod being embedded in the request payload
296 */
297 #define NVME_INT_PAGES 2
298 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
299
300 /*
301 * Will slightly overestimate the number of pages needed. This is OK
302 * as it only leads to a small amount of wasted memory for the lifetime of
303 * the I/O.
304 */
305 static int nvme_npages(unsigned size, struct nvme_dev *dev)
306 {
307 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
308 dev->ctrl.page_size);
309 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
310 }
311
312 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
313 unsigned int size, unsigned int nseg)
314 {
315 return sizeof(__le64 *) * nvme_npages(size, dev) +
316 sizeof(struct scatterlist) * nseg;
317 }
318
319 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
320 {
321 return sizeof(struct nvme_iod) +
322 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
323 }
324
325 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
326 unsigned int hctx_idx)
327 {
328 struct nvme_dev *dev = data;
329 struct nvme_queue *nvmeq = dev->queues[0];
330
331 WARN_ON(hctx_idx != 0);
332 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
333 WARN_ON(nvmeq->tags);
334
335 hctx->driver_data = nvmeq;
336 nvmeq->tags = &dev->admin_tagset.tags[0];
337 return 0;
338 }
339
340 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
341 {
342 struct nvme_queue *nvmeq = hctx->driver_data;
343
344 nvmeq->tags = NULL;
345 }
346
347 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
348 unsigned int hctx_idx)
349 {
350 struct nvme_dev *dev = data;
351 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
352
353 if (!nvmeq->tags)
354 nvmeq->tags = &dev->tagset.tags[hctx_idx];
355
356 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
357 hctx->driver_data = nvmeq;
358 return 0;
359 }
360
361 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
362 unsigned int hctx_idx, unsigned int numa_node)
363 {
364 struct nvme_dev *dev = set->driver_data;
365 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
366 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
367 struct nvme_queue *nvmeq = dev->queues[queue_idx];
368
369 BUG_ON(!nvmeq);
370 iod->nvmeq = nvmeq;
371 return 0;
372 }
373
374 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
375 {
376 struct nvme_dev *dev = set->driver_data;
377
378 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
379 }
380
381 /**
382 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
383 * @nvmeq: The queue to use
384 * @cmd: The command to send
385 *
386 * Safe to use from interrupt context
387 */
388 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
389 struct nvme_command *cmd)
390 {
391 u16 tail = nvmeq->sq_tail;
392
393 if (nvmeq->sq_cmds_io)
394 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
395 else
396 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
397
398 if (++tail == nvmeq->q_depth)
399 tail = 0;
400 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
401 nvmeq->dbbuf_sq_ei))
402 writel(tail, nvmeq->q_db);
403 nvmeq->sq_tail = tail;
404 }
405
406 static __le64 **iod_list(struct request *req)
407 {
408 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
409 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
410 }
411
412 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
413 {
414 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
415 int nseg = blk_rq_nr_phys_segments(rq);
416 unsigned int size = blk_rq_payload_bytes(rq);
417
418 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
419 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
420 if (!iod->sg)
421 return BLK_STS_RESOURCE;
422 } else {
423 iod->sg = iod->inline_sg;
424 }
425
426 iod->aborted = 0;
427 iod->npages = -1;
428 iod->nents = 0;
429 iod->length = size;
430
431 return BLK_STS_OK;
432 }
433
434 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
435 {
436 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
437 const int last_prp = dev->ctrl.page_size / 8 - 1;
438 int i;
439 __le64 **list = iod_list(req);
440 dma_addr_t prp_dma = iod->first_dma;
441
442 if (iod->npages == 0)
443 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
444 for (i = 0; i < iod->npages; i++) {
445 __le64 *prp_list = list[i];
446 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
447 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
448 prp_dma = next_prp_dma;
449 }
450
451 if (iod->sg != iod->inline_sg)
452 kfree(iod->sg);
453 }
454
455 #ifdef CONFIG_BLK_DEV_INTEGRITY
456 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
457 {
458 if (be32_to_cpu(pi->ref_tag) == v)
459 pi->ref_tag = cpu_to_be32(p);
460 }
461
462 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
463 {
464 if (be32_to_cpu(pi->ref_tag) == p)
465 pi->ref_tag = cpu_to_be32(v);
466 }
467
468 /**
469 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
470 *
471 * The virtual start sector is the one that was originally submitted by the
472 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
473 * start sector may be different. Remap protection information to match the
474 * physical LBA on writes, and back to the original seed on reads.
475 *
476 * Type 0 and 3 do not have a ref tag, so no remapping required.
477 */
478 static void nvme_dif_remap(struct request *req,
479 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
480 {
481 struct nvme_ns *ns = req->rq_disk->private_data;
482 struct bio_integrity_payload *bip;
483 struct t10_pi_tuple *pi;
484 void *p, *pmap;
485 u32 i, nlb, ts, phys, virt;
486
487 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
488 return;
489
490 bip = bio_integrity(req->bio);
491 if (!bip)
492 return;
493
494 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
495
496 p = pmap;
497 virt = bip_get_seed(bip);
498 phys = nvme_block_nr(ns, blk_rq_pos(req));
499 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
500 ts = ns->disk->queue->integrity.tuple_size;
501
502 for (i = 0; i < nlb; i++, virt++, phys++) {
503 pi = (struct t10_pi_tuple *)p;
504 dif_swap(phys, virt, pi);
505 p += ts;
506 }
507 kunmap_atomic(pmap);
508 }
509 #else /* CONFIG_BLK_DEV_INTEGRITY */
510 static void nvme_dif_remap(struct request *req,
511 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
512 {
513 }
514 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
515 {
516 }
517 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
518 {
519 }
520 #endif
521
522 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
523 {
524 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
525 struct dma_pool *pool;
526 int length = blk_rq_payload_bytes(req);
527 struct scatterlist *sg = iod->sg;
528 int dma_len = sg_dma_len(sg);
529 u64 dma_addr = sg_dma_address(sg);
530 u32 page_size = dev->ctrl.page_size;
531 int offset = dma_addr & (page_size - 1);
532 __le64 *prp_list;
533 __le64 **list = iod_list(req);
534 dma_addr_t prp_dma;
535 int nprps, i;
536
537 length -= (page_size - offset);
538 if (length <= 0)
539 return true;
540
541 dma_len -= (page_size - offset);
542 if (dma_len) {
543 dma_addr += (page_size - offset);
544 } else {
545 sg = sg_next(sg);
546 dma_addr = sg_dma_address(sg);
547 dma_len = sg_dma_len(sg);
548 }
549
550 if (length <= page_size) {
551 iod->first_dma = dma_addr;
552 return true;
553 }
554
555 nprps = DIV_ROUND_UP(length, page_size);
556 if (nprps <= (256 / 8)) {
557 pool = dev->prp_small_pool;
558 iod->npages = 0;
559 } else {
560 pool = dev->prp_page_pool;
561 iod->npages = 1;
562 }
563
564 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
565 if (!prp_list) {
566 iod->first_dma = dma_addr;
567 iod->npages = -1;
568 return false;
569 }
570 list[0] = prp_list;
571 iod->first_dma = prp_dma;
572 i = 0;
573 for (;;) {
574 if (i == page_size >> 3) {
575 __le64 *old_prp_list = prp_list;
576 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
577 if (!prp_list)
578 return false;
579 list[iod->npages++] = prp_list;
580 prp_list[0] = old_prp_list[i - 1];
581 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
582 i = 1;
583 }
584 prp_list[i++] = cpu_to_le64(dma_addr);
585 dma_len -= page_size;
586 dma_addr += page_size;
587 length -= page_size;
588 if (length <= 0)
589 break;
590 if (dma_len > 0)
591 continue;
592 BUG_ON(dma_len < 0);
593 sg = sg_next(sg);
594 dma_addr = sg_dma_address(sg);
595 dma_len = sg_dma_len(sg);
596 }
597
598 return true;
599 }
600
601 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
602 struct nvme_command *cmnd)
603 {
604 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
605 struct request_queue *q = req->q;
606 enum dma_data_direction dma_dir = rq_data_dir(req) ?
