]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/nvme/host/pci.c
nvme-pci: Remove tag from process cq
[mirror_ubuntu-hirsute-kernel.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27
28 #include "trace.h"
29 #include "nvme.h"
30
31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
33
34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36 /*
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
39 */
40 #define NVME_MAX_KB_SZ 4096
41 #define NVME_MAX_SEGS 127
42
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
60
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63 .set = io_queue_depth_set,
64 .get = param_get_int,
65 };
66
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71 static unsigned int write_queues;
72 module_param(write_queues, uint, 0644);
73 MODULE_PARM_DESC(write_queues,
74 "Number of queues to use for writes. If not set, reads and writes "
75 "will share a queue set.");
76
77 static unsigned int poll_queues;
78 module_param(poll_queues, uint, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81 struct nvme_dev;
82 struct nvme_queue;
83
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87 /*
88 * Represents an NVM Express device. Each nvme_dev is a PCI function.
89 */
90 struct nvme_dev {
91 struct nvme_queue *queues;
92 struct blk_mq_tag_set tagset;
93 struct blk_mq_tag_set admin_tagset;
94 u32 __iomem *dbs;
95 struct device *dev;
96 struct dma_pool *prp_page_pool;
97 struct dma_pool *prp_small_pool;
98 unsigned online_queues;
99 unsigned max_qid;
100 unsigned io_queues[HCTX_MAX_TYPES];
101 unsigned int num_vecs;
102 int q_depth;
103 int io_sqes;
104 u32 db_stride;
105 void __iomem *bar;
106 unsigned long bar_mapped_size;
107 struct work_struct remove_work;
108 struct mutex shutdown_lock;
109 bool subsystem;
110 u64 cmb_size;
111 bool cmb_use_sqes;
112 u32 cmbsz;
113 u32 cmbloc;
114 struct nvme_ctrl ctrl;
115 u32 last_ps;
116
117 mempool_t *iod_mempool;
118
119 /* shadow doorbell buffer support: */
120 u32 *dbbuf_dbs;
121 dma_addr_t dbbuf_dbs_dma_addr;
122 u32 *dbbuf_eis;
123 dma_addr_t dbbuf_eis_dma_addr;
124
125 /* host memory buffer support: */
126 u64 host_mem_size;
127 u32 nr_host_mem_descs;
128 dma_addr_t host_mem_descs_dma;
129 struct nvme_host_mem_buf_desc *host_mem_descs;
130 void **host_mem_desc_bufs;
131 };
132
133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
134 {
135 int n = 0, ret;
136
137 ret = kstrtoint(val, 10, &n);
138 if (ret != 0 || n < 2)
139 return -EINVAL;
140
141 return param_set_int(val, kp);
142 }
143
144 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
145 {
146 return qid * 2 * stride;
147 }
148
149 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
150 {
151 return (qid * 2 + 1) * stride;
152 }
153
154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
155 {
156 return container_of(ctrl, struct nvme_dev, ctrl);
157 }
158
159 /*
160 * An NVM Express queue. Each device has at least two (one for admin
161 * commands and one for I/O commands).
162 */
163 struct nvme_queue {
164 struct nvme_dev *dev;
165 spinlock_t sq_lock;
166 void *sq_cmds;
167 /* only used for poll queues: */
168 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
169 volatile struct nvme_completion *cqes;
170 dma_addr_t sq_dma_addr;
171 dma_addr_t cq_dma_addr;
172 u32 __iomem *q_db;
173 u16 q_depth;
174 u16 cq_vector;
175 u16 sq_tail;
176 u16 last_sq_tail;
177 u16 cq_head;
178 u16 qid;
179 u8 cq_phase;
180 u8 sqes;
181 unsigned long flags;
182 #define NVMEQ_ENABLED 0
183 #define NVMEQ_SQ_CMB 1
184 #define NVMEQ_DELETE_ERROR 2
185 #define NVMEQ_POLLED 3
186 u32 *dbbuf_sq_db;
187 u32 *dbbuf_cq_db;
188 u32 *dbbuf_sq_ei;
189 u32 *dbbuf_cq_ei;
190 struct completion delete_done;
191 };
192
193 /*
194 * The nvme_iod describes the data in an I/O.
195 *
196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
197 * to the actual struct scatterlist.
198 */
199 struct nvme_iod {
200 struct nvme_request req;
201 struct nvme_queue *nvmeq;
202 bool use_sgl;
203 int aborted;
204 int npages; /* In the PRP list. 0 means small pool in use */
205 int nents; /* Used in scatterlist */
206 dma_addr_t first_dma;
207 unsigned int dma_len; /* length of single DMA segment mapping */
208 dma_addr_t meta_dma;
209 struct scatterlist *sg;
210 };
211
212 static unsigned int max_io_queues(void)
213 {
214 return num_possible_cpus() + write_queues + poll_queues;
215 }
216
217 static unsigned int max_queue_count(void)
218 {
219 /* IO queues + admin queue */
220 return 1 + max_io_queues();
221 }
222
223 static inline unsigned int nvme_dbbuf_size(u32 stride)
224 {
225 return (max_queue_count() * 8 * stride);
226 }
227
228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
229 {
230 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
231
232 if (dev->dbbuf_dbs)
233 return 0;
234
235 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
236 &dev->dbbuf_dbs_dma_addr,
237 GFP_KERNEL);
238 if (!dev->dbbuf_dbs)
239 return -ENOMEM;
240 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
241 &dev->dbbuf_eis_dma_addr,
242 GFP_KERNEL);
243 if (!dev->dbbuf_eis) {
244 dma_free_coherent(dev->dev, mem_size,
245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246 dev->dbbuf_dbs = NULL;
247 return -ENOMEM;
248 }
249
250 return 0;
251 }
252
253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
254 {
255 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
256
257 if (dev->dbbuf_dbs) {
258 dma_free_coherent(dev->dev, mem_size,
259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260 dev->dbbuf_dbs = NULL;
261 }
262 if (dev->dbbuf_eis) {
263 dma_free_coherent(dev->dev, mem_size,
264 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
265 dev->dbbuf_eis = NULL;
266 }
267 }
268
269 static void nvme_dbbuf_init(struct nvme_dev *dev,
270 struct nvme_queue *nvmeq, int qid)
271 {
272 if (!dev->dbbuf_dbs || !qid)
273 return;
274
275 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
277 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
278 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
279 }
280
281 static void nvme_dbbuf_set(struct nvme_dev *dev)
282 {
283 struct nvme_command c;
284
285 if (!dev->dbbuf_dbs)
286 return;
287
288 memset(&c, 0, sizeof(c));
289 c.dbbuf.opcode = nvme_admin_dbbuf;
290 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
291 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
292
293 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
294 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
295 /* Free memory and continue on */
296 nvme_dbbuf_dma_free(dev);
297 }
298 }
299
300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
301 {
302 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
303 }
304
305 /* Update dbbuf and return true if an MMIO is required */
306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
307 volatile u32 *dbbuf_ei)
308 {
309 if (dbbuf_db) {
310 u16 old_value;
311
312 /*
313 * Ensure that the queue is written before updating
314 * the doorbell in memory
315 */
316 wmb();
317
318 old_value = *dbbuf_db;
319 *dbbuf_db = value;
320
321 /*
322 * Ensure that the doorbell is updated before reading the event
323 * index from memory. The controller needs to provide similar
324 * ordering to ensure the envent index is updated before reading
325 * the doorbell.
326 */
327 mb();
328
329 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
330 return false;
331 }
332
333 return true;
334 }
335
336 /*
337 * Will slightly overestimate the number of pages needed. This is OK
338 * as it only leads to a small amount of wasted memory for the lifetime of
339 * the I/O.
340 */
341 static int nvme_npages(unsigned size, struct nvme_dev *dev)
342 {
343 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
344 dev->ctrl.page_size);
345 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
346 }
347
348 /*
349 * Calculates the number of pages needed for the SGL segments. For example a 4k
350 * page can accommodate 256 SGL descriptors.
351 */
352 static int nvme_pci_npages_sgl(unsigned int num_seg)
353 {
354 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
355 }
356
357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
358 unsigned int size, unsigned int nseg, bool use_sgl)
359 {
360 size_t alloc_size;
361
362 if (use_sgl)
363 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
364 else
365 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
366
367 return alloc_size + sizeof(struct scatterlist) * nseg;
368 }
369
370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
371 unsigned int hctx_idx)
372 {
373 struct nvme_dev *dev = data;
374 struct nvme_queue *nvmeq = &dev->queues[0];
375
376 WARN_ON(hctx_idx != 0);
377 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
378
379 hctx->driver_data = nvmeq;
380 return 0;
381 }
382
383 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384 unsigned int hctx_idx)
385 {
386 struct nvme_dev *dev = data;
387 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
388
389 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
390 hctx->driver_data = nvmeq;
391 return 0;
392 }
393
394 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
395 unsigned int hctx_idx, unsigned int numa_node)
396 {
397 struct nvme_dev *dev = set->driver_data;
398 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
399 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
400 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
401
402 BUG_ON(!nvmeq);
403 iod->nvmeq = nvmeq;
404
405 nvme_req(req)->ctrl = &dev->ctrl;
406 return 0;
407 }
408
409 static int queue_irq_offset(struct nvme_dev *dev)
410 {
411 /* if we have more than 1 vec, admin queue offsets us by 1 */
412 if (dev->num_vecs > 1)
413 return 1;
414
415 return 0;
416 }
417
418 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
419 {
420 struct nvme_dev *dev = set->driver_data;
421 int i, qoff, offset;
422
423 offset = queue_irq_offset(dev);
424 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
425 struct blk_mq_queue_map *map = &set->map[i];
426
427 map->nr_queues = dev->io_queues[i];
428 if (!map->nr_queues) {
429 BUG_ON(i == HCTX_TYPE_DEFAULT);
430 continue;
431 }
432
433 /*
434 * The poll queue(s) doesn't have an IRQ (and hence IRQ
435 * affinity), so use the regular blk-mq cpu mapping
436 */
437 map->queue_offset = qoff;
438 if (i != HCTX_TYPE_POLL && offset)
439 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
440 else
441 blk_mq_map_queues(map);
442 qoff += map->nr_queues;
443 offset += map->nr_queues;
444 }
445
446 return 0;
447 }
448
449 /*
450 * Write sq tail if we are asked to, or if the next command would wrap.
