]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
nvme: add quirk to force medium priority for SQ creation
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
32
33 #include "nvme.h"
34
35 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
36 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 static int use_threaded_interrupts;
41 module_param(use_threaded_interrupts, int, 0);
42
43 static bool use_cmb_sqes = true;
44 module_param(use_cmb_sqes, bool, 0644);
45 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
46
47 static unsigned int max_host_mem_size_mb = 128;
48 module_param(max_host_mem_size_mb, uint, 0444);
49 MODULE_PARM_DESC(max_host_mem_size_mb,
50 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
51
52 static unsigned int sgl_threshold = SZ_32K;
53 module_param(sgl_threshold, uint, 0644);
54 MODULE_PARM_DESC(sgl_threshold,
55 "Use SGLs when average request segment size is larger or equal to "
56 "this size. Use 0 to disable SGLs.");
57
58 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
59 static const struct kernel_param_ops io_queue_depth_ops = {
60 .set = io_queue_depth_set,
61 .get = param_get_int,
62 };
63
64 static int io_queue_depth = 1024;
65 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
66 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
67
68 struct nvme_dev;
69 struct nvme_queue;
70
71 static void nvme_process_cq(struct nvme_queue *nvmeq);
72 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
73
74 /*
75 * Represents an NVM Express device. Each nvme_dev is a PCI function.
76 */
77 struct nvme_dev {
78 struct nvme_queue **queues;
79 struct blk_mq_tag_set tagset;
80 struct blk_mq_tag_set admin_tagset;
81 u32 __iomem *dbs;
82 struct device *dev;
83 struct dma_pool *prp_page_pool;
84 struct dma_pool *prp_small_pool;
85 unsigned online_queues;
86 unsigned max_qid;
87 int q_depth;
88 u32 db_stride;
89 void __iomem *bar;
90 unsigned long bar_mapped_size;
91 struct work_struct remove_work;
92 struct mutex shutdown_lock;
93 bool subsystem;
94 void __iomem *cmb;
95 pci_bus_addr_t cmb_bus_addr;
96 u64 cmb_size;
97 u32 cmbsz;
98 u32 cmbloc;
99 struct nvme_ctrl ctrl;
100 struct completion ioq_wait;
101
102 /* shadow doorbell buffer support: */
103 u32 *dbbuf_dbs;
104 dma_addr_t dbbuf_dbs_dma_addr;
105 u32 *dbbuf_eis;
106 dma_addr_t dbbuf_eis_dma_addr;
107
108 /* host memory buffer support: */
109 u64 host_mem_size;
110 u32 nr_host_mem_descs;
111 dma_addr_t host_mem_descs_dma;
112 struct nvme_host_mem_buf_desc *host_mem_descs;
113 void **host_mem_desc_bufs;
114 };
115
116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
117 {
118 int n = 0, ret;
119
120 ret = kstrtoint(val, 10, &n);
121 if (ret != 0 || n < 2)
122 return -EINVAL;
123
124 return param_set_int(val, kp);
125 }
126
127 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
128 {
129 return qid * 2 * stride;
130 }
131
132 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
133 {
134 return (qid * 2 + 1) * stride;
135 }
136
137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
138 {
139 return container_of(ctrl, struct nvme_dev, ctrl);
140 }
141
142 /*
143 * An NVM Express queue. Each device has at least two (one for admin
144 * commands and one for I/O commands).
145 */
146 struct nvme_queue {
147 struct device *q_dmadev;
148 struct nvme_dev *dev;
149 spinlock_t q_lock;
150 struct nvme_command *sq_cmds;
151 struct nvme_command __iomem *sq_cmds_io;
152 volatile struct nvme_completion *cqes;
153 struct blk_mq_tags **tags;
154 dma_addr_t sq_dma_addr;
155 dma_addr_t cq_dma_addr;
156 u32 __iomem *q_db;
157 u16 q_depth;
158 s16 cq_vector;
159 u16 sq_tail;
160 u16 cq_head;
161 u16 qid;
162 u8 cq_phase;
163 u8 cqe_seen;
164 u32 *dbbuf_sq_db;
165 u32 *dbbuf_cq_db;
166 u32 *dbbuf_sq_ei;
167 u32 *dbbuf_cq_ei;
168 };
169
170 /*
171 * The nvme_iod describes the data in an I/O, including the list of PRP
172 * entries. You can't see it in this data structure because C doesn't let
173 * me express that. Use nvme_init_iod to ensure there's enough space
174 * allocated to store the PRP list.
175 */
176 struct nvme_iod {
177 struct nvme_request req;
178 struct nvme_queue *nvmeq;
179 bool use_sgl;
180 int aborted;
181 int npages; /* In the PRP list. 0 means small pool in use */
182 int nents; /* Used in scatterlist */
183 int length; /* Of data, in bytes */
184 dma_addr_t first_dma;
185 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186 struct scatterlist *sg;
187 struct scatterlist inline_sg[0];
188 };
189
190 /*
191 * Check we didin't inadvertently grow the command struct
192 */
193 static inline void _nvme_check_size(void)
194 {
195 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208 }
209
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
211 {
212 return ((num_possible_cpus() + 1) * 8 * stride);
213 }
214
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216 {
217 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218
219 if (dev->dbbuf_dbs)
220 return 0;
221
222 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223 &dev->dbbuf_dbs_dma_addr,
224 GFP_KERNEL);
225 if (!dev->dbbuf_dbs)
226 return -ENOMEM;
227 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228 &dev->dbbuf_eis_dma_addr,
229 GFP_KERNEL);
230 if (!dev->dbbuf_eis) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 dev->dbbuf_dbs = NULL;
234 return -ENOMEM;
235 }
236
237 return 0;
238 }
239
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241 {
242 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243
244 if (dev->dbbuf_dbs) {
245 dma_free_coherent(dev->dev, mem_size,
246 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247 dev->dbbuf_dbs = NULL;
248 }
249 if (dev->dbbuf_eis) {
250 dma_free_coherent(dev->dev, mem_size,
251 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252 dev->dbbuf_eis = NULL;
253 }
254 }
255
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257 struct nvme_queue *nvmeq, int qid)
258 {
259 if (!dev->dbbuf_dbs || !qid)
260 return;
261
262 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266 }
267
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
269 {
270 struct nvme_command c;
271
272 if (!dev->dbbuf_dbs)
273 return;
274
275 memset(&c, 0, sizeof(c));
276 c.dbbuf.opcode = nvme_admin_dbbuf;
277 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279
280 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282 /* Free memory and continue on */
283 nvme_dbbuf_dma_free(dev);
284 }
285 }
286
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288 {
289 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290 }
291
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294 volatile u32 *dbbuf_ei)
295 {
296 if (dbbuf_db) {
297 u16 old_value;
298
299 /*
300 * Ensure that the queue is written before updating
301 * the doorbell in memory
302 */
303 wmb();
304
305 old_value = *dbbuf_db;
306 *dbbuf_db = value;
307
308 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309 return false;
310 }
311
312 return true;
313 }
314
315 /*
316 * Max size of iod being embedded in the request payload
317 */
318 #define NVME_INT_PAGES 2
319 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
320
321 /*
322 * Will slightly overestimate the number of pages needed. This is OK
323 * as it only leads to a small amount of wasted memory for the lifetime of
324 * the I/O.
325 */
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
327 {
328 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329 dev->ctrl.page_size);
330 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331 }
332
333 /*
334 * Calculates the number of pages needed for the SGL segments. For example a 4k
335 * page can accommodate 256 SGL descriptors.
