]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/nvme/host/pci.c
ASoC: pcm512x: add missing MODULE_DESCRIPTION/AUTHOR/LICENSE
[mirror_ubuntu-focal-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
32
33 #include "nvme.h"
34
35 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
36 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 static int use_threaded_interrupts;
41 module_param(use_threaded_interrupts, int, 0);
42
43 static bool use_cmb_sqes = true;
44 module_param(use_cmb_sqes, bool, 0644);
45 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
46
47 static unsigned int max_host_mem_size_mb = 128;
48 module_param(max_host_mem_size_mb, uint, 0444);
49 MODULE_PARM_DESC(max_host_mem_size_mb,
50 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
51
52 static unsigned int sgl_threshold = SZ_32K;
53 module_param(sgl_threshold, uint, 0644);
54 MODULE_PARM_DESC(sgl_threshold,
55 "Use SGLs when average request segment size is larger or equal to "
56 "this size. Use 0 to disable SGLs.");
57
58 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
59 static const struct kernel_param_ops io_queue_depth_ops = {
60 .set = io_queue_depth_set,
61 .get = param_get_int,
62 };
63
64 static int io_queue_depth = 1024;
65 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
66 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
67
68 struct nvme_dev;
69 struct nvme_queue;
70
71 static void nvme_process_cq(struct nvme_queue *nvmeq);
72 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
73
74 /*
75 * Represents an NVM Express device. Each nvme_dev is a PCI function.
76 */
77 struct nvme_dev {
78 struct nvme_queue **queues;
79 struct blk_mq_tag_set tagset;
80 struct blk_mq_tag_set admin_tagset;
81 u32 __iomem *dbs;
82 struct device *dev;
83 struct dma_pool *prp_page_pool;
84 struct dma_pool *prp_small_pool;
85 unsigned online_queues;
86 unsigned max_qid;
87 int q_depth;
88 u32 db_stride;
89 void __iomem *bar;
90 unsigned long bar_mapped_size;
91 struct work_struct remove_work;
92 struct mutex shutdown_lock;
93 bool subsystem;
94 void __iomem *cmb;
95 pci_bus_addr_t cmb_bus_addr;
96 u64 cmb_size;
97 u32 cmbsz;
98 u32 cmbloc;
99 struct nvme_ctrl ctrl;
100 struct completion ioq_wait;
101
102 /* shadow doorbell buffer support: */
103 u32 *dbbuf_dbs;
104 dma_addr_t dbbuf_dbs_dma_addr;
105 u32 *dbbuf_eis;
106 dma_addr_t dbbuf_eis_dma_addr;
107
108 /* host memory buffer support: */
109 u64 host_mem_size;
110 u32 nr_host_mem_descs;
111 dma_addr_t host_mem_descs_dma;
112 struct nvme_host_mem_buf_desc *host_mem_descs;
113 void **host_mem_desc_bufs;
114 };
115
116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
117 {
118 int n = 0, ret;
119
120 ret = kstrtoint(val, 10, &n);
121 if (ret != 0 || n < 2)
122 return -EINVAL;
123
124 return param_set_int(val, kp);
125 }
126
127 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
128 {
129 return qid * 2 * stride;
130 }
131
132 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
133 {
134 return (qid * 2 + 1) * stride;
135 }
136
137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
138 {
139 return container_of(ctrl, struct nvme_dev, ctrl);
140 }
141
142 /*
143 * An NVM Express queue. Each device has at least two (one for admin
144 * commands and one for I/O commands).
145 */
146 struct nvme_queue {
147 struct device *q_dmadev;
148 struct nvme_dev *dev;
149 spinlock_t q_lock;
150 struct nvme_command *sq_cmds;
151 struct nvme_command __iomem *sq_cmds_io;
152 volatile struct nvme_completion *cqes;
153 struct blk_mq_tags **tags;
154 dma_addr_t sq_dma_addr;
155 dma_addr_t cq_dma_addr;
156 u32 __iomem *q_db;
157 u16 q_depth;
158 s16 cq_vector;
159 u16 sq_tail;
160 u16 cq_head;
161 u16 qid;
162 u8 cq_phase;
163 u8 cqe_seen;
164 u32 *dbbuf_sq_db;
165 u32 *dbbuf_cq_db;
166 u32 *dbbuf_sq_ei;
167 u32 *dbbuf_cq_ei;
168 };
169
170 /*
171 * The nvme_iod describes the data in an I/O, including the list of PRP
172 * entries. You can't see it in this data structure because C doesn't let
173 * me express that. Use nvme_init_iod to ensure there's enough space
174 * allocated to store the PRP list.