607 DMA_TO_DEVICE : DMA_FROM_DEVICE;
608 blk_status_t ret = BLK_STS_IOERR;
609
610 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
611 iod->nents = blk_rq_map_sg(q, req, iod->sg);
612 if (!iod->nents)
613 goto out;
614
615 ret = BLK_STS_RESOURCE;
616 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
617 DMA_ATTR_NO_WARN))
618 goto out;
619
620 if (!nvme_setup_prps(dev, req))
621 goto out_unmap;
622
623 ret = BLK_STS_IOERR;
624 if (blk_integrity_rq(req)) {
625 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
626 goto out_unmap;
627
628 sg_init_table(&iod->meta_sg, 1);
629 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
630 goto out_unmap;
631
632 if (rq_data_dir(req))
633 nvme_dif_remap(req, nvme_dif_prep);
634
635 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
636 goto out_unmap;
637 }
638
639 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
640 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
641 if (blk_integrity_rq(req))
642 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
643 return BLK_STS_OK;
644
645 out_unmap:
646 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
647 out:
648 return ret;
649 }
650
651 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
652 {
653 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
654 enum dma_data_direction dma_dir = rq_data_dir(req) ?
655 DMA_TO_DEVICE : DMA_FROM_DEVICE;
656
657 if (iod->nents) {
658 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
659 if (blk_integrity_rq(req)) {
660 if (!rq_data_dir(req))
661 nvme_dif_remap(req, nvme_dif_complete);
662 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
663 }
664 }
665
666 nvme_cleanup_cmd(req);
667 nvme_free_iod(dev, req);
668 }
669
670 /*
671 * NOTE: ns is NULL when called on the admin queue.
672 */
673 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
674 const struct blk_mq_queue_data *bd)
675 {
676 struct nvme_ns *ns = hctx->queue->queuedata;
677 struct nvme_queue *nvmeq = hctx->driver_data;
678 struct nvme_dev *dev = nvmeq->dev;
679 struct request *req = bd->rq;
680 struct nvme_command cmnd;
681 blk_status_t ret;
682
683 ret = nvme_setup_cmd(ns, req, &cmnd);
684 if (ret)
685 return ret;
686
687 ret = nvme_init_iod(req, dev);
688 if (ret)
689 goto out_free_cmd;
690
691 if (blk_rq_nr_phys_segments(req)) {
692 ret = nvme_map_data(dev, req, &cmnd);
693 if (ret)
694 goto out_cleanup_iod;
695 }
696
697 blk_mq_start_request(req);
698
699 spin_lock_irq(&nvmeq->q_lock);
700 if (unlikely(nvmeq->cq_vector < 0)) {
701 ret = BLK_STS_IOERR;
702 spin_unlock_irq(&nvmeq->q_lock);
703 goto out_cleanup_iod;
704 }
705 __nvme_submit_cmd(nvmeq, &cmnd);
706 nvme_process_cq(nvmeq);
707 spin_unlock_irq(&nvmeq->q_lock);
708 return BLK_STS_OK;
709 out_cleanup_iod:
710 nvme_free_iod(dev, req);
711 out_free_cmd:
712 nvme_cleanup_cmd(req);
713 return ret;
714 }
715
716 static void nvme_pci_complete_rq(struct request *req)
717 {
718 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
719
720 nvme_unmap_data(iod->nvmeq->dev, req);
721 nvme_complete_rq(req);
722 }
723
724 /* We read the CQE phase first to check if the rest of the entry is valid */
725 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
726 u16 phase)
727 {
728 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
729 }
730
731 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
732 {
733 u16 head = nvmeq->cq_head;
734
735 if (likely(nvmeq->cq_vector >= 0)) {
736 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
737 nvmeq->dbbuf_cq_ei))
738 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
739 }
740 }
741
742 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
743 struct nvme_completion *cqe)
744 {
745 struct request *req;
746
747 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
748 dev_warn(nvmeq->dev->ctrl.device,
749 "invalid id %d completed on queue %d\n",
750 cqe->command_id, le16_to_cpu(cqe->sq_id));
751 return;
752 }
753
754 /*
755 * AEN requests are special as they don't time out and can
756 * survive any kind of queue freeze and often don't respond to
757 * aborts. We don't even bother to allocate a struct request
758 * for them but rather special case them here.
759 */
760 if (unlikely(nvmeq->qid == 0 &&
761 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
762 nvme_complete_async_event(&nvmeq->dev->ctrl,
763 cqe->status, &cqe->result);
764 return;
765 }
766
767 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
768 nvme_end_request(req, cqe->status, cqe->result);
769 }
770
771 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
772 struct nvme_completion *cqe)
773 {
774 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
775 *cqe = nvmeq->cqes[nvmeq->cq_head];
776
777 if (++nvmeq->cq_head == nvmeq->q_depth) {
778 nvmeq->cq_head = 0;
779 nvmeq->cq_phase = !nvmeq->cq_phase;
780 }
781 return true;
782 }
783 return false;
784 }
785
786 static void nvme_process_cq(struct nvme_queue *nvmeq)
787 {
788 struct nvme_completion cqe;
789 int consumed = 0;
790
791 while (nvme_read_cqe(nvmeq, &cqe)) {
792 nvme_handle_cqe(nvmeq, &cqe);
793 consumed++;
794 }
795
796 if (consumed) {
797 nvme_ring_cq_doorbell(nvmeq);
798 nvmeq->cqe_seen = 1;
799 }
800 }
801
802 static irqreturn_t nvme_irq(int irq, void *data)
803 {
804 irqreturn_t result;
805 struct nvme_queue *nvmeq = data;
806 spin_lock(&nvmeq->q_lock);
807 nvme_process_cq(nvmeq);
808 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
809 nvmeq->cqe_seen = 0;
810 spin_unlock(&nvmeq->q_lock);
811 return result;
812 }
813
814 static irqreturn_t nvme_irq_check(int irq, void *data)
815 {
816 struct nvme_queue *nvmeq = data;
817 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
818 return IRQ_WAKE_THREAD;
819 return IRQ_NONE;
820 }
821
822 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
823 {
824 struct nvme_completion cqe;
825 int found = 0, consumed = 0;
826
827 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
828 return 0;
829
830 spin_lock_irq(&nvmeq->q_lock);
831 while (nvme_read_cqe(nvmeq, &cqe)) {
832 nvme_handle_cqe(nvmeq, &cqe);
833 consumed++;
834
835 if (tag == cqe.command_id) {
836 found = 1;
837 break;
838 }
839 }
840
841 if (consumed)
842 nvme_ring_cq_doorbell(nvmeq);
843 spin_unlock_irq(&nvmeq->q_lock);
844
845 return found;
846 }
847
848 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
849 {
850 struct nvme_queue *nvmeq = hctx->driver_data;
851
852 return __nvme_poll(nvmeq, tag);
853 }
854
855 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
856 {
857 struct nvme_dev *dev = to_nvme_dev(ctrl);
858 struct nvme_queue *nvmeq = dev->queues[0];
859 struct nvme_command c;
860
861 memset(&c, 0, sizeof(c));
862 c.common.opcode = nvme_admin_async_event;
863 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
864
865 spin_lock_irq(&nvmeq->q_lock);
866 __nvme_submit_cmd(nvmeq, &c);
867 spin_unlock_irq(&nvmeq->q_lock);
868 }
869
870 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
871 {
872 struct nvme_command c;
873
874 memset(&c, 0, sizeof(c));
875 c.delete_queue.opcode = opcode;
876 c.delete_queue.qid = cpu_to_le16(id);
877
878 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
879 }
880
881 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
882 struct nvme_queue *nvmeq)
883 {
884 struct nvme_command c;
885 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
886
887 /*
888 * Note: we (ab)use the fact the the prp fields survive if no data
889 * is attached to the request.