336 */
337 static int nvme_pci_npages_sgl(unsigned int num_seg)
338 {
339 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
340 }
341
342 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
343 unsigned int size, unsigned int nseg, bool use_sgl)
344 {
345 size_t alloc_size;
346
347 if (use_sgl)
348 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
349 else
350 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
351
352 return alloc_size + sizeof(struct scatterlist) * nseg;
353 }
354
355 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
356 {
357 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
358 NVME_INT_BYTES(dev), NVME_INT_PAGES,
359 use_sgl);
360
361 return sizeof(struct nvme_iod) + alloc_size;
362 }
363
364 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
365 unsigned int hctx_idx)
366 {
367 struct nvme_dev *dev = data;
368 struct nvme_queue *nvmeq = dev->queues[0];
369
370 WARN_ON(hctx_idx != 0);
371 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
372 WARN_ON(nvmeq->tags);
373
374 hctx->driver_data = nvmeq;
375 nvmeq->tags = &dev->admin_tagset.tags[0];
376 return 0;
377 }
378
379 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
380 {
381 struct nvme_queue *nvmeq = hctx->driver_data;
382
383 nvmeq->tags = NULL;
384 }
385
386 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
387 unsigned int hctx_idx)
388 {
389 struct nvme_dev *dev = data;
390 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
391
392 if (!nvmeq->tags)
393 nvmeq->tags = &dev->tagset.tags[hctx_idx];
394
395 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
396 hctx->driver_data = nvmeq;
397 return 0;
398 }
399
400 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
401 unsigned int hctx_idx, unsigned int numa_node)
402 {
403 struct nvme_dev *dev = set->driver_data;
404 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
405 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
406 struct nvme_queue *nvmeq = dev->queues[queue_idx];
407
408 BUG_ON(!nvmeq);
409 iod->nvmeq = nvmeq;
410 return 0;
411 }
412
413 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
414 {
415 struct nvme_dev *dev = set->driver_data;
416
417 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
418 }
419
420 /**
421 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
422 * @nvmeq: The queue to use
423 * @cmd: The command to send
424 *
425 * Safe to use from interrupt context
426 */
427 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
428 struct nvme_command *cmd)
429 {
430 u16 tail = nvmeq->sq_tail;
431
432 if (nvmeq->sq_cmds_io)
433 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
434 else
435 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
436
437 if (++tail == nvmeq->q_depth)
438 tail = 0;
439 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
440 nvmeq->dbbuf_sq_ei))
441 writel(tail, nvmeq->q_db);
442 nvmeq->sq_tail = tail;
443 }
444
445 static void **nvme_pci_iod_list(struct request *req)
446 {
447 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
448 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
449 }
450
451 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
452 {
453 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
454 int nseg = blk_rq_nr_phys_segments(req);
455 unsigned int avg_seg_size;
456
457 if (nseg == 0)
458 return false;
459
460 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
461
462 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
463 return false;
464 if (!iod->nvmeq->qid)
465 return false;
466 if (!sgl_threshold || avg_seg_size < sgl_threshold)
467 return false;
468 return true;
469 }
470
471 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
472 {
473 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
474 int nseg = blk_rq_nr_phys_segments(rq);
475 unsigned int size = blk_rq_payload_bytes(rq);
476
477 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
478
479 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
480 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
481 iod->use_sgl);
482
483 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
484 if (!iod->sg)
485 return BLK_STS_RESOURCE;
486 } else {
487 iod->sg = iod->inline_sg;
488 }
489
490 iod->aborted = 0;
491 iod->npages = -1;
492 iod->nents = 0;
493 iod->length = size;
494
495 return BLK_STS_OK;
496 }
497
498 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
499 {
500 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
501 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
502 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
503
504 int i;
505
506 if (iod->npages == 0)
507 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
508 dma_addr);
509
510 for (i = 0; i < iod->npages; i++) {
511 void *addr = nvme_pci_iod_list(req)[i];
512
513 if (iod->use_sgl) {
514 struct nvme_sgl_desc *sg_list = addr;
515
516 next_dma_addr =
517 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
518 } else {
519 __le64 *prp_list = addr;
520
521 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
522 }
523
524 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
525 dma_addr = next_dma_addr;
526 }
527
528 if (iod->sg != iod->inline_sg)
529 kfree(iod->sg);
530 }
531
532 #ifdef CONFIG_BLK_DEV_INTEGRITY
533 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
534 {
535 if (be32_to_cpu(pi->ref_tag) == v)
536 pi->ref_tag = cpu_to_be32(p);
537 }
538
539 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
540 {
541 if (be32_to_cpu(pi->ref_tag) == p)
542 pi->ref_tag = cpu_to_be32(v);
543 }
544
545 /**
546 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
547 *
548 * The virtual start sector is the one that was originally submitted by the
549 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
550 * start sector may be different. Remap protection information to match the
551 * physical LBA on writes, and back to the original seed on reads.
552 *
553 * Type 0 and 3 do not have a ref tag, so no remapping required.
554 */
555 static void nvme_dif_remap(struct request *req,
556 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
557 {
558 struct nvme_ns *ns = req->rq_disk->private_data;
559 struct bio_integrity_payload *bip;
560 struct t10_pi_tuple *pi;
561 void *p, *pmap;
562 u32 i, nlb, ts, phys, virt;
563
564 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
565 return;
566
567 bip = bio_integrity(req->bio);
568 if (!bip)
569 return;
570
571 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
572
573 p = pmap;
574 virt = bip_get_seed(bip);
575 phys = nvme_block_nr(ns, blk_rq_pos(req));
576 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
577 ts = ns->disk->queue->integrity.tuple_size;
578
579 for (i = 0; i < nlb; i++, virt++, phys++) {
580 pi = (struct t10_pi_tuple *)p;
581 dif_swap(phys, virt, pi);
582 p += ts;
583 }
584 kunmap_atomic(pmap);
585 }
586 #else /* CONFIG_BLK_DEV_INTEGRITY */
587 static void nvme_dif_remap(struct request *req,
588 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
589 {
590 }
591 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
592 {
593 }
594 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
595 {
596 }
597 #endif
598
599 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
600 {
601 int i;
602 struct scatterlist *sg;
603
604 for_each_sg(sgl, sg, nents, i) {
605 dma_addr_t phys = sg_phys(sg);
606 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
607 "dma_address:%pad dma_length:%d\n",
608 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
609 sg_dma_len(sg));
610 }
611 }
612
613 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
614 struct request *req, struct nvme_rw_command *cmnd)
615 {
616 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
617 struct dma_pool *pool;
618 int length = blk_rq_payload_bytes(req);
619 struct scatterlist *sg = iod->sg;
620 int dma_len = sg_dma_len(sg);
621 u64 dma_addr = sg_dma_address(sg);
622 u32 page_size = dev->ctrl.page_size;
623 int offset = dma_addr & (page_size - 1);
624 __le64 *prp_list;
625 void **list = nvme_pci_iod_list(req);
626 dma_addr_t prp_dma;
627 int nprps, i;
628
629 length -= (page_size - offset);
630 if (length <= 0) {
631 iod->first_dma = 0;
632 goto done;
633 }
634
635 dma_len -= (page_size - offset);
636 if (dma_len) {
637 dma_addr += (page_size - offset);
638 } else {
639 sg = sg_next(sg);
640 dma_addr = sg_dma_address(sg);
641 dma_len = sg_dma_len(sg);
642 }
643
644 if (length <= page_size) {
645 iod->first_dma = dma_addr;
646 goto done;
647 }
648
649 nprps = DIV_ROUND_UP(length, page_size);
650 if (nprps <= (256 / 8)) {
651 pool = dev->prp_small_pool;
652 iod->npages = 0;
653 } else {
654 pool = dev->prp_page_pool;
655 iod->npages = 1;
656 }
657
658 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
659 if (!prp_list) {
660 iod->first_dma = dma_addr;
661 iod->npages = -1;
662 return BLK_STS_RESOURCE;
663 }
664 list[0] = prp_list;
665 iod->first_dma = prp_dma;
666 i = 0;
667 for (;;) {
668 if (i == page_size >> 3) {
669 __le64 *old_prp_list = prp_list;
670 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
671 if (!prp_list)
672 return BLK_STS_RESOURCE;
673 list[iod->npages++] = prp_list;
674 prp_list[0] = old_prp_list[i - 1];
675 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
676 i = 1;
677 }
678 prp_list[i++] = cpu_to_le64(dma_addr);
679 dma_len -= page_size;
680 dma_addr += page_size;
681 length -= page_size;
682 if (length <= 0)
683 break;
684 if (dma_len > 0)
685 continue;
686 if (unlikely(dma_len < 0))
687 goto bad_sgl;
688 sg = sg_next(sg);
689 dma_addr = sg_dma_address(sg);
690 dma_len = sg_dma_len(sg);
691 }
692
693 done:
694 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
695 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
696
697 return BLK_STS_OK;
698
699 bad_sgl:
700 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
701 "Invalid SGL for payload:%d nents:%d\n",
702 blk_rq_payload_bytes(req), iod->nents);
703 return BLK_STS_IOERR;
704 }
705
706 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
707 struct scatterlist *sg)
708 {
709 sge->addr = cpu_to_le64(sg_dma_address(sg));
710 sge->length = cpu_to_le32(sg_dma_len(sg));
711 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
712 }
713
714 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
715 dma_addr_t dma_addr, int entries)
716 {
717 sge->addr = cpu_to_le64(dma_addr);
718 if (entries < SGES_PER_PAGE) {
719 sge->length = cpu_to_le32(entries * sizeof(*sge));
720 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
721 } else {
722 sge->length = cpu_to_le32(PAGE_SIZE);
723 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
724 }
725 }
726
727 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
728 struct request *req, struct nvme_rw_command *cmd, int entries)
729 {
730 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
731 struct dma_pool *pool;
732 struct nvme_sgl_desc *sg_list;
733 struct scatterlist *sg = iod->sg;
734 dma_addr_t sgl_dma;
735 int i = 0;
736
737 /* setting the transfer type as SGL */
738 cmd->flags = NVME_CMD_SGL_METABUF;
739
740 if (entries == 1) {
741 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
742 return BLK_STS_OK;
743 }
744
745 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
746 pool = dev->prp_small_pool;
747 iod->npages = 0;
748 } else {
749 pool = dev->prp_page_pool;
750 iod->npages = 1;
751 }
752
753 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
754 if (!sg_list) {
755 iod->npages = -1;
756 return BLK_STS_RESOURCE;
757 }
758
759 nvme_pci_iod_list(req)[0] = sg_list;
760 iod->first_dma = sgl_dma;
761
762 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
763
764 do {
765 if (i == SGES_PER_PAGE) {
766 struct nvme_sgl_desc *old_sg_desc = sg_list;
767 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
768
769 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770 if (!sg_list)
771 return BLK_STS_RESOURCE;
772
773 i = 0;
774 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
775 sg_list[i++] = *link;
776 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
777 }
778
779 nvme_pci_sgl_set_data(&sg_list[i++], sg);
780 sg = sg_next(sg);
781 } while (--entries > 0);
782
783 return BLK_STS_OK;
784 }
785
786 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
787 struct nvme_command *cmnd)
788 {
789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790 struct request_queue *q = req->q;
791 enum dma_data_direction dma_dir = rq_data_dir(req) ?