175 */
176 struct nvme_iod {
177 struct nvme_request req;
178 struct nvme_queue *nvmeq;
179 bool use_sgl;
180 int aborted;
181 int npages; /* In the PRP list. 0 means small pool in use */
182 int nents; /* Used in scatterlist */
183 int length; /* Of data, in bytes */
184 dma_addr_t first_dma;
185 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186 struct scatterlist *sg;
187 struct scatterlist inline_sg[0];
188 };
189
190 /*
191 * Check we didin't inadvertently grow the command struct
192 */
193 static inline void _nvme_check_size(void)
194 {
195 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208 }
209
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
211 {
212 return ((num_possible_cpus() + 1) * 8 * stride);
213 }
214
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216 {
217 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218
219 if (dev->dbbuf_dbs)
220 return 0;
221
222 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223 &dev->dbbuf_dbs_dma_addr,
224 GFP_KERNEL);
225 if (!dev->dbbuf_dbs)
226 return -ENOMEM;
227 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228 &dev->dbbuf_eis_dma_addr,
229 GFP_KERNEL);
230 if (!dev->dbbuf_eis) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 dev->dbbuf_dbs = NULL;
234 return -ENOMEM;
235 }
236
237 return 0;
238 }
239
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241 {
242 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243
244 if (dev->dbbuf_dbs) {
245 dma_free_coherent(dev->dev, mem_size,
246 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247 dev->dbbuf_dbs = NULL;
248 }
249 if (dev->dbbuf_eis) {
250 dma_free_coherent(dev->dev, mem_size,
251 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252 dev->dbbuf_eis = NULL;
253 }
254 }
255
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257 struct nvme_queue *nvmeq, int qid)
258 {
259 if (!dev->dbbuf_dbs || !qid)
260 return;
261
262 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266 }
267
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
269 {
270 struct nvme_command c;
271
272 if (!dev->dbbuf_dbs)
273 return;
274
275 memset(&c, 0, sizeof(c));
276 c.dbbuf.opcode = nvme_admin_dbbuf;
277 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279
280 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282 /* Free memory and continue on */
283 nvme_dbbuf_dma_free(dev);
284 }
285 }
286
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288 {
289 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290 }
291
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294 volatile u32 *dbbuf_ei)
295 {
296 if (dbbuf_db) {
297 u16 old_value;
298
299 /*
300 * Ensure that the queue is written before updating
301 * the doorbell in memory
302 */
303 wmb();
304
305 old_value = *dbbuf_db;
306 *dbbuf_db = value;
307
308 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309 return false;
310 }
311
312 return true;
313 }
314
315 /*
316 * Max size of iod being embedded in the request payload
317 */
318 #define NVME_INT_PAGES 2
319 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
320
321 /*
322 * Will slightly overestimate the number of pages needed. This is OK
323 * as it only leads to a small amount of wasted memory for the lifetime of
324 * the I/O.
325 */
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
327 {
328 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329 dev->ctrl.page_size);
330 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331 }
332
333 /*
334 * Calculates the number of pages needed for the SGL segments. For example a 4k
335 * page can accommodate 256 SGL descriptors.
336 */
337 static int nvme_pci_npages_sgl(unsigned int num_seg)
338 {
339 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
340 }
341
342 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
343 unsigned int size, unsigned int nseg, bool use_sgl)
344 {
345 size_t alloc_size;
346
347 if (use_sgl)
348 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
349 else
350 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
351
352 return alloc_size + sizeof(struct scatterlist) * nseg;
353 }
354
355 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
356 {
357 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
358 NVME_INT_BYTES(dev), NVME_INT_PAGES,
359 use_sgl);
360
361 return sizeof(struct nvme_iod) + alloc_size;
362 }
363
364 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
365 unsigned int hctx_idx)
366 {
367 struct nvme_dev *dev = data;
368 struct nvme_queue *nvmeq = dev->queues[0];
369
370 WARN_ON(hctx_idx != 0);
371 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
372 WARN_ON(nvmeq->tags);
373
374 hctx->driver_data = nvmeq;
375 nvmeq->tags = &dev->admin_tagset.tags[0];
376 return 0;
377 }
378
379 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
380 {
381 struct nvme_queue *nvmeq = hctx->driver_data;
382
383 nvmeq->tags = NULL;
384 }
385
386 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
387 unsigned int hctx_idx)
388 {
389 struct nvme_dev *dev = data;
390 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
391
392 if (!nvmeq->tags)
393 nvmeq->tags = &dev->tagset.tags[hctx_idx];
394
395 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
396 hctx->driver_data = nvmeq;
397 return 0;
398 }
399
400 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
401 unsigned int hctx_idx, unsigned int numa_node)
402 {
403 struct nvme_dev *dev = set->driver_data;
404 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
405 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
406 struct nvme_queue *nvmeq = dev->queues[queue_idx];
407
408 BUG_ON(!nvmeq);
409 iod->nvmeq = nvmeq;
410 return 0;
411 }
412
413 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
414 {
415 struct nvme_dev *dev = set->driver_data;
416
417 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