890 */
891 memset(&c, 0, sizeof(c));
892 c.create_cq.opcode = nvme_admin_create_cq;
893 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
894 c.create_cq.cqid = cpu_to_le16(qid);
895 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
896 c.create_cq.cq_flags = cpu_to_le16(flags);
897 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
898
899 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
900 }
901
902 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
903 struct nvme_queue *nvmeq)
904 {
905 struct nvme_command c;
906 int flags = NVME_QUEUE_PHYS_CONTIG;
907
908 /*
909 * Note: we (ab)use the fact the the prp fields survive if no data
910 * is attached to the request.
911 */
912 memset(&c, 0, sizeof(c));
913 c.create_sq.opcode = nvme_admin_create_sq;
914 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
915 c.create_sq.sqid = cpu_to_le16(qid);
916 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
917 c.create_sq.sq_flags = cpu_to_le16(flags);
918 c.create_sq.cqid = cpu_to_le16(qid);
919
920 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
921 }
922
923 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
924 {
925 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
926 }
927
928 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
929 {
930 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
931 }
932
933 static void abort_endio(struct request *req, blk_status_t error)
934 {
935 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
936 struct nvme_queue *nvmeq = iod->nvmeq;
937
938 dev_warn(nvmeq->dev->ctrl.device,
939 "Abort status: 0x%x", nvme_req(req)->status);
940 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
941 blk_mq_free_request(req);
942 }
943
944 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
945 {
946
947 /* If true, indicates loss of adapter communication, possibly by a
948 * NVMe Subsystem reset.
949 */
950 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
951
952 /* If there is a reset ongoing, we shouldn't reset again. */
953 if (dev->ctrl.state == NVME_CTRL_RESETTING)
954 return false;
955
956 /* We shouldn't reset unless the controller is on fatal error state
957 * _or_ if we lost the communication with it.
958 */
959 if (!(csts & NVME_CSTS_CFS) && !nssro)
960 return false;
961
962 /* If PCI error recovery process is happening, we cannot reset or
963 * the recovery mechanism will surely fail.
964 */
965 if (pci_channel_offline(to_pci_dev(dev->dev)))
966 return false;
967
968 return true;
969 }
970
971 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
972 {
973 /* Read a config register to help see what died. */
974 u16 pci_status;
975 int result;
976
977 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
978 &pci_status);
979 if (result == PCIBIOS_SUCCESSFUL)
980 dev_warn(dev->ctrl.device,
981 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
982 csts, pci_status);
983 else
984 dev_warn(dev->ctrl.device,
985 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
986 csts, result);
987 }
988
989 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
990 {
991 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
992 struct nvme_queue *nvmeq = iod->nvmeq;
993 struct nvme_dev *dev = nvmeq->dev;
994 struct request *abort_req;
995 struct nvme_command cmd;
996 u32 csts = readl(dev->bar + NVME_REG_CSTS);
997
998 /*
999 * Reset immediately if the controller is failed
1000 */
1001 if (nvme_should_reset(dev, csts)) {
1002 nvme_warn_reset(dev, csts);
1003 nvme_dev_disable(dev, false);
1004 nvme_reset_ctrl(&dev->ctrl);
1005 return BLK_EH_HANDLED;
1006 }
1007
1008 /*
1009 * Did we miss an interrupt?
1010 */
1011 if (__nvme_poll(nvmeq, req->tag)) {
1012 dev_warn(dev->ctrl.device,
1013 "I/O %d QID %d timeout, completion polled\n",
1014 req->tag, nvmeq->qid);
1015 return BLK_EH_HANDLED;
1016 }
1017
1018 /*
1019 * Shutdown immediately if controller times out while starting. The
1020 * reset work will see the pci device disabled when it gets the forced
1021 * cancellation error. All outstanding requests are completed on
1022 * shutdown, so we return BLK_EH_HANDLED.
1023 */
1024 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1025 dev_warn(dev->ctrl.device,
1026 "I/O %d QID %d timeout, disable controller\n",
1027 req->tag, nvmeq->qid);
1028 nvme_dev_disable(dev, false);
1029 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1030 return BLK_EH_HANDLED;
1031 }
1032
1033 /*
1034 * Shutdown the controller immediately and schedule a reset if the
1035 * command was already aborted once before and still hasn't been
1036 * returned to the driver, or if this is the admin queue.
1037 */
1038 if (!nvmeq->qid || iod->aborted) {
1039 dev_warn(dev->ctrl.device,
1040 "I/O %d QID %d timeout, reset controller\n",
1041 req->tag, nvmeq->qid);
1042 nvme_dev_disable(dev, false);
1043 nvme_reset_ctrl(&dev->ctrl);
1044
1045 /*
1046 * Mark the request as handled, since the inline shutdown
1047 * forces all outstanding requests to complete.
1048 */
1049 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1050 return BLK_EH_HANDLED;
1051 }
1052
1053 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1054 atomic_inc(&dev->ctrl.abort_limit);
1055 return BLK_EH_RESET_TIMER;
1056 }
1057 iod->aborted = 1;
1058
1059 memset(&cmd, 0, sizeof(cmd));
1060 cmd.abort.opcode = nvme_admin_abort_cmd;
1061 cmd.abort.cid = req->tag;
1062 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1063
1064 dev_warn(nvmeq->dev->ctrl.device,
1065 "I/O %d QID %d timeout, aborting\n",
1066 req->tag, nvmeq->qid);
1067
1068 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1069 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1070 if (IS_ERR(abort_req)) {
1071 atomic_inc(&dev->ctrl.abort_limit);
1072 return BLK_EH_RESET_TIMER;
1073 }
1074
1075 abort_req->timeout = ADMIN_TIMEOUT;
1076 abort_req->end_io_data = NULL;
1077 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1078
1079 /*
1080 * The aborted req will be completed on receiving the abort req.
1081 * We enable the timer again. If hit twice, it'll cause a device reset,
1082 * as the device then is in a faulty state.