792 DMA_TO_DEVICE : DMA_FROM_DEVICE;
793 blk_status_t ret = BLK_STS_IOERR;
794 int nr_mapped;
795
796 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
797 iod->nents = blk_rq_map_sg(q, req, iod->sg);
798 if (!iod->nents)
799 goto out;
800
801 ret = BLK_STS_RESOURCE;
802 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
803 DMA_ATTR_NO_WARN);
804 if (!nr_mapped)
805 goto out;
806
807 if (iod->use_sgl)
808 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
809 else
810 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
811
812 if (ret != BLK_STS_OK)
813 goto out_unmap;
814
815 ret = BLK_STS_IOERR;
816 if (blk_integrity_rq(req)) {
817 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
818 goto out_unmap;
819
820 sg_init_table(&iod->meta_sg, 1);
821 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
822 goto out_unmap;
823
824 if (req_op(req) == REQ_OP_WRITE)
825 nvme_dif_remap(req, nvme_dif_prep);
826
827 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
828 goto out_unmap;
829 }
830
831 if (blk_integrity_rq(req))
832 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
833 return BLK_STS_OK;
834
835 out_unmap:
836 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
837 out:
838 return ret;
839 }
840
841 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
842 {
843 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
844 enum dma_data_direction dma_dir = rq_data_dir(req) ?
845 DMA_TO_DEVICE : DMA_FROM_DEVICE;
846
847 if (iod->nents) {
848 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
849 if (blk_integrity_rq(req)) {
850 if (req_op(req) == REQ_OP_READ)
851 nvme_dif_remap(req, nvme_dif_complete);
852 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
853 }
854 }
855
856 nvme_cleanup_cmd(req);
857 nvme_free_iod(dev, req);
858 }
859
860 /*
861 * NOTE: ns is NULL when called on the admin queue.
862 */
863 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
864 const struct blk_mq_queue_data *bd)
865 {
866 struct nvme_ns *ns = hctx->queue->queuedata;
867 struct nvme_queue *nvmeq = hctx->driver_data;
868 struct nvme_dev *dev = nvmeq->dev;
869 struct request *req = bd->rq;
870 struct nvme_command cmnd;
871 blk_status_t ret;
872
873 ret = nvme_setup_cmd(ns, req, &cmnd);
874 if (ret)
875 return ret;
876
877 ret = nvme_init_iod(req, dev);
878 if (ret)
879 goto out_free_cmd;
880
881 if (blk_rq_nr_phys_segments(req)) {
882 ret = nvme_map_data(dev, req, &cmnd);
883 if (ret)
884 goto out_cleanup_iod;
885 }
886
887 blk_mq_start_request(req);
888
889 spin_lock_irq(&nvmeq->q_lock);
890 if (unlikely(nvmeq->cq_vector < 0)) {
891 ret = BLK_STS_IOERR;
892 spin_unlock_irq(&nvmeq->q_lock);
893 goto out_cleanup_iod;
894 }
895 __nvme_submit_cmd(nvmeq, &cmnd);
896 nvme_process_cq(nvmeq);
897 spin_unlock_irq(&nvmeq->q_lock);
898 return BLK_STS_OK;
899 out_cleanup_iod:
900 nvme_free_iod(dev, req);
901 out_free_cmd:
902 nvme_cleanup_cmd(req);
903 return ret;
904 }
905
906 static void nvme_pci_complete_rq(struct request *req)
907 {
908 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
909
910 nvme_unmap_data(iod->nvmeq->dev, req);
911 nvme_complete_rq(req);
912 }
913
914 /* We read the CQE phase first to check if the rest of the entry is valid */
915 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
916 u16 phase)
917 {
918 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
919 }
920
921 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
922 {
923 u16 head = nvmeq->cq_head;
924
925 if (likely(nvmeq->cq_vector >= 0)) {
926 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
927 nvmeq->dbbuf_cq_ei))
928 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
929 }
930 }
931
932 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
933 struct nvme_completion *cqe)
934 {
935 struct request *req;
936
937 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
938 dev_warn(nvmeq->dev->ctrl.device,
939 "invalid id %d completed on queue %d\n",
940 cqe->command_id, le16_to_cpu(cqe->sq_id));
941 return;
942 }
943
944 /*
945 * AEN requests are special as they don't time out and can
946 * survive any kind of queue freeze and often don't respond to
947 * aborts. We don't even bother to allocate a struct request
948 * for them but rather special case them here.
949 */
950 if (unlikely(nvmeq->qid == 0 &&
951 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
952 nvme_complete_async_event(&nvmeq->dev->ctrl,
953 cqe->status, &cqe->result);
954 return;
955 }
956
957 nvmeq->cqe_seen = 1;
958 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
959 nvme_end_request(req, cqe->status, cqe->result);
960 }
961
962 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
963 struct nvme_completion *cqe)
964 {
965 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
966 *cqe = nvmeq->cqes[nvmeq->cq_head];
967
968 if (++nvmeq->cq_head == nvmeq->q_depth) {
969 nvmeq->cq_head = 0;
970 nvmeq->cq_phase = !nvmeq->cq_phase;
971 }
972 return true;
973 }
974 return false;
975 }
976
977 static void nvme_process_cq(struct nvme_queue *nvmeq)
978 {
979 struct nvme_completion cqe;
980 int consumed = 0;
981
982 while (nvme_read_cqe(nvmeq, &cqe)) {
983 nvme_handle_cqe(nvmeq, &cqe);
984 consumed++;
985 }
986
987 if (consumed)
988 nvme_ring_cq_doorbell(nvmeq);
989 }
990
991 static irqreturn_t nvme_irq(int irq, void *data)
992 {
993 irqreturn_t result;
994 struct nvme_queue *nvmeq = data;
995 spin_lock(&nvmeq->q_lock);
996 nvme_process_cq(nvmeq);
997 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
998 nvmeq->cqe_seen = 0;
999 spin_unlock(&nvmeq->q_lock);
1000 return result;
1001 }
1002
1003 static irqreturn_t nvme_irq_check(int irq, void *data)
1004 {
1005 struct nvme_queue *nvmeq = data;
1006 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1007 return IRQ_WAKE_THREAD;
1008 return IRQ_NONE;
1009 }
1010
1011 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1012 {
1013 struct nvme_completion cqe;
1014 int found = 0, consumed = 0;
1015
1016 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1017 return 0;
1018
1019 spin_lock_irq(&nvmeq->q_lock);
1020 while (nvme_read_cqe(nvmeq, &cqe)) {
1021 nvme_handle_cqe(nvmeq, &cqe);
1022 consumed++;
1023
1024 if (tag == cqe.command_id) {
1025 found = 1;
1026 break;
1027 }
1028 }
1029
1030 if (consumed)
1031 nvme_ring_cq_doorbell(nvmeq);
1032 spin_unlock_irq(&nvmeq->q_lock);
1033
1034 return found;
1035 }
1036
1037 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1038 {
1039 struct nvme_queue *nvmeq = hctx->driver_data;
1040
1041 return __nvme_poll(nvmeq, tag);
1042 }
1043
1044 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1045 {
1046 struct nvme_dev *dev = to_nvme_dev(ctrl);
1047 struct nvme_queue *nvmeq = dev->queues[0];
1048 struct nvme_command c;
1049
1050 memset(&c, 0, sizeof(c));
1051 c.common.opcode = nvme_admin_async_event;
1052 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1053
1054 spin_lock_irq(&nvmeq->q_lock);
1055 __nvme_submit_cmd(nvmeq, &c);
1056 spin_unlock_irq(&nvmeq->q_lock);
1057 }
1058
1059 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1060 {
1061 struct nvme_command c;
1062
1063 memset(&c, 0, sizeof(c));
1064 c.delete_queue.opcode = opcode;
1065 c.delete_queue.qid = cpu_to_le16(id);
1066
1067 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1068 }
1069
1070 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1071 struct nvme_queue *nvmeq)
1072 {
1073 struct nvme_ctrl *ctrl = &dev->ctrl;
1074 struct nvme_command c;
1075 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1076
1077 /*
1078 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1079 * set. Since URGENT priority is zeroes, it makes all queues
1080 * URGENT.
1081 */
1082 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1083 flags |= NVME_SQ_PRIO_MEDIUM;
1084
1085 /*
1086 * Note: we (ab)use the fact that the prp fields survive if no data
1087 * is attached to the request.
1088 */
1089 memset(&c, 0, sizeof(c));
1090 c.create_cq.opcode = nvme_admin_create_cq;
1091 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1092 c.create_cq.cqid = cpu_to_le16(qid);
1093 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1094 c.create_cq.cq_flags = cpu_to_le16(flags);
1095 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1096
1097 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1098 }
1099
1100 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1101 struct nvme_queue *nvmeq)
1102 {
1103 struct nvme_command c;
1104 int flags = NVME_QUEUE_PHYS_CONTIG;
1105
1106 /*
1107 * Note: we (ab)use the fact that the prp fields survive if no data
1108 * is attached to the request.