418 }
419
420 /**
421 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
422 * @nvmeq: The queue to use
423 * @cmd: The command to send
424 *
425 * Safe to use from interrupt context
426 */
427 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
428 struct nvme_command *cmd)
429 {
430 u16 tail = nvmeq->sq_tail;
431
432 if (nvmeq->sq_cmds_io)
433 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
434 else
435 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
436
437 if (++tail == nvmeq->q_depth)
438 tail = 0;
439 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
440 nvmeq->dbbuf_sq_ei))
441 writel(tail, nvmeq->q_db);
442 nvmeq->sq_tail = tail;
443 }
444
445 static void **nvme_pci_iod_list(struct request *req)
446 {
447 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
448 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
449 }
450
451 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
452 {
453 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
454 int nseg = blk_rq_nr_phys_segments(rq);
455 unsigned int size = blk_rq_payload_bytes(rq);
456
457 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
458 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
459 iod->use_sgl);
460
461 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
462 if (!iod->sg)
463 return BLK_STS_RESOURCE;
464 } else {
465 iod->sg = iod->inline_sg;
466 }
467
468 iod->aborted = 0;
469 iod->npages = -1;
470 iod->nents = 0;
471 iod->length = size;
472
473 return BLK_STS_OK;
474 }
475
476 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
477 {
478 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
479 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
480 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
481
482 int i;
483
484 if (iod->npages == 0)
485 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
486 dma_addr);
487
488 for (i = 0; i < iod->npages; i++) {
489 void *addr = nvme_pci_iod_list(req)[i];
490
491 if (iod->use_sgl) {
492 struct nvme_sgl_desc *sg_list = addr;
493
494 next_dma_addr =
495 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
496 } else {
497 __le64 *prp_list = addr;
498
499 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
500 }
501
502 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
503 dma_addr = next_dma_addr;
504 }
505
506 if (iod->sg != iod->inline_sg)
507 kfree(iod->sg);
508 }
509
510 #ifdef CONFIG_BLK_DEV_INTEGRITY
511 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
512 {
513 if (be32_to_cpu(pi->ref_tag) == v)
514 pi->ref_tag = cpu_to_be32(p);
515 }
516
517 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
518 {
519 if (be32_to_cpu(pi->ref_tag) == p)
520 pi->ref_tag = cpu_to_be32(v);
521 }
522
523 /**
524 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
525 *
526 * The virtual start sector is the one that was originally submitted by the
527 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
528 * start sector may be different. Remap protection information to match the
529 * physical LBA on writes, and back to the original seed on reads.
530 *
531 * Type 0 and 3 do not have a ref tag, so no remapping required.
532 */
533 static void nvme_dif_remap(struct request *req,
534 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
535 {
536 struct nvme_ns *ns = req->rq_disk->private_data;
537 struct bio_integrity_payload *bip;
538 struct t10_pi_tuple *pi;
539 void *p, *pmap;
540 u32 i, nlb, ts, phys, virt;
541
542 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
543 return;
544
545 bip = bio_integrity(req->bio);
546 if (!bip)
547 return;
548
549 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
550
551 p = pmap;
552 virt = bip_get_seed(bip);
553 phys = nvme_block_nr(ns, blk_rq_pos(req));
554 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
555 ts = ns->disk->queue->integrity.tuple_size;
556
557 for (i = 0; i < nlb; i++, virt++, phys++) {
558 pi = (struct t10_pi_tuple *)p;
559 dif_swap(phys, virt, pi);
560 p += ts;
561 }
562 kunmap_atomic(pmap);
563 }
564 #else /* CONFIG_BLK_DEV_INTEGRITY */
565 static void nvme_dif_remap(struct request *req,
566 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
567 {
568 }
569 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
570 {
571 }
572 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
573 {
574 }
575 #endif
576
577 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
578 {
579 int i;
580 struct scatterlist *sg;
581
582 for_each_sg(sgl, sg, nents, i) {
583 dma_addr_t phys = sg_phys(sg);
584 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
585 "dma_address:%pad dma_length:%d\n",
586 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
587 sg_dma_len(sg));
588 }
589 }
590
591 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
592 struct request *req, struct nvme_rw_command *cmnd)
593 {
594 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
595 struct dma_pool *pool;
596 int length = blk_rq_payload_bytes(req);
597 struct scatterlist *sg = iod->sg;
598 int dma_len = sg_dma_len(sg);
599 u64 dma_addr = sg_dma_address(sg);
600 u32 page_size = dev->ctrl.page_size;
601 int offset = dma_addr & (page_size - 1);
602 __le64 *prp_list;
603 void **list = nvme_pci_iod_list(req);
604 dma_addr_t prp_dma;
605 int nprps, i;
606
607 iod->use_sgl = false;
608
609 length -= (page_size - offset);
610 if (length <= 0) {
611 iod->first_dma = 0;
612 goto done;
613 }
614
615 dma_len -= (page_size - offset);
616 if (dma_len) {
617 dma_addr += (page_size - offset);
618 } else {
619 sg = sg_next(sg);
620 dma_addr = sg_dma_address(sg);
621 dma_len = sg_dma_len(sg);
622 }
623
624 if (length <= page_size) {
625 iod->first_dma = dma_addr;
626 goto done;
627 }
628
629 nprps = DIV_ROUND_UP(length, page_size);
630 if (nprps <= (256 / 8)) {
631 pool = dev->prp_small_pool;
632 iod->npages = 0;
633 } else {