451 */
452 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
453 {
454 if (!write_sq) {
455 u16 next_tail = nvmeq->sq_tail + 1;
456
457 if (next_tail == nvmeq->q_depth)
458 next_tail = 0;
459 if (next_tail != nvmeq->last_sq_tail)
460 return;
461 }
462
463 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
464 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
465 writel(nvmeq->sq_tail, nvmeq->q_db);
466 nvmeq->last_sq_tail = nvmeq->sq_tail;
467 }
468
469 /**
470 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
471 * @nvmeq: The queue to use
472 * @cmd: The command to send
473 * @write_sq: whether to write to the SQ doorbell
474 */
475 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
476 bool write_sq)
477 {
478 spin_lock(&nvmeq->sq_lock);
479 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
480 cmd, sizeof(*cmd));
481 if (++nvmeq->sq_tail == nvmeq->q_depth)
482 nvmeq->sq_tail = 0;
483 nvme_write_sq_db(nvmeq, write_sq);
484 spin_unlock(&nvmeq->sq_lock);
485 }
486
487 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
488 {
489 struct nvme_queue *nvmeq = hctx->driver_data;
490
491 spin_lock(&nvmeq->sq_lock);
492 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
493 nvme_write_sq_db(nvmeq, true);
494 spin_unlock(&nvmeq->sq_lock);
495 }
496
497 static void **nvme_pci_iod_list(struct request *req)
498 {
499 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
500 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
501 }
502
503 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
504 {
505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
506 int nseg = blk_rq_nr_phys_segments(req);
507 unsigned int avg_seg_size;
508
509 if (nseg == 0)
510 return false;
511
512 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
513
514 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
515 return false;
516 if (!iod->nvmeq->qid)
517 return false;
518 if (!sgl_threshold || avg_seg_size < sgl_threshold)
519 return false;
520 return true;
521 }
522
523 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
524 {
525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
527 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
528 int i;
529
530 if (iod->dma_len) {
531 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
532 rq_dma_dir(req));
533 return;
534 }
535
536 WARN_ON_ONCE(!iod->nents);
537
538 if (is_pci_p2pdma_page(sg_page(iod->sg)))
539 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
540 rq_dma_dir(req));
541 else
542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
543
544
545 if (iod->npages == 0)
546 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
547 dma_addr);
548
549 for (i = 0; i < iod->npages; i++) {
550 void *addr = nvme_pci_iod_list(req)[i];
551
552 if (iod->use_sgl) {
553 struct nvme_sgl_desc *sg_list = addr;
554
555 next_dma_addr =
556 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
557 } else {
558 __le64 *prp_list = addr;
559
560 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
561 }
562
563 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
564 dma_addr = next_dma_addr;
565 }
566
567 mempool_free(iod->sg, dev->iod_mempool);
568 }
569
570 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
571 {
572 int i;
573 struct scatterlist *sg;
574
575 for_each_sg(sgl, sg, nents, i) {
576 dma_addr_t phys = sg_phys(sg);
577 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
578 "dma_address:%pad dma_length:%d\n",
579 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
580 sg_dma_len(sg));
581 }
582 }
583
584 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
585 struct request *req, struct nvme_rw_command *cmnd)
586 {
587 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
588 struct dma_pool *pool;
589 int length = blk_rq_payload_bytes(req);
590 struct scatterlist *sg = iod->sg;
591 int dma_len = sg_dma_len(sg);
592 u64 dma_addr = sg_dma_address(sg);
593 u32 page_size = dev->ctrl.page_size;
594 int offset = dma_addr & (page_size - 1);
595 __le64 *prp_list;
596 void **list = nvme_pci_iod_list(req);
597 dma_addr_t prp_dma;
598 int nprps, i;
599
600 length -= (page_size - offset);
601 if (length <= 0) {
602 iod->first_dma = 0;
603 goto done;
604 }
605
606 dma_len -= (page_size - offset);
607 if (dma_len) {
608 dma_addr += (page_size - offset);
609 } else {
610 sg = sg_next(sg);
611 dma_addr = sg_dma_address(sg);
612 dma_len = sg_dma_len(sg);
613 }
614
615 if (length <= page_size) {
616 iod->first_dma = dma_addr;
617 goto done;
618 }
619
620 nprps = DIV_ROUND_UP(length, page_size);
621 if (nprps <= (256 / 8)) {
622 pool = dev->prp_small_pool;
623 iod->npages = 0;
624 } else {
625 pool = dev->prp_page_pool;
626 iod->npages = 1;
627 }
628
629 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
630 if (!prp_list) {
631 iod->first_dma = dma_addr;
632 iod->npages = -1;
633 return BLK_STS_RESOURCE;
634 }
635 list[0] = prp_list;
636 iod->first_dma = prp_dma;
637 i = 0;
638 for (;;) {
639 if (i == page_size >> 3) {
640 __le64 *old_prp_list = prp_list;
641 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
642 if (!prp_list)
643 return BLK_STS_RESOURCE;
644 list[iod->npages++] = prp_list;
645 prp_list[0] = old_prp_list[i - 1];
646 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
647 i = 1;
648 }
649 prp_list[i++] = cpu_to_le64(dma_addr);
650 dma_len -= page_size;
651 dma_addr += page_size;
652 length -= page_size;
653 if (length <= 0)
654 break;
655 if (dma_len > 0)
656 continue;
657 if (unlikely(dma_len < 0))
658 goto bad_sgl;
659 sg = sg_next(sg);
660 dma_addr = sg_dma_address(sg);
661 dma_len = sg_dma_len(sg);
662 }
663
664 done:
665 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
666 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
667
668 return BLK_STS_OK;
669
670 bad_sgl:
671 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
672 "Invalid SGL for payload:%d nents:%d\n",
673 blk_rq_payload_bytes(req), iod->nents);
674 return BLK_STS_IOERR;
675 }
676
677 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
678 struct scatterlist *sg)
679 {
680 sge->addr = cpu_to_le64(sg_dma_address(sg));
681 sge->length = cpu_to_le32(sg_dma_len(sg));
682 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
683 }
684
685 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
686 dma_addr_t dma_addr, int entries)
687 {
688 sge->addr = cpu_to_le64(dma_addr);
689 if (entries < SGES_PER_PAGE) {
690 sge->length = cpu_to_le32(entries * sizeof(*sge));
691 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
692 } else {
693 sge->length = cpu_to_le32(PAGE_SIZE);
694 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
695 }
696 }
697
698 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
699 struct request *req, struct nvme_rw_command *cmd, int entries)
700 {
701 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
702 struct dma_pool *pool;
703 struct nvme_sgl_desc *sg_list;
704 struct scatterlist *sg = iod->sg;
705 dma_addr_t sgl_dma;
706 int i = 0;
707
708 /* setting the transfer type as SGL */
709 cmd->flags = NVME_CMD_SGL_METABUF;
710
711 if (entries == 1) {
712 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
713 return BLK_STS_OK;
714 }
715
716 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
717 pool = dev->prp_small_pool;
718 iod->npages = 0;
719 } else {
720 pool = dev->prp_page_pool;
721 iod->npages = 1;
722 }
723
724 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
725 if (!sg_list) {
726 iod->npages = -1;
727 return BLK_STS_RESOURCE;
728 }
729
730 nvme_pci_iod_list(req)[0] = sg_list;
731 iod->first_dma = sgl_dma;
732
733 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
734
735 do {
736 if (i == SGES_PER_PAGE) {
737 struct nvme_sgl_desc *old_sg_desc = sg_list;
738 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
739
740 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
741 if (!sg_list)
742 return BLK_STS_RESOURCE;
743
744 i = 0;
745 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
746 sg_list[i++] = *link;
747 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
748 }
749
750 nvme_pci_sgl_set_data(&sg_list[i++], sg);
751 sg = sg_next(sg);
752 } while (--entries > 0);
753
754 return BLK_STS_OK;
755 }
756
757 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
758 struct request *req, struct nvme_rw_command *cmnd,
759 struct bio_vec *bv)
760 {
761 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
762 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
763 unsigned int first_prp_len = dev->ctrl.page_size - offset;
764
765 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
766 if (dma_mapping_error(dev->dev, iod->first_dma))
767 return BLK_STS_RESOURCE;
768 iod->dma_len = bv->bv_len;
769
770 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
771 if (bv->bv_len > first_prp_len)
772 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
773 return 0;
774 }
775
776 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
777 struct request *req, struct nvme_rw_command *cmnd,
778 struct bio_vec *bv)
779 {
780 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
781
782 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
783 if (dma_mapping_error(dev->dev, iod->first_dma))
784 return BLK_STS_RESOURCE;
785 iod->dma_len = bv->bv_len;
786
787 cmnd->flags = NVME_CMD_SGL_METABUF;
788 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
789 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
790 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
791 return 0;
792 }
793
794 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
795 struct nvme_command *cmnd)
796 {
797 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
798 blk_status_t ret = BLK_STS_RESOURCE;
799 int nr_mapped;
800
801 if (blk_rq_nr_phys_segments(req) == 1) {
802 struct bio_vec bv = req_bvec(req);
803
804 if (!is_pci_p2pdma_page(bv.bv_page)) {
805 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
806 return nvme_setup_prp_simple(dev, req,
807 &cmnd->rw, &bv);
808
809 if (iod->nvmeq->qid &&
810 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
811 return nvme_setup_sgl_simple(dev, req,
812 &cmnd->rw, &bv);
813 }
814 }
815
816 iod->dma_len = 0;
817 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
818 if (!iod->sg)
819 return BLK_STS_RESOURCE;
820 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
821 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
822 if (!iod->nents)
823 goto out;
824
825 if (is_pci_p2pdma_page(sg_page(iod->sg)))
826 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
827 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
828 else
829 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
830 rq_dma_dir(req), DMA_ATTR_NO_WARN);
831 if (!nr_mapped)
832 goto out;
833
834 iod->use_sgl = nvme_pci_use_sgls(dev, req);
835 if (iod->use_sgl)
836 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
837 else
838 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
839 out:
840 if (ret != BLK_STS_OK)
841 nvme_unmap_data(dev, req);
842 return ret;
843 }
844
845 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
846 struct nvme_command *cmnd)
847 {
848 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
849
850 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
851 rq_dma_dir(req), 0);
852 if (dma_mapping_error(dev->dev, iod->meta_dma))
853 return BLK_STS_IOERR;
854 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
855 return 0;
856 }
857
858 /*
859 * NOTE: ns is NULL when called on the admin queue.
860 */
861 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
862 const struct blk_mq_queue_data *bd)
863 {
864 struct nvme_ns *ns = hctx->queue->queuedata;
865 struct nvme_queue *nvmeq = hctx->driver_data;
866 struct nvme_dev *dev = nvmeq->dev;
867 struct request *req = bd->rq;
868 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
869 struct nvme_command cmnd;
870 blk_status_t ret;
871
872 iod->aborted = 0;
873 iod->npages = -1;
874 iod->nents = 0;
875
876 /*
877 * We should not need to do this, but we're still using this to
878 * ensure we can drain requests on a dying queue.