1083 */
1084 return BLK_EH_RESET_TIMER;
1085 }
1086
1087 static void nvme_free_queue(struct nvme_queue *nvmeq)
1088 {
1089 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1090 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1091 if (nvmeq->sq_cmds)
1092 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1093 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1094 kfree(nvmeq);
1095 }
1096
1097 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1098 {
1099 int i;
1100
1101 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1102 struct nvme_queue *nvmeq = dev->queues[i];
1103 dev->ctrl.queue_count--;
1104 dev->queues[i] = NULL;
1105 nvme_free_queue(nvmeq);
1106 }
1107 }
1108
1109 /**
1110 * nvme_suspend_queue - put queue into suspended state
1111 * @nvmeq - queue to suspend
1112 */
1113 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1114 {
1115 int vector;
1116
1117 spin_lock_irq(&nvmeq->q_lock);
1118 if (nvmeq->cq_vector == -1) {
1119 spin_unlock_irq(&nvmeq->q_lock);
1120 return 1;
1121 }
1122 vector = nvmeq->cq_vector;
1123 nvmeq->dev->online_queues--;
1124 nvmeq->cq_vector = -1;
1125 spin_unlock_irq(&nvmeq->q_lock);
1126
1127 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1128 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1129
1130 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1131
1132 return 0;
1133 }
1134
1135 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1136 {
1137 struct nvme_queue *nvmeq = dev->queues[0];
1138
1139 if (!nvmeq)
1140 return;
1141 if (nvme_suspend_queue(nvmeq))
1142 return;
1143
1144 if (shutdown)
1145 nvme_shutdown_ctrl(&dev->ctrl);
1146 else
1147 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1148
1149 spin_lock_irq(&nvmeq->q_lock);
1150 nvme_process_cq(nvmeq);
1151 spin_unlock_irq(&nvmeq->q_lock);
1152 }
1153
1154 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1155 int entry_size)
1156 {
1157 int q_depth = dev->q_depth;
1158 unsigned q_size_aligned = roundup(q_depth * entry_size,
1159 dev->ctrl.page_size);
1160
1161 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1162 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1163 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1164 q_depth = div_u64(mem_per_q, entry_size);
1165
1166 /*
1167 * Ensure the reduced q_depth is above some threshold where it
1168 * would be better to map queues in system memory with the
1169 * original depth
1170 */
1171 if (q_depth < 64)
1172 return -ENOMEM;
1173 }
1174
1175 return q_depth;
1176 }
1177
1178 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1179 int qid, int depth)
1180 {
1181 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1182 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1183 dev->ctrl.page_size);
1184 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1185 nvmeq->sq_cmds_io = dev->cmb + offset;
1186 } else {
1187 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1188 &nvmeq->sq_dma_addr, GFP_KERNEL);
1189 if (!nvmeq->sq_cmds)
1190 return -ENOMEM;
1191 }
1192
1193 return 0;
1194 }
1195
1196 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1197 int depth, int node)
1198 {
1199 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1200 node);
1201 if (!nvmeq)
1202 return NULL;
1203
1204 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1205 &nvmeq->cq_dma_addr, GFP_KERNEL);
1206 if (!nvmeq->cqes)
1207 goto free_nvmeq;
1208
1209 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1210 goto free_cqdma;
1211
1212 nvmeq->q_dmadev = dev->dev;
1213 nvmeq->dev = dev;
1214 spin_lock_init(&nvmeq->q_lock);
1215 nvmeq->cq_head = 0;
1216 nvmeq->cq_phase = 1;
1217 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1218 nvmeq->q_depth = depth;
1219 nvmeq->qid = qid;
1220 nvmeq->cq_vector = -1;
1221 dev->queues[qid] = nvmeq;
1222 dev->ctrl.queue_count++;
1223
1224 return nvmeq;
1225
1226 free_cqdma:
1227 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1228 nvmeq->cq_dma_addr);
1229 free_nvmeq:
1230 kfree(nvmeq);
1231 return NULL;
1232 }
1233
1234 static int queue_request_irq(struct nvme_queue *nvmeq)
1235 {
1236 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1237 int nr = nvmeq->dev->ctrl.instance;
1238
1239 if (use_threaded_interrupts) {
1240 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1241 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1242 } else {
1243 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1244 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1245 }
1246 }
1247
1248 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1249 {
1250 struct nvme_dev *dev = nvmeq->dev;
1251
1252 spin_lock_irq(&nvmeq->q_lock);
1253 nvmeq->sq_tail = 0;
1254 nvmeq->cq_head = 0;
1255 nvmeq->cq_phase = 1;
1256 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1257 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1258 nvme_dbbuf_init(dev, nvmeq, qid);
1259 dev->online_queues++;
1260 spin_unlock_irq(&nvmeq->q_lock);
1261 }
1262
1263 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1264 {
1265 struct nvme_dev *dev = nvmeq->dev;
1266 int result;
1267
1268 nvmeq->cq_vector = qid - 1;
1269 result = adapter_alloc_cq(dev, qid, nvmeq);
1270 if (result < 0)
1271 return result;
1272
1273 result = adapter_alloc_sq(dev, qid, nvmeq);
1274 if (result < 0)
1275 goto release_cq;
1276
1277 result = queue_request_irq(nvmeq);
1278 if (result < 0)
1279 goto release_sq;
1280
1281 nvme_init_queue(nvmeq, qid);
1282 return result;
1283
1284 release_sq:
1285 adapter_delete_sq(dev, qid);
1286 release_cq:
1287 adapter_delete_cq(dev, qid);
1288 return result;
1289 }
1290
1291 static const struct blk_mq_ops nvme_mq_admin_ops = {
1292 .queue_rq = nvme_queue_rq,
1293 .complete = nvme_pci_complete_rq,
1294 .init_hctx = nvme_admin_init_hctx,
1295 .exit_hctx = nvme_admin_exit_hctx,
1296 .init_request = nvme_init_request,
1297 .timeout = nvme_timeout,
1298 };
1299
1300 static const struct blk_mq_ops nvme_mq_ops = {
1301 .queue_rq = nvme_queue_rq,
1302 .complete = nvme_pci_complete_rq,
1303 .init_hctx = nvme_init_hctx,
1304 .init_request = nvme_init_request,
1305 .map_queues = nvme_pci_map_queues,
1306 .timeout = nvme_timeout,
1307 .poll = nvme_poll,
1308 };
1309
1310 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1311 {
1312 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1313 /*
1314 * If the controller was reset during removal, it's possible
1315 * user requests may be waiting on a stopped queue. Start the
1316 * queue to flush these to completion.
1317 */
1318 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1319 blk_cleanup_queue(dev->ctrl.admin_q);
1320 blk_mq_free_tag_set(&dev->admin_tagset);
1321 }
1322 }
1323
1324 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1325 {
1326 if (!dev->ctrl.admin_q) {
1327 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1328 dev->admin_tagset.nr_hw_queues = 1;
1329
1330 /*
1331 * Subtract one to leave an empty queue entry for 'Full Queue'
1332 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1333 */
1334 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1335 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1336 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1337 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1338 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1339 dev->admin_tagset.driver_data = dev;
1340
1341 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1342 return -ENOMEM;
1343
1344 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1345 if (IS_ERR(dev->ctrl.admin_q)) {
1346 blk_mq_free_tag_set(&dev->admin_tagset);
1347 return -ENOMEM;
1348 }
1349 if (!blk_get_queue(dev->ctrl.admin_q)) {
1350 nvme_dev_remove_admin(dev);
1351 dev->ctrl.admin_q = NULL;
1352 return -ENODEV;
1353 }
1354 } else
1355 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1356
1357 return 0;
1358 }
1359
1360 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1361 {
1362 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1363 }
1364
1365 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1366 {
1367 struct pci_dev *pdev = to_pci_dev(dev->dev);
1368
1369 if (size <= dev->bar_mapped_size)
1370 return 0;
1371 if (size > pci_resource_len(pdev, 0))
1372 return -ENOMEM;
1373 if (dev->bar)
1374 iounmap(dev->bar);
1375 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1376 if (!dev->bar) {
1377 dev->bar_mapped_size = 0;
1378 return -ENOMEM;
1379 }
1380 dev->bar_mapped_size = size;
1381 dev->dbs = dev->bar + NVME_REG_DBS;
1382
1383 return 0;
1384 }
1385
1386 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1387 {
1388 int result;
1389 u32 aqa;
1390 struct nvme_queue *nvmeq;
1391
1392 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1393 if (result < 0)
1394 return result;
1395
1396 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1397 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1398
1399 if (dev->subsystem &&
1400 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1401 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1402
1403 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1404 if (result < 0)
1405 return result;
1406
1407 nvmeq = dev->queues[0];
1408 if (!nvmeq) {
1409 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1410 dev_to_node(dev->dev));
1411 if (!nvmeq)
1412 return -ENOMEM;
1413 }
1414
1415 aqa = nvmeq->q_depth - 1;
1416 aqa |= aqa << 16;
1417
1418 writel(aqa, dev->bar + NVME_REG_AQA);
1419 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1420 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1421
1422 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1423 if (result)
1424 return result;
1425
1426 nvmeq->cq_vector = 0;
1427 result = queue_request_irq(nvmeq);
1428 if (result) {
1429 nvmeq->cq_vector = -1;
1430 return result;
1431 }
1432
1433 return result;
1434 }
1435
1436 static int nvme_create_io_queues(struct nvme_dev *dev)
1437 {
1438 unsigned i, max;
1439 int ret = 0;
1440
1441 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1442 /* vector == qid - 1, match nvme_create_queue */
1443 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1444 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1445 ret = -ENOMEM;
1446 break;
1447 }
1448 }
1449
1450 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1451 for (i = dev->online_queues; i <= max; i++) {
1452 ret = nvme_create_queue(dev->queues[i], i);
1453 if (ret)
1454 break;
1455 }
1456
1457 /*
1458 * Ignore failing Create SQ/CQ commands, we can continue with less
1459 * than the desired aount of queues, and even a controller without
1460 * I/O queues an still be used to issue admin commands. This might
1461 * be useful to upgrade a buggy firmware for example.