634 pool = dev->prp_page_pool;
635 iod->npages = 1;
636 }
637
638 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
639 if (!prp_list) {
640 iod->first_dma = dma_addr;
641 iod->npages = -1;
642 return BLK_STS_RESOURCE;
643 }
644 list[0] = prp_list;
645 iod->first_dma = prp_dma;
646 i = 0;
647 for (;;) {
648 if (i == page_size >> 3) {
649 __le64 *old_prp_list = prp_list;
650 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
651 if (!prp_list)
652 return BLK_STS_RESOURCE;
653 list[iod->npages++] = prp_list;
654 prp_list[0] = old_prp_list[i - 1];
655 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
656 i = 1;
657 }
658 prp_list[i++] = cpu_to_le64(dma_addr);
659 dma_len -= page_size;
660 dma_addr += page_size;
661 length -= page_size;
662 if (length <= 0)
663 break;
664 if (dma_len > 0)
665 continue;
666 if (unlikely(dma_len < 0))
667 goto bad_sgl;
668 sg = sg_next(sg);
669 dma_addr = sg_dma_address(sg);
670 dma_len = sg_dma_len(sg);
671 }
672
673 done:
674 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
675 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
676
677 return BLK_STS_OK;
678
679 bad_sgl:
680 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
681 "Invalid SGL for payload:%d nents:%d\n",
682 blk_rq_payload_bytes(req), iod->nents);
683 return BLK_STS_IOERR;
684 }
685
686 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
687 struct scatterlist *sg)
688 {
689 sge->addr = cpu_to_le64(sg_dma_address(sg));
690 sge->length = cpu_to_le32(sg_dma_len(sg));
691 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
692 }
693
694 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
695 dma_addr_t dma_addr, int entries)
696 {
697 sge->addr = cpu_to_le64(dma_addr);
698 if (entries < SGES_PER_PAGE) {
699 sge->length = cpu_to_le32(entries * sizeof(*sge));
700 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
701 } else {
702 sge->length = cpu_to_le32(PAGE_SIZE);
703 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
704 }
705 }
706
707 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
708 struct request *req, struct nvme_rw_command *cmd)
709 {
710 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
711 int length = blk_rq_payload_bytes(req);
712 struct dma_pool *pool;
713 struct nvme_sgl_desc *sg_list;
714 struct scatterlist *sg = iod->sg;
715 int entries = iod->nents, i = 0;
716 dma_addr_t sgl_dma;
717
718 iod->use_sgl = true;
719
720 /* setting the transfer type as SGL */
721 cmd->flags = NVME_CMD_SGL_METABUF;
722
723 if (length == sg_dma_len(sg)) {
724 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
725 return BLK_STS_OK;
726 }
727
728 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
729 pool = dev->prp_small_pool;
730 iod->npages = 0;
731 } else {
732 pool = dev->prp_page_pool;
733 iod->npages = 1;
734 }
735
736 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
737 if (!sg_list) {
738 iod->npages = -1;
739 return BLK_STS_RESOURCE;
740 }
741
742 nvme_pci_iod_list(req)[0] = sg_list;
743 iod->first_dma = sgl_dma;
744
745 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
746
747 do {
748 if (i == SGES_PER_PAGE) {
749 struct nvme_sgl_desc *old_sg_desc = sg_list;
750 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
751
752 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
753 if (!sg_list)
754 return BLK_STS_RESOURCE;
755
756 i = 0;
757 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
758 sg_list[i++] = *link;
759 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
760 }
761
762 nvme_pci_sgl_set_data(&sg_list[i++], sg);
763
764 length -= sg_dma_len(sg);
765 sg = sg_next(sg);
766 entries--;
767 } while (length > 0);
768
769 WARN_ON(entries > 0);
770 return BLK_STS_OK;
771 }
772
773 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
774 {
775 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
776 unsigned int avg_seg_size;
777
778 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req),
779 blk_rq_nr_phys_segments(req));
780
781 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
782 return false;
783 if (!iod->nvmeq->qid)
784 return false;
785 if (!sgl_threshold || avg_seg_size < sgl_threshold)
786 return false;
787 return true;
788 }
789
790 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
791 struct nvme_command *cmnd)
792 {
793 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
794 struct request_queue *q = req->q;
795 enum dma_data_direction dma_dir = rq_data_dir(req) ?
796 DMA_TO_DEVICE : DMA_FROM_DEVICE;
797 blk_status_t ret = BLK_STS_IOERR;
798
799 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
800 iod->nents = blk_rq_map_sg(q, req, iod->sg);
801 if (!iod->nents)
802 goto out;
803
804 ret = BLK_STS_RESOURCE;
805 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
806 DMA_ATTR_NO_WARN))
807 goto out;
808
809 if (nvme_pci_use_sgls(dev, req))
810 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
811 else
812 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
813
814 if (ret != BLK_STS_OK)
815 goto out_unmap;
816
817 ret = BLK_STS_IOERR;
818 if (blk_integrity_rq(req)) {
819 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
820 goto out_unmap;
821
822 sg_init_table(&iod->meta_sg, 1);
823 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
824 goto out_unmap;
825
826 if (req_op(req) == REQ_OP_WRITE)
827 nvme_dif_remap(req, nvme_dif_prep);
828
829 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
830 goto out_unmap;
831 }
832
833 if (blk_integrity_rq(req))
834 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
835 return BLK_STS_OK;
836
837 out_unmap:
838 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
839 out:
840 return ret;
841 }
842
843 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
844 {
845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 enum dma_data_direction dma_dir = rq_data_dir(req) ?