1109 */
1110 memset(&c, 0, sizeof(c));
1111 c.create_sq.opcode = nvme_admin_create_sq;
1112 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1113 c.create_sq.sqid = cpu_to_le16(qid);
1114 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1115 c.create_sq.sq_flags = cpu_to_le16(flags);
1116 c.create_sq.cqid = cpu_to_le16(qid);
1117
1118 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1119 }
1120
1121 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1122 {
1123 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1124 }
1125
1126 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1127 {
1128 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1129 }
1130
1131 static void abort_endio(struct request *req, blk_status_t error)
1132 {
1133 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1134 struct nvme_queue *nvmeq = iod->nvmeq;
1135
1136 dev_warn(nvmeq->dev->ctrl.device,
1137 "Abort status: 0x%x", nvme_req(req)->status);
1138 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1139 blk_mq_free_request(req);
1140 }
1141
1142 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1143 {
1144
1145 /* If true, indicates loss of adapter communication, possibly by a
1146 * NVMe Subsystem reset.
1147 */
1148 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1149
1150 /* If there is a reset ongoing, we shouldn't reset again. */
1151 if (dev->ctrl.state == NVME_CTRL_RESETTING)
1152 return false;
1153
1154 /* We shouldn't reset unless the controller is on fatal error state
1155 * _or_ if we lost the communication with it.
1156 */
1157 if (!(csts & NVME_CSTS_CFS) && !nssro)
1158 return false;
1159
1160 return true;
1161 }
1162
1163 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1164 {
1165 /* Read a config register to help see what died. */
1166 u16 pci_status;
1167 int result;
1168
1169 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1170 &pci_status);
1171 if (result == PCIBIOS_SUCCESSFUL)
1172 dev_warn(dev->ctrl.device,
1173 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1174 csts, pci_status);
1175 else
1176 dev_warn(dev->ctrl.device,
1177 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1178 csts, result);
1179 }
1180
1181 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1182 {
1183 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1184 struct nvme_queue *nvmeq = iod->nvmeq;
1185 struct nvme_dev *dev = nvmeq->dev;
1186 struct request *abort_req;
1187 struct nvme_command cmd;
1188 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1189
1190 /* If PCI error recovery process is happening, we cannot reset or
1191 * the recovery mechanism will surely fail.
1192 */
1193 mb();
1194 if (pci_channel_offline(to_pci_dev(dev->dev)))
1195 return BLK_EH_RESET_TIMER;
1196
1197 /*
1198 * Reset immediately if the controller is failed
1199 */
1200 if (nvme_should_reset(dev, csts)) {
1201 nvme_warn_reset(dev, csts);
1202 nvme_dev_disable(dev, false);
1203 nvme_reset_ctrl(&dev->ctrl);
1204 return BLK_EH_HANDLED;
1205 }
1206
1207 /*
1208 * Did we miss an interrupt?
1209 */
1210 if (__nvme_poll(nvmeq, req->tag)) {
1211 dev_warn(dev->ctrl.device,
1212 "I/O %d QID %d timeout, completion polled\n",
1213 req->tag, nvmeq->qid);
1214 return BLK_EH_HANDLED;
1215 }
1216
1217 /*
1218 * Shutdown immediately if controller times out while starting. The
1219 * reset work will see the pci device disabled when it gets the forced
1220 * cancellation error. All outstanding requests are completed on
1221 * shutdown, so we return BLK_EH_HANDLED.
1222 */
1223 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1224 dev_warn(dev->ctrl.device,
1225 "I/O %d QID %d timeout, disable controller\n",
1226 req->tag, nvmeq->qid);
1227 nvme_dev_disable(dev, false);
1228 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1229 return BLK_EH_HANDLED;
1230 }
1231
1232 /*
1233 * Shutdown the controller immediately and schedule a reset if the
1234 * command was already aborted once before and still hasn't been
1235 * returned to the driver, or if this is the admin queue.
1236 */
1237 if (!nvmeq->qid || iod->aborted) {
1238 dev_warn(dev->ctrl.device,
1239 "I/O %d QID %d timeout, reset controller\n",
1240 req->tag, nvmeq->qid);
1241 nvme_dev_disable(dev, false);
1242 nvme_reset_ctrl(&dev->ctrl);
1243
1244 /*
1245 * Mark the request as handled, since the inline shutdown
1246 * forces all outstanding requests to complete.
1247 */
1248 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1249 return BLK_EH_HANDLED;
1250 }
1251
1252 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1253 atomic_inc(&dev->ctrl.abort_limit);
1254 return BLK_EH_RESET_TIMER;
1255 }
1256 iod->aborted = 1;
1257
1258 memset(&cmd, 0, sizeof(cmd));
1259 cmd.abort.opcode = nvme_admin_abort_cmd;
1260 cmd.abort.cid = req->tag;
1261 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1262
1263 dev_warn(nvmeq->dev->ctrl.device,
1264 "I/O %d QID %d timeout, aborting\n",
1265 req->tag, nvmeq->qid);
1266
1267 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1268 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1269 if (IS_ERR(abort_req)) {
1270 atomic_inc(&dev->ctrl.abort_limit);
1271 return BLK_EH_RESET_TIMER;
1272 }
1273
1274 abort_req->timeout = ADMIN_TIMEOUT;
1275 abort_req->end_io_data = NULL;
1276 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1277
1278 /*
1279 * The aborted req will be completed on receiving the abort req.
1280 * We enable the timer again. If hit twice, it'll cause a device reset,
1281 * as the device then is in a faulty state.
1282 */
1283 return BLK_EH_RESET_TIMER;
1284 }
1285
1286 static void nvme_free_queue(struct nvme_queue *nvmeq)
1287 {
1288 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1289 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1290 if (nvmeq->sq_cmds)
1291 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1292 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1293 kfree(nvmeq);
1294 }
1295
1296 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1297 {
1298 int i;
1299
1300 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1301 struct nvme_queue *nvmeq = dev->queues[i];
1302 dev->ctrl.queue_count--;
1303 dev->queues[i] = NULL;
1304 nvme_free_queue(nvmeq);
1305 }
1306 }
1307
1308 /**
1309 * nvme_suspend_queue - put queue into suspended state
1310 * @nvmeq - queue to suspend
1311 */
1312 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1313 {
1314 int vector;
1315
1316 spin_lock_irq(&nvmeq->q_lock);
1317 if (nvmeq->cq_vector == -1) {
1318 spin_unlock_irq(&nvmeq->q_lock);
1319 return 1;
1320 }
1321 vector = nvmeq->cq_vector;
1322 nvmeq->dev->online_queues--;
1323 nvmeq->cq_vector = -1;
1324 spin_unlock_irq(&nvmeq->q_lock);
1325
1326 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1327 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1328
1329 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1330
1331 return 0;
1332 }
1333
1334 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1335 {
1336 struct nvme_queue *nvmeq = dev->queues[0];
1337
1338 if (!nvmeq)
1339 return;
1340 if (nvme_suspend_queue(nvmeq))
1341 return;
1342
1343 if (shutdown)
1344 nvme_shutdown_ctrl(&dev->ctrl);
1345 else
1346 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1347
1348 spin_lock_irq(&nvmeq->q_lock);
1349 nvme_process_cq(nvmeq);
1350 spin_unlock_irq(&nvmeq->q_lock);
1351 }
1352
1353 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1354 int entry_size)
1355 {
1356 int q_depth = dev->q_depth;
1357 unsigned q_size_aligned = roundup(q_depth * entry_size,
1358 dev->ctrl.page_size);
1359
1360 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1361 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1362 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1363 q_depth = div_u64(mem_per_q, entry_size);
1364
1365 /*
1366 * Ensure the reduced q_depth is above some threshold where it
1367 * would be better to map queues in system memory with the
1368 * original depth
1369 */
1370 if (q_depth < 64)
1371 return -ENOMEM;
1372 }
1373
1374 return q_depth;
1375 }
1376
1377 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1378 int qid, int depth)
1379 {
1380 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1381 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1382 dev->ctrl.page_size);
1383 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1384 nvmeq->sq_cmds_io = dev->cmb + offset;
1385 } else {
1386 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1387 &nvmeq->sq_dma_addr, GFP_KERNEL);
1388 if (!nvmeq->sq_cmds)
1389 return -ENOMEM;
1390 }
1391
1392 return 0;
1393 }
1394
1395 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1396 int depth, int node)
1397 {
1398 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1399 node);
1400 if (!nvmeq)
1401 return NULL;
1402
1403 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1404 &nvmeq->cq_dma_addr, GFP_KERNEL);
1405 if (!nvmeq->cqes)
1406 goto free_nvmeq;
1407
1408 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1409 goto free_cqdma;
1410
1411 nvmeq->q_dmadev = dev->dev;
1412 nvmeq->dev = dev;
1413 spin_lock_init(&nvmeq->q_lock);
1414 nvmeq->cq_head = 0;
1415 nvmeq->cq_phase = 1;
1416 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1417 nvmeq->q_depth = depth;
1418 nvmeq->qid = qid;
1419 nvmeq->cq_vector = -1;
1420 dev->queues[qid] = nvmeq;
1421 dev->ctrl.queue_count++;
1422
1423 return nvmeq;
1424
1425 free_cqdma:
1426 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1427 nvmeq->cq_dma_addr);
1428 free_nvmeq:
1429 kfree(nvmeq);
1430 return NULL;
1431 }
1432
1433 static int queue_request_irq(struct nvme_queue *nvmeq)
1434 {
1435 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1436 int nr = nvmeq->dev->ctrl.instance;
1437
1438 if (use_threaded_interrupts) {
1439 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1440 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1441 } else {
1442 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1443 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1444 }
1445 }
1446
1447 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1448 {
1449 struct nvme_dev *dev = nvmeq->dev;
1450
1451 spin_lock_irq(&nvmeq->q_lock);
1452 nvmeq->sq_tail = 0;
1453 nvmeq->cq_head = 0;
1454 nvmeq->cq_phase = 1;
1455 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1456 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1457 nvme_dbbuf_init(dev, nvmeq, qid);
1458 dev->online_queues++;
1459 spin_unlock_irq(&nvmeq->q_lock);
1460 }
1461
1462 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1463 {
1464 struct nvme_dev *dev = nvmeq->dev;
1465 int result;
1466
1467 nvmeq->cq_vector = qid - 1;
1468 result = adapter_alloc_cq(dev, qid, nvmeq);
1469 if (result < 0)
1470 return result;
1471
1472 result = adapter_alloc_sq(dev, qid, nvmeq);
1473 if (result < 0)
1474 goto release_cq;
1475
1476 nvme_init_queue(nvmeq, qid);
1477 result = queue_request_irq(nvmeq);
1478 if (result < 0)
1479 goto release_sq;
1480
1481 return result;
1482
1483 release_sq:
1484 adapter_delete_sq(dev, qid);
1485 release_cq:
1486 adapter_delete_cq(dev, qid);
1487 return result;
1488 }
1489
1490 static const struct blk_mq_ops nvme_mq_admin_ops = {
1491 .queue_rq = nvme_queue_rq,
1492 .complete = nvme_pci_complete_rq,
1493 .init_hctx = nvme_admin_init_hctx,
1494 .exit_hctx = nvme_admin_exit_hctx,
1495 .init_request = nvme_init_request,
1496 .timeout = nvme_timeout,
1497 };
1498
1499 static const struct blk_mq_ops nvme_mq_ops = {
1500 .queue_rq = nvme_queue_rq,
1501 .complete = nvme_pci_complete_rq,
1502 .init_hctx = nvme_init_hctx,
1503 .init_request = nvme_init_request,
1504 .map_queues = nvme_pci_map_queues,
1505 .timeout = nvme_timeout,
1506 .poll = nvme_poll,
1507 };
1508
1509 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1510 {
1511 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1512 /*
1513 * If the controller was reset during removal, it's possible
1514 * user requests may be waiting on a stopped queue. Start the
1515 * queue to flush these to completion.