1462 */
1463 return ret >= 0 ? 0 : ret;
1464 }
1465
1466 static ssize_t nvme_cmb_show(struct device *dev,
1467 struct device_attribute *attr,
1468 char *buf)
1469 {
1470 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1471
1472 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1473 ndev->cmbloc, ndev->cmbsz);
1474 }
1475 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1476
1477 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1478 {
1479 u64 szu, size, offset;
1480 resource_size_t bar_size;
1481 struct pci_dev *pdev = to_pci_dev(dev->dev);
1482 void __iomem *cmb;
1483 dma_addr_t dma_addr;
1484
1485 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1486 if (!(NVME_CMB_SZ(dev->cmbsz)))
1487 return NULL;
1488 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1489
1490 if (!use_cmb_sqes)
1491 return NULL;
1492
1493 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1494 size = szu * NVME_CMB_SZ(dev->cmbsz);
1495 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1496 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1497
1498 if (offset > bar_size)
1499 return NULL;
1500
1501 /*
1502 * Controllers may support a CMB size larger than their BAR,
1503 * for example, due to being behind a bridge. Reduce the CMB to
1504 * the reported size of the BAR
1505 */
1506 if (size > bar_size - offset)
1507 size = bar_size - offset;
1508
1509 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1510 cmb = ioremap_wc(dma_addr, size);
1511 if (!cmb)
1512 return NULL;
1513
1514 dev->cmb_dma_addr = dma_addr;
1515 dev->cmb_size = size;
1516 return cmb;
1517 }
1518
1519 static inline void nvme_release_cmb(struct nvme_dev *dev)
1520 {
1521 if (dev->cmb) {
1522 iounmap(dev->cmb);
1523 dev->cmb = NULL;
1524 if (dev->cmbsz) {
1525 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1526 &dev_attr_cmb.attr, NULL);
1527 dev->cmbsz = 0;
1528 }
1529 }
1530 }
1531
1532 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1533 {
1534 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1535 struct nvme_command c;
1536 u64 dma_addr;
1537 int ret;
1538
1539 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1540 DMA_TO_DEVICE);
1541 if (dma_mapping_error(dev->dev, dma_addr))
1542 return -ENOMEM;
1543
1544 memset(&c, 0, sizeof(c));
1545 c.features.opcode = nvme_admin_set_features;
1546 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1547 c.features.dword11 = cpu_to_le32(bits);
1548 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1549 ilog2(dev->ctrl.page_size));
1550 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1551 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1552 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1553
1554 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1555 if (ret) {
1556 dev_warn(dev->ctrl.device,
1557 "failed to set host mem (err %d, flags %#x).\n",
1558 ret, bits);
1559 }
1560 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1561 return ret;
1562 }
1563
1564 static void nvme_free_host_mem(struct nvme_dev *dev)
1565 {
1566 int i;
1567
1568 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1569 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1570 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1571
1572 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1573 le64_to_cpu(desc->addr));
1574 }
1575
1576 kfree(dev->host_mem_desc_bufs);
1577 dev->host_mem_desc_bufs = NULL;
1578 kfree(dev->host_mem_descs);
1579 dev->host_mem_descs = NULL;
1580 }
1581
1582 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1583 {
1584 struct nvme_host_mem_buf_desc *descs;
1585 u32 chunk_size, max_entries;
1586 int i = 0;
1587 void **bufs;
1588 u64 size = 0, tmp;
1589
1590 /* start big and work our way down */
1591 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1592 retry:
1593 tmp = (preferred + chunk_size - 1);
1594 do_div(tmp, chunk_size);
1595 max_entries = tmp;
1596 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1597 if (!descs)
1598 goto out;
1599
1600 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1601 if (!bufs)
1602 goto out_free_descs;
1603
1604 for (size = 0; size < preferred; size += chunk_size) {
1605 u32 len = min_t(u64, chunk_size, preferred - size);
1606 dma_addr_t dma_addr;
1607
1608 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1609 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1610 if (!bufs[i])
1611 break;
1612
1613 descs[i].addr = cpu_to_le64(dma_addr);
1614 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1615 i++;
1616 }
1617
1618 if (!size || (min && size < min)) {
1619 dev_warn(dev->ctrl.device,
1620 "failed to allocate host memory buffer.\n");
1621 goto out_free_bufs;
1622 }
1623
1624 dev_info(dev->ctrl.device,
1625 "allocated %lld MiB host memory buffer.\n",
1626 size >> ilog2(SZ_1M));
1627 dev->nr_host_mem_descs = i;
1628 dev->host_mem_size = size;
1629 dev->host_mem_descs = descs;
1630 dev->host_mem_desc_bufs = bufs;
1631 return 0;
1632
1633 out_free_bufs:
1634 while (--i >= 0) {
1635 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1636
1637 dma_free_coherent(dev->dev, size, bufs[i],
1638 le64_to_cpu(descs[i].addr));
1639 }
1640
1641 kfree(bufs);
1642 out_free_descs:
1643 kfree(descs);
1644 out:
1645 /* try a smaller chunk size if we failed early */
1646 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1647 chunk_size /= 2;
1648 goto retry;
1649 }
1650 dev->host_mem_descs = NULL;
1651 return -ENOMEM;
1652 }
1653
1654 static void nvme_setup_host_mem(struct nvme_dev *dev)
1655 {
1656 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1657 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1658 u64 min = (u64)dev->ctrl.hmmin * 4096;
1659 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1660
1661 preferred = min(preferred, max);
1662 if (min > max) {
1663 dev_warn(dev->ctrl.device,
1664 "min host memory (%lld MiB) above limit (%d MiB).\n",
1665 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1666 nvme_free_host_mem(dev);
1667 return;
1668 }
1669
1670 /*
1671 * If we already have a buffer allocated check if we can reuse it.
1672 */
1673 if (dev->host_mem_descs) {
1674 if (dev->host_mem_size >= min)
1675 enable_bits |= NVME_HOST_MEM_RETURN;
1676 else
1677 nvme_free_host_mem(dev);
1678 }
1679
1680 if (!dev->host_mem_descs) {
1681 if (nvme_alloc_host_mem(dev, min, preferred))
1682 return;
1683 }
1684
1685 if (nvme_set_host_mem(dev, enable_bits))
1686 nvme_free_host_mem(dev);
1687 }
1688
1689 static int nvme_setup_io_queues(struct nvme_dev *dev)
1690 {
1691 struct nvme_queue *adminq = dev->queues[0];
1692 struct pci_dev *pdev = to_pci_dev(dev->dev);
1693 int result, nr_io_queues;
1694 unsigned long size;
1695
1696 nr_io_queues = num_online_cpus();
1697 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1698 if (result < 0)
1699 return result;
1700
1701 if (nr_io_queues == 0)
1702 return 0;
1703
1704 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1705 result = nvme_cmb_qdepth(dev, nr_io_queues,
1706 sizeof(struct nvme_command));
1707 if (result > 0)
1708 dev->q_depth = result;
1709 else
1710 nvme_release_cmb(dev);
1711 }
1712
1713 do {
1714 size = db_bar_size(dev, nr_io_queues);
1715 result = nvme_remap_bar(dev, size);
1716 if (!result)
1717 break;
1718 if (!--nr_io_queues)
1719 return -ENOMEM;
1720 } while (1);
1721 adminq->q_db = dev->dbs;
1722
1723 /* Deregister the admin queue's interrupt */
1724 pci_free_irq(pdev, 0, adminq);
1725
1726 /*
1727 * If we enable msix early due to not intx, disable it again before
1728 * setting up the full range we need.