847 DMA_TO_DEVICE : DMA_FROM_DEVICE;
848
849 if (iod->nents) {
850 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
851 if (blk_integrity_rq(req)) {
852 if (req_op(req) == REQ_OP_READ)
853 nvme_dif_remap(req, nvme_dif_complete);
854 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
855 }
856 }
857
858 nvme_cleanup_cmd(req);
859 nvme_free_iod(dev, req);
860 }
861
862 /*
863 * NOTE: ns is NULL when called on the admin queue.
864 */
865 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
866 const struct blk_mq_queue_data *bd)
867 {
868 struct nvme_ns *ns = hctx->queue->queuedata;
869 struct nvme_queue *nvmeq = hctx->driver_data;
870 struct nvme_dev *dev = nvmeq->dev;
871 struct request *req = bd->rq;
872 struct nvme_command cmnd;
873 blk_status_t ret;
874
875 ret = nvme_setup_cmd(ns, req, &cmnd);
876 if (ret)
877 return ret;
878
879 ret = nvme_init_iod(req, dev);
880 if (ret)
881 goto out_free_cmd;
882
883 if (blk_rq_nr_phys_segments(req)) {
884 ret = nvme_map_data(dev, req, &cmnd);
885 if (ret)
886 goto out_cleanup_iod;
887 }
888
889 blk_mq_start_request(req);
890
891 spin_lock_irq(&nvmeq->q_lock);
892 if (unlikely(nvmeq->cq_vector < 0)) {
893 ret = BLK_STS_IOERR;
894 spin_unlock_irq(&nvmeq->q_lock);
895 goto out_cleanup_iod;
896 }
897 __nvme_submit_cmd(nvmeq, &cmnd);
898 nvme_process_cq(nvmeq);
899 spin_unlock_irq(&nvmeq->q_lock);
900 return BLK_STS_OK;
901 out_cleanup_iod:
902 nvme_free_iod(dev, req);
903 out_free_cmd:
904 nvme_cleanup_cmd(req);
905 return ret;
906 }
907
908 static void nvme_pci_complete_rq(struct request *req)
909 {
910 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911
912 nvme_unmap_data(iod->nvmeq->dev, req);
913 nvme_complete_rq(req);
914 }
915
916 /* We read the CQE phase first to check if the rest of the entry is valid */
917 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
918 u16 phase)
919 {
920 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
921 }
922
923 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
924 {
925 u16 head = nvmeq->cq_head;
926
927 if (likely(nvmeq->cq_vector >= 0)) {
928 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
929 nvmeq->dbbuf_cq_ei))
930 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
931 }
932 }
933
934 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
935 struct nvme_completion *cqe)
936 {
937 struct request *req;
938
939 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
940 dev_warn(nvmeq->dev->ctrl.device,
941 "invalid id %d completed on queue %d\n",
942 cqe->command_id, le16_to_cpu(cqe->sq_id));
943 return;
944 }
945
946 /*
947 * AEN requests are special as they don't time out and can
948 * survive any kind of queue freeze and often don't respond to
949 * aborts. We don't even bother to allocate a struct request
950 * for them but rather special case them here.
951 */
952 if (unlikely(nvmeq->qid == 0 &&
953 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
954 nvme_complete_async_event(&nvmeq->dev->ctrl,
955 cqe->status, &cqe->result);
956 return;
957 }
958
959 nvmeq->cqe_seen = 1;
960 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
961 nvme_end_request(req, cqe->status, cqe->result);
962 }
963
964 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
965 struct nvme_completion *cqe)
966 {
967 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
968 *cqe = nvmeq->cqes[nvmeq->cq_head];
969
970 if (++nvmeq->cq_head == nvmeq->q_depth) {
971 nvmeq->cq_head = 0;
972 nvmeq->cq_phase = !nvmeq->cq_phase;
973 }
974 return true;
975 }
976 return false;
977 }
978
979 static void nvme_process_cq(struct nvme_queue *nvmeq)
980 {
981 struct nvme_completion cqe;
982 int consumed = 0;
983
984 while (nvme_read_cqe(nvmeq, &cqe)) {
985 nvme_handle_cqe(nvmeq, &cqe);
986 consumed++;
987 }
988
989 if (consumed)
990 nvme_ring_cq_doorbell(nvmeq);
991 }
992
993 static irqreturn_t nvme_irq(int irq, void *data)
994 {
995 irqreturn_t result;
996 struct nvme_queue *nvmeq = data;
997 spin_lock(&nvmeq->q_lock);
998 nvme_process_cq(nvmeq);
999 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1000 nvmeq->cqe_seen = 0;
1001 spin_unlock(&nvmeq->q_lock);
1002 return result;
1003 }
1004
1005 static irqreturn_t nvme_irq_check(int irq, void *data)
1006 {
1007 struct nvme_queue *nvmeq = data;
1008 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1009 return IRQ_WAKE_THREAD;
1010 return IRQ_NONE;
1011 }
1012
1013 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1014 {
1015 struct nvme_completion cqe;
1016 int found = 0, consumed = 0;
1017
1018 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1019 return 0;
1020
1021 spin_lock_irq(&nvmeq->q_lock);
1022 while (nvme_read_cqe(nvmeq, &cqe)) {
1023 nvme_handle_cqe(nvmeq, &cqe);
1024 consumed++;
1025
1026 if (tag == cqe.command_id) {
1027 found = 1;
1028 break;
1029 }
1030 }
1031
1032 if (consumed)
1033 nvme_ring_cq_doorbell(nvmeq);
1034 spin_unlock_irq(&nvmeq->q_lock);
1035
1036 return found;
1037 }
1038