1516 */
1517 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1518 blk_cleanup_queue(dev->ctrl.admin_q);
1519 blk_mq_free_tag_set(&dev->admin_tagset);
1520 }
1521 }
1522
1523 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1524 {
1525 if (!dev->ctrl.admin_q) {
1526 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1527 dev->admin_tagset.nr_hw_queues = 1;
1528
1529 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1530 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1531 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1532 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1533 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1534 dev->admin_tagset.driver_data = dev;
1535
1536 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1537 return -ENOMEM;
1538 dev->ctrl.admin_tagset = &dev->admin_tagset;
1539
1540 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1541 if (IS_ERR(dev->ctrl.admin_q)) {
1542 blk_mq_free_tag_set(&dev->admin_tagset);
1543 return -ENOMEM;
1544 }
1545 if (!blk_get_queue(dev->ctrl.admin_q)) {
1546 nvme_dev_remove_admin(dev);
1547 dev->ctrl.admin_q = NULL;
1548 return -ENODEV;
1549 }
1550 } else
1551 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1552
1553 return 0;
1554 }
1555
1556 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1557 {
1558 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1559 }
1560
1561 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1562 {
1563 struct pci_dev *pdev = to_pci_dev(dev->dev);
1564
1565 if (size <= dev->bar_mapped_size)
1566 return 0;
1567 if (size > pci_resource_len(pdev, 0))
1568 return -ENOMEM;
1569 if (dev->bar)
1570 iounmap(dev->bar);
1571 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1572 if (!dev->bar) {
1573 dev->bar_mapped_size = 0;
1574 return -ENOMEM;
1575 }
1576 dev->bar_mapped_size = size;
1577 dev->dbs = dev->bar + NVME_REG_DBS;
1578
1579 return 0;
1580 }
1581
1582 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1583 {
1584 int result;
1585 u32 aqa;
1586 struct nvme_queue *nvmeq;
1587
1588 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1589 if (result < 0)
1590 return result;
1591
1592 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1593 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1594
1595 if (dev->subsystem &&
1596 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1597 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1598
1599 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1600 if (result < 0)
1601 return result;
1602
1603 nvmeq = dev->queues[0];
1604 if (!nvmeq) {
1605 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1606 dev_to_node(dev->dev));
1607 if (!nvmeq)
1608 return -ENOMEM;
1609 }
1610
1611 aqa = nvmeq->q_depth - 1;
1612 aqa |= aqa << 16;
1613
1614 writel(aqa, dev->bar + NVME_REG_AQA);
1615 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1616 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1617
1618 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1619 if (result)
1620 return result;
1621
1622 nvmeq->cq_vector = 0;
1623 nvme_init_queue(nvmeq, 0);
1624 result = queue_request_irq(nvmeq);
1625 if (result) {
1626 nvmeq->cq_vector = -1;
1627 return result;
1628 }
1629
1630 return result;
1631 }
1632
1633 static int nvme_create_io_queues(struct nvme_dev *dev)
1634 {
1635 unsigned i, max;
1636 int ret = 0;
1637
1638 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1639 /* vector == qid - 1, match nvme_create_queue */
1640 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1641 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1642 ret = -ENOMEM;
1643 break;
1644 }
1645 }
1646
1647 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1648 for (i = dev->online_queues; i <= max; i++) {
1649 ret = nvme_create_queue(dev->queues[i], i);
1650 if (ret)
1651 break;
1652 }
1653
1654 /*
1655 * Ignore failing Create SQ/CQ commands, we can continue with less
1656 * than the desired aount of queues, and even a controller without
1657 * I/O queues an still be used to issue admin commands. This might
1658 * be useful to upgrade a buggy firmware for example.
1659 */
1660 return ret >= 0 ? 0 : ret;
1661 }
1662
1663 static ssize_t nvme_cmb_show(struct device *dev,
1664 struct device_attribute *attr,
1665 char *buf)
1666 {
1667 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1668
1669 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1670 ndev->cmbloc, ndev->cmbsz);
1671 }
1672 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1673
1674 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1675 {
1676 u64 szu, size, offset;
1677 resource_size_t bar_size;
1678 struct pci_dev *pdev = to_pci_dev(dev->dev);
1679 void __iomem *cmb;
1680 int bar;
1681
1682 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1683 if (!(NVME_CMB_SZ(dev->cmbsz)))
1684 return NULL;
1685 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1686
1687 if (!use_cmb_sqes)
1688 return NULL;
1689
1690 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1691 size = szu * NVME_CMB_SZ(dev->cmbsz);
1692 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1693 bar = NVME_CMB_BIR(dev->cmbloc);
1694 bar_size = pci_resource_len(pdev, bar);
1695
1696 if (offset > bar_size)
1697 return NULL;
1698
1699 /*
1700 * Controllers may support a CMB size larger than their BAR,
1701 * for example, due to being behind a bridge. Reduce the CMB to
1702 * the reported size of the BAR
1703 */
1704 if (size > bar_size - offset)
1705 size = bar_size - offset;
1706
1707 cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1708 if (!cmb)
1709 return NULL;
1710
1711 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1712 dev->cmb_size = size;
1713 return cmb;
1714 }
1715
1716 static inline void nvme_release_cmb(struct nvme_dev *dev)
1717 {
1718 if (dev->cmb) {
1719 iounmap(dev->cmb);
1720 dev->cmb = NULL;
1721 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1722 &dev_attr_cmb.attr, NULL);
1723 dev->cmbsz = 0;
1724 }
1725 }
1726
1727 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1728 {
1729 u64 dma_addr = dev->host_mem_descs_dma;
1730 struct nvme_command c;
1731 int ret;
1732
1733 memset(&c, 0, sizeof(c));
1734 c.features.opcode = nvme_admin_set_features;
1735 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1736 c.features.dword11 = cpu_to_le32(bits);
1737 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1738 ilog2(dev->ctrl.page_size));
1739 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1740 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1741 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1742
1743 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1744 if (ret) {
1745 dev_warn(dev->ctrl.device,
1746 "failed to set host mem (err %d, flags %#x).\n",
1747 ret, bits);
1748 }
1749 return ret;
1750 }
1751
1752 static void nvme_free_host_mem(struct nvme_dev *dev)
1753 {
1754 int i;
1755
1756 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1757 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1758 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1759
1760 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1761 le64_to_cpu(desc->addr));
1762 }
1763
1764 kfree(dev->host_mem_desc_bufs);
1765 dev->host_mem_desc_bufs = NULL;
1766 dma_free_coherent(dev->dev,
1767 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1768 dev->host_mem_descs, dev->host_mem_descs_dma);
1769 dev->host_mem_descs = NULL;
1770 dev->nr_host_mem_descs = 0;
1771 }
1772
1773 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1774 u32 chunk_size)
1775 {
1776 struct nvme_host_mem_buf_desc *descs;
1777 u32 max_entries, len;
1778 dma_addr_t descs_dma;
1779 int i = 0;
1780 void **bufs;
1781 u64 size = 0, tmp;
1782
1783 tmp = (preferred + chunk_size - 1);
1784 do_div(tmp, chunk_size);
1785 max_entries = tmp;
1786
1787 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1788 max_entries = dev->ctrl.hmmaxd;
1789
1790 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1791 &descs_dma, GFP_KERNEL);
1792 if (!descs)
1793 goto out;
1794
1795 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1796 if (!bufs)
1797 goto out_free_descs;
1798
1799 for (size = 0; size < preferred && i < max_entries; size += len) {
1800 dma_addr_t dma_addr;
1801
1802 len = min_t(u64, chunk_size, preferred - size);
1803 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1804 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1805 if (!bufs[i])
1806 break;
1807
1808 descs[i].addr = cpu_to_le64(dma_addr);
1809 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1810 i++;
1811 }
1812
1813 if (!size)
1814 goto out_free_bufs;
1815
1816 dev->nr_host_mem_descs = i;
1817 dev->host_mem_size = size;
1818 dev->host_mem_descs = descs;
1819 dev->host_mem_descs_dma = descs_dma;
1820 dev->host_mem_desc_bufs = bufs;
1821 return 0;
1822
1823 out_free_bufs:
1824 while (--i >= 0) {
1825 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1826
1827 dma_free_coherent(dev->dev, size, bufs[i],
1828 le64_to_cpu(descs[i].addr));
1829 }
1830
1831 kfree(bufs);
1832 out_free_descs:
1833 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1834 descs_dma);
1835 out:
1836 dev->host_mem_descs = NULL;
1837 return -ENOMEM;
1838 }
1839
1840 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1841 {
1842 u32 chunk_size;
1843
1844 /* start big and work our way down */
1845 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1846 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1847 chunk_size /= 2) {
1848 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1849 if (!min || dev->host_mem_size >= min)
1850 return 0;
1851 nvme_free_host_mem(dev);
1852 }
1853 }
1854
1855 return -ENOMEM;
1856 }
1857
1858 static int nvme_setup_host_mem(struct nvme_dev *dev)
1859 {
1860 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1861 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1862 u64 min = (u64)dev->ctrl.hmmin * 4096;
1863 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1864 int ret = 0;
1865
1866 preferred = min(preferred, max);
1867 if (min > max) {
1868 dev_warn(dev->ctrl.device,
1869 "min host memory (%lld MiB) above limit (%d MiB).\n",
1870 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1871 nvme_free_host_mem(dev);
1872 return 0;
1873 }
1874
1875 /*
1876 * If we already have a buffer allocated check if we can reuse it.
