]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/pci.c
NVMe: Add device ID's with stripe quirk
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53 /*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
58
59 static int use_threaded_interrupts;
60 module_param(use_threaded_interrupts, int, 0);
61
62 static bool use_cmb_sqes = true;
63 module_param(use_cmb_sqes, bool, 0644);
64 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
65
66 static struct workqueue_struct *nvme_workq;
67
68 struct nvme_dev;
69 struct nvme_queue;
70
71 static int nvme_reset(struct nvme_dev *dev);
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78 struct nvme_dev {
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned queue_count;
87 unsigned online_queues;
88 unsigned max_qid;
89 int q_depth;
90 u32 db_stride;
91 struct msix_entry *entry;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 struct nvme_ctrl ctrl;
103 struct completion ioq_wait;
104 };
105
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107 {
108 return container_of(ctrl, struct nvme_dev, ctrl);
109 }
110
111 /*
112 * An NVM Express queue. Each device has at least two (one for admin
113 * commands and one for I/O commands).
114 */
115 struct nvme_queue {
116 struct device *q_dmadev;
117 struct nvme_dev *dev;
118 char irqname[24]; /* nvme4294967295-65535\0 */
119 spinlock_t q_lock;
120 struct nvme_command *sq_cmds;
121 struct nvme_command __iomem *sq_cmds_io;
122 volatile struct nvme_completion *cqes;
123 struct blk_mq_tags **tags;
124 dma_addr_t sq_dma_addr;
125 dma_addr_t cq_dma_addr;
126 u32 __iomem *q_db;
127 u16 q_depth;
128 s16 cq_vector;
129 u16 sq_tail;
130 u16 cq_head;
131 u16 qid;
132 u8 cq_phase;
133 u8 cqe_seen;
134 };
135
136 /*
137 * The nvme_iod describes the data in an I/O, including the list of PRP
138 * entries. You can't see it in this data structure because C doesn't let
139 * me express that. Use nvme_init_iod to ensure there's enough space
140 * allocated to store the PRP list.
141 */
142 struct nvme_iod {
143 struct nvme_queue *nvmeq;
144 int aborted;
145 int npages; /* In the PRP list. 0 means small pool in use */
146 int nents; /* Used in scatterlist */
147 int length; /* Of data, in bytes */
148 dma_addr_t first_dma;
149 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
150 struct scatterlist *sg;
151 struct scatterlist inline_sg[0];
152 };
153
154 /*
155 * Check we didin't inadvertently grow the command struct
156 */
157 static inline void _nvme_check_size(void)
158 {
159 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
171 }
172
173 /*
174 * Max size of iod being embedded in the request payload
175 */
176 #define NVME_INT_PAGES 2
177 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
178
179 /*
180 * Will slightly overestimate the number of pages needed. This is OK
181 * as it only leads to a small amount of wasted memory for the lifetime of
182 * the I/O.
183 */
184 static int nvme_npages(unsigned size, struct nvme_dev *dev)
185 {
186 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 dev->ctrl.page_size);
188 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189 }
190
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 unsigned int size, unsigned int nseg)
193 {
194 return sizeof(__le64 *) * nvme_npages(size, dev) +
195 sizeof(struct scatterlist) * nseg;
196 }
197
198 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199 {
200 return sizeof(struct nvme_iod) +
201 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
202 }
203
204 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205 unsigned int hctx_idx)
206 {
207 struct nvme_dev *dev = data;
208 struct nvme_queue *nvmeq = dev->queues[0];
209
210 WARN_ON(hctx_idx != 0);
211 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212 WARN_ON(nvmeq->tags);
213
214 hctx->driver_data = nvmeq;
215 nvmeq->tags = &dev->admin_tagset.tags[0];
216 return 0;
217 }
218
219 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
220 {
221 struct nvme_queue *nvmeq = hctx->driver_data;
222
223 nvmeq->tags = NULL;
224 }
225
226 static int nvme_admin_init_request(void *data, struct request *req,
227 unsigned int hctx_idx, unsigned int rq_idx,
228 unsigned int numa_node)
229 {
230 struct nvme_dev *dev = data;
231 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
232 struct nvme_queue *nvmeq = dev->queues[0];
233
234 BUG_ON(!nvmeq);
235 iod->nvmeq = nvmeq;
236 return 0;
237 }
238
239 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240 unsigned int hctx_idx)
241 {
242 struct nvme_dev *dev = data;
243 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
244
245 if (!nvmeq->tags)
246 nvmeq->tags = &dev->tagset.tags[hctx_idx];
247
248 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
249 hctx->driver_data = nvmeq;
250 return 0;
251 }
252
253 static int nvme_init_request(void *data, struct request *req,
254 unsigned int hctx_idx, unsigned int rq_idx,
255 unsigned int numa_node)
256 {
257 struct nvme_dev *dev = data;
258 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
259 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
260
261 BUG_ON(!nvmeq);
262 iod->nvmeq = nvmeq;
263 return 0;
264 }
265
266 /**
267 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
268 * @nvmeq: The queue to use
269 * @cmd: The command to send
270 *
271 * Safe to use from interrupt context
272 */
273 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274 struct nvme_command *cmd)
275 {
276 u16 tail = nvmeq->sq_tail;
277
278 if (nvmeq->sq_cmds_io)
279 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
280 else
281 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
282
283 if (++tail == nvmeq->q_depth)
284 tail = 0;
285 writel(tail, nvmeq->q_db);
286 nvmeq->sq_tail = tail;
287 }
288
289 static __le64 **iod_list(struct request *req)
290 {
291 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292 return (__le64 **)(iod->sg + req->nr_phys_segments);
293 }
294
295 static int nvme_init_iod(struct request *rq, unsigned size,
296 struct nvme_dev *dev)
297 {
298 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299 int nseg = rq->nr_phys_segments;
300
301 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
303 if (!iod->sg)
304 return BLK_MQ_RQ_QUEUE_BUSY;
305 } else {
306 iod->sg = iod->inline_sg;
307 }
308
309 iod->aborted = 0;
310 iod->npages = -1;
311 iod->nents = 0;
312 iod->length = size;
313 return 0;
314 }
315
316 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
317 {
318 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
319 const int last_prp = dev->ctrl.page_size / 8 - 1;
320 int i;
321 __le64 **list = iod_list(req);
322 dma_addr_t prp_dma = iod->first_dma;
323
324 nvme_cleanup_cmd(req);
325
326 if (iod->npages == 0)
327 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
328 for (i = 0; i < iod->npages; i++) {
329 __le64 *prp_list = list[i];
330 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
331 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
332 prp_dma = next_prp_dma;
333 }
334
335 if (iod->sg != iod->inline_sg)
336 kfree(iod->sg);
337 }
338
339 #ifdef CONFIG_BLK_DEV_INTEGRITY
340 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
341 {
342 if (be32_to_cpu(pi->ref_tag) == v)
343 pi->ref_tag = cpu_to_be32(p);
344 }
345
346 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
347 {
348 if (be32_to_cpu(pi->ref_tag) == p)
349 pi->ref_tag = cpu_to_be32(v);
350 }
351
352 /**
353 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
354 *
355 * The virtual start sector is the one that was originally submitted by the
356 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
357 * start sector may be different. Remap protection information to match the
358 * physical LBA on writes, and back to the original seed on reads.
359 *
360 * Type 0 and 3 do not have a ref tag, so no remapping required.