1729 */
1730 pci_free_irq_vectors(pdev);
1731 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1732 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1733 if (nr_io_queues <= 0)
1734 return -EIO;
1735 dev->max_qid = nr_io_queues;
1736
1737 /*
1738 * Should investigate if there's a performance win from allocating
1739 * more queues than interrupt vectors; it might allow the submission
1740 * path to scale better, even if the receive path is limited by the
1741 * number of interrupts.
1742 */
1743
1744 result = queue_request_irq(adminq);
1745 if (result) {
1746 adminq->cq_vector = -1;
1747 return result;
1748 }
1749 return nvme_create_io_queues(dev);
1750 }
1751
1752 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1753 {
1754 struct nvme_queue *nvmeq = req->end_io_data;
1755
1756 blk_mq_free_request(req);
1757 complete(&nvmeq->dev->ioq_wait);
1758 }
1759
1760 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1761 {
1762 struct nvme_queue *nvmeq = req->end_io_data;
1763
1764 if (!error) {
1765 unsigned long flags;
1766
1767 /*
1768 * We might be called with the AQ q_lock held
1769 * and the I/O queue q_lock should always
1770 * nest inside the AQ one.
1771 */
1772 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1773 SINGLE_DEPTH_NESTING);
1774 nvme_process_cq(nvmeq);
1775 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1776 }
1777
1778 nvme_del_queue_end(req, error);
1779 }
1780
1781 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1782 {
1783 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1784 struct request *req;
1785 struct nvme_command cmd;
1786
1787 memset(&cmd, 0, sizeof(cmd));
1788 cmd.delete_queue.opcode = opcode;
1789 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1790
1791 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1792 if (IS_ERR(req))
1793 return PTR_ERR(req);
1794
1795 req->timeout = ADMIN_TIMEOUT;
1796 req->end_io_data = nvmeq;
1797
1798 blk_execute_rq_nowait(q, NULL, req, false,
1799 opcode == nvme_admin_delete_cq ?
1800 nvme_del_cq_end : nvme_del_queue_end);
1801 return 0;
1802 }
1803
1804 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1805 {
1806 int pass;
1807 unsigned long timeout;
1808 u8 opcode = nvme_admin_delete_sq;
1809
1810 for (pass = 0; pass < 2; pass++) {
1811 int sent = 0, i = queues;
1812
1813 reinit_completion(&dev->ioq_wait);
1814 retry:
1815 timeout = ADMIN_TIMEOUT;
1816 for (; i > 0; i--, sent++)
1817 if (nvme_delete_queue(dev->queues[i], opcode))
1818 break;
1819
1820 while (sent--) {
1821 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1822 if (timeout == 0)
1823 return;
1824 if (i)
1825 goto retry;
1826 }
1827 opcode = nvme_admin_delete_cq;
1828 }
1829 }
1830
1831 /*
1832 * Return: error value if an error occurred setting up the queues or calling
1833 * Identify Device. 0 if these succeeded, even if adding some of the
1834 * namespaces failed. At the moment, these failures are silent. TBD which
1835 * failures should be reported.
1836 */
1837 static int nvme_dev_add(struct nvme_dev *dev)
1838 {
1839 if (!dev->ctrl.tagset) {
1840 dev->tagset.ops = &nvme_mq_ops;
1841 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1842 dev->tagset.timeout = NVME_IO_TIMEOUT;
1843 dev->tagset.numa_node = dev_to_node(dev->dev);
1844 dev->tagset.queue_depth =
1845 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1846 dev->tagset.cmd_size = nvme_cmd_size(dev);
1847 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1848 dev->tagset.driver_data = dev;
1849
1850 if (blk_mq_alloc_tag_set(&dev->tagset))
1851 return 0;
1852 dev->ctrl.tagset = &dev->tagset;
1853
1854 nvme_dbbuf_set(dev);
1855 } else {
1856 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1857
1858 /* Free previously allocated queues that are no longer usable */
1859 nvme_free_queues(dev, dev->online_queues);
1860 }
1861
1862 return 0;
1863 }
1864
1865 static int nvme_pci_enable(struct nvme_dev *dev)
1866 {
1867 int result = -ENOMEM;
1868 struct pci_dev *pdev = to_pci_dev(dev->dev);
1869
1870 if (pci_enable_device_mem(pdev))
1871 return result;
1872
1873 pci_set_master(pdev);
1874
1875 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1876 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1877 goto disable;
1878
1879 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1880 result = -ENODEV;
1881 goto disable;
1882 }
1883
1884 /*
1885 * Some devices and/or platforms don't advertise or work with INTx
1886 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1887 * adjust this later.
1888 */
1889 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1890 if (result < 0)
1891 return result;
1892
1893 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1894
1895 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1896 NVME_Q_DEPTH);
1897 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1898 dev->dbs = dev->bar + 4096;
1899
1900 /*
1901 * Temporary fix for the Apple controller found in the MacBook8,1 and
1902 * some MacBook7,1 to avoid controller resets and data loss.
1903 */
1904 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1905 dev->q_depth = 2;
1906 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1907 "set queue depth=%u to work around controller resets\n",
1908 dev->q_depth);
1909 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1910 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1911 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1912 dev->q_depth = 64;
1913 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1914 "set queue depth=%u\n", dev->q_depth);
1915 }
1916
1917 /*
1918 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1919 * populate sysfs if a CMB is implemented. Note that we add the
1920 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1921 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1922 * NULL as final argument to sysfs_add_file_to_group.
1923 */
1924
1925 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1926 dev->cmb = nvme_map_cmb(dev);
1927
1928 if (dev->cmbsz) {
1929 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1930 &dev_attr_cmb.attr, NULL))
1931 dev_warn(dev->ctrl.device,
1932 "failed to add sysfs attribute for CMB\n");
1933 }
1934 }
1935
1936 pci_enable_pcie_error_reporting(pdev);
1937 pci_save_state(pdev);
1938 return 0;
1939
1940 disable:
1941 pci_disable_device(pdev);
1942 return result;
1943 }
1944
1945 static void nvme_dev_unmap(struct nvme_dev *dev)
1946 {
1947 if (dev->bar)
1948 iounmap(dev->bar);
1949 pci_release_mem_regions(to_pci_dev(dev->dev));
1950 }
1951
1952 static void nvme_pci_disable(struct nvme_dev *dev)
1953 {
1954 struct pci_dev *pdev = to_pci_dev(dev->dev);
1955
1956 nvme_release_cmb(dev);
1957 pci_free_irq_vectors(pdev);
1958
1959 if (pci_is_enabled(pdev)) {
1960 pci_disable_pcie_error_reporting(pdev);
1961 pci_disable_device(pdev);
1962 }
1963 }
1964
1965 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1966 {
1967 int i, queues;
1968 bool dead = true;
1969 struct pci_dev *pdev = to_pci_dev(dev->dev);
1970
1971 mutex_lock(&dev->shutdown_lock);
1972 if (pci_is_enabled(pdev)) {
1973 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1974
1975 if (dev->ctrl.state == NVME_CTRL_LIVE)
1976 nvme_start_freeze(&dev->ctrl);
1977 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1978 pdev->error_state != pci_channel_io_normal);
1979 }
1980
1981 /*
1982 * Give the controller a chance to complete all entered requests if
1983 * doing a safe shutdown.