879 */
880 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
881 return BLK_STS_IOERR;
882
883 ret = nvme_setup_cmd(ns, req, &cmnd);
884 if (ret)
885 return ret;
886
887 if (blk_rq_nr_phys_segments(req)) {
888 ret = nvme_map_data(dev, req, &cmnd);
889 if (ret)
890 goto out_free_cmd;
891 }
892
893 if (blk_integrity_rq(req)) {
894 ret = nvme_map_metadata(dev, req, &cmnd);
895 if (ret)
896 goto out_unmap_data;
897 }
898
899 blk_mq_start_request(req);
900 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
901 return BLK_STS_OK;
902 out_unmap_data:
903 nvme_unmap_data(dev, req);
904 out_free_cmd:
905 nvme_cleanup_cmd(req);
906 return ret;
907 }
908
909 static void nvme_pci_complete_rq(struct request *req)
910 {
911 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
912 struct nvme_dev *dev = iod->nvmeq->dev;
913
914 if (blk_integrity_rq(req))
915 dma_unmap_page(dev->dev, iod->meta_dma,
916 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
917 if (blk_rq_nr_phys_segments(req))
918 nvme_unmap_data(dev, req);
919 nvme_complete_rq(req);
920 }
921
922 /* We read the CQE phase first to check if the rest of the entry is valid */
923 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
924 {
925 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
926 nvmeq->cq_phase;
927 }
928
929 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
930 {
931 u16 head = nvmeq->cq_head;
932
933 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
934 nvmeq->dbbuf_cq_ei))
935 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
936 }
937
938 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
939 {
940 if (!nvmeq->qid)
941 return nvmeq->dev->admin_tagset.tags[0];
942 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
943 }
944
945 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
946 {
947 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
948 struct request *req;
949
950 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
951 dev_warn(nvmeq->dev->ctrl.device,
952 "invalid id %d completed on queue %d\n",
953 cqe->command_id, le16_to_cpu(cqe->sq_id));
954 return;
955 }
956
957 /*
958 * AEN requests are special as they don't time out and can
959 * survive any kind of queue freeze and often don't respond to
960 * aborts. We don't even bother to allocate a struct request
961 * for them but rather special case them here.
962 */
963 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
964 nvme_complete_async_event(&nvmeq->dev->ctrl,
965 cqe->status, &cqe->result);
966 return;
967 }
968
969 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
970 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
971 nvme_end_request(req, cqe->status, cqe->result);
972 }
973
974 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
975 {
976 while (start != end) {
977 nvme_handle_cqe(nvmeq, start);
978 if (++start == nvmeq->q_depth)
979 start = 0;
980 }
981 }
982
983 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
984 {
985 if (++nvmeq->cq_head == nvmeq->q_depth) {
986 nvmeq->cq_head = 0;
987 nvmeq->cq_phase ^= 1;
988 }
989 }
990
991 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
992 u16 *end)
993 {
994 int found = 0;
995
996 *start = nvmeq->cq_head;
997 while (nvme_cqe_pending(nvmeq)) {
998 found++;
999 nvme_update_cq_head(nvmeq);
1000 }
1001 *end = nvmeq->cq_head;
1002
1003 if (*start != *end)
1004 nvme_ring_cq_doorbell(nvmeq);
1005 return found;
1006 }
1007
1008 static irqreturn_t nvme_irq(int irq, void *data)
1009 {
1010 struct nvme_queue *nvmeq = data;
1011 irqreturn_t ret = IRQ_NONE;
1012 u16 start, end;
1013
1014 /*
1015 * The rmb/wmb pair ensures we see all updates from a previous run of
1016 * the irq handler, even if that was on another CPU.
1017 */
1018 rmb();
1019 nvme_process_cq(nvmeq, &start, &end);
1020 wmb();
1021
1022 if (start != end) {
1023 nvme_complete_cqes(nvmeq, start, end);
1024 return IRQ_HANDLED;
1025 }
1026
1027 return ret;
1028 }
1029
1030 static irqreturn_t nvme_irq_check(int irq, void *data)
1031 {
1032 struct nvme_queue *nvmeq = data;
1033 if (nvme_cqe_pending(nvmeq))
1034 return IRQ_WAKE_THREAD;
1035 return IRQ_NONE;
1036 }
1037
1038 /*
1039 * Poll for completions any queue, including those not dedicated to polling.
1040 * Can be called from any context.
1041 */
1042 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1043 {
1044 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1045 u16 start, end;
1046 int found;
1047
1048 /*
1049 * For a poll queue we need to protect against the polling thread
1050 * using the CQ lock. For normal interrupt driven threads we have
1051 * to disable the interrupt to avoid racing with it.
1052 */
1053 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1054 spin_lock(&nvmeq->cq_poll_lock);
1055 found = nvme_process_cq(nvmeq, &start, &end);
1056 spin_unlock(&nvmeq->cq_poll_lock);
1057 } else {
1058 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1059 found = nvme_process_cq(nvmeq, &start, &end);
1060 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1061 }
1062
1063 nvme_complete_cqes(nvmeq, start, end);
1064 return found;
1065 }
1066
1067 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1068 {
1069 struct nvme_queue *nvmeq = hctx->driver_data;
1070 u16 start, end;
1071 bool found;
1072
1073 if (!nvme_cqe_pending(nvmeq))
1074 return 0;
1075
1076 spin_lock(&nvmeq->cq_poll_lock);
1077 found = nvme_process_cq(nvmeq, &start, &end);
1078 spin_unlock(&nvmeq->cq_poll_lock);
1079
1080 return found;
1081 }
1082
1083 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1084 {
1085 struct nvme_dev *dev = to_nvme_dev(ctrl);
1086 struct nvme_queue *nvmeq = &dev->queues[0];
1087 struct nvme_command c;
1088
1089 memset(&c, 0, sizeof(c));
1090 c.common.opcode = nvme_admin_async_event;
1091 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1092 nvme_submit_cmd(nvmeq, &c, true);
1093 }
1094
1095 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1096 {
1097 struct nvme_command c;
1098
1099 memset(&c, 0, sizeof(c));
1100 c.delete_queue.opcode = opcode;
1101 c.delete_queue.qid = cpu_to_le16(id);
1102
1103 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1104 }
1105
1106 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1107 struct nvme_queue *nvmeq, s16 vector)
1108 {
1109 struct nvme_command c;
1110 int flags = NVME_QUEUE_PHYS_CONTIG;
1111
1112 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1113 flags |= NVME_CQ_IRQ_ENABLED;
1114
1115 /*
1116 * Note: we (ab)use the fact that the prp fields survive if no data
1117 * is attached to the request.
1118 */
1119 memset(&c, 0, sizeof(c));
1120 c.create_cq.opcode = nvme_admin_create_cq;
1121 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1122 c.create_cq.cqid = cpu_to_le16(qid);
1123 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1124 c.create_cq.cq_flags = cpu_to_le16(flags);
1125 c.create_cq.irq_vector = cpu_to_le16(vector);
1126
1127 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1128 }
1129
1130 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1131 struct nvme_queue *nvmeq)
1132 {
1133 struct nvme_ctrl *ctrl = &dev->ctrl;
1134 struct nvme_command c;
1135 int flags = NVME_QUEUE_PHYS_CONTIG;
1136
1137 /*
1138 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1139 * set. Since URGENT priority is zeroes, it makes all queues
1140 * URGENT.
1141 */
1142 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1143 flags |= NVME_SQ_PRIO_MEDIUM;
1144
1145 /*
1146 * Note: we (ab)use the fact that the prp fields survive if no data
1147 * is attached to the request.
1148 */
1149 memset(&c, 0, sizeof(c));
1150 c.create_sq.opcode = nvme_admin_create_sq;
1151 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1152 c.create_sq.sqid = cpu_to_le16(qid);
1153 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1154 c.create_sq.sq_flags = cpu_to_le16(flags);
1155 c.create_sq.cqid = cpu_to_le16(qid);
1156
1157 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1158 }
1159
1160 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1161 {
1162 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1163 }
1164
1165 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1166 {
1167 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1168 }
1169
1170 static void abort_endio(struct request *req, blk_status_t error)
1171 {
1172 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1173 struct nvme_queue *nvmeq = iod->nvmeq;
1174
1175 dev_warn(nvmeq->dev->ctrl.device,
1176 "Abort status: 0x%x", nvme_req(req)->status);
1177 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1178 blk_mq_free_request(req);
1179 }
1180
1181 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1182 {
1183
1184 /* If true, indicates loss of adapter communication, possibly by a
1185 * NVMe Subsystem reset.
1186 */
1187 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1188
1189 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1190 switch (dev->ctrl.state) {
1191 case NVME_CTRL_RESETTING:
1192 case NVME_CTRL_CONNECTING:
1193 return false;
1194 default:
1195 break;
1196 }
1197
1198 /* We shouldn't reset unless the controller is on fatal error state
1199 * _or_ if we lost the communication with it.
1200 */
1201 if (!(csts & NVME_CSTS_CFS) && !nssro)
1202 return false;
1203
1204 return true;
1205 }
1206
1207 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1208 {
1209 /* Read a config register to help see what died. */
1210 u16 pci_status;
1211 int result;
1212
1213 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1214 &pci_status);
1215 if (result == PCIBIOS_SUCCESSFUL)
1216 dev_warn(dev->ctrl.device,
1217 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1218 csts, pci_status);
1219 else
1220 dev_warn(dev->ctrl.device,
1221 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1222 csts, result);
1223 }
1224
1225 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1226 {
1227 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1228 struct nvme_queue *nvmeq = iod->nvmeq;
1229 struct nvme_dev *dev = nvmeq->dev;
1230 struct request *abort_req;
1231 struct nvme_command cmd;
1232 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1233
1234 /* If PCI error recovery process is happening, we cannot reset or
1235 * the recovery mechanism will surely fail.
1236 */
1237 mb();
1238 if (pci_channel_offline(to_pci_dev(dev->dev)))
1239 return BLK_EH_RESET_TIMER;
1240
1241 /*
1242 * Reset immediately if the controller is failed
1243 */
1244 if (nvme_should_reset(dev, csts)) {
1245 nvme_warn_reset(dev, csts);
1246 nvme_dev_disable(dev, false);
1247 nvme_reset_ctrl(&dev->ctrl);
1248 return BLK_EH_DONE;
1249 }
1250
1251 /*
1252 * Did we miss an interrupt?
1253 */
1254 nvme_poll_irqdisable(nvmeq);
1255 if (blk_mq_request_completed(req)) {
1256 dev_warn(dev->ctrl.device,
1257 "I/O %d QID %d timeout, completion polled\n",
1258 req->tag, nvmeq->qid);
1259 return BLK_EH_DONE;
1260 }
1261
1262 /*
1263 * Shutdown immediately if controller times out while starting. The
1264 * reset work will see the pci device disabled when it gets the forced
1265 * cancellation error. All outstanding requests are completed on
1266 * shutdown, so we return BLK_EH_DONE.