361 */
362 static void nvme_dif_remap(struct request *req,
363 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
364 {
365 struct nvme_ns *ns = req->rq_disk->private_data;
366 struct bio_integrity_payload *bip;
367 struct t10_pi_tuple *pi;
368 void *p, *pmap;
369 u32 i, nlb, ts, phys, virt;
370
371 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
372 return;
373
374 bip = bio_integrity(req->bio);
375 if (!bip)
376 return;
377
378 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
379
380 p = pmap;
381 virt = bip_get_seed(bip);
382 phys = nvme_block_nr(ns, blk_rq_pos(req));
383 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
384 ts = ns->disk->queue->integrity.tuple_size;
385
386 for (i = 0; i < nlb; i++, virt++, phys++) {
387 pi = (struct t10_pi_tuple *)p;
388 dif_swap(phys, virt, pi);
389 p += ts;
390 }
391 kunmap_atomic(pmap);
392 }
393 #else /* CONFIG_BLK_DEV_INTEGRITY */
394 static void nvme_dif_remap(struct request *req,
395 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
396 {
397 }
398 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
399 {
400 }
401 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
402 {
403 }
404 #endif
405
406 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
407 int total_len)
408 {
409 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
410 struct dma_pool *pool;
411 int length = total_len;
412 struct scatterlist *sg = iod->sg;
413 int dma_len = sg_dma_len(sg);
414 u64 dma_addr = sg_dma_address(sg);
415 u32 page_size = dev->ctrl.page_size;
416 int offset = dma_addr & (page_size - 1);
417 __le64 *prp_list;
418 __le64 **list = iod_list(req);
419 dma_addr_t prp_dma;
420 int nprps, i;
421
422 length -= (page_size - offset);
423 if (length <= 0)
424 return true;
425
426 dma_len -= (page_size - offset);
427 if (dma_len) {
428 dma_addr += (page_size - offset);
429 } else {
430 sg = sg_next(sg);
431 dma_addr = sg_dma_address(sg);
432 dma_len = sg_dma_len(sg);
433 }
434
435 if (length <= page_size) {
436 iod->first_dma = dma_addr;
437 return true;
438 }
439
440 nprps = DIV_ROUND_UP(length, page_size);
441 if (nprps <= (256 / 8)) {
442 pool = dev->prp_small_pool;
443 iod->npages = 0;
444 } else {
445 pool = dev->prp_page_pool;
446 iod->npages = 1;
447 }
448
449 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
450 if (!prp_list) {
451 iod->first_dma = dma_addr;
452 iod->npages = -1;
453 return false;
454 }
455 list[0] = prp_list;
456 iod->first_dma = prp_dma;
457 i = 0;
458 for (;;) {
459 if (i == page_size >> 3) {
460 __le64 *old_prp_list = prp_list;
461 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
462 if (!prp_list)
463 return false;
464 list[iod->npages++] = prp_list;
465 prp_list[0] = old_prp_list[i - 1];
466 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
467 i = 1;
468 }
469 prp_list[i++] = cpu_to_le64(dma_addr);
470 dma_len -= page_size;
471 dma_addr += page_size;
472 length -= page_size;
473 if (length <= 0)
474 break;
475 if (dma_len > 0)
476 continue;
477 BUG_ON(dma_len < 0);
478 sg = sg_next(sg);
479 dma_addr = sg_dma_address(sg);
480 dma_len = sg_dma_len(sg);
481 }
482
483 return true;
484 }
485
486 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
487 unsigned size, struct nvme_command *cmnd)
488 {
489 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
490 struct request_queue *q = req->q;
491 enum dma_data_direction dma_dir = rq_data_dir(req) ?
492 DMA_TO_DEVICE : DMA_FROM_DEVICE;
493 int ret = BLK_MQ_RQ_QUEUE_ERROR;
494
495 sg_init_table(iod->sg, req->nr_phys_segments);
496 iod->nents = blk_rq_map_sg(q, req, iod->sg);
497 if (!iod->nents)
498 goto out;
499
500 ret = BLK_MQ_RQ_QUEUE_BUSY;
501 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
502 goto out;
503
504 if (!nvme_setup_prps(dev, req, size))
505 goto out_unmap;
506
507 ret = BLK_MQ_RQ_QUEUE_ERROR;
508 if (blk_integrity_rq(req)) {
509 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
510 goto out_unmap;
511
512 sg_init_table(&iod->meta_sg, 1);
513 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
514 goto out_unmap;
515
516 if (rq_data_dir(req))
517 nvme_dif_remap(req, nvme_dif_prep);
518
519 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
520 goto out_unmap;
521 }
522
523 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
524 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
525 if (blk_integrity_rq(req))
526 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
527 return BLK_MQ_RQ_QUEUE_OK;
528
529 out_unmap:
530 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
531 out:
532 return ret;
533 }
534
535 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
536 {
537 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
538 enum dma_data_direction dma_dir = rq_data_dir(req) ?
539 DMA_TO_DEVICE : DMA_FROM_DEVICE;
540
541 if (iod->nents) {
542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
543 if (blk_integrity_rq(req)) {
544 if (!rq_data_dir(req))
545 nvme_dif_remap(req, nvme_dif_complete);
546 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
547 }
548 }
549
550 nvme_free_iod(dev, req);
551 }
552
553 /*
554 * NOTE: ns is NULL when called on the admin queue.
555 */
556 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
557 const struct blk_mq_queue_data *bd)
558 {
559 struct nvme_ns *ns = hctx->queue->queuedata;
560 struct nvme_queue *nvmeq = hctx->driver_data;
561 struct nvme_dev *dev = nvmeq->dev;
562 struct request *req = bd->rq;
563 struct nvme_command cmnd;
564 unsigned map_len;
565 int ret = BLK_MQ_RQ_QUEUE_OK;
566
567 /*
568 * If formated with metadata, require the block layer provide a buffer
569 * unless this namespace is formated such that the metadata can be
570 * stripped/generated by the controller with PRACT=1.