1039 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1040 {
1041 struct nvme_queue *nvmeq = hctx->driver_data;
1042
1043 return __nvme_poll(nvmeq, tag);
1044 }
1045
1046 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1047 {
1048 struct nvme_dev *dev = to_nvme_dev(ctrl);
1049 struct nvme_queue *nvmeq = dev->queues[0];
1050 struct nvme_command c;
1051
1052 memset(&c, 0, sizeof(c));
1053 c.common.opcode = nvme_admin_async_event;
1054 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1055
1056 spin_lock_irq(&nvmeq->q_lock);
1057 __nvme_submit_cmd(nvmeq, &c);
1058 spin_unlock_irq(&nvmeq->q_lock);
1059 }
1060
1061 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1062 {
1063 struct nvme_command c;
1064
1065 memset(&c, 0, sizeof(c));
1066 c.delete_queue.opcode = opcode;
1067 c.delete_queue.qid = cpu_to_le16(id);
1068
1069 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1070 }
1071
1072 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1073 struct nvme_queue *nvmeq)
1074 {
1075 struct nvme_command c;
1076 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1077
1078 /*
1079 * Note: we (ab)use the fact that the prp fields survive if no data
1080 * is attached to the request.
1081 */
1082 memset(&c, 0, sizeof(c));
1083 c.create_cq.opcode = nvme_admin_create_cq;
1084 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1085 c.create_cq.cqid = cpu_to_le16(qid);
1086 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1087 c.create_cq.cq_flags = cpu_to_le16(flags);
1088 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1089
1090 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1091 }
1092
1093 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1094 struct nvme_queue *nvmeq)
1095 {
1096 struct nvme_command c;
1097 int flags = NVME_QUEUE_PHYS_CONTIG;
1098
1099 /*
1100 * Note: we (ab)use the fact that the prp fields survive if no data
1101 * is attached to the request.
1102 */
1103 memset(&c, 0, sizeof(c));
1104 c.create_sq.opcode = nvme_admin_create_sq;
1105 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1106 c.create_sq.sqid = cpu_to_le16(qid);
1107 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1108 c.create_sq.sq_flags = cpu_to_le16(flags);
1109 c.create_sq.cqid = cpu_to_le16(qid);
1110
1111 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1112 }
1113
1114 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1115 {
1116 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1117 }
1118
1119 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1120 {
1121 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1122 }
1123
1124 static void abort_endio(struct request *req, blk_status_t error)
1125 {
1126 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1127 struct nvme_queue *nvmeq = iod->nvmeq;
1128
1129 dev_warn(nvmeq->dev->ctrl.device,
1130 "Abort status: 0x%x", nvme_req(req)->status);
1131 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1132 blk_mq_free_request(req);
1133 }
1134
1135 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1136 {
1137
1138 /* If true, indicates loss of adapter communication, possibly by a
1139 * NVMe Subsystem reset.
1140 */
1141 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1142
1143 /* If there is a reset ongoing, we shouldn't reset again. */
1144 if (dev->ctrl.state == NVME_CTRL_RESETTING)
1145 return false;
1146
1147 /* We shouldn't reset unless the controller is on fatal error state
1148 * _or_ if we lost the communication with it.
1149 */
1150 if (!(csts & NVME_CSTS_CFS) && !nssro)
1151 return false;
1152
1153 /* If PCI error recovery process is happening, we cannot reset or
1154 * the recovery mechanism will surely fail.
1155 */
1156 if (pci_channel_offline(to_pci_dev(dev->dev)))
1157 return false;
1158
1159 return true;
1160 }
1161
1162 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1163 {
1164 /* Read a config register to help see what died. */
1165 u16 pci_status;
1166 int result;
1167
1168 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1169 &pci_status);
1170 if (result == PCIBIOS_SUCCESSFUL)
1171 dev_warn(dev->ctrl.device,
1172 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1173 csts, pci_status);
1174 else
1175 dev_warn(dev->ctrl.device,
1176 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1177 csts, result);
1178 }
1179
1180 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1181 {
1182 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1183 struct nvme_queue *nvmeq = iod->nvmeq;
1184 struct nvme_dev *dev = nvmeq->dev;
1185 struct request *abort_req;
1186 struct nvme_command cmd;
1187 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1188
1189 /*
1190 * Reset immediately if the controller is failed
1191 */
1192 if (nvme_should_reset(dev, csts)) {
1193 nvme_warn_reset(dev, csts);
1194 nvme_dev_disable(dev, false);
1195 nvme_reset_ctrl(&dev->ctrl);
1196 return BLK_EH_HANDLED;
1197 }
1198
1199 /*
1200 * Did we miss an interrupt?