1267 */
1268 switch (dev->ctrl.state) {
1269 case NVME_CTRL_CONNECTING:
1270 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1271 /* fall through */
1272 case NVME_CTRL_DELETING:
1273 dev_warn_ratelimited(dev->ctrl.device,
1274 "I/O %d QID %d timeout, disable controller\n",
1275 req->tag, nvmeq->qid);
1276 nvme_dev_disable(dev, true);
1277 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1278 return BLK_EH_DONE;
1279 case NVME_CTRL_RESETTING:
1280 return BLK_EH_RESET_TIMER;
1281 default:
1282 break;
1283 }
1284
1285 /*
1286 * Shutdown the controller immediately and schedule a reset if the
1287 * command was already aborted once before and still hasn't been
1288 * returned to the driver, or if this is the admin queue.
1289 */
1290 if (!nvmeq->qid || iod->aborted) {
1291 dev_warn(dev->ctrl.device,
1292 "I/O %d QID %d timeout, reset controller\n",
1293 req->tag, nvmeq->qid);
1294 nvme_dev_disable(dev, false);
1295 nvme_reset_ctrl(&dev->ctrl);
1296
1297 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1298 return BLK_EH_DONE;
1299 }
1300
1301 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1302 atomic_inc(&dev->ctrl.abort_limit);
1303 return BLK_EH_RESET_TIMER;
1304 }
1305 iod->aborted = 1;
1306
1307 memset(&cmd, 0, sizeof(cmd));
1308 cmd.abort.opcode = nvme_admin_abort_cmd;
1309 cmd.abort.cid = req->tag;
1310 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1311
1312 dev_warn(nvmeq->dev->ctrl.device,
1313 "I/O %d QID %d timeout, aborting\n",
1314 req->tag, nvmeq->qid);
1315
1316 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1317 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1318 if (IS_ERR(abort_req)) {
1319 atomic_inc(&dev->ctrl.abort_limit);
1320 return BLK_EH_RESET_TIMER;
1321 }
1322
1323 abort_req->timeout = ADMIN_TIMEOUT;
1324 abort_req->end_io_data = NULL;
1325 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1326
1327 /*
1328 * The aborted req will be completed on receiving the abort req.
1329 * We enable the timer again. If hit twice, it'll cause a device reset,
1330 * as the device then is in a faulty state.
1331 */
1332 return BLK_EH_RESET_TIMER;
1333 }
1334
1335 static void nvme_free_queue(struct nvme_queue *nvmeq)
1336 {
1337 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1338 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1339 if (!nvmeq->sq_cmds)
1340 return;
1341
1342 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1343 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1344 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1345 } else {
1346 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1347 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1348 }
1349 }
1350
1351 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1352 {
1353 int i;
1354
1355 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1356 dev->ctrl.queue_count--;
1357 nvme_free_queue(&dev->queues[i]);
1358 }
1359 }
1360
1361 /**
1362 * nvme_suspend_queue - put queue into suspended state
1363 * @nvmeq: queue to suspend
1364 */
1365 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1366 {
1367 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1368 return 1;
1369
1370 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1371 mb();
1372
1373 nvmeq->dev->online_queues--;
1374 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1375 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1376 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1377 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1378 return 0;
1379 }
1380
1381 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1382 {
1383 int i;
1384
1385 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1386 nvme_suspend_queue(&dev->queues[i]);
1387 }
1388
1389 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1390 {
1391 struct nvme_queue *nvmeq = &dev->queues[0];
1392
1393 if (shutdown)
1394 nvme_shutdown_ctrl(&dev->ctrl);
1395 else
1396 nvme_disable_ctrl(&dev->ctrl);
1397
1398 nvme_poll_irqdisable(nvmeq);
1399 }
1400
1401 /*
1402 * Called only on a device that has been disabled and after all other threads
1403 * that can check this device's completion queues have synced. This is the
1404 * last chance for the driver to see a natural completion before
1405 * nvme_cancel_request() terminates all incomplete requests.
1406 */
1407 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1408 {
1409 u16 start, end;
1410 int i;
1411
1412 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1413 nvme_process_cq(&dev->queues[i], &start, &end);
1414 nvme_complete_cqes(&dev->queues[i], start, end);
1415 }
1416 }
1417
1418 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1419 int entry_size)
1420 {
1421 int q_depth = dev->q_depth;
1422 unsigned q_size_aligned = roundup(q_depth * entry_size,
1423 dev->ctrl.page_size);
1424
1425 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1426 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1427 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1428 q_depth = div_u64(mem_per_q, entry_size);
1429
1430 /*
1431 * Ensure the reduced q_depth is above some threshold where it
1432 * would be better to map queues in system memory with the
1433 * original depth
1434 */
1435 if (q_depth < 64)
1436 return -ENOMEM;
1437 }
1438
1439 return q_depth;
1440 }
1441
1442 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1443 int qid)
1444 {
1445 struct pci_dev *pdev = to_pci_dev(dev->dev);
1446
1447 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1448 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1449 if (nvmeq->sq_cmds) {
1450 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1451 nvmeq->sq_cmds);
1452 if (nvmeq->sq_dma_addr) {
1453 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1454 return 0;
1455 }
1456
1457 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1458 }
1459 }
1460
1461 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1462 &nvmeq->sq_dma_addr, GFP_KERNEL);
1463 if (!nvmeq->sq_cmds)
1464 return -ENOMEM;
1465 return 0;
1466 }
1467
1468 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1469 {
1470 struct nvme_queue *nvmeq = &dev->queues[qid];
1471
1472 if (dev->ctrl.queue_count > qid)
1473 return 0;
1474
1475 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1476 nvmeq->q_depth = depth;
1477 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1478 &nvmeq->cq_dma_addr, GFP_KERNEL);
1479 if (!nvmeq->cqes)
1480 goto free_nvmeq;
1481
1482 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1483 goto free_cqdma;
1484
1485 nvmeq->dev = dev;
1486 spin_lock_init(&nvmeq->sq_lock);
1487 spin_lock_init(&nvmeq->cq_poll_lock);
1488 nvmeq->cq_head = 0;
1489 nvmeq->cq_phase = 1;
1490 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1491 nvmeq->qid = qid;
1492 dev->ctrl.queue_count++;
1493
1494 return 0;
1495
1496 free_cqdma:
1497 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1498 nvmeq->cq_dma_addr);
1499 free_nvmeq:
1500 return -ENOMEM;
1501 }
1502
1503 static int queue_request_irq(struct nvme_queue *nvmeq)
1504 {
1505 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1506 int nr = nvmeq->dev->ctrl.instance;
1507
1508 if (use_threaded_interrupts) {
1509 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1510 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1511 } else {
1512 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1513 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1514 }
1515 }
1516
1517 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1518 {
1519 struct nvme_dev *dev = nvmeq->dev;
1520
1521 nvmeq->sq_tail = 0;
1522 nvmeq->last_sq_tail = 0;
1523 nvmeq->cq_head = 0;
1524 nvmeq->cq_phase = 1;
1525 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1526 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1527 nvme_dbbuf_init(dev, nvmeq, qid);
1528 dev->online_queues++;
1529 wmb(); /* ensure the first interrupt sees the initialization */
1530 }
1531
1532 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1533 {
1534 struct nvme_dev *dev = nvmeq->dev;
1535 int result;
1536 u16 vector = 0;
1537
1538 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1539
1540 /*
1541 * A queue's vector matches the queue identifier unless the controller
1542 * has only one vector available.
1543 */
1544 if (!polled)
1545 vector = dev->num_vecs == 1 ? 0 : qid;
1546 else
1547 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1548
1549 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1550 if (result)
1551 return result;
1552
1553 result = adapter_alloc_sq(dev, qid, nvmeq);
1554 if (result < 0)
1555 return result;
1556 if (result)
1557 goto release_cq;
1558
1559 nvmeq->cq_vector = vector;
1560 nvme_init_queue(nvmeq, qid);
1561
1562 if (!polled) {
1563 result = queue_request_irq(nvmeq);
1564 if (result < 0)
1565 goto release_sq;
1566 }
1567
1568 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1569 return result;
1570
1571 release_sq:
1572 dev->online_queues--;
1573 adapter_delete_sq(dev, qid);
1574 release_cq:
1575 adapter_delete_cq(dev, qid);
1576 return result;
1577 }
1578
1579 static const struct blk_mq_ops nvme_mq_admin_ops = {
1580 .queue_rq = nvme_queue_rq,
1581 .complete = nvme_pci_complete_rq,
1582 .init_hctx = nvme_admin_init_hctx,
1583 .init_request = nvme_init_request,
1584 .timeout = nvme_timeout,
1585 };
1586
1587 static const struct blk_mq_ops nvme_mq_ops = {
1588 .queue_rq = nvme_queue_rq,
1589 .complete = nvme_pci_complete_rq,
1590 .commit_rqs = nvme_commit_rqs,
1591 .init_hctx = nvme_init_hctx,
1592 .init_request = nvme_init_request,
1593 .map_queues = nvme_pci_map_queues,
1594 .timeout = nvme_timeout,
1595 .poll = nvme_poll,
1596 };
1597
1598 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1599 {
1600 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1601 /*
1602 * If the controller was reset during removal, it's possible
1603 * user requests may be waiting on a stopped queue. Start the
1604 * queue to flush these to completion.