571 */
572 if (ns && ns->ms && !blk_integrity_rq(req)) {
573 if (!(ns->pi_type && ns->ms == 8) &&
574 req->cmd_type != REQ_TYPE_DRV_PRIV) {
575 blk_mq_end_request(req, -EFAULT);
576 return BLK_MQ_RQ_QUEUE_OK;
577 }
578 }
579
580 map_len = nvme_map_len(req);
581 ret = nvme_init_iod(req, map_len, dev);
582 if (ret)
583 return ret;
584
585 ret = nvme_setup_cmd(ns, req, &cmnd);
586 if (ret)
587 goto out;
588
589 if (req->nr_phys_segments)
590 ret = nvme_map_data(dev, req, map_len, &cmnd);
591
592 if (ret)
593 goto out;
594
595 cmnd.common.command_id = req->tag;
596 blk_mq_start_request(req);
597
598 spin_lock_irq(&nvmeq->q_lock);
599 if (unlikely(nvmeq->cq_vector < 0)) {
600 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
601 ret = BLK_MQ_RQ_QUEUE_BUSY;
602 else
603 ret = BLK_MQ_RQ_QUEUE_ERROR;
604 spin_unlock_irq(&nvmeq->q_lock);
605 goto out;
606 }
607 __nvme_submit_cmd(nvmeq, &cmnd);
608 nvme_process_cq(nvmeq);
609 spin_unlock_irq(&nvmeq->q_lock);
610 return BLK_MQ_RQ_QUEUE_OK;
611 out:
612 nvme_free_iod(dev, req);
613 return ret;
614 }
615
616 static void nvme_complete_rq(struct request *req)
617 {
618 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619 struct nvme_dev *dev = iod->nvmeq->dev;
620 int error = 0;
621
622 nvme_unmap_data(dev, req);
623
624 if (unlikely(req->errors)) {
625 if (nvme_req_needs_retry(req, req->errors)) {
626 nvme_requeue_req(req);
627 return;
628 }
629
630 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
631 error = req->errors;
632 else
633 error = nvme_error_status(req->errors);
634 }
635
636 if (unlikely(iod->aborted)) {
637 dev_warn(dev->ctrl.device,
638 "completing aborted command with status: %04x\n",
639 req->errors);
640 }
641
642 blk_mq_end_request(req, error);
643 }
644
645 /* We read the CQE phase first to check if the rest of the entry is valid */
646 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
647 u16 phase)
648 {
649 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
650 }
651
652 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
653 {
654 u16 head, phase;
655
656 head = nvmeq->cq_head;
657 phase = nvmeq->cq_phase;
658
659 while (nvme_cqe_valid(nvmeq, head, phase)) {
660 struct nvme_completion cqe = nvmeq->cqes[head];
661 struct request *req;
662
663 if (++head == nvmeq->q_depth) {
664 head = 0;
665 phase = !phase;
666 }
667
668 if (tag && *tag == cqe.command_id)
669 *tag = -1;
670
671 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
672 dev_warn(nvmeq->dev->ctrl.device,
673 "invalid id %d completed on queue %d\n",
674 cqe.command_id, le16_to_cpu(cqe.sq_id));
675 continue;
676 }
677
678 /*
679 * AEN requests are special as they don't time out and can
680 * survive any kind of queue freeze and often don't respond to
681 * aborts. We don't even bother to allocate a struct request
682 * for them but rather special case them here.
683 */
684 if (unlikely(nvmeq->qid == 0 &&
685 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
686 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
687 continue;
688 }
689
690 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
691 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
692 memcpy(req->special, &cqe, sizeof(cqe));
693 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
694
695 }
696
697 /* If the controller ignores the cq head doorbell and continuously
698 * writes to the queue, it is theoretically possible to wrap around
699 * the queue twice and mistakenly return IRQ_NONE. Linux only
700 * requires that 0.1% of your interrupts are handled, so this isn't
701 * a big problem.
702 */
703 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
704 return;
705
706 if (likely(nvmeq->cq_vector >= 0))
707 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
708 nvmeq->cq_head = head;
709 nvmeq->cq_phase = phase;
710
711 nvmeq->cqe_seen = 1;
712 }
713
714 static void nvme_process_cq(struct nvme_queue *nvmeq)
715 {
716 __nvme_process_cq(nvmeq, NULL);
717 }
718
719 static irqreturn_t nvme_irq(int irq, void *data)
720 {
721 irqreturn_t result;
722 struct nvme_queue *nvmeq = data;
723 spin_lock(&nvmeq->q_lock);
724 nvme_process_cq(nvmeq);
725 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
726 nvmeq->cqe_seen = 0;
727 spin_unlock(&nvmeq->q_lock);
728 return result;
729 }
730
731 static irqreturn_t nvme_irq_check(int irq, void *data)
732 {
733 struct nvme_queue *nvmeq = data;
734 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
735 return IRQ_WAKE_THREAD;
736 return IRQ_NONE;
737 }
738
739 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
740 {
741 struct nvme_queue *nvmeq = hctx->driver_data;
742
743 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
744 spin_lock_irq(&nvmeq->q_lock);
745 __nvme_process_cq(nvmeq, &tag);
746 spin_unlock_irq(&nvmeq->q_lock);
747
748 if (tag == -1)
749 return 1;
750 }
751
752 return 0;
753 }
754
755 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
756 {
757 struct nvme_dev *dev = to_nvme_dev(ctrl);
758 struct nvme_queue *nvmeq = dev->queues[0];
759 struct nvme_command c;
760
761 memset(&c, 0, sizeof(c));
762 c.common.opcode = nvme_admin_async_event;
763 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
764
765 spin_lock_irq(&nvmeq->q_lock);
766 __nvme_submit_cmd(nvmeq, &c);
767 spin_unlock_irq(&nvmeq->q_lock);
768 }
769
770 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
771 {
772 struct nvme_command c;
773
774 memset(&c, 0, sizeof(c));
775 c.delete_queue.opcode = opcode;
776 c.delete_queue.qid = cpu_to_le16(id);
777
778 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
779 }
780
781 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
782 struct nvme_queue *nvmeq)
783 {
784 struct nvme_command c;
785 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
786
787 /*
788 * Note: we (ab)use the fact the the prp fields survive if no data
789 * is attached to the request.
790 */
791 memset(&c, 0, sizeof(c));
792 c.create_cq.opcode = nvme_admin_create_cq;
793 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
794 c.create_cq.cqid = cpu_to_le16(qid);
795 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
796 c.create_cq.cq_flags = cpu_to_le16(flags);
797 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
798
799 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
800 }
801
802 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
803 struct nvme_queue *nvmeq)
804 {
805 struct nvme_command c;
806 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
807
808 /*
809 * Note: we (ab)use the fact the the prp fields survive if no data
810 * is attached to the request.
811 */
812 memset(&c, 0, sizeof(c));
813 c.create_sq.opcode = nvme_admin_create_sq;
814 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
815 c.create_sq.sqid = cpu_to_le16(qid);
816 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
817 c.create_sq.sq_flags = cpu_to_le16(flags);
818 c.create_sq.cqid = cpu_to_le16(qid);
819
820 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
821 }
822
823 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
824 {
825 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
826 }
827
828 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
829 {
830 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
831 }
832
833 static void abort_endio(struct request *req, int error)
834 {
835 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
836 struct nvme_queue *nvmeq = iod->nvmeq;
837 u16 status = req->errors;
838
839 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
840 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
841 blk_mq_free_request(req);
842 }
843
844 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
845 {
846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 struct nvme_queue *nvmeq = iod->nvmeq;
848 struct nvme_dev *dev = nvmeq->dev;
849 struct request *abort_req;
850 struct nvme_command cmd;
851
852 /*
853 * Shutdown immediately if controller times out while starting. The
854 * reset work will see the pci device disabled when it gets the forced
855 * cancellation error. All outstanding requests are completed on
856 * shutdown, so we return BLK_EH_HANDLED.
857 */
858 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
859 dev_warn(dev->ctrl.device,
860 "I/O %d QID %d timeout, disable controller\n",
861 req->tag, nvmeq->qid);
862 nvme_dev_disable(dev, false);
863 req->errors = NVME_SC_CANCELLED;
864 return BLK_EH_HANDLED;
865 }
866
867 /*
868 * Shutdown the controller immediately and schedule a reset if the
869 * command was already aborted once before and still hasn't been
870 * returned to the driver, or if this is the admin queue.
871 */
872 if (!nvmeq->qid || iod->aborted) {
873 dev_warn(dev->ctrl.device,
874 "I/O %d QID %d timeout, reset controller\n",
875 req->tag, nvmeq->qid);
876 nvme_dev_disable(dev, false);
877 queue_work(nvme_workq, &dev->reset_work);
878
879 /*
880 * Mark the request as handled, since the inline shutdown
881 * forces all outstanding requests to complete.