1201 */
1202 if (__nvme_poll(nvmeq, req->tag)) {
1203 dev_warn(dev->ctrl.device,
1204 "I/O %d QID %d timeout, completion polled\n",
1205 req->tag, nvmeq->qid);
1206 return BLK_EH_HANDLED;
1207 }
1208
1209 /*
1210 * Shutdown immediately if controller times out while starting. The
1211 * reset work will see the pci device disabled when it gets the forced
1212 * cancellation error. All outstanding requests are completed on
1213 * shutdown, so we return BLK_EH_HANDLED.
1214 */
1215 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1216 dev_warn(dev->ctrl.device,
1217 "I/O %d QID %d timeout, disable controller\n",
1218 req->tag, nvmeq->qid);
1219 nvme_dev_disable(dev, false);
1220 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1221 return BLK_EH_HANDLED;
1222 }
1223
1224 /*
1225 * Shutdown the controller immediately and schedule a reset if the
1226 * command was already aborted once before and still hasn't been
1227 * returned to the driver, or if this is the admin queue.
1228 */
1229 if (!nvmeq->qid || iod->aborted) {
1230 dev_warn(dev->ctrl.device,
1231 "I/O %d QID %d timeout, reset controller\n",
1232 req->tag, nvmeq->qid);
1233 nvme_dev_disable(dev, false);
1234 nvme_reset_ctrl(&dev->ctrl);
1235
1236 /*
1237 * Mark the request as handled, since the inline shutdown
1238 * forces all outstanding requests to complete.
1239 */
1240 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1241 return BLK_EH_HANDLED;
1242 }
1243
1244 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1245 atomic_inc(&dev->ctrl.abort_limit);
1246 return BLK_EH_RESET_TIMER;
1247 }
1248 iod->aborted = 1;
1249
1250 memset(&cmd, 0, sizeof(cmd));
1251 cmd.abort.opcode = nvme_admin_abort_cmd;
1252 cmd.abort.cid = req->tag;
1253 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1254
1255 dev_warn(nvmeq->dev->ctrl.device,
1256 "I/O %d QID %d timeout, aborting\n",
1257 req->tag, nvmeq->qid);
1258
1259 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1260 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1261 if (IS_ERR(abort_req)) {
1262 atomic_inc(&dev->ctrl.abort_limit);
1263 return BLK_EH_RESET_TIMER;
1264 }
1265
1266 abort_req->timeout = ADMIN_TIMEOUT;
1267 abort_req->end_io_data = NULL;
1268 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1269
1270 /*
1271 * The aborted req will be completed on receiving the abort req.
1272 * We enable the timer again. If hit twice, it'll cause a device reset,
1273 * as the device then is in a faulty state.
1274 */
1275 return BLK_EH_RESET_TIMER;
1276 }
1277
1278 static void nvme_free_queue(struct nvme_queue *nvmeq)
1279 {
1280 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1281 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1282 if (nvmeq->sq_cmds)
1283 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1284 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1285 kfree(nvmeq);
1286 }
1287
1288 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1289 {
1290 int i;
1291
1292 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1293 struct nvme_queue *nvmeq = dev->queues[i];
1294 dev->ctrl.queue_count--;
1295 dev->queues[i] = NULL;
1296 nvme_free_queue(nvmeq);
1297 }
1298 }
1299
1300 /**
1301 * nvme_suspend_queue - put queue into suspended state
1302 * @nvmeq - queue to suspend
1303 */
1304 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1305 {
1306 int vector;
1307
1308 spin_lock_irq(&nvmeq->q_lock);
1309 if (nvmeq->cq_vector == -1) {
1310 spin_unlock_irq(&nvmeq->q_lock);
1311 return 1;
1312 }
1313 vector = nvmeq->cq_vector;
1314 nvmeq->dev->online_queues--;
1315 nvmeq->cq_vector = -1;
1316 spin_unlock_irq(&nvmeq->q_lock);
1317
1318 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1319 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1320
1321 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1322
1323 return 0;
1324 }
1325
1326 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1327 {
1328 struct nvme_queue *nvmeq = dev->queues[0];
1329
1330 if (!nvmeq)
1331 return;
1332 if (nvme_suspend_queue(nvmeq))
1333 return;
1334
1335 if (shutdown)
1336 nvme_shutdown_ctrl(&dev->ctrl);
1337 else
1338 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1339
1340 spin_lock_irq(&nvmeq->q_lock);
1341 nvme_process_cq(nvmeq);
1342 spin_unlock_irq(&nvmeq->q_lock);
1343 }
1344
1345 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1346 int entry_size)
1347 {
1348 int q_depth = dev->q_depth;
1349 unsigned q_size_aligned = roundup(q_depth * entry_size,
1350 dev->ctrl.page_size);
1351
1352 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1353 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1354 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1355 q_depth = div_u64(mem_per_q, entry_size);