1984 */
1985 if (!dead) {
1986 if (shutdown)
1987 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1988
1989 /*
1990 * If the controller is still alive tell it to stop using the
1991 * host memory buffer. In theory the shutdown / reset should
1992 * make sure that it doesn't access the host memoery anymore,
1993 * but I'd rather be safe than sorry..
1994 */
1995 if (dev->host_mem_descs)
1996 nvme_set_host_mem(dev, 0);
1997
1998 }
1999 nvme_stop_queues(&dev->ctrl);
2000
2001 queues = dev->online_queues - 1;
2002 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2003 nvme_suspend_queue(dev->queues[i]);
2004
2005 if (dead) {
2006 /* A device might become IO incapable very soon during
2007 * probe, before the admin queue is configured. Thus,
2008 * queue_count can be 0 here.
2009 */
2010 if (dev->ctrl.queue_count)
2011 nvme_suspend_queue(dev->queues[0]);
2012 } else {
2013 nvme_disable_io_queues(dev, queues);
2014 nvme_disable_admin_queue(dev, shutdown);
2015 }
2016 nvme_pci_disable(dev);
2017
2018 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2019 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2020
2021 /*
2022 * The driver will not be starting up queues again if shutting down so
2023 * must flush all entered requests to their failed completion to avoid
2024 * deadlocking blk-mq hot-cpu notifier.
2025 */
2026 if (shutdown)
2027 nvme_start_queues(&dev->ctrl);
2028 mutex_unlock(&dev->shutdown_lock);
2029 }
2030
2031 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2032 {
2033 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2034 PAGE_SIZE, PAGE_SIZE, 0);
2035 if (!dev->prp_page_pool)
2036 return -ENOMEM;
2037
2038 /* Optimisation for I/Os between 4k and 128k */
2039 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2040 256, 256, 0);
2041 if (!dev->prp_small_pool) {
2042 dma_pool_destroy(dev->prp_page_pool);
2043 return -ENOMEM;
2044 }
2045 return 0;
2046 }
2047
2048 static void nvme_release_prp_pools(struct nvme_dev *dev)
2049 {
2050 dma_pool_destroy(dev->prp_page_pool);
2051 dma_pool_destroy(dev->prp_small_pool);
2052 }
2053
2054 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2055 {
2056 struct nvme_dev *dev = to_nvme_dev(ctrl);
2057
2058 nvme_dbbuf_dma_free(dev);
2059 put_device(dev->dev);
2060 if (dev->tagset.tags)
2061 blk_mq_free_tag_set(&dev->tagset);
2062 if (dev->ctrl.admin_q)
2063 blk_put_queue(dev->ctrl.admin_q);
2064 kfree(dev->queues);
2065 free_opal_dev(dev->ctrl.opal_dev);
2066 kfree(dev);
2067 }
2068
2069 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2070 {
2071 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2072
2073 kref_get(&dev->ctrl.kref);
2074 nvme_dev_disable(dev, false);
2075 if (!schedule_work(&dev->remove_work))
2076 nvme_put_ctrl(&dev->ctrl);
2077 }
2078
2079 static void nvme_reset_work(struct work_struct *work)
2080 {
2081 struct nvme_dev *dev =
2082 container_of(work, struct nvme_dev, ctrl.reset_work);
2083 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2084 int result = -ENODEV;
2085
2086 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2087 goto out;
2088
2089 /*
2090 * If we're called to reset a live controller first shut it down before
2091 * moving on.
2092 */
2093 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2094 nvme_dev_disable(dev, false);
2095
2096 result = nvme_pci_enable(dev);
2097 if (result)
2098 goto out;
2099
2100 result = nvme_pci_configure_admin_queue(dev);
2101 if (result)
2102 goto out;
2103
2104 nvme_init_queue(dev->queues[0], 0);
2105 result = nvme_alloc_admin_tags(dev);
2106 if (result)
2107 goto out;
2108
2109 result = nvme_init_identify(&dev->ctrl);
2110 if (result)
2111 goto out;
2112
2113 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2114 if (!dev->ctrl.opal_dev)
2115 dev->ctrl.opal_dev =
2116 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2117 else if (was_suspend)
2118 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2119 } else {
2120 free_opal_dev(dev->ctrl.opal_dev);
2121 dev->ctrl.opal_dev = NULL;
2122 }
2123
2124 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2125 result = nvme_dbbuf_dma_alloc(dev);
2126 if (result)
2127 dev_warn(dev->dev,
2128 "unable to allocate dma for dbbuf\n");
2129 }
2130
2131 if (dev->ctrl.hmpre)
2132 nvme_setup_host_mem(dev);
2133
2134 result = nvme_setup_io_queues(dev);
2135 if (result)
2136 goto out;
2137
2138 /*
2139 * Keep the controller around but remove all namespaces if we don't have
2140 * any working I/O queue.
2141 */
2142 if (dev->online_queues < 2) {
2143 dev_warn(dev->ctrl.device, "IO queues not created\n");
2144 nvme_kill_queues(&dev->ctrl);
2145 nvme_remove_namespaces(&dev->ctrl);
2146 } else {
2147 nvme_start_queues(&dev->ctrl);
2148 nvme_wait_freeze(&dev->ctrl);
2149 nvme_dev_add(dev);
2150 nvme_unfreeze(&dev->ctrl);
2151 }
2152
2153 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2154 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2155 goto out;
2156 }
2157
2158 nvme_start_ctrl(&dev->ctrl);
2159 return;
2160
2161 out:
2162 nvme_remove_dead_ctrl(dev, result);
2163 }
2164
2165 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2166 {
2167 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2168 struct pci_dev *pdev = to_pci_dev(dev->dev);
2169
2170 nvme_kill_queues(&dev->ctrl);
2171 if (pci_get_drvdata(pdev))
2172 device_release_driver(&pdev->dev);
2173 nvme_put_ctrl(&dev->ctrl);
2174 }
2175
2176 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2177 {
2178 *val = readl(to_nvme_dev(ctrl)->bar + off);
2179 return 0;
2180 }
2181
2182 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2183 {
2184 writel(val, to_nvme_dev(ctrl)->bar + off);
2185 return 0;
2186 }
2187
2188 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2189 {
2190 *val = readq(to_nvme_dev(ctrl)->bar + off);
2191 return 0;
2192 }
2193
2194 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2195 .name = "pcie",
2196 .module = THIS_MODULE,
2197 .flags = NVME_F_METADATA_SUPPORTED,
2198 .reg_read32 = nvme_pci_reg_read32,
2199 .reg_write32 = nvme_pci_reg_write32,
2200 .reg_read64 = nvme_pci_reg_read64,
2201 .free_ctrl = nvme_pci_free_ctrl,
2202 .submit_async_event = nvme_pci_submit_async_event,
2203 };
2204
2205 static int nvme_dev_map(struct nvme_dev *dev)
2206 {
2207 struct pci_dev *pdev = to_pci_dev(dev->dev);
2208
2209 if (pci_request_mem_regions(pdev, "nvme"))
2210 return -ENODEV;
2211
2212 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2213 goto release;
2214
2215 return 0;
2216 release:
2217 pci_release_mem_regions(pdev);
2218 return -ENODEV;
2219 }
2220
2221 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2222 {
2223 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2224 /*
2225 * Several Samsung devices seem to drop off the PCIe bus
2226 * randomly when APST is on and uses the deepest sleep state.
2227 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2228 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2229 * 950 PRO 256GB", but it seems to be restricted to two Dell
2230 * laptops.