1605 */
1606 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1607 blk_cleanup_queue(dev->ctrl.admin_q);
1608 blk_mq_free_tag_set(&dev->admin_tagset);
1609 }
1610 }
1611
1612 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1613 {
1614 if (!dev->ctrl.admin_q) {
1615 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1616 dev->admin_tagset.nr_hw_queues = 1;
1617
1618 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1619 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1620 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1621 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1622 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1623 dev->admin_tagset.driver_data = dev;
1624
1625 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1626 return -ENOMEM;
1627 dev->ctrl.admin_tagset = &dev->admin_tagset;
1628
1629 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1630 if (IS_ERR(dev->ctrl.admin_q)) {
1631 blk_mq_free_tag_set(&dev->admin_tagset);
1632 return -ENOMEM;
1633 }
1634 if (!blk_get_queue(dev->ctrl.admin_q)) {
1635 nvme_dev_remove_admin(dev);
1636 dev->ctrl.admin_q = NULL;
1637 return -ENODEV;
1638 }
1639 } else
1640 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1641
1642 return 0;
1643 }
1644
1645 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1646 {
1647 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1648 }
1649
1650 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1651 {
1652 struct pci_dev *pdev = to_pci_dev(dev->dev);
1653
1654 if (size <= dev->bar_mapped_size)
1655 return 0;
1656 if (size > pci_resource_len(pdev, 0))
1657 return -ENOMEM;
1658 if (dev->bar)
1659 iounmap(dev->bar);
1660 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1661 if (!dev->bar) {
1662 dev->bar_mapped_size = 0;
1663 return -ENOMEM;
1664 }
1665 dev->bar_mapped_size = size;
1666 dev->dbs = dev->bar + NVME_REG_DBS;
1667
1668 return 0;
1669 }
1670
1671 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1672 {
1673 int result;
1674 u32 aqa;
1675 struct nvme_queue *nvmeq;
1676
1677 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1678 if (result < 0)
1679 return result;
1680
1681 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1682 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1683
1684 if (dev->subsystem &&
1685 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1686 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1687
1688 result = nvme_disable_ctrl(&dev->ctrl);
1689 if (result < 0)
1690 return result;
1691
1692 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1693 if (result)
1694 return result;
1695
1696 nvmeq = &dev->queues[0];
1697 aqa = nvmeq->q_depth - 1;
1698 aqa |= aqa << 16;
1699
1700 writel(aqa, dev->bar + NVME_REG_AQA);
1701 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1702 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1703
1704 result = nvme_enable_ctrl(&dev->ctrl);
1705 if (result)
1706 return result;
1707
1708 nvmeq->cq_vector = 0;
1709 nvme_init_queue(nvmeq, 0);
1710 result = queue_request_irq(nvmeq);
1711 if (result) {
1712 dev->online_queues--;
1713 return result;
1714 }
1715
1716 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1717 return result;
1718 }
1719
1720 static int nvme_create_io_queues(struct nvme_dev *dev)
1721 {
1722 unsigned i, max, rw_queues;
1723 int ret = 0;
1724
1725 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1726 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1727 ret = -ENOMEM;
1728 break;
1729 }
1730 }
1731
1732 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1733 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1734 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1735 dev->io_queues[HCTX_TYPE_READ];
1736 } else {
1737 rw_queues = max;
1738 }
1739
1740 for (i = dev->online_queues; i <= max; i++) {
1741 bool polled = i > rw_queues;
1742
1743 ret = nvme_create_queue(&dev->queues[i], i, polled);
1744 if (ret)
1745 break;
1746 }
1747
1748 /*
1749 * Ignore failing Create SQ/CQ commands, we can continue with less
1750 * than the desired amount of queues, and even a controller without
1751 * I/O queues can still be used to issue admin commands. This might
1752 * be useful to upgrade a buggy firmware for example.
1753 */
1754 return ret >= 0 ? 0 : ret;
1755 }
1756
1757 static ssize_t nvme_cmb_show(struct device *dev,
1758 struct device_attribute *attr,
1759 char *buf)
1760 {
1761 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1762
1763 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1764 ndev->cmbloc, ndev->cmbsz);
1765 }
1766 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1767
1768 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1769 {
1770 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1771
1772 return 1ULL << (12 + 4 * szu);
1773 }
1774
1775 static u32 nvme_cmb_size(struct nvme_dev *dev)
1776 {
1777 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1778 }
1779
1780 static void nvme_map_cmb(struct nvme_dev *dev)
1781 {
1782 u64 size, offset;
1783 resource_size_t bar_size;
1784 struct pci_dev *pdev = to_pci_dev(dev->dev);
1785 int bar;
1786
1787 if (dev->cmb_size)
1788 return;
1789
1790 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1791 if (!dev->cmbsz)
1792 return;
1793 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1794
1795 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1796 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1797 bar = NVME_CMB_BIR(dev->cmbloc);
1798 bar_size = pci_resource_len(pdev, bar);
1799
1800 if (offset > bar_size)
1801 return;
1802
1803 /*
1804 * Controllers may support a CMB size larger than their BAR,
1805 * for example, due to being behind a bridge. Reduce the CMB to
1806 * the reported size of the BAR
1807 */
1808 if (size > bar_size - offset)
1809 size = bar_size - offset;
1810
1811 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1812 dev_warn(dev->ctrl.device,
1813 "failed to register the CMB\n");
1814 return;
1815 }
1816
1817 dev->cmb_size = size;
1818 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1819
1820 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1821 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1822 pci_p2pmem_publish(pdev, true);
1823
1824 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1825 &dev_attr_cmb.attr, NULL))
1826 dev_warn(dev->ctrl.device,
1827 "failed to add sysfs attribute for CMB\n");
1828 }
1829
1830 static inline void nvme_release_cmb(struct nvme_dev *dev)
1831 {
1832 if (dev->cmb_size) {
1833 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1834 &dev_attr_cmb.attr, NULL);
1835 dev->cmb_size = 0;
1836 }
1837 }
1838
1839 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1840 {
1841 u64 dma_addr = dev->host_mem_descs_dma;
1842 struct nvme_command c;
1843 int ret;
1844
1845 memset(&c, 0, sizeof(c));
1846 c.features.opcode = nvme_admin_set_features;
1847 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1848 c.features.dword11 = cpu_to_le32(bits);
1849 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1850 ilog2(dev->ctrl.page_size));
1851 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1852 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1853 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1854
1855 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1856 if (ret) {
1857 dev_warn(dev->ctrl.device,
1858 "failed to set host mem (err %d, flags %#x).\n",
1859 ret, bits);
1860 }
1861 return ret;
1862 }
1863
1864 static void nvme_free_host_mem(struct nvme_dev *dev)
1865 {
1866 int i;
1867
1868 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1869 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1870 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1871
1872 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1873 le64_to_cpu(desc->addr),
1874 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1875 }
1876
1877 kfree(dev->host_mem_desc_bufs);
1878 dev->host_mem_desc_bufs = NULL;
1879 dma_free_coherent(dev->dev,
1880 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1881 dev->host_mem_descs, dev->host_mem_descs_dma);
1882 dev->host_mem_descs = NULL;
1883 dev->nr_host_mem_descs = 0;
1884 }
1885
1886 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1887 u32 chunk_size)
1888 {
1889 struct nvme_host_mem_buf_desc *descs;
1890 u32 max_entries, len;
1891 dma_addr_t descs_dma;
1892 int i = 0;
1893 void **bufs;
1894 u64 size, tmp;
1895
1896 tmp = (preferred + chunk_size - 1);
1897 do_div(tmp, chunk_size);
1898 max_entries = tmp;
1899
1900 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1901 max_entries = dev->ctrl.hmmaxd;
1902
1903 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1904 &descs_dma, GFP_KERNEL);
1905 if (!descs)
1906 goto out;
1907
1908 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1909 if (!bufs)
1910 goto out_free_descs;
1911
1912 for (size = 0; size < preferred && i < max_entries; size += len) {
1913 dma_addr_t dma_addr;
1914
1915 len = min_t(u64, chunk_size, preferred - size);
1916 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1917 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1918 if (!bufs[i])
1919 break;
1920
1921 descs[i].addr = cpu_to_le64(dma_addr);
1922 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1923 i++;
1924 }
1925
1926 if (!size)
1927 goto out_free_bufs;
1928
1929 dev->nr_host_mem_descs = i;
1930 dev->host_mem_size = size;
1931 dev->host_mem_descs = descs;
1932 dev->host_mem_descs_dma = descs_dma;
1933 dev->host_mem_desc_bufs = bufs;
1934 return 0;
1935
1936 out_free_bufs:
1937 while (--i >= 0) {
1938 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1939
1940 dma_free_attrs(dev->dev, size, bufs[i],
1941 le64_to_cpu(descs[i].addr),
1942 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1943 }
1944
1945 kfree(bufs);
1946 out_free_descs:
1947 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1948 descs_dma);
1949 out:
1950 dev->host_mem_descs = NULL;
1951 return -ENOMEM;
1952 }
1953
1954 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1955 {
1956 u32 chunk_size;
1957
1958 /* start big and work our way down */
1959 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1960 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1961 chunk_size /= 2) {
1962 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1963 if (!min || dev->host_mem_size >= min)
1964 return 0;
1965 nvme_free_host_mem(dev);
1966 }
1967 }
1968
1969 return -ENOMEM;
1970 }
1971
1972 static int nvme_setup_host_mem(struct nvme_dev *dev)
1973 {
1974 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1975 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1976 u64 min = (u64)dev->ctrl.hmmin * 4096;
1977 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1978 int ret;
1979
1980 preferred = min(preferred, max);
1981 if (min > max) {
1982 dev_warn(dev->ctrl.device,
1983 "min host memory (%lld MiB) above limit (%d MiB).\n",
1984 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1985 nvme_free_host_mem(dev);
1986 return 0;
1987 }
1988
1989 /*
1990 * If we already have a buffer allocated check if we can reuse it.
1991 */
1992 if (dev->host_mem_descs) {
1993 if (dev->host_mem_size >= min)
1994 enable_bits |= NVME_HOST_MEM_RETURN;
1995 else
1996 nvme_free_host_mem(dev);
1997 }
1998
1999 if (!dev->host_mem_descs) {
2000 if (nvme_alloc_host_mem(dev, min, preferred)) {
2001 dev_warn(dev->ctrl.device,
2002 "failed to allocate host memory buffer.\n");
2003 return 0; /* controller must work without HMB */
2004 }
2005
2006 dev_info(dev->ctrl.device,
2007 "allocated %lld MiB host memory buffer.\n",
2008 dev->host_mem_size >> ilog2(SZ_1M));
2009 }
2010
2011 ret = nvme_set_host_mem(dev, enable_bits);
2012 if (ret)
2013 nvme_free_host_mem(dev);
2014 return ret;
2015 }
2016
2017 /*
2018 * nirqs is the number of interrupts available for write and read
2019 * queues. The core already reserved an interrupt for the admin queue.
2020 */
2021 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2022 {
2023 struct nvme_dev *dev = affd->priv;
2024 unsigned int nr_read_queues;
2025
2026 /*
2027 * If there is no interupt available for queues, ensure that
2028 * the default queue is set to 1. The affinity set size is
2029 * also set to one, but the irq core ignores it for this case.
2030 *
2031 * If only one interrupt is available or 'write_queue' == 0, combine
2032 * write and read queues.
2033 *
2034 * If 'write_queues' > 0, ensure it leaves room for at least one read
2035 * queue.
2036 */
2037 if (!nrirqs) {
2038 nrirqs = 1;
2039 nr_read_queues = 0;
2040 } else if (nrirqs == 1 || !write_queues) {
2041 nr_read_queues = 0;
2042 } else if (write_queues >= nrirqs) {
2043 nr_read_queues = 1;
2044 } else {
2045 nr_read_queues = nrirqs - write_queues;
2046 }
2047
2048 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2049 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2050 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2051 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2052 affd->nr_sets = nr_read_queues ? 2 : 1;
2053 }
2054
2055 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2056 {
2057 struct pci_dev *pdev = to_pci_dev(dev->dev);
2058 struct irq_affinity affd = {
2059 .pre_vectors = 1,
2060 .calc_sets = nvme_calc_irq_sets,
2061 .priv = dev,
2062 };
2063 unsigned int irq_queues, this_p_queues;
2064
2065 /*
2066 * Poll queues don't need interrupts, but we need at least one IO
2067 * queue left over for non-polled IO.
2068 */
2069 this_p_queues = poll_queues;
2070 if (this_p_queues >= nr_io_queues) {
2071 this_p_queues = nr_io_queues - 1;
2072 irq_queues = 1;
2073 } else {
2074 irq_queues = nr_io_queues - this_p_queues + 1;
2075 }
2076 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2077
2078 /* Initialize for the single interrupt case */
2079 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2080 dev->io_queues[HCTX_TYPE_READ] = 0;
2081
2082 /*
2083 * Some Apple controllers require all queues to use the
2084 * first vector.