882 */
883 req->errors = NVME_SC_CANCELLED;
884 return BLK_EH_HANDLED;
885 }
886
887 iod->aborted = 1;
888
889 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
890 atomic_inc(&dev->ctrl.abort_limit);
891 return BLK_EH_RESET_TIMER;
892 }
893
894 memset(&cmd, 0, sizeof(cmd));
895 cmd.abort.opcode = nvme_admin_abort_cmd;
896 cmd.abort.cid = req->tag;
897 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
898
899 dev_warn(nvmeq->dev->ctrl.device,
900 "I/O %d QID %d timeout, aborting\n",
901 req->tag, nvmeq->qid);
902
903 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
904 BLK_MQ_REQ_NOWAIT);
905 if (IS_ERR(abort_req)) {
906 atomic_inc(&dev->ctrl.abort_limit);
907 return BLK_EH_RESET_TIMER;
908 }
909
910 abort_req->timeout = ADMIN_TIMEOUT;
911 abort_req->end_io_data = NULL;
912 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
913
914 /*
915 * The aborted req will be completed on receiving the abort req.
916 * We enable the timer again. If hit twice, it'll cause a device reset,
917 * as the device then is in a faulty state.
918 */
919 return BLK_EH_RESET_TIMER;
920 }
921
922 static void nvme_cancel_io(struct request *req, void *data, bool reserved)
923 {
924 int status;
925
926 if (!blk_mq_request_started(req))
927 return;
928
929 dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device,
930 "Cancelling I/O %d", req->tag);
931
932 status = NVME_SC_ABORT_REQ;
933 if (blk_queue_dying(req->q))
934 status |= NVME_SC_DNR;
935 blk_mq_complete_request(req, status);
936 }
937
938 static void nvme_free_queue(struct nvme_queue *nvmeq)
939 {
940 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
941 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
942 if (nvmeq->sq_cmds)
943 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
944 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
945 kfree(nvmeq);
946 }
947
948 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
949 {
950 int i;
951
952 for (i = dev->queue_count - 1; i >= lowest; i--) {
953 struct nvme_queue *nvmeq = dev->queues[i];
954 dev->queue_count--;
955 dev->queues[i] = NULL;
956 nvme_free_queue(nvmeq);
957 }
958 }
959
960 /**
961 * nvme_suspend_queue - put queue into suspended state
962 * @nvmeq - queue to suspend
963 */
964 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
965 {
966 int vector;
967
968 spin_lock_irq(&nvmeq->q_lock);
969 if (nvmeq->cq_vector == -1) {
970 spin_unlock_irq(&nvmeq->q_lock);
971 return 1;
972 }
973 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
974 nvmeq->dev->online_queues--;
975 nvmeq->cq_vector = -1;
976 spin_unlock_irq(&nvmeq->q_lock);
977
978 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
979 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
980
981 irq_set_affinity_hint(vector, NULL);
982 free_irq(vector, nvmeq);
983
984 return 0;
985 }
986
987 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
988 {
989 struct nvme_queue *nvmeq = dev->queues[0];
990
991 if (!nvmeq)
992 return;
993 if (nvme_suspend_queue(nvmeq))
994 return;
995
996 if (shutdown)
997 nvme_shutdown_ctrl(&dev->ctrl);
998 else
999 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1000 dev->bar + NVME_REG_CAP));
1001
1002 spin_lock_irq(&nvmeq->q_lock);
1003 nvme_process_cq(nvmeq);
1004 spin_unlock_irq(&nvmeq->q_lock);
1005 }
1006
1007 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1008 int entry_size)
1009 {
1010 int q_depth = dev->q_depth;
1011 unsigned q_size_aligned = roundup(q_depth * entry_size,
1012 dev->ctrl.page_size);
1013
1014 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1015 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1016 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1017 q_depth = div_u64(mem_per_q, entry_size);
1018
1019 /*
1020 * Ensure the reduced q_depth is above some threshold where it
1021 * would be better to map queues in system memory with the
1022 * original depth
1023 */
1024 if (q_depth < 64)
1025 return -ENOMEM;
1026 }
1027
1028 return q_depth;
1029 }
1030
1031 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1032 int qid, int depth)
1033 {
1034 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1035 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1036 dev->ctrl.page_size);
1037 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1038 nvmeq->sq_cmds_io = dev->cmb + offset;
1039 } else {
1040 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1041 &nvmeq->sq_dma_addr, GFP_KERNEL);
1042 if (!nvmeq->sq_cmds)
1043 return -ENOMEM;
1044 }
1045
1046 return 0;
1047 }
1048
1049 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1050 int depth)
1051 {
1052 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1053 if (!nvmeq)
1054 return NULL;
1055
1056 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1057 &nvmeq->cq_dma_addr, GFP_KERNEL);
1058 if (!nvmeq->cqes)
1059 goto free_nvmeq;
1060
1061 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1062 goto free_cqdma;
1063
1064 nvmeq->q_dmadev = dev->dev;
1065 nvmeq->dev = dev;
1066 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1067 dev->ctrl.instance, qid);
1068 spin_lock_init(&nvmeq->q_lock);
1069 nvmeq->cq_head = 0;
1070 nvmeq->cq_phase = 1;
1071 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1072 nvmeq->q_depth = depth;
1073 nvmeq->qid = qid;
1074 nvmeq->cq_vector = -1;
1075 dev->queues[qid] = nvmeq;
1076 dev->queue_count++;
1077
1078 return nvmeq;
1079
1080 free_cqdma:
1081 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1082 nvmeq->cq_dma_addr);
1083 free_nvmeq:
1084 kfree(nvmeq);
1085 return NULL;
1086 }
1087
1088 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1089 const char *name)
1090 {
1091 if (use_threaded_interrupts)
1092 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1093 nvme_irq_check, nvme_irq, IRQF_SHARED,
1094 name, nvmeq);
1095 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1096 IRQF_SHARED, name, nvmeq);
1097 }
1098
1099 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1100 {
1101 struct nvme_dev *dev = nvmeq->dev;
1102
1103 spin_lock_irq(&nvmeq->q_lock);
1104 nvmeq->sq_tail = 0;
1105 nvmeq->cq_head = 0;
1106 nvmeq->cq_phase = 1;
1107 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1108 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1109 dev->online_queues++;
1110 spin_unlock_irq(&nvmeq->q_lock);
1111 }
1112
1113 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1114 {
1115 struct nvme_dev *dev = nvmeq->dev;
1116 int result;
1117
1118 nvmeq->cq_vector = qid - 1;
1119 result = adapter_alloc_cq(dev, qid, nvmeq);
1120 if (result < 0)
1121 return result;
1122
1123 result = adapter_alloc_sq(dev, qid, nvmeq);
1124 if (result < 0)
1125 goto release_cq;
1126
1127 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1128 if (result < 0)
1129 goto release_sq;
1130
1131 nvme_init_queue(nvmeq, qid);
1132 return result;
1133
1134 release_sq:
1135 adapter_delete_sq(dev, qid);
1136 release_cq:
1137 adapter_delete_cq(dev, qid);
1138 return result;
1139 }
1140
1141 static struct blk_mq_ops nvme_mq_admin_ops = {
1142 .queue_rq = nvme_queue_rq,
1143 .complete = nvme_complete_rq,
1144 .map_queue = blk_mq_map_queue,
1145 .init_hctx = nvme_admin_init_hctx,
1146 .exit_hctx = nvme_admin_exit_hctx,
1147 .init_request = nvme_admin_init_request,
1148 .timeout = nvme_timeout,
1149 };
1150
1151 static struct blk_mq_ops nvme_mq_ops = {
1152 .queue_rq = nvme_queue_rq,
1153 .complete = nvme_complete_rq,
1154 .map_queue = blk_mq_map_queue,
1155 .init_hctx = nvme_init_hctx,
1156 .init_request = nvme_init_request,
1157 .timeout = nvme_timeout,
1158 .poll = nvme_poll,
1159 };
1160
1161 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1162 {
1163 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1164 /*
1165 * If the controller was reset during removal, it's possible
1166 * user requests may be waiting on a stopped queue. Start the
1167 * queue to flush these to completion.