1877 */
1878 if (dev->host_mem_descs) {
1879 if (dev->host_mem_size >= min)
1880 enable_bits |= NVME_HOST_MEM_RETURN;
1881 else
1882 nvme_free_host_mem(dev);
1883 }
1884
1885 if (!dev->host_mem_descs) {
1886 if (nvme_alloc_host_mem(dev, min, preferred)) {
1887 dev_warn(dev->ctrl.device,
1888 "failed to allocate host memory buffer.\n");
1889 return 0; /* controller must work without HMB */
1890 }
1891
1892 dev_info(dev->ctrl.device,
1893 "allocated %lld MiB host memory buffer.\n",
1894 dev->host_mem_size >> ilog2(SZ_1M));
1895 }
1896
1897 ret = nvme_set_host_mem(dev, enable_bits);
1898 if (ret)
1899 nvme_free_host_mem(dev);
1900 return ret;
1901 }
1902
1903 static int nvme_setup_io_queues(struct nvme_dev *dev)
1904 {
1905 struct nvme_queue *adminq = dev->queues[0];
1906 struct pci_dev *pdev = to_pci_dev(dev->dev);
1907 int result, nr_io_queues;
1908 unsigned long size;
1909
1910 nr_io_queues = num_possible_cpus();
1911 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1912 if (result < 0)
1913 return result;
1914
1915 if (nr_io_queues == 0)
1916 return 0;
1917
1918 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1919 result = nvme_cmb_qdepth(dev, nr_io_queues,
1920 sizeof(struct nvme_command));
1921 if (result > 0)
1922 dev->q_depth = result;
1923 else
1924 nvme_release_cmb(dev);
1925 }
1926
1927 do {
1928 size = db_bar_size(dev, nr_io_queues);
1929 result = nvme_remap_bar(dev, size);
1930 if (!result)
1931 break;
1932 if (!--nr_io_queues)
1933 return -ENOMEM;
1934 } while (1);
1935 adminq->q_db = dev->dbs;
1936
1937 /* Deregister the admin queue's interrupt */
1938 pci_free_irq(pdev, 0, adminq);
1939
1940 /*
1941 * If we enable msix early due to not intx, disable it again before
1942 * setting up the full range we need.
1943 */
1944 pci_free_irq_vectors(pdev);
1945 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1946 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1947 if (nr_io_queues <= 0)
1948 return -EIO;
1949 dev->max_qid = nr_io_queues;
1950
1951 /*
1952 * Should investigate if there's a performance win from allocating
1953 * more queues than interrupt vectors; it might allow the submission
1954 * path to scale better, even if the receive path is limited by the
1955 * number of interrupts.
1956 */
1957
1958 result = queue_request_irq(adminq);
1959 if (result) {
1960 adminq->cq_vector = -1;
1961 return result;
1962 }
1963 return nvme_create_io_queues(dev);
1964 }
1965
1966 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1967 {
1968 struct nvme_queue *nvmeq = req->end_io_data;
1969
1970 blk_mq_free_request(req);
1971 complete(&nvmeq->dev->ioq_wait);
1972 }
1973
1974 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1975 {
1976 struct nvme_queue *nvmeq = req->end_io_data;
1977
1978 if (!error) {
1979 unsigned long flags;
1980
1981 /*
1982 * We might be called with the AQ q_lock held
1983 * and the I/O queue q_lock should always
1984 * nest inside the AQ one.
1985 */
1986 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1987 SINGLE_DEPTH_NESTING);
1988 nvme_process_cq(nvmeq);
1989 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1990 }
1991
1992 nvme_del_queue_end(req, error);
1993 }
1994
1995 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1996 {
1997 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1998 struct request *req;
1999 struct nvme_command cmd;
2000
2001 memset(&cmd, 0, sizeof(cmd));
2002 cmd.delete_queue.opcode = opcode;
2003 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2004
2005 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2006 if (IS_ERR(req))
2007 return PTR_ERR(req);
2008
2009 req->timeout = ADMIN_TIMEOUT;
2010 req->end_io_data = nvmeq;
2011
2012 blk_execute_rq_nowait(q, NULL, req, false,
2013 opcode == nvme_admin_delete_cq ?
2014 nvme_del_cq_end : nvme_del_queue_end);
2015 return 0;
2016 }
2017
2018 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
2019 {
2020 int pass;
2021 unsigned long timeout;
2022 u8 opcode = nvme_admin_delete_sq;
2023
2024 for (pass = 0; pass < 2; pass++) {
2025 int sent = 0, i = queues;
2026
2027 reinit_completion(&dev->ioq_wait);
2028 retry:
2029 timeout = ADMIN_TIMEOUT;
2030 for (; i > 0; i--, sent++)
2031 if (nvme_delete_queue(dev->queues[i], opcode))
2032 break;
2033
2034 while (sent--) {
2035 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2036 if (timeout == 0)
2037 return;
2038 if (i)
2039 goto retry;
2040 }
2041 opcode = nvme_admin_delete_cq;
2042 }
2043 }
2044
2045 /*
2046 * Return: error value if an error occurred setting up the queues or calling
2047 * Identify Device. 0 if these succeeded, even if adding some of the
2048 * namespaces failed. At the moment, these failures are silent. TBD which
2049 * failures should be reported.
2050 */
2051 static int nvme_dev_add(struct nvme_dev *dev)
2052 {
2053 if (!dev->ctrl.tagset) {
2054 dev->tagset.ops = &nvme_mq_ops;
2055 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2056 dev->tagset.timeout = NVME_IO_TIMEOUT;
2057 dev->tagset.numa_node = dev_to_node(dev->dev);
2058 dev->tagset.queue_depth =
2059 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2060 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2061 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2062 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2063 nvme_pci_cmd_size(dev, true));
2064 }
2065 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2066 dev->tagset.driver_data = dev;
2067
2068 if (blk_mq_alloc_tag_set(&dev->tagset))
2069 return 0;
2070 dev->ctrl.tagset = &dev->tagset;
2071
2072 nvme_dbbuf_set(dev);
2073 } else {
2074 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2075
2076 /* Free previously allocated queues that are no longer usable */
2077 nvme_free_queues(dev, dev->online_queues);
2078 }
2079
2080 return 0;
2081 }
2082
2083 static int nvme_pci_enable(struct nvme_dev *dev)
2084 {
2085 int result = -ENOMEM;
2086 struct pci_dev *pdev = to_pci_dev(dev->dev);
2087
2088 if (pci_enable_device_mem(pdev))
2089 return result;
2090
2091 pci_set_master(pdev);
2092
2093 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2094 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2095 goto disable;
2096
2097 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2098 result = -ENODEV;
2099 goto disable;
2100 }
2101
2102 /*
2103 * Some devices and/or platforms don't advertise or work with INTx
2104 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2105 * adjust this later.
2106 */
2107 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2108 if (result < 0)
2109 return result;
2110
2111 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2112
2113 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2114 io_queue_depth);
2115 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2116 dev->dbs = dev->bar + 4096;
2117
2118 /*
2119 * Temporary fix for the Apple controller found in the MacBook8,1 and
2120 * some MacBook7,1 to avoid controller resets and data loss.