2231 */
2232 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2233 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2234 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2235 return NVME_QUIRK_NO_DEEPEST_PS;
2236 }
2237
2238 return 0;
2239 }
2240
2241 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2242 {
2243 int node, result = -ENOMEM;
2244 struct nvme_dev *dev;
2245 unsigned long quirks = id->driver_data;
2246
2247 node = dev_to_node(&pdev->dev);
2248 if (node == NUMA_NO_NODE)
2249 set_dev_node(&pdev->dev, first_memory_node);
2250
2251 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2252 if (!dev)
2253 return -ENOMEM;
2254 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2255 GFP_KERNEL, node);
2256 if (!dev->queues)
2257 goto free;
2258
2259 dev->dev = get_device(&pdev->dev);
2260 pci_set_drvdata(pdev, dev);
2261
2262 result = nvme_dev_map(dev);
2263 if (result)
2264 goto free;
2265
2266 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2267 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2268 mutex_init(&dev->shutdown_lock);
2269 init_completion(&dev->ioq_wait);
2270
2271 result = nvme_setup_prp_pools(dev);
2272 if (result)
2273 goto put_pci;
2274
2275 quirks |= check_dell_samsung_bug(pdev);
2276
2277 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2278 quirks);
2279 if (result)
2280 goto release_pools;
2281
2282 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2283 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2284
2285 queue_work(nvme_wq, &dev->ctrl.reset_work);
2286 return 0;
2287
2288 release_pools:
2289 nvme_release_prp_pools(dev);
2290 put_pci:
2291 put_device(dev->dev);
2292 nvme_dev_unmap(dev);
2293 free:
2294 kfree(dev->queues);
2295 kfree(dev);
2296 return result;
2297 }
2298
2299 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2300 {
2301 struct nvme_dev *dev = pci_get_drvdata(pdev);
2302
2303 if (prepare)
2304 nvme_dev_disable(dev, false);
2305 else
2306 nvme_reset_ctrl(&dev->ctrl);
2307 }
2308
2309 static void nvme_shutdown(struct pci_dev *pdev)
2310 {
2311 struct nvme_dev *dev = pci_get_drvdata(pdev);
2312 nvme_dev_disable(dev, true);
2313 }
2314
2315 /*
2316 * The driver's remove may be called on a device in a partially initialized
2317 * state. This function must not have any dependencies on the device state in
2318 * order to proceed.
2319 */
2320 static void nvme_remove(struct pci_dev *pdev)
2321 {
2322 struct nvme_dev *dev = pci_get_drvdata(pdev);
2323
2324 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2325
2326 cancel_work_sync(&dev->ctrl.reset_work);
2327 pci_set_drvdata(pdev, NULL);
2328
2329 if (!pci_device_is_present(pdev)) {
2330 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2331 nvme_dev_disable(dev, false);
2332 }
2333
2334 flush_work(&dev->ctrl.reset_work);
2335 nvme_stop_ctrl(&dev->ctrl);
2336 nvme_remove_namespaces(&dev->ctrl);
2337 nvme_dev_disable(dev, true);
2338 nvme_free_host_mem(dev);
2339 nvme_dev_remove_admin(dev);
2340 nvme_free_queues(dev, 0);
2341 nvme_uninit_ctrl(&dev->ctrl);
2342 nvme_release_prp_pools(dev);
2343 nvme_dev_unmap(dev);
2344 nvme_put_ctrl(&dev->ctrl);
2345 }
2346
2347 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2348 {
2349 int ret = 0;
2350
2351 if (numvfs == 0) {
2352 if (pci_vfs_assigned(pdev)) {
2353 dev_warn(&pdev->dev,
2354 "Cannot disable SR-IOV VFs while assigned\n");
2355 return -EPERM;
2356 }
2357 pci_disable_sriov(pdev);
2358 return 0;
2359 }
2360
2361 ret = pci_enable_sriov(pdev, numvfs);
2362 return ret ? ret : numvfs;
2363 }
2364
2365 #ifdef CONFIG_PM_SLEEP
2366 static int nvme_suspend(struct device *dev)
2367 {
2368 struct pci_dev *pdev = to_pci_dev(dev);
2369 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2370
2371 nvme_dev_disable(ndev, true);
2372 return 0;
2373 }
2374
2375 static int nvme_resume(struct device *dev)
2376 {
2377 struct pci_dev *pdev = to_pci_dev(dev);
2378 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2379
2380 nvme_reset_ctrl(&ndev->ctrl);
2381 return 0;
2382 }
2383 #endif
2384
2385 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2386
2387 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2388 pci_channel_state_t state)
2389 {
2390 struct nvme_dev *dev = pci_get_drvdata(pdev);
2391
2392 /*
2393 * A frozen channel requires a reset. When detected, this method will
2394 * shutdown the controller to quiesce. The controller will be restarted
2395 * after the slot reset through driver's slot_reset callback.
2396 */
2397 switch (state) {
2398 case pci_channel_io_normal:
2399 return PCI_ERS_RESULT_CAN_RECOVER;
2400 case pci_channel_io_frozen:
2401 dev_warn(dev->ctrl.device,
2402 "frozen state error detected, reset controller\n");
2403 nvme_dev_disable(dev, false);
2404 return PCI_ERS_RESULT_NEED_RESET;
2405 case pci_channel_io_perm_failure:
2406 dev_warn(dev->ctrl.device,
2407 "failure state error detected, request disconnect\n");
2408 return PCI_ERS_RESULT_DISCONNECT;
2409 }
2410 return PCI_ERS_RESULT_NEED_RESET;
2411 }
2412
2413 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2414 {
2415 struct nvme_dev *dev = pci_get_drvdata(pdev);
2416
2417 dev_info(dev->ctrl.device, "restart after slot reset\n");
2418 pci_restore_state(pdev);
2419 nvme_reset_ctrl(&dev->ctrl);
2420 return PCI_ERS_RESULT_RECOVERED;
2421 }
2422
2423 static void nvme_error_resume(struct pci_dev *pdev)
2424 {
2425 pci_cleanup_aer_uncorrect_error_status(pdev);
2426 }
2427
2428 static const struct pci_error_handlers nvme_err_handler = {
2429 .error_detected = nvme_error_detected,
2430 .slot_reset = nvme_slot_reset,
2431 .resume = nvme_error_resume,
2432 .reset_notify = nvme_reset_notify,
2433 };
2434
2435 static const struct pci_device_id nvme_id_table[] = {
2436 { PCI_VDEVICE(INTEL, 0x0953),
2437 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2438 NVME_QUIRK_DEALLOCATE_ZEROES, },
2439 { PCI_VDEVICE(INTEL, 0x0a53),
2440 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2441 NVME_QUIRK_DEALLOCATE_ZEROES, },
2442 { PCI_VDEVICE(INTEL, 0x0a54),
2443 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2444 NVME_QUIRK_DEALLOCATE_ZEROES, },
2445 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2446 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2447 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2448 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2449 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2450 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2451 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2452 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2453 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2454 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2455 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2456 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2457 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2458 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2459 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2460 { 0, }
2461 };
2462 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2463
2464 static struct pci_driver nvme_driver = {
2465 .name = "nvme",
2466 .id_table = nvme_id_table,
2467 .probe = nvme_probe,
2468 .remove = nvme_remove,
2469 .shutdown = nvme_shutdown,
2470 .driver = {
2471 .pm = &nvme_dev_pm_ops,
2472 },
2473 .sriov_configure = nvme_pci_sriov_configure,
2474 .err_handler = &nvme_err_handler,
2475 };
2476
2477 static int __init nvme_init(void)
2478 {
2479 return pci_register_driver(&nvme_driver);
2480 }
2481
2482 static void __exit nvme_exit(void)
2483 {
2484 pci_unregister_driver(&nvme_driver);
2485 _nvme_check_size();
2486 }
2487
2488 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2489 MODULE_LICENSE("GPL");
2490 MODULE_VERSION("1.0");
2491 module_init(nvme_init);
2492 module_exit(nvme_exit);