1168 */
1169 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1170 blk_cleanup_queue(dev->ctrl.admin_q);
1171 blk_mq_free_tag_set(&dev->admin_tagset);
1172 }
1173 }
1174
1175 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1176 {
1177 if (!dev->ctrl.admin_q) {
1178 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1179 dev->admin_tagset.nr_hw_queues = 1;
1180
1181 /*
1182 * Subtract one to leave an empty queue entry for 'Full Queue'
1183 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1184 */
1185 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1186 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1187 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1188 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1189 dev->admin_tagset.driver_data = dev;
1190
1191 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1192 return -ENOMEM;
1193
1194 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1195 if (IS_ERR(dev->ctrl.admin_q)) {
1196 blk_mq_free_tag_set(&dev->admin_tagset);
1197 return -ENOMEM;
1198 }
1199 if (!blk_get_queue(dev->ctrl.admin_q)) {
1200 nvme_dev_remove_admin(dev);
1201 dev->ctrl.admin_q = NULL;
1202 return -ENODEV;
1203 }
1204 } else
1205 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1206
1207 return 0;
1208 }
1209
1210 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1211 {
1212 int result;
1213 u32 aqa;
1214 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1215 struct nvme_queue *nvmeq;
1216
1217 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1218 NVME_CAP_NSSRC(cap) : 0;
1219
1220 if (dev->subsystem &&
1221 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1222 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1223
1224 result = nvme_disable_ctrl(&dev->ctrl, cap);
1225 if (result < 0)
1226 return result;
1227
1228 nvmeq = dev->queues[0];
1229 if (!nvmeq) {
1230 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1231 if (!nvmeq)
1232 return -ENOMEM;
1233 }
1234
1235 aqa = nvmeq->q_depth - 1;
1236 aqa |= aqa << 16;
1237
1238 writel(aqa, dev->bar + NVME_REG_AQA);
1239 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1240 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1241
1242 result = nvme_enable_ctrl(&dev->ctrl, cap);
1243 if (result)
1244 goto free_nvmeq;
1245
1246 nvmeq->cq_vector = 0;
1247 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1248 if (result) {
1249 nvmeq->cq_vector = -1;
1250 goto free_nvmeq;
1251 }
1252
1253 return result;
1254
1255 free_nvmeq:
1256 nvme_free_queues(dev, 0);
1257 return result;
1258 }
1259
1260 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1261 {
1262
1263 /* If true, indicates loss of adapter communication, possibly by a
1264 * NVMe Subsystem reset.
1265 */
1266 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1267
1268 /* If there is a reset ongoing, we shouldn't reset again. */
1269 if (work_busy(&dev->reset_work))
1270 return false;
1271
1272 /* We shouldn't reset unless the controller is on fatal error state
1273 * _or_ if we lost the communication with it.
1274 */
1275 if (!(csts & NVME_CSTS_CFS) && !nssro)
1276 return false;
1277
1278 /* If PCI error recovery process is happening, we cannot reset or
1279 * the recovery mechanism will surely fail.
1280 */
1281 if (pci_channel_offline(to_pci_dev(dev->dev)))
1282 return false;
1283
1284 return true;
1285 }
1286
1287 static void nvme_watchdog_timer(unsigned long data)
1288 {
1289 struct nvme_dev *dev = (struct nvme_dev *)data;
1290 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1291
1292 /* Skip controllers under certain specific conditions. */
1293 if (nvme_should_reset(dev, csts)) {
1294 if (queue_work(nvme_workq, &dev->reset_work))
1295 dev_warn(dev->dev,
1296 "Failed status: 0x%x, reset controller.\n",
1297 csts);
1298 return;
1299 }
1300
1301 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1302 }
1303
1304 static int nvme_create_io_queues(struct nvme_dev *dev)
1305 {
1306 unsigned i, max;
1307 int ret = 0;
1308
1309 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1310 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1311 ret = -ENOMEM;
1312 break;
1313 }
1314 }
1315
1316 max = min(dev->max_qid, dev->queue_count - 1);
1317 for (i = dev->online_queues; i <= max; i++) {
1318 ret = nvme_create_queue(dev->queues[i], i);
1319 if (ret) {
1320 nvme_free_queues(dev, i);
1321 break;
1322 }
1323 }
1324
1325 /*
1326 * Ignore failing Create SQ/CQ commands, we can continue with less
1327 * than the desired aount of queues, and even a controller without
1328 * I/O queues an still be used to issue admin commands. This might
1329 * be useful to upgrade a buggy firmware for example.
1330 */
1331 return ret >= 0 ? 0 : ret;
1332 }
1333
1334 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1335 {
1336 u64 szu, size, offset;
1337 u32 cmbloc;
1338 resource_size_t bar_size;
1339 struct pci_dev *pdev = to_pci_dev(dev->dev);
1340 void __iomem *cmb;
1341 dma_addr_t dma_addr;
1342
1343 if (!use_cmb_sqes)
1344 return NULL;
1345
1346 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1347 if (!(NVME_CMB_SZ(dev->cmbsz)))
1348 return NULL;
1349
1350 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1351
1352 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1353 size = szu * NVME_CMB_SZ(dev->cmbsz);
1354 offset = szu * NVME_CMB_OFST(cmbloc);
1355 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1356
1357 if (offset > bar_size)
1358 return NULL;
1359
1360 /*
1361 * Controllers may support a CMB size larger than their BAR,
1362 * for example, due to being behind a bridge. Reduce the CMB to
1363 * the reported size of the BAR
1364 */
1365 if (size > bar_size - offset)
1366 size = bar_size - offset;
1367
1368 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1369 cmb = ioremap_wc(dma_addr, size);
1370 if (!cmb)
1371 return NULL;
1372
1373 dev->cmb_dma_addr = dma_addr;
1374 dev->cmb_size = size;
1375 return cmb;
1376 }
1377
1378 static inline void nvme_release_cmb(struct nvme_dev *dev)
1379 {
1380 if (dev->cmb) {
1381 iounmap(dev->cmb);
1382 dev->cmb = NULL;
1383 }
1384 }
1385
1386 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1387 {
1388 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1389 }
1390
1391 static int nvme_setup_io_queues(struct nvme_dev *dev)
1392 {
1393 struct nvme_queue *adminq = dev->queues[0];
1394 struct pci_dev *pdev = to_pci_dev(dev->dev);
1395 int result, i, vecs, nr_io_queues, size;
1396
1397 nr_io_queues = num_online_cpus();
1398 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1399 if (result < 0)
1400 return result;
1401
1402 /*
1403 * Degraded controllers might return an error when setting the queue
1404 * count. We still want to be able to bring them online and offer
1405 * access to the admin queue, as that might be only way to fix them up.