2121 */
2122 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2123 dev->q_depth = 2;
2124 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2125 "set queue depth=%u to work around controller resets\n",
2126 dev->q_depth);
2127 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2128 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2129 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2130 dev->q_depth = 64;
2131 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2132 "set queue depth=%u\n", dev->q_depth);
2133 }
2134
2135 /*
2136 * CMBs can currently only exist on >=1.2 PCIe devices. We only
2137 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
2138 * has no name we can pass NULL as final argument to
2139 * sysfs_add_file_to_group.
2140 */
2141
2142 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
2143 dev->cmb = nvme_map_cmb(dev);
2144 if (dev->cmb) {
2145 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
2146 &dev_attr_cmb.attr, NULL))
2147 dev_warn(dev->ctrl.device,
2148 "failed to add sysfs attribute for CMB\n");
2149 }
2150 }
2151
2152 pci_enable_pcie_error_reporting(pdev);
2153 pci_save_state(pdev);
2154 return 0;
2155
2156 disable:
2157 pci_disable_device(pdev);
2158 return result;
2159 }
2160
2161 static void nvme_dev_unmap(struct nvme_dev *dev)
2162 {
2163 if (dev->bar)
2164 iounmap(dev->bar);
2165 pci_release_mem_regions(to_pci_dev(dev->dev));
2166 }
2167
2168 static void nvme_pci_disable(struct nvme_dev *dev)
2169 {
2170 struct pci_dev *pdev = to_pci_dev(dev->dev);
2171
2172 nvme_release_cmb(dev);
2173 pci_free_irq_vectors(pdev);
2174
2175 if (pci_is_enabled(pdev)) {
2176 pci_disable_pcie_error_reporting(pdev);
2177 pci_disable_device(pdev);
2178 }
2179 }
2180
2181 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2182 {
2183 int i, queues;
2184 bool dead = true;
2185 struct pci_dev *pdev = to_pci_dev(dev->dev);
2186
2187 mutex_lock(&dev->shutdown_lock);
2188 if (pci_is_enabled(pdev)) {
2189 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2190
2191 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2192 dev->ctrl.state == NVME_CTRL_RESETTING)
2193 nvme_start_freeze(&dev->ctrl);
2194 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2195 pdev->error_state != pci_channel_io_normal);
2196 }
2197
2198 /*
2199 * Give the controller a chance to complete all entered requests if
2200 * doing a safe shutdown.
2201 */
2202 if (!dead) {
2203 if (shutdown)
2204 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2205
2206 /*
2207 * If the controller is still alive tell it to stop using the
2208 * host memory buffer. In theory the shutdown / reset should
2209 * make sure that it doesn't access the host memoery anymore,
2210 * but I'd rather be safe than sorry..
2211 */
2212 if (dev->host_mem_descs)
2213 nvme_set_host_mem(dev, 0);
2214
2215 }
2216 nvme_stop_queues(&dev->ctrl);
2217
2218 queues = dev->online_queues - 1;
2219 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2220 nvme_suspend_queue(dev->queues[i]);
2221
2222 if (dead) {
2223 /* A device might become IO incapable very soon during
2224 * probe, before the admin queue is configured. Thus,
2225 * queue_count can be 0 here.
2226 */
2227 if (dev->ctrl.queue_count)
2228 nvme_suspend_queue(dev->queues[0]);
2229 } else {
2230 nvme_disable_io_queues(dev, queues);
2231 nvme_disable_admin_queue(dev, shutdown);
2232 }
2233 nvme_pci_disable(dev);
2234
2235 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2236 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2237
2238 /*
2239 * The driver will not be starting up queues again if shutting down so
2240 * must flush all entered requests to their failed completion to avoid
2241 * deadlocking blk-mq hot-cpu notifier.
2242 */
2243 if (shutdown)
2244 nvme_start_queues(&dev->ctrl);
2245 mutex_unlock(&dev->shutdown_lock);
2246 }
2247
2248 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2249 {
2250 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2251 PAGE_SIZE, PAGE_SIZE, 0);
2252 if (!dev->prp_page_pool)
2253 return -ENOMEM;
2254
2255 /* Optimisation for I/Os between 4k and 128k */
2256 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2257 256, 256, 0);
2258 if (!dev->prp_small_pool) {
2259 dma_pool_destroy(dev->prp_page_pool);
2260 return -ENOMEM;
2261 }
2262 return 0;
2263 }
2264
2265 static void nvme_release_prp_pools(struct nvme_dev *dev)
2266 {
2267 dma_pool_destroy(dev->prp_page_pool);
2268 dma_pool_destroy(dev->prp_small_pool);
2269 }
2270
2271 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2272 {
2273 struct nvme_dev *dev = to_nvme_dev(ctrl);
2274
2275 nvme_dbbuf_dma_free(dev);
2276 put_device(dev->dev);
2277 if (dev->tagset.tags)
2278 blk_mq_free_tag_set(&dev->tagset);
2279 if (dev->ctrl.admin_q)
2280 blk_put_queue(dev->ctrl.admin_q);
2281 kfree(dev->queues);
2282 free_opal_dev(dev->ctrl.opal_dev);
2283 kfree(dev);
2284 }
2285
2286 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2287 {
2288 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2289
2290 nvme_get_ctrl(&dev->ctrl);
2291 nvme_dev_disable(dev, false);
2292 if (!queue_work(nvme_wq, &dev->remove_work))
2293 nvme_put_ctrl(&dev->ctrl);
2294 }
2295
2296 static void nvme_reset_work(struct work_struct *work)
2297 {
2298 struct nvme_dev *dev =
2299 container_of(work, struct nvme_dev, ctrl.reset_work);
2300 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2301 int result = -ENODEV;
2302
2303 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2304 goto out;
2305
2306 /*
2307 * If we're called to reset a live controller first shut it down before
2308 * moving on.
2309 */
2310 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2311 nvme_dev_disable(dev, false);
2312
2313 result = nvme_pci_enable(dev);
2314 if (result)
2315 goto out;
2316
2317 result = nvme_pci_configure_admin_queue(dev);
2318 if (result)
2319 goto out;
2320
2321 result = nvme_alloc_admin_tags(dev);
2322 if (result)
2323 goto out;
2324
2325 result = nvme_init_identify(&dev->ctrl);
2326 if (result)
2327 goto out;
2328
2329 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2330 if (!dev->ctrl.opal_dev)
2331 dev->ctrl.opal_dev =
2332 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2333 else if (was_suspend)
2334 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2335 } else {
2336 free_opal_dev(dev->ctrl.opal_dev);
2337 dev->ctrl.opal_dev = NULL;
2338 }
2339
2340 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2341 result = nvme_dbbuf_dma_alloc(dev);
2342 if (result)
2343 dev_warn(dev->dev,
2344 "unable to allocate dma for dbbuf\n");
2345 }
2346
2347 if (dev->ctrl.hmpre) {
2348 result = nvme_setup_host_mem(dev);
2349 if (result < 0)
2350 goto out;
2351 }
2352
2353 result = nvme_setup_io_queues(dev);
2354 if (result)
2355 goto out;
2356
2357 /*
2358 * Keep the controller around but remove all namespaces if we don't have
2359 * any working I/O queue.
2360 */
2361 if (dev->online_queues < 2) {
2362 dev_warn(dev->ctrl.device, "IO queues not created\n");
2363 nvme_kill_queues(&dev->ctrl);
2364 nvme_remove_namespaces(&dev->ctrl);
2365 } else {
2366 nvme_start_queues(&dev->ctrl);
2367 nvme_wait_freeze(&dev->ctrl);
2368 nvme_dev_add(dev);
2369 nvme_unfreeze(&dev->ctrl);
2370 }
2371
2372 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2373 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2374 goto out;
2375 }
2376
2377 nvme_start_ctrl(&dev->ctrl);
2378 return;
2379
2380 out:
2381 nvme_remove_dead_ctrl(dev, result);
2382 }
2383
2384 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2385 {
2386 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2387 struct pci_dev *pdev = to_pci_dev(dev->dev);
2388
2389 nvme_kill_queues(&dev->ctrl);
2390 if (pci_get_drvdata(pdev))
2391 device_release_driver(&pdev->dev);
2392 nvme_put_ctrl(&dev->ctrl);
2393 }
2394
2395 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2396 {
2397 *val = readl(to_nvme_dev(ctrl)->bar + off);
2398 return 0;
2399 }
2400
2401 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2402 {
2403 writel(val, to_nvme_dev(ctrl)->bar + off);
2404 return 0;
2405 }
2406
2407 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2408 {
2409 *val = readq(to_nvme_dev(ctrl)->bar + off);
2410 return 0;
2411 }
2412
2413 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2414 .name = "pcie",
2415 .module = THIS_MODULE,
2416 .flags = NVME_F_METADATA_SUPPORTED,
2417 .reg_read32 = nvme_pci_reg_read32,
2418 .reg_write32 = nvme_pci_reg_write32,
2419 .reg_read64 = nvme_pci_reg_read64,
2420 .free_ctrl = nvme_pci_free_ctrl,
2421 .submit_async_event = nvme_pci_submit_async_event,
2422 };
2423
2424 static int nvme_dev_map(struct nvme_dev *dev)
2425 {
2426 struct pci_dev *pdev = to_pci_dev(dev->dev);
2427
2428 if (pci_request_mem_regions(pdev, "nvme"))
2429 return -ENODEV;
2430
2431 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2432 goto release;
2433
2434 return 0;
2435 release:
2436 pci_release_mem_regions(pdev);
2437 return -ENODEV;
2438 }
2439
2440 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2441 {
2442 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2443 /*
2444 * Several Samsung devices seem to drop off the PCIe bus
2445 * randomly when APST is on and uses the deepest sleep state.