2085 */
2086 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2087 irq_queues = 1;
2088
2089 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2090 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2091 }
2092
2093 static void nvme_disable_io_queues(struct nvme_dev *dev)
2094 {
2095 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2096 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2097 }
2098
2099 static int nvme_setup_io_queues(struct nvme_dev *dev)
2100 {
2101 struct nvme_queue *adminq = &dev->queues[0];
2102 struct pci_dev *pdev = to_pci_dev(dev->dev);
2103 int result, nr_io_queues;
2104 unsigned long size;
2105
2106 nr_io_queues = max_io_queues();
2107
2108 /*
2109 * If tags are shared with admin queue (Apple bug), then
2110 * make sure we only use one IO queue.
2111 */
2112 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2113 nr_io_queues = 1;
2114
2115 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2116 if (result < 0)
2117 return result;
2118
2119 if (nr_io_queues == 0)
2120 return 0;
2121
2122 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2123
2124 if (dev->cmb_use_sqes) {
2125 result = nvme_cmb_qdepth(dev, nr_io_queues,
2126 sizeof(struct nvme_command));
2127 if (result > 0)
2128 dev->q_depth = result;
2129 else
2130 dev->cmb_use_sqes = false;
2131 }
2132
2133 do {
2134 size = db_bar_size(dev, nr_io_queues);
2135 result = nvme_remap_bar(dev, size);
2136 if (!result)
2137 break;
2138 if (!--nr_io_queues)
2139 return -ENOMEM;
2140 } while (1);
2141 adminq->q_db = dev->dbs;
2142
2143 retry:
2144 /* Deregister the admin queue's interrupt */
2145 pci_free_irq(pdev, 0, adminq);
2146
2147 /*
2148 * If we enable msix early due to not intx, disable it again before
2149 * setting up the full range we need.
2150 */
2151 pci_free_irq_vectors(pdev);
2152
2153 result = nvme_setup_irqs(dev, nr_io_queues);
2154 if (result <= 0)
2155 return -EIO;
2156
2157 dev->num_vecs = result;
2158 result = max(result - 1, 1);
2159 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2160
2161 /*
2162 * Should investigate if there's a performance win from allocating
2163 * more queues than interrupt vectors; it might allow the submission
2164 * path to scale better, even if the receive path is limited by the
2165 * number of interrupts.
2166 */
2167 result = queue_request_irq(adminq);
2168 if (result)
2169 return result;
2170 set_bit(NVMEQ_ENABLED, &adminq->flags);
2171
2172 result = nvme_create_io_queues(dev);
2173 if (result || dev->online_queues < 2)
2174 return result;
2175
2176 if (dev->online_queues - 1 < dev->max_qid) {
2177 nr_io_queues = dev->online_queues - 1;
2178 nvme_disable_io_queues(dev);
2179 nvme_suspend_io_queues(dev);
2180 goto retry;
2181 }
2182 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2183 dev->io_queues[HCTX_TYPE_DEFAULT],
2184 dev->io_queues[HCTX_TYPE_READ],
2185 dev->io_queues[HCTX_TYPE_POLL]);
2186 return 0;
2187 }
2188
2189 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2190 {
2191 struct nvme_queue *nvmeq = req->end_io_data;
2192
2193 blk_mq_free_request(req);
2194 complete(&nvmeq->delete_done);
2195 }
2196
2197 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2198 {
2199 struct nvme_queue *nvmeq = req->end_io_data;
2200
2201 if (error)
2202 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2203
2204 nvme_del_queue_end(req, error);
2205 }
2206
2207 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2208 {
2209 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2210 struct request *req;
2211 struct nvme_command cmd;
2212
2213 memset(&cmd, 0, sizeof(cmd));
2214 cmd.delete_queue.opcode = opcode;
2215 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2216
2217 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2218 if (IS_ERR(req))
2219 return PTR_ERR(req);
2220
2221 req->timeout = ADMIN_TIMEOUT;
2222 req->end_io_data = nvmeq;
2223
2224 init_completion(&nvmeq->delete_done);
2225 blk_execute_rq_nowait(q, NULL, req, false,
2226 opcode == nvme_admin_delete_cq ?
2227 nvme_del_cq_end : nvme_del_queue_end);
2228 return 0;
2229 }
2230
2231 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2232 {
2233 int nr_queues = dev->online_queues - 1, sent = 0;
2234 unsigned long timeout;
2235
2236 retry:
2237 timeout = ADMIN_TIMEOUT;
2238 while (nr_queues > 0) {
2239 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2240 break;
2241 nr_queues--;
2242 sent++;
2243 }
2244 while (sent) {
2245 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2246
2247 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2248 timeout);
2249 if (timeout == 0)
2250 return false;
2251
2252 sent--;
2253 if (nr_queues)
2254 goto retry;
2255 }
2256 return true;
2257 }
2258
2259 static void nvme_dev_add(struct nvme_dev *dev)
2260 {
2261 int ret;
2262
2263 if (!dev->ctrl.tagset) {
2264 dev->tagset.ops = &nvme_mq_ops;
2265 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2266 dev->tagset.nr_maps = 2; /* default + read */
2267 if (dev->io_queues[HCTX_TYPE_POLL])
2268 dev->tagset.nr_maps++;
2269 dev->tagset.timeout = NVME_IO_TIMEOUT;
2270 dev->tagset.numa_node = dev_to_node(dev->dev);
2271 dev->tagset.queue_depth =
2272 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2273 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2274 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2275 dev->tagset.driver_data = dev;
2276
2277 /*
2278 * Some Apple controllers requires tags to be unique
2279 * across admin and IO queue, so reserve the first 32
2280 * tags of the IO queue.
2281 */
2282 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2283 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2284
2285 ret = blk_mq_alloc_tag_set(&dev->tagset);
2286 if (ret) {
2287 dev_warn(dev->ctrl.device,
2288 "IO queues tagset allocation failed %d\n", ret);
2289 return;
2290 }
2291 dev->ctrl.tagset = &dev->tagset;
2292 } else {
2293 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2294
2295 /* Free previously allocated queues that are no longer usable */
2296 nvme_free_queues(dev, dev->online_queues);
2297 }
2298
2299 nvme_dbbuf_set(dev);
2300 }
2301
2302 static int nvme_pci_enable(struct nvme_dev *dev)
2303 {
2304 int result = -ENOMEM;
2305 struct pci_dev *pdev = to_pci_dev(dev->dev);
2306
2307 if (pci_enable_device_mem(pdev))
2308 return result;
2309
2310 pci_set_master(pdev);
2311
2312 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2313 goto disable;
2314
2315 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2316 result = -ENODEV;
2317 goto disable;
2318 }
2319
2320 /*
2321 * Some devices and/or platforms don't advertise or work with INTx
2322 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2323 * adjust this later.
2324 */
2325 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2326 if (result < 0)
2327 return result;
2328
2329 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2330
2331 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2332 io_queue_depth);
2333 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2334 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2335 dev->dbs = dev->bar + 4096;
2336
2337 /*
2338 * Some Apple controllers require a non-standard SQE size.
2339 * Interestingly they also seem to ignore the CC:IOSQES register
2340 * so we don't bother updating it here.
2341 */
2342 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2343 dev->io_sqes = 7;
2344 else
2345 dev->io_sqes = NVME_NVM_IOSQES;
2346
2347 /*
2348 * Temporary fix for the Apple controller found in the MacBook8,1 and
2349 * some MacBook7,1 to avoid controller resets and data loss.
2350 */
2351 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2352 dev->q_depth = 2;
2353 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2354 "set queue depth=%u to work around controller resets\n",
2355 dev->q_depth);
2356 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2357 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2358 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2359 dev->q_depth = 64;
2360 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2361 "set queue depth=%u\n", dev->q_depth);
2362 }
2363
2364 /*
2365 * Controllers with the shared tags quirk need the IO queue to be
2366 * big enough so that we get 32 tags for the admin queue
2367 */
2368 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2369 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2370 dev->q_depth = NVME_AQ_DEPTH + 2;
2371 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2372 dev->q_depth);
2373 }
2374
2375
2376 nvme_map_cmb(dev);
2377
2378 pci_enable_pcie_error_reporting(pdev);
2379 pci_save_state(pdev);
2380 return 0;
2381
2382 disable:
2383 pci_disable_device(pdev);
2384 return result;
2385 }
2386
2387 static void nvme_dev_unmap(struct nvme_dev *dev)
2388 {
2389 if (dev->bar)
2390 iounmap(dev->bar);
2391 pci_release_mem_regions(to_pci_dev(dev->dev));
2392 }
2393
2394 static void nvme_pci_disable(struct nvme_dev *dev)
2395 {
2396 struct pci_dev *pdev = to_pci_dev(dev->dev);
2397
2398 pci_free_irq_vectors(pdev);
2399
2400 if (pci_is_enabled(pdev)) {
2401 pci_disable_pcie_error_reporting(pdev);
2402 pci_disable_device(pdev);
2403 }
2404 }
2405
2406 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2407 {
2408 bool dead = true, freeze = false;
2409 struct pci_dev *pdev = to_pci_dev(dev->dev);
2410
2411 mutex_lock(&dev->shutdown_lock);
2412 if (pci_is_enabled(pdev)) {
2413 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2414
2415 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2416 dev->ctrl.state == NVME_CTRL_RESETTING) {
2417 freeze = true;
2418 nvme_start_freeze(&dev->ctrl);
2419 }
2420 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2421 pdev->error_state != pci_channel_io_normal);
2422 }
2423
2424 /*
2425 * Give the controller a chance to complete all entered requests if
2426 * doing a safe shutdown.
2427 */
2428 if (!dead && shutdown && freeze)
2429 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2430
2431 nvme_stop_queues(&dev->ctrl);
2432
2433 if (!dead && dev->ctrl.queue_count > 0) {
2434 nvme_disable_io_queues(dev);
2435 nvme_disable_admin_queue(dev, shutdown);
2436 }
2437 nvme_suspend_io_queues(dev);
2438 nvme_suspend_queue(&dev->queues[0]);
2439 nvme_pci_disable(dev);
2440 nvme_reap_pending_cqes(dev);
2441
2442 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2443 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2444 blk_mq_tagset_wait_completed_request(&dev->tagset);
2445 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2446
2447 /*
2448 * The driver will not be starting up queues again if shutting down so
2449 * must flush all entered requests to their failed completion to avoid
2450 * deadlocking blk-mq hot-cpu notifier.