1406 */
1407 if (result > 0) {
1408 dev_err(dev->ctrl.device,
1409 "Could not set queue count (%d)\n", result);
1410 return 0;
1411 }
1412
1413 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1414 result = nvme_cmb_qdepth(dev, nr_io_queues,
1415 sizeof(struct nvme_command));
1416 if (result > 0)
1417 dev->q_depth = result;
1418 else
1419 nvme_release_cmb(dev);
1420 }
1421
1422 size = db_bar_size(dev, nr_io_queues);
1423 if (size > 8192) {
1424 iounmap(dev->bar);
1425 do {
1426 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1427 if (dev->bar)
1428 break;
1429 if (!--nr_io_queues)
1430 return -ENOMEM;
1431 size = db_bar_size(dev, nr_io_queues);
1432 } while (1);
1433 dev->dbs = dev->bar + 4096;
1434 adminq->q_db = dev->dbs;
1435 }
1436
1437 /* Deregister the admin queue's interrupt */
1438 free_irq(dev->entry[0].vector, adminq);
1439
1440 /*
1441 * If we enable msix early due to not intx, disable it again before
1442 * setting up the full range we need.
1443 */
1444 if (pdev->msi_enabled)
1445 pci_disable_msi(pdev);
1446 else if (pdev->msix_enabled)
1447 pci_disable_msix(pdev);
1448
1449 for (i = 0; i < nr_io_queues; i++)
1450 dev->entry[i].entry = i;
1451 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1452 if (vecs < 0) {
1453 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1454 if (vecs < 0) {
1455 vecs = 1;
1456 } else {
1457 for (i = 0; i < vecs; i++)
1458 dev->entry[i].vector = i + pdev->irq;
1459 }
1460 }
1461
1462 /*
1463 * Should investigate if there's a performance win from allocating
1464 * more queues than interrupt vectors; it might allow the submission
1465 * path to scale better, even if the receive path is limited by the
1466 * number of interrupts.
1467 */
1468 nr_io_queues = vecs;
1469 dev->max_qid = nr_io_queues;
1470
1471 result = queue_request_irq(dev, adminq, adminq->irqname);
1472 if (result) {
1473 adminq->cq_vector = -1;
1474 goto free_queues;
1475 }
1476 return nvme_create_io_queues(dev);
1477
1478 free_queues:
1479 nvme_free_queues(dev, 1);
1480 return result;
1481 }
1482
1483 static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
1484 {
1485 struct nvme_dev *dev = to_nvme_dev(ctrl);
1486 struct nvme_queue *nvmeq;
1487 int i;
1488
1489 for (i = 0; i < dev->online_queues; i++) {
1490 nvmeq = dev->queues[i];
1491
1492 if (!nvmeq->tags || !(*nvmeq->tags))
1493 continue;
1494
1495 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1496 blk_mq_tags_cpumask(*nvmeq->tags));
1497 }
1498 }
1499
1500 static void nvme_del_queue_end(struct request *req, int error)
1501 {
1502 struct nvme_queue *nvmeq = req->end_io_data;
1503
1504 blk_mq_free_request(req);
1505 complete(&nvmeq->dev->ioq_wait);
1506 }
1507
1508 static void nvme_del_cq_end(struct request *req, int error)
1509 {
1510 struct nvme_queue *nvmeq = req->end_io_data;
1511
1512 if (!error) {
1513 unsigned long flags;
1514
1515 /*
1516 * We might be called with the AQ q_lock held
1517 * and the I/O queue q_lock should always
1518 * nest inside the AQ one.
1519 */
1520 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1521 SINGLE_DEPTH_NESTING);
1522 nvme_process_cq(nvmeq);
1523 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1524 }
1525
1526 nvme_del_queue_end(req, error);
1527 }
1528
1529 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1530 {
1531 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1532 struct request *req;
1533 struct nvme_command cmd;
1534
1535 memset(&cmd, 0, sizeof(cmd));
1536 cmd.delete_queue.opcode = opcode;
1537 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1538
1539 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1540 if (IS_ERR(req))
1541 return PTR_ERR(req);
1542
1543 req->timeout = ADMIN_TIMEOUT;
1544 req->end_io_data = nvmeq;
1545
1546 blk_execute_rq_nowait(q, NULL, req, false,
1547 opcode == nvme_admin_delete_cq ?
1548 nvme_del_cq_end : nvme_del_queue_end);
1549 return 0;
1550 }
1551
1552 static void nvme_disable_io_queues(struct nvme_dev *dev)
1553 {
1554 int pass, queues = dev->online_queues - 1;
1555 unsigned long timeout;
1556 u8 opcode = nvme_admin_delete_sq;
1557
1558 for (pass = 0; pass < 2; pass++) {
1559 int sent = 0, i = queues;
1560
1561 reinit_completion(&dev->ioq_wait);
1562 retry:
1563 timeout = ADMIN_TIMEOUT;
1564 for (; i > 0; i--) {
1565 struct nvme_queue *nvmeq = dev->queues[i];
1566
1567 if (!pass)
1568 nvme_suspend_queue(nvmeq);
1569 if (nvme_delete_queue(nvmeq, opcode))
1570 break;
1571 ++sent;
1572 }
1573 while (sent--) {
1574 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1575 if (timeout == 0)
1576 return;
1577 if (i)
1578 goto retry;
1579 }
1580 opcode = nvme_admin_delete_cq;
1581 }
1582 }
1583
1584 /*
1585 * Return: error value if an error occurred setting up the queues or calling
1586 * Identify Device. 0 if these succeeded, even if adding some of the
1587 * namespaces failed. At the moment, these failures are silent. TBD which
1588 * failures should be reported.
1589 */
1590 static int nvme_dev_add(struct nvme_dev *dev)
1591 {
1592 if (!dev->ctrl.tagset) {
1593 dev->tagset.ops = &nvme_mq_ops;
1594 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1595 dev->tagset.timeout = NVME_IO_TIMEOUT;
1596 dev->tagset.numa_node = dev_to_node(dev->dev);
1597 dev->tagset.queue_depth =
1598 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1599 dev->tagset.cmd_size = nvme_cmd_size(dev);
1600 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1601 dev->tagset.driver_data = dev;
1602
1603 if (blk_mq_alloc_tag_set(&dev->tagset))
1604 return 0;
1605 dev->ctrl.tagset = &dev->tagset;
1606 } else {
1607 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1608
1609 /* Free previously allocated queues that are no longer usable */
1610 nvme_free_queues(dev, dev->online_queues);
1611 }
1612
1613 return 0;
1614 }
1615
1616 static int nvme_pci_enable(struct nvme_dev *dev)
1617 {
1618 u64 cap;
1619 int result = -ENOMEM;
1620 struct pci_dev *pdev = to_pci_dev(dev->dev);
1621
1622 if (pci_enable_device_mem(pdev))
1623 return result;
1624
1625 pci_set_master(pdev);
1626
1627 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1628 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1629 goto disable;
1630
1631 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1632 result = -ENODEV;
1633 goto disable;
1634 }
1635
1636 /*
1637 * Some devices and/or platforms don't advertise or work with INTx
1638 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1639 * adjust this later.
1640 */
1641 if (pci_enable_msix(pdev, dev->entry, 1)) {
1642 pci_enable_msi(pdev);
1643 dev->entry[0].vector = pdev->irq;
1644 }
1645
1646 if (!dev->entry[0].vector) {
1647 result = -ENODEV;
1648 goto disable;
1649 }
1650
1651 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1652
1653 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1654 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1655 dev->dbs = dev->bar + 4096;
1656
1657 /*
1658 * Temporary fix for the Apple controller found in the MacBook8,1 and
1659 * some MacBook7,1 to avoid controller resets and data loss.