2446 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2447 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2448 * 950 PRO 256GB", but it seems to be restricted to two Dell
2449 * laptops.
2450 */
2451 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2452 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2453 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2454 return NVME_QUIRK_NO_DEEPEST_PS;
2455 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2456 /*
2457 * Samsung SSD 960 EVO drops off the PCIe bus after system
2458 * suspend on a Ryzen board, ASUS PRIME B350M-A.
2459 */
2460 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2461 dmi_match(DMI_BOARD_NAME, "PRIME B350M-A"))
2462 return NVME_QUIRK_NO_APST;
2463 }
2464
2465 return 0;
2466 }
2467
2468 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2469 {
2470 int node, result = -ENOMEM;
2471 struct nvme_dev *dev;
2472 unsigned long quirks = id->driver_data;
2473
2474 node = dev_to_node(&pdev->dev);
2475 if (node == NUMA_NO_NODE)
2476 set_dev_node(&pdev->dev, first_memory_node);
2477
2478 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2479 if (!dev)
2480 return -ENOMEM;
2481 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2482 GFP_KERNEL, node);
2483 if (!dev->queues)
2484 goto free;
2485
2486 dev->dev = get_device(&pdev->dev);
2487 pci_set_drvdata(pdev, dev);
2488
2489 result = nvme_dev_map(dev);
2490 if (result)
2491 goto put_pci;
2492
2493 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2494 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2495 mutex_init(&dev->shutdown_lock);
2496 init_completion(&dev->ioq_wait);
2497
2498 result = nvme_setup_prp_pools(dev);
2499 if (result)
2500 goto unmap;
2501
2502 quirks |= check_vendor_combination_bug(pdev);
2503
2504 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2505 quirks);
2506 if (result)
2507 goto release_pools;
2508
2509 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2510 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2511
2512 queue_work(nvme_wq, &dev->ctrl.reset_work);
2513 return 0;
2514
2515 release_pools:
2516 nvme_release_prp_pools(dev);
2517 unmap:
2518 nvme_dev_unmap(dev);
2519 put_pci:
2520 put_device(dev->dev);
2521 free:
2522 kfree(dev->queues);
2523 kfree(dev);
2524 return result;
2525 }
2526
2527 static void nvme_reset_prepare(struct pci_dev *pdev)
2528 {
2529 struct nvme_dev *dev = pci_get_drvdata(pdev);
2530 nvme_dev_disable(dev, false);
2531 }
2532
2533 static void nvme_reset_done(struct pci_dev *pdev)
2534 {
2535 struct nvme_dev *dev = pci_get_drvdata(pdev);
2536 nvme_reset_ctrl(&dev->ctrl);
2537 }
2538
2539 static void nvme_shutdown(struct pci_dev *pdev)
2540 {
2541 struct nvme_dev *dev = pci_get_drvdata(pdev);
2542 nvme_dev_disable(dev, true);
2543 }
2544
2545 /*
2546 * The driver's remove may be called on a device in a partially initialized
2547 * state. This function must not have any dependencies on the device state in
2548 * order to proceed.
2549 */
2550 static void nvme_remove(struct pci_dev *pdev)
2551 {
2552 struct nvme_dev *dev = pci_get_drvdata(pdev);
2553
2554 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2555
2556 cancel_work_sync(&dev->ctrl.reset_work);
2557 pci_set_drvdata(pdev, NULL);
2558
2559 if (!pci_device_is_present(pdev)) {
2560 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2561 nvme_dev_disable(dev, false);
2562 }
2563
2564 flush_work(&dev->ctrl.reset_work);
2565 nvme_stop_ctrl(&dev->ctrl);
2566 nvme_remove_namespaces(&dev->ctrl);
2567 nvme_dev_disable(dev, true);
2568 nvme_free_host_mem(dev);
2569 nvme_dev_remove_admin(dev);
2570 nvme_free_queues(dev, 0);
2571 nvme_uninit_ctrl(&dev->ctrl);
2572 nvme_release_prp_pools(dev);
2573 nvme_dev_unmap(dev);
2574 nvme_put_ctrl(&dev->ctrl);
2575 }
2576
2577 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2578 {
2579 int ret = 0;
2580
2581 if (numvfs == 0) {
2582 if (pci_vfs_assigned(pdev)) {
2583 dev_warn(&pdev->dev,
2584 "Cannot disable SR-IOV VFs while assigned\n");
2585 return -EPERM;
2586 }
2587 pci_disable_sriov(pdev);
2588 return 0;
2589 }
2590
2591 ret = pci_enable_sriov(pdev, numvfs);
2592 return ret ? ret : numvfs;
2593 }
2594
2595 #ifdef CONFIG_PM_SLEEP
2596 static int nvme_suspend(struct device *dev)
2597 {
2598 struct pci_dev *pdev = to_pci_dev(dev);
2599 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2600
2601 nvme_dev_disable(ndev, true);
2602 return 0;
2603 }
2604
2605 static int nvme_resume(struct device *dev)
2606 {
2607 struct pci_dev *pdev = to_pci_dev(dev);
2608 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2609
2610 nvme_reset_ctrl(&ndev->ctrl);
2611 return 0;
2612 }
2613 #endif
2614
2615 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2616
2617 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2618 pci_channel_state_t state)
2619 {
2620 struct nvme_dev *dev = pci_get_drvdata(pdev);
2621
2622 /*
2623 * A frozen channel requires a reset. When detected, this method will
2624 * shutdown the controller to quiesce. The controller will be restarted
2625 * after the slot reset through driver's slot_reset callback.
2626 */
2627 switch (state) {
2628 case pci_channel_io_normal:
2629 return PCI_ERS_RESULT_CAN_RECOVER;
2630 case pci_channel_io_frozen:
2631 dev_warn(dev->ctrl.device,
2632 "frozen state error detected, reset controller\n");
2633 nvme_dev_disable(dev, false);
2634 return PCI_ERS_RESULT_NEED_RESET;
2635 case pci_channel_io_perm_failure:
2636 dev_warn(dev->ctrl.device,
2637 "failure state error detected, request disconnect\n");
2638 return PCI_ERS_RESULT_DISCONNECT;
2639 }
2640 return PCI_ERS_RESULT_NEED_RESET;
2641 }
2642
2643 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2644 {
2645 struct nvme_dev *dev = pci_get_drvdata(pdev);
2646
2647 dev_info(dev->ctrl.device, "restart after slot reset\n");
2648 pci_restore_state(pdev);
2649 nvme_reset_ctrl(&dev->ctrl);
2650 return PCI_ERS_RESULT_RECOVERED;
2651 }
2652
2653 static void nvme_error_resume(struct pci_dev *pdev)
2654 {
2655 pci_cleanup_aer_uncorrect_error_status(pdev);
2656 }
2657
2658 static const struct pci_error_handlers nvme_err_handler = {
2659 .error_detected = nvme_error_detected,
2660 .slot_reset = nvme_slot_reset,
2661 .resume = nvme_error_resume,
2662 .reset_prepare = nvme_reset_prepare,
2663 .reset_done = nvme_reset_done,
2664 };
2665
2666 static const struct pci_device_id nvme_id_table[] = {
2667 { PCI_VDEVICE(INTEL, 0x0953),
2668 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2669 NVME_QUIRK_DEALLOCATE_ZEROES, },
2670 { PCI_VDEVICE(INTEL, 0x0a53),
2671 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2672 NVME_QUIRK_DEALLOCATE_ZEROES, },
2673 { PCI_VDEVICE(INTEL, 0x0a54),
2674 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2675 NVME_QUIRK_DEALLOCATE_ZEROES, },
2676 { PCI_VDEVICE(INTEL, 0x0a55),
2677 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2678 NVME_QUIRK_DEALLOCATE_ZEROES, },
2679 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2680 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2681 NVME_QUIRK_MEDIUM_PRIO_SQ },
2682 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2683 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2684 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2685 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2686 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2687 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2688 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2689 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2690 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2691 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2692 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2693 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2694 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2695 .driver_data = NVME_QUIRK_LIGHTNVM, },
2696 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2697 .driver_data = NVME_QUIRK_LIGHTNVM, },
2698 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2699 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2700 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2701 { 0, }
2702 };
2703 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2704
2705 static struct pci_driver nvme_driver = {
2706 .name = "nvme",
2707 .id_table = nvme_id_table,
2708 .probe = nvme_probe,
2709 .remove = nvme_remove,
2710 .shutdown = nvme_shutdown,
2711 .driver = {
2712 .pm = &nvme_dev_pm_ops,
2713 },
2714 .sriov_configure = nvme_pci_sriov_configure,
2715 .err_handler = &nvme_err_handler,
2716 };
2717
2718 static int __init nvme_init(void)
2719 {
2720 return pci_register_driver(&nvme_driver);
2721 }
2722
2723 static void __exit nvme_exit(void)
2724 {
2725 pci_unregister_driver(&nvme_driver);
2726 flush_workqueue(nvme_wq);
2727 _nvme_check_size();
2728 }
2729
2730 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2731 MODULE_LICENSE("GPL");
2732 MODULE_VERSION("1.0");
2733 module_init(nvme_init);
2734 module_exit(nvme_exit);