2451 */
2452 if (shutdown) {
2453 nvme_start_queues(&dev->ctrl);
2454 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2455 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2456 }
2457 mutex_unlock(&dev->shutdown_lock);
2458 }
2459
2460 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2461 {
2462 if (!nvme_wait_reset(&dev->ctrl))
2463 return -EBUSY;
2464 nvme_dev_disable(dev, shutdown);
2465 return 0;
2466 }
2467
2468 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2469 {
2470 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2471 PAGE_SIZE, PAGE_SIZE, 0);
2472 if (!dev->prp_page_pool)
2473 return -ENOMEM;
2474
2475 /* Optimisation for I/Os between 4k and 128k */
2476 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2477 256, 256, 0);
2478 if (!dev->prp_small_pool) {
2479 dma_pool_destroy(dev->prp_page_pool);
2480 return -ENOMEM;
2481 }
2482 return 0;
2483 }
2484
2485 static void nvme_release_prp_pools(struct nvme_dev *dev)
2486 {
2487 dma_pool_destroy(dev->prp_page_pool);
2488 dma_pool_destroy(dev->prp_small_pool);
2489 }
2490
2491 static void nvme_free_tagset(struct nvme_dev *dev)
2492 {
2493 if (dev->tagset.tags)
2494 blk_mq_free_tag_set(&dev->tagset);
2495 dev->ctrl.tagset = NULL;
2496 }
2497
2498 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2499 {
2500 struct nvme_dev *dev = to_nvme_dev(ctrl);
2501
2502 nvme_dbbuf_dma_free(dev);
2503 put_device(dev->dev);
2504 nvme_free_tagset(dev);
2505 if (dev->ctrl.admin_q)
2506 blk_put_queue(dev->ctrl.admin_q);
2507 kfree(dev->queues);
2508 free_opal_dev(dev->ctrl.opal_dev);
2509 mempool_destroy(dev->iod_mempool);
2510 kfree(dev);
2511 }
2512
2513 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2514 {
2515 /*
2516 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2517 * may be holding this pci_dev's device lock.
2518 */
2519 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2520 nvme_get_ctrl(&dev->ctrl);
2521 nvme_dev_disable(dev, false);
2522 nvme_kill_queues(&dev->ctrl);
2523 if (!queue_work(nvme_wq, &dev->remove_work))
2524 nvme_put_ctrl(&dev->ctrl);
2525 }
2526
2527 static void nvme_reset_work(struct work_struct *work)
2528 {
2529 struct nvme_dev *dev =
2530 container_of(work, struct nvme_dev, ctrl.reset_work);
2531 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2532 int result;
2533
2534 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2535 result = -ENODEV;
2536 goto out;
2537 }
2538
2539 /*
2540 * If we're called to reset a live controller first shut it down before
2541 * moving on.
2542 */
2543 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2544 nvme_dev_disable(dev, false);
2545 nvme_sync_queues(&dev->ctrl);
2546
2547 mutex_lock(&dev->shutdown_lock);
2548 result = nvme_pci_enable(dev);
2549 if (result)
2550 goto out_unlock;
2551
2552 result = nvme_pci_configure_admin_queue(dev);
2553 if (result)
2554 goto out_unlock;
2555
2556 result = nvme_alloc_admin_tags(dev);
2557 if (result)
2558 goto out_unlock;
2559
2560 /*
2561 * Limit the max command size to prevent iod->sg allocations going
2562 * over a single page.
2563 */
2564 dev->ctrl.max_hw_sectors = min_t(u32,
2565 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2566 dev->ctrl.max_segments = NVME_MAX_SEGS;
2567
2568 /*
2569 * Don't limit the IOMMU merged segment size.
2570 */
2571 dma_set_max_seg_size(dev->dev, 0xffffffff);
2572
2573 mutex_unlock(&dev->shutdown_lock);
2574
2575 /*
2576 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2577 * initializing procedure here.
2578 */
2579 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2580 dev_warn(dev->ctrl.device,
2581 "failed to mark controller CONNECTING\n");
2582 result = -EBUSY;
2583 goto out;
2584 }
2585
2586 result = nvme_init_identify(&dev->ctrl);
2587 if (result)
2588 goto out;
2589
2590 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2591 if (!dev->ctrl.opal_dev)
2592 dev->ctrl.opal_dev =
2593 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2594 else if (was_suspend)
2595 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2596 } else {
2597 free_opal_dev(dev->ctrl.opal_dev);
2598 dev->ctrl.opal_dev = NULL;
2599 }
2600
2601 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2602 result = nvme_dbbuf_dma_alloc(dev);
2603 if (result)
2604 dev_warn(dev->dev,
2605 "unable to allocate dma for dbbuf\n");
2606 }
2607
2608 if (dev->ctrl.hmpre) {
2609 result = nvme_setup_host_mem(dev);
2610 if (result < 0)
2611 goto out;
2612 }
2613
2614 result = nvme_setup_io_queues(dev);
2615 if (result)
2616 goto out;
2617
2618 /*
2619 * Keep the controller around but remove all namespaces if we don't have
2620 * any working I/O queue.
2621 */
2622 if (dev->online_queues < 2) {
2623 dev_warn(dev->ctrl.device, "IO queues not created\n");
2624 nvme_kill_queues(&dev->ctrl);
2625 nvme_remove_namespaces(&dev->ctrl);
2626 nvme_free_tagset(dev);
2627 } else {
2628 nvme_start_queues(&dev->ctrl);
2629 nvme_wait_freeze(&dev->ctrl);
2630 nvme_dev_add(dev);
2631 nvme_unfreeze(&dev->ctrl);
2632 }
2633
2634 /*
2635 * If only admin queue live, keep it to do further investigation or
2636 * recovery.
2637 */
2638 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2639 dev_warn(dev->ctrl.device,
2640 "failed to mark controller live state\n");
2641 result = -ENODEV;
2642 goto out;
2643 }
2644
2645 nvme_start_ctrl(&dev->ctrl);
2646 return;
2647
2648 out_unlock:
2649 mutex_unlock(&dev->shutdown_lock);
2650 out:
2651 if (result)
2652 dev_warn(dev->ctrl.device,
2653 "Removing after probe failure status: %d\n", result);
2654 nvme_remove_dead_ctrl(dev);
2655 }
2656
2657 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2658 {
2659 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2660 struct pci_dev *pdev = to_pci_dev(dev->dev);
2661
2662 if (pci_get_drvdata(pdev))
2663 device_release_driver(&pdev->dev);
2664 nvme_put_ctrl(&dev->ctrl);
2665 }
2666
2667 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2668 {
2669 *val = readl(to_nvme_dev(ctrl)->bar + off);
2670 return 0;
2671 }
2672
2673 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2674 {
2675 writel(val, to_nvme_dev(ctrl)->bar + off);
2676 return 0;
2677 }
2678
2679 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2680 {
2681 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2682 return 0;
2683 }
2684
2685 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2686 {
2687 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2688
2689 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2690 }
2691
2692 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2693 .name = "pcie",
2694 .module = THIS_MODULE,
2695 .flags = NVME_F_METADATA_SUPPORTED |
2696 NVME_F_PCI_P2PDMA,
2697 .reg_read32 = nvme_pci_reg_read32,
2698 .reg_write32 = nvme_pci_reg_write32,
2699 .reg_read64 = nvme_pci_reg_read64,
2700 .free_ctrl = nvme_pci_free_ctrl,
2701 .submit_async_event = nvme_pci_submit_async_event,
2702 .get_address = nvme_pci_get_address,
2703 };
2704
2705 static int nvme_dev_map(struct nvme_dev *dev)
2706 {
2707 struct pci_dev *pdev = to_pci_dev(dev->dev);
2708
2709 if (pci_request_mem_regions(pdev, "nvme"))
2710 return -ENODEV;
2711
2712 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2713 goto release;
2714
2715 return 0;
2716 release:
2717 pci_release_mem_regions(pdev);
2718 return -ENODEV;
2719 }
2720
2721 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2722 {
2723 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2724 /*
2725 * Several Samsung devices seem to drop off the PCIe bus
2726 * randomly when APST is on and uses the deepest sleep state.
2727 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2728 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2729 * 950 PRO 256GB", but it seems to be restricted to two Dell
2730 * laptops.
2731 */
2732 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2733 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2734 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2735 return NVME_QUIRK_NO_DEEPEST_PS;
2736 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2737 /*
2738 * Samsung SSD 960 EVO drops off the PCIe bus after system
2739 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2740 * within few minutes after bootup on a Coffee Lake board -
2741 * ASUS PRIME Z370-A
2742 */
2743 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2744 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2745 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2746 return NVME_QUIRK_NO_APST;
2747 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2748 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2749 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2750 /*
2751 * Forcing to use host managed nvme power settings for
2752 * lowest idle power with quick resume latency on
2753 * Samsung and Toshiba SSDs based on suspend behavior
2754 * on Coffee Lake board for LENOVO C640
2755 */
2756 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2757 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2758 return NVME_QUIRK_SIMPLE_SUSPEND;
2759 }
2760
2761 return 0;
2762 }
2763
2764 static void nvme_async_probe(void *data, async_cookie_t cookie)
2765 {
2766 struct nvme_dev *dev = data;
2767
2768 flush_work(&dev->ctrl.reset_work);
2769 flush_work(&dev->ctrl.scan_work);
2770 nvme_put_ctrl(&dev->ctrl);
2771 }
2772
2773 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2774 {
2775 int node, result = -ENOMEM;
2776 struct nvme_dev *dev;
2777 unsigned long quirks = id->driver_data;
2778 size_t alloc_size;
2779
2780 node = dev_to_node(&pdev->dev);
2781 if (node == NUMA_NO_NODE)
2782 set_dev_node(&pdev->dev, first_memory_node);
2783
2784 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2785 if (!dev)
2786 return -ENOMEM;
2787
2788 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2789 GFP_KERNEL, node);
2790 if (!dev->queues)
2791 goto free;
2792
2793 dev->dev = get_device(&pdev->dev);
2794 pci_set_drvdata(pdev, dev);
2795
2796 result = nvme_dev_map(dev);
2797 if (result)
2798 goto put_pci;
2799
2800 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2801 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2802 mutex_init(&dev->shutdown_lock);
2803
2804 result = nvme_setup_prp_pools(dev);
2805 if (result)
2806 goto unmap;
2807
2808 quirks |= check_vendor_combination_bug(pdev);
2809
2810 /*
2811 * Double check that our mempool alloc size will cover the biggest
2812 * command we support.