1660 */
1661 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1662 dev->q_depth = 2;
1663 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1664 "queue depth=%u to work around controller resets\n",
1665 dev->q_depth);
1666 }
1667
1668 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1669 dev->cmb = nvme_map_cmb(dev);
1670
1671 pci_enable_pcie_error_reporting(pdev);
1672 pci_save_state(pdev);
1673 return 0;
1674
1675 disable:
1676 pci_disable_device(pdev);
1677 return result;
1678 }
1679
1680 static void nvme_dev_unmap(struct nvme_dev *dev)
1681 {
1682 if (dev->bar)
1683 iounmap(dev->bar);
1684 pci_release_regions(to_pci_dev(dev->dev));
1685 }
1686
1687 static void nvme_pci_disable(struct nvme_dev *dev)
1688 {
1689 struct pci_dev *pdev = to_pci_dev(dev->dev);
1690
1691 if (pdev->msi_enabled)
1692 pci_disable_msi(pdev);
1693 else if (pdev->msix_enabled)
1694 pci_disable_msix(pdev);
1695
1696 if (pci_is_enabled(pdev)) {
1697 pci_disable_pcie_error_reporting(pdev);
1698 pci_disable_device(pdev);
1699 }
1700 }
1701
1702 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1703 {
1704 int i;
1705 u32 csts = -1;
1706
1707 del_timer_sync(&dev->watchdog_timer);
1708
1709 mutex_lock(&dev->shutdown_lock);
1710 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1711 nvme_stop_queues(&dev->ctrl);
1712 csts = readl(dev->bar + NVME_REG_CSTS);
1713 }
1714 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1715 for (i = dev->queue_count - 1; i >= 0; i--) {
1716 struct nvme_queue *nvmeq = dev->queues[i];
1717 nvme_suspend_queue(nvmeq);
1718 }
1719 } else {
1720 nvme_disable_io_queues(dev);
1721 nvme_disable_admin_queue(dev, shutdown);
1722 }
1723 nvme_pci_disable(dev);
1724
1725 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev);
1726 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev);
1727 mutex_unlock(&dev->shutdown_lock);
1728 }
1729
1730 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1731 {
1732 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1733 PAGE_SIZE, PAGE_SIZE, 0);
1734 if (!dev->prp_page_pool)
1735 return -ENOMEM;
1736
1737 /* Optimisation for I/Os between 4k and 128k */
1738 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1739 256, 256, 0);
1740 if (!dev->prp_small_pool) {
1741 dma_pool_destroy(dev->prp_page_pool);
1742 return -ENOMEM;
1743 }
1744 return 0;
1745 }
1746
1747 static void nvme_release_prp_pools(struct nvme_dev *dev)
1748 {
1749 dma_pool_destroy(dev->prp_page_pool);
1750 dma_pool_destroy(dev->prp_small_pool);
1751 }
1752
1753 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1754 {
1755 struct nvme_dev *dev = to_nvme_dev(ctrl);
1756
1757 put_device(dev->dev);
1758 if (dev->tagset.tags)
1759 blk_mq_free_tag_set(&dev->tagset);
1760 if (dev->ctrl.admin_q)
1761 blk_put_queue(dev->ctrl.admin_q);
1762 kfree(dev->queues);
1763 kfree(dev->entry);
1764 kfree(dev);
1765 }
1766
1767 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1768 {
1769 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1770
1771 kref_get(&dev->ctrl.kref);
1772 nvme_dev_disable(dev, false);
1773 if (!schedule_work(&dev->remove_work))
1774 nvme_put_ctrl(&dev->ctrl);
1775 }
1776
1777 static void nvme_reset_work(struct work_struct *work)
1778 {
1779 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1780 int result = -ENODEV;
1781
1782 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1783 goto out;
1784
1785 /*
1786 * If we're called to reset a live controller first shut it down before
1787 * moving on.
1788 */
1789 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1790 nvme_dev_disable(dev, false);
1791
1792 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1793 goto out;
1794
1795 result = nvme_pci_enable(dev);
1796 if (result)
1797 goto out;
1798
1799 result = nvme_configure_admin_queue(dev);
1800 if (result)
1801 goto out;
1802
1803 nvme_init_queue(dev->queues[0], 0);
1804 result = nvme_alloc_admin_tags(dev);
1805 if (result)
1806 goto out;
1807
1808 result = nvme_init_identify(&dev->ctrl);
1809 if (result)
1810 goto out;
1811
1812 result = nvme_setup_io_queues(dev);
1813 if (result)
1814 goto out;
1815
1816 /*
1817 * A controller that can not execute IO typically requires user
1818 * intervention to correct. For such degraded controllers, the driver
1819 * should not submit commands the user did not request, so skip
1820 * registering for asynchronous event notification on this condition.
1821 */
1822 if (dev->online_queues > 1)
1823 nvme_queue_async_events(&dev->ctrl);
1824
1825 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1826
1827 /*
1828 * Keep the controller around but remove all namespaces if we don't have
1829 * any working I/O queue.
1830 */
1831 if (dev->online_queues < 2) {
1832 dev_warn(dev->ctrl.device, "IO queues not created\n");
1833 nvme_kill_queues(&dev->ctrl);
1834 nvme_remove_namespaces(&dev->ctrl);
1835 } else {
1836 nvme_start_queues(&dev->ctrl);
1837 nvme_dev_add(dev);
1838 }
1839
1840 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1841 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1842 goto out;
1843 }
1844
1845 if (dev->online_queues > 1)
1846 nvme_queue_scan(&dev->ctrl);
1847 return;
1848
1849 out:
1850 nvme_remove_dead_ctrl(dev, result);
1851 }
1852
1853 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1854 {
1855 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1856 struct pci_dev *pdev = to_pci_dev(dev->dev);
1857
1858 nvme_kill_queues(&dev->ctrl);
1859 if (pci_get_drvdata(pdev))
1860 device_release_driver(&pdev->dev);
1861 nvme_put_ctrl(&dev->ctrl);
1862 }
1863
1864 static int nvme_reset(struct nvme_dev *dev)
1865 {
1866 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1867 return -ENODEV;
1868
1869 if (!queue_work(nvme_workq, &dev->reset_work))
1870 return -EBUSY;
1871
1872 flush_work(&dev->reset_work);
1873 return 0;
1874 }
1875
1876 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1877 {
1878 *val = readl(to_nvme_dev(ctrl)->bar + off);
1879 return 0;
1880 }
1881
1882 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1883 {
1884 writel(val, to_nvme_dev(ctrl)->bar + off);
1885 return 0;
1886 }
1887
1888 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1889 {
1890 *val = readq(to_nvme_dev(ctrl)->bar + off);
1891 return 0;
1892 }
1893
1894 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1895 {
1896 return nvme_reset(to_nvme_dev(ctrl));
1897 }
1898
1899 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1900 .module = THIS_MODULE,
1901 .reg_read32 = nvme_pci_reg_read32,
1902 .reg_write32 = nvme_pci_reg_write32,
1903 .reg_read64 = nvme_pci_reg_read64,
1904 .reset_ctrl = nvme_pci_reset_ctrl,
1905 .free_ctrl = nvme_pci_free_ctrl,
1906 .post_scan = nvme_pci_post_scan,
1907 .submit_async_event = nvme_pci_submit_async_event,
1908 };
1909
1910 static int nvme_dev_map(struct nvme_dev *dev)
1911 {
1912 int bars;
1913 struct pci_dev *pdev = to_pci_dev(dev->dev);
1914
1915 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1916 if (!bars)
1917 return -ENODEV;
1918 if (pci_request_selected_regions(pdev, bars, "nvme"))
1919 return -ENODEV;
1920
1921 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1922 if (!dev->bar)
1923 goto release;
1924
1925 return 0;
1926 release:
1927 pci_release_regions(pdev);
1928 return -ENODEV;
1929 }
1930
1931 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1932 {
1933 int node, result = -ENOMEM;
1934 struct nvme_dev *dev;
1935
1936 node = dev_to_node(&pdev->dev);
1937 if (node == NUMA_NO_NODE)
1938 set_dev_node(&pdev->dev, 0);
1939
1940 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1941 if (!dev)
1942 return -ENOMEM;
1943 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1944 GFP_KERNEL, node);
1945 if (!dev->entry)
1946 goto free;
1947 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1948 GFP_KERNEL, node);
1949 if (!dev->queues)
1950 goto free;
1951
1952 dev->dev = get_device(&pdev->dev);
1953 pci_set_drvdata(pdev, dev);
1954
1955 result = nvme_dev_map(dev);
1956 if (result)
1957 goto free;
1958
1959 INIT_WORK(&dev->reset_work, nvme_reset_work);
1960 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1961 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1962 (unsigned long)dev);
1963 mutex_init(&dev->shutdown_lock);
1964 init_completion(&dev->ioq_wait);
1965
1966 result = nvme_setup_prp_pools(dev);
1967 if (result)
1968 goto put_pci;
1969
1970 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1971 id->driver_data);
1972 if (result)
1973 goto release_pools;
1974
1975 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1976
1977 queue_work(nvme_workq, &dev->reset_work);
1978 return 0;
1979
1980 release_pools:
1981 nvme_release_prp_pools(dev);
1982 put_pci:
1983 put_device(dev->dev);
1984 nvme_dev_unmap(dev);
1985 free:
1986 kfree(dev->queues);
1987 kfree(dev->entry);
1988 kfree(dev);
1989 return result;
1990 }
1991
1992 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1993 {
1994 struct nvme_dev *dev = pci_get_drvdata(pdev);
1995
1996 if (prepare)
1997 nvme_dev_disable(dev, false);
1998 else
1999 queue_work(nvme_workq, &dev->reset_work);
2000 }
2001
2002 static void nvme_shutdown(struct pci_dev *pdev)
2003 {
2004 struct nvme_dev *dev = pci_get_drvdata(pdev);
2005 nvme_dev_disable(dev, true);
2006 }
2007
2008 /*
2009 * The driver's remove may be called on a device in a partially initialized
2010 * state. This function must not have any dependencies on the device state in
2011 * order to proceed.
2012 */
2013 static void nvme_remove(struct pci_dev *pdev)
2014 {
2015 struct nvme_dev *dev = pci_get_drvdata(pdev);
2016
2017 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2018
2019 pci_set_drvdata(pdev, NULL);
2020
2021 if (!pci_device_is_present(pdev))
2022 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2023
2024 flush_work(&dev->reset_work);
2025 nvme_uninit_ctrl(&dev->ctrl);
2026 nvme_dev_disable(dev, true);
2027 nvme_dev_remove_admin(dev);
2028 nvme_free_queues(dev, 0);
2029 nvme_release_cmb(dev);
2030 nvme_release_prp_pools(dev);
2031 nvme_dev_unmap(dev);
2032 nvme_put_ctrl(&dev->ctrl);
2033 }
2034
2035 #ifdef CONFIG_PM_SLEEP
2036 static int nvme_suspend(struct device *dev)
2037 {
2038 struct pci_dev *pdev = to_pci_dev(dev);
2039 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2040
2041 nvme_dev_disable(ndev, true);
2042 return 0;
2043 }
2044
2045 static int nvme_resume(struct device *dev)
2046 {
2047 struct pci_dev *pdev = to_pci_dev(dev);
2048 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2049
2050 queue_work(nvme_workq, &ndev->reset_work);
2051 return 0;
2052 }
2053 #endif
2054
2055 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2056
2057 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2058 pci_channel_state_t state)
2059 {
2060 struct nvme_dev *dev = pci_get_drvdata(pdev);
2061
2062 /*
2063 * A frozen channel requires a reset. When detected, this method will
2064 * shutdown the controller to quiesce. The controller will be restarted
2065 * after the slot reset through driver's slot_reset callback.
2066 */
2067 switch (state) {
2068 case pci_channel_io_normal:
2069 return PCI_ERS_RESULT_CAN_RECOVER;
2070 case pci_channel_io_frozen:
2071 dev_warn(dev->ctrl.device,
2072 "frozen state error detected, reset controller\n");
2073 nvme_dev_disable(dev, false);
2074 return PCI_ERS_RESULT_NEED_RESET;
2075 case pci_channel_io_perm_failure:
2076 dev_warn(dev->ctrl.device,
2077 "failure state error detected, request disconnect\n");
2078 return PCI_ERS_RESULT_DISCONNECT;
2079 }
2080 return PCI_ERS_RESULT_NEED_RESET;
2081 }
2082
2083 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2084 {
2085 struct nvme_dev *dev = pci_get_drvdata(pdev);
2086
2087 dev_info(dev->ctrl.device, "restart after slot reset\n");
2088 pci_restore_state(pdev);
2089 queue_work(nvme_workq, &dev->reset_work);
2090 return PCI_ERS_RESULT_RECOVERED;
2091 }
2092
2093 static void nvme_error_resume(struct pci_dev *pdev)
2094 {
2095 pci_cleanup_aer_uncorrect_error_status(pdev);
2096 }
2097
2098 static const struct pci_error_handlers nvme_err_handler = {
2099 .error_detected = nvme_error_detected,
2100 .slot_reset = nvme_slot_reset,
2101 .resume = nvme_error_resume,
2102 .reset_notify = nvme_reset_notify,
2103 };
2104
2105 /* Move to pci_ids.h later */
2106 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2107
2108 static const struct pci_device_id nvme_id_table[] = {
2109 { PCI_VDEVICE(INTEL, 0x0953),
2110 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2111 NVME_QUIRK_DISCARD_ZEROES, },
2112 { PCI_VDEVICE(INTEL, 0x0a53),
2113 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2114 NVME_QUIRK_DISCARD_ZEROES, },
2115 { PCI_VDEVICE(INTEL, 0x0a54),
2116 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2117 NVME_QUIRK_DISCARD_ZEROES, },
2118 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2119 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2120 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2121 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2122 { 0, }
2123 };
2124 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2125
2126 static struct pci_driver nvme_driver = {
2127 .name = "nvme",
2128 .id_table = nvme_id_table,
2129 .probe = nvme_probe,
2130 .remove = nvme_remove,
2131 .shutdown = nvme_shutdown,
2132 .driver = {
2133 .pm = &nvme_dev_pm_ops,
2134 },
2135 .err_handler = &nvme_err_handler,
2136 };
2137
2138 static int __init nvme_init(void)
2139 {
2140 int result;
2141
2142 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2143 if (!nvme_workq)
2144 return -ENOMEM;
2145
2146 result = pci_register_driver(&nvme_driver);
2147 if (result)
2148 destroy_workqueue(nvme_workq);
2149 return result;
2150 }
2151
2152 static void __exit nvme_exit(void)
2153 {
2154 pci_unregister_driver(&nvme_driver);
2155 destroy_workqueue(nvme_workq);
2156 _nvme_check_size();
2157 }
2158
2159 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2160 MODULE_LICENSE("GPL");
2161 MODULE_VERSION("1.0");
2162 module_init(nvme_init);
2163 module_exit(nvme_exit);