2813 */
2814 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2815 NVME_MAX_SEGS, true);
2816 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2817
2818 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2819 mempool_kfree,
2820 (void *) alloc_size,
2821 GFP_KERNEL, node);
2822 if (!dev->iod_mempool) {
2823 result = -ENOMEM;
2824 goto release_pools;
2825 }
2826
2827 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2828 quirks);
2829 if (result)
2830 goto release_mempool;
2831
2832 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2833
2834 nvme_reset_ctrl(&dev->ctrl);
2835 nvme_get_ctrl(&dev->ctrl);
2836 async_schedule(nvme_async_probe, dev);
2837
2838 return 0;
2839
2840 release_mempool:
2841 mempool_destroy(dev->iod_mempool);
2842 release_pools:
2843 nvme_release_prp_pools(dev);
2844 unmap:
2845 nvme_dev_unmap(dev);
2846 put_pci:
2847 put_device(dev->dev);
2848 free:
2849 kfree(dev->queues);
2850 kfree(dev);
2851 return result;
2852 }
2853
2854 static void nvme_reset_prepare(struct pci_dev *pdev)
2855 {
2856 struct nvme_dev *dev = pci_get_drvdata(pdev);
2857
2858 /*
2859 * We don't need to check the return value from waiting for the reset
2860 * state as pci_dev device lock is held, making it impossible to race
2861 * with ->remove().
2862 */
2863 nvme_disable_prepare_reset(dev, false);
2864 nvme_sync_queues(&dev->ctrl);
2865 }
2866
2867 static void nvme_reset_done(struct pci_dev *pdev)
2868 {
2869 struct nvme_dev *dev = pci_get_drvdata(pdev);
2870
2871 if (!nvme_try_sched_reset(&dev->ctrl))
2872 flush_work(&dev->ctrl.reset_work);
2873 }
2874
2875 static void nvme_shutdown(struct pci_dev *pdev)
2876 {
2877 struct nvme_dev *dev = pci_get_drvdata(pdev);
2878 nvme_disable_prepare_reset(dev, true);
2879 }
2880
2881 /*
2882 * The driver's remove may be called on a device in a partially initialized
2883 * state. This function must not have any dependencies on the device state in
2884 * order to proceed.
2885 */
2886 static void nvme_remove(struct pci_dev *pdev)
2887 {
2888 struct nvme_dev *dev = pci_get_drvdata(pdev);
2889
2890 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2891 pci_set_drvdata(pdev, NULL);
2892
2893 if (!pci_device_is_present(pdev)) {
2894 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2895 nvme_dev_disable(dev, true);
2896 nvme_dev_remove_admin(dev);
2897 }
2898
2899 flush_work(&dev->ctrl.reset_work);
2900 nvme_stop_ctrl(&dev->ctrl);
2901 nvme_remove_namespaces(&dev->ctrl);
2902 nvme_dev_disable(dev, true);
2903 nvme_release_cmb(dev);
2904 nvme_free_host_mem(dev);
2905 nvme_dev_remove_admin(dev);
2906 nvme_free_queues(dev, 0);
2907 nvme_uninit_ctrl(&dev->ctrl);
2908 nvme_release_prp_pools(dev);
2909 nvme_dev_unmap(dev);
2910 nvme_put_ctrl(&dev->ctrl);
2911 }
2912
2913 #ifdef CONFIG_PM_SLEEP
2914 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2915 {
2916 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2917 }
2918
2919 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2920 {
2921 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2922 }
2923
2924 static int nvme_resume(struct device *dev)
2925 {
2926 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2927 struct nvme_ctrl *ctrl = &ndev->ctrl;
2928
2929 if (ndev->last_ps == U32_MAX ||
2930 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2931 return nvme_try_sched_reset(&ndev->ctrl);
2932 return 0;
2933 }
2934
2935 static int nvme_suspend(struct device *dev)
2936 {
2937 struct pci_dev *pdev = to_pci_dev(dev);
2938 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2939 struct nvme_ctrl *ctrl = &ndev->ctrl;
2940 int ret = -EBUSY;
2941
2942 ndev->last_ps = U32_MAX;
2943
2944 /*
2945 * The platform does not remove power for a kernel managed suspend so
2946 * use host managed nvme power settings for lowest idle power if
2947 * possible. This should have quicker resume latency than a full device
2948 * shutdown. But if the firmware is involved after the suspend or the
2949 * device does not support any non-default power states, shut down the
2950 * device fully.
2951 *
2952 * If ASPM is not enabled for the device, shut down the device and allow
2953 * the PCI bus layer to put it into D3 in order to take the PCIe link
2954 * down, so as to allow the platform to achieve its minimum low-power
2955 * state (which may not be possible if the link is up).
2956 */
2957 if (pm_suspend_via_firmware() || !ctrl->npss ||
2958 !pcie_aspm_enabled(pdev) ||
2959 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2960 return nvme_disable_prepare_reset(ndev, true);
2961
2962 nvme_start_freeze(ctrl);
2963 nvme_wait_freeze(ctrl);
2964 nvme_sync_queues(ctrl);
2965
2966 if (ctrl->state != NVME_CTRL_LIVE)
2967 goto unfreeze;
2968
2969 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2970 if (ret < 0)
2971 goto unfreeze;
2972
2973 /*
2974 * A saved state prevents pci pm from generically controlling the
2975 * device's power. If we're using protocol specific settings, we don't
2976 * want pci interfering.
2977 */
2978 pci_save_state(pdev);
2979
2980 ret = nvme_set_power_state(ctrl, ctrl->npss);
2981 if (ret < 0)
2982 goto unfreeze;
2983
2984 if (ret) {
2985 /* discard the saved state */
2986 pci_load_saved_state(pdev, NULL);
2987
2988 /*
2989 * Clearing npss forces a controller reset on resume. The
2990 * correct value will be rediscovered then.
2991 */
2992 ret = nvme_disable_prepare_reset(ndev, true);
2993 ctrl->npss = 0;
2994 }
2995 unfreeze:
2996 nvme_unfreeze(ctrl);
2997 return ret;
2998 }
2999
3000 static int nvme_simple_suspend(struct device *dev)
3001 {
3002 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3003 return nvme_disable_prepare_reset(ndev, true);
3004 }
3005
3006 static int nvme_simple_resume(struct device *dev)
3007 {
3008 struct pci_dev *pdev = to_pci_dev(dev);
3009 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3010
3011 return nvme_try_sched_reset(&ndev->ctrl);
3012 }
3013
3014 static const struct dev_pm_ops nvme_dev_pm_ops = {
3015 .suspend = nvme_suspend,
3016 .resume = nvme_resume,
3017 .freeze = nvme_simple_suspend,
3018 .thaw = nvme_simple_resume,
3019 .poweroff = nvme_simple_suspend,
3020 .restore = nvme_simple_resume,
3021 };
3022 #endif /* CONFIG_PM_SLEEP */
3023
3024 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3025 pci_channel_state_t state)
3026 {
3027 struct nvme_dev *dev = pci_get_drvdata(pdev);
3028
3029 /*
3030 * A frozen channel requires a reset. When detected, this method will
3031 * shutdown the controller to quiesce. The controller will be restarted
3032 * after the slot reset through driver's slot_reset callback.
3033 */
3034 switch (state) {
3035 case pci_channel_io_normal:
3036 return PCI_ERS_RESULT_CAN_RECOVER;
3037 case pci_channel_io_frozen:
3038 dev_warn(dev->ctrl.device,
3039 "frozen state error detected, reset controller\n");
3040 nvme_dev_disable(dev, false);
3041 return PCI_ERS_RESULT_NEED_RESET;
3042 case pci_channel_io_perm_failure:
3043 dev_warn(dev->ctrl.device,
3044 "failure state error detected, request disconnect\n");
3045 return PCI_ERS_RESULT_DISCONNECT;
3046 }
3047 return PCI_ERS_RESULT_NEED_RESET;
3048 }
3049
3050 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3051 {
3052 struct nvme_dev *dev = pci_get_drvdata(pdev);
3053
3054 dev_info(dev->ctrl.device, "restart after slot reset\n");
3055 pci_restore_state(pdev);
3056 nvme_reset_ctrl(&dev->ctrl);
3057 return PCI_ERS_RESULT_RECOVERED;
3058 }
3059
3060 static void nvme_error_resume(struct pci_dev *pdev)
3061 {
3062 struct nvme_dev *dev = pci_get_drvdata(pdev);
3063
3064 flush_work(&dev->ctrl.reset_work);
3065 }
3066
3067 static const struct pci_error_handlers nvme_err_handler = {
3068 .error_detected = nvme_error_detected,
3069 .slot_reset = nvme_slot_reset,
3070 .resume = nvme_error_resume,
3071 .reset_prepare = nvme_reset_prepare,
3072 .reset_done = nvme_reset_done,
3073 };
3074
3075 static const struct pci_device_id nvme_id_table[] = {
3076 { PCI_VDEVICE(INTEL, 0x0953),
3077 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3078 NVME_QUIRK_DEALLOCATE_ZEROES, },
3079 { PCI_VDEVICE(INTEL, 0x0a53),
3080 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3081 NVME_QUIRK_DEALLOCATE_ZEROES, },
3082 { PCI_VDEVICE(INTEL, 0x0a54),
3083 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3084 NVME_QUIRK_DEALLOCATE_ZEROES, },
3085 { PCI_VDEVICE(INTEL, 0x0a55),
3086 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3087 NVME_QUIRK_DEALLOCATE_ZEROES, },
3088 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3089 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3090 NVME_QUIRK_MEDIUM_PRIO_SQ |
3091 NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3092 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3093 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3094 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3095 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3096 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3097 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3098 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3099 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3100 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3101 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3102 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3103 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3104 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3105 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3106 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3107 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3108 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3109 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3110 .driver_data = NVME_QUIRK_LIGHTNVM, },
3111 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3112 .driver_data = NVME_QUIRK_LIGHTNVM, },
3113 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3114 .driver_data = NVME_QUIRK_LIGHTNVM, },
3115 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3116 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3117 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3118 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3119 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3120 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3121 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3122 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3123 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3124 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3125 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3126 NVME_QUIRK_128_BYTES_SQES |
3127 NVME_QUIRK_SHARED_TAGS },
3128 { 0, }
3129 };
3130 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3131
3132 static struct pci_driver nvme_driver = {
3133 .name = "nvme",
3134 .id_table = nvme_id_table,
3135 .probe = nvme_probe,
3136 .remove = nvme_remove,
3137 .shutdown = nvme_shutdown,
3138 #ifdef CONFIG_PM_SLEEP
3139 .driver = {
3140 .pm = &nvme_dev_pm_ops,
3141 },
3142 #endif
3143 .sriov_configure = pci_sriov_configure_simple,
3144 .err_handler = &nvme_err_handler,
3145 };
3146
3147 static int __init nvme_init(void)
3148 {
3149 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3150 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3151 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3152 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3153
3154 write_queues = min(write_queues, num_possible_cpus());
3155 poll_queues = min(poll_queues, num_possible_cpus());
3156 return pci_register_driver(&nvme_driver);
3157 }
3158
3159 static void __exit nvme_exit(void)
3160 {
3161 pci_unregister_driver(&nvme_driver);
3162 flush_workqueue(nvme_wq);
3163 }
3164
3165 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3166 MODULE_LICENSE("GPL");
3167 MODULE_VERSION("1.0");
3168 module_init(nvme_init);
3169 module_exit(nvme_exit);