1356
1357 /*
1358 * Ensure the reduced q_depth is above some threshold where it
1359 * would be better to map queues in system memory with the
1360 * original depth
1361 */
1362 if (q_depth < 64)
1363 return -ENOMEM;
1364 }
1365
1366 return q_depth;
1367 }
1368
1369 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1370 int qid, int depth)
1371 {
1372 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1373 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1374 dev->ctrl.page_size);
1375 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1376 nvmeq->sq_cmds_io = dev->cmb + offset;
1377 } else {
1378 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1379 &nvmeq->sq_dma_addr, GFP_KERNEL);
1380 if (!nvmeq->sq_cmds)
1381 return -ENOMEM;
1382 }
1383
1384 return 0;
1385 }
1386
1387 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1388 int depth, int node)
1389 {
1390 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1391 node);
1392 if (!nvmeq)
1393 return NULL;
1394
1395 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1396 &nvmeq->cq_dma_addr, GFP_KERNEL);
1397 if (!nvmeq->cqes)
1398 goto free_nvmeq;
1399
1400 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1401 goto free_cqdma;
1402
1403 nvmeq->q_dmadev = dev->dev;
1404 nvmeq->dev = dev;
1405 spin_lock_init(&nvmeq->q_lock);
1406 nvmeq->cq_head = 0;
1407 nvmeq->cq_phase = 1;
1408 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1409 nvmeq->q_depth = depth;
1410 nvmeq->qid = qid;
1411 nvmeq->cq_vector = -1;
1412 dev->queues[qid] = nvmeq;
1413 dev->ctrl.queue_count++;
1414
1415 return nvmeq;
1416
1417 free_cqdma:
1418 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1419 nvmeq->cq_dma_addr);
1420 free_nvmeq:
1421 kfree(nvmeq);
1422 return NULL;
1423 }
1424
1425 static int queue_request_irq(struct nvme_queue *nvmeq)
1426 {
1427 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1428 int nr = nvmeq->dev->ctrl.instance;
1429
1430 if (use_threaded_interrupts) {
1431 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1432 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1433 } else {
1434 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1435 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1436 }
1437 }
1438
1439 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1440 {
1441 struct nvme_dev *dev = nvmeq->dev;
1442
1443 spin_lock_irq(&nvmeq->q_lock);
1444 nvmeq->sq_tail = 0;
1445 nvmeq->cq_head = 0;
1446 nvmeq->cq_phase = 1;
1447 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1448 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1449 nvme_dbbuf_init(dev, nvmeq, qid);
1450 dev->online_queues++;
1451 spin_unlock_irq(&nvmeq->q_lock);
1452 }
1453
1454 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1455 {
1456 struct nvme_dev *dev = nvmeq->dev;
1457 int result;
1458
1459 nvmeq->cq_vector = qid - 1;
1460 result = adapter_alloc_cq(dev, qid, nvmeq);
1461 if (result < 0)
1462 return result;
1463
1464 result = adapter_alloc_sq(dev, qid, nvmeq);
1465 if (result < 0)
1466 goto release_cq;
1467
1468 nvme_init_queue(nvmeq, qid);
1469 result = queue_request_irq(nvmeq);
1470 if (result < 0)
1471 goto release_sq;
1472
1473 return result;
1474
1475 release_sq:
1476 adapter_delete_sq(dev, qid);
1477 release_cq:
1478 adapter_delete_cq(dev, qid);
1479 return result;
1480 }
1481
1482 static const struct blk_mq_ops nvme_mq_admin_ops = {
1483 .queue_rq = nvme_queue_rq,
1484 .complete = nvme_pci_complete_rq,
1485 .init_hctx = nvme_admin_init_hctx,
1486 .exit_hctx = nvme_admin_exit_hctx,
1487 .init_request = nvme_init_request,
1488 .timeout = nvme_timeout,
1489 };
1490
1491 static const struct blk_mq_ops nvme_mq_ops = {
1492 .queue_rq = nvme_queue_rq,
1493 .complete = nvme_pci_complete_rq,
1494 .init_hctx = nvme_init_hctx,
1495 .init_request = nvme_init_request,
1496 .map_queues = nvme_pci_map_queues,
1497 .timeout = nvme_timeout,
1498 .poll = nvme_poll,
1499 };
1500
1501 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1502 {
1503 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1504 /*
1505 * If the controller was reset during removal, it's possible
1506 * user requests may be waiting on a stopped queue. Start the
1507 * queue to flush these to completion.
1508 */
1509 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1510 blk_cleanup_queue(dev->ctrl.admin_q);
1511 blk_mq_free_tag_set(&dev->admin_tagset);
1512 }
1513 }
1514
1515 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1516 {
1517 if (!dev->ctrl.admin_q) {
1518 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1519 dev->admin_tagset.nr_hw_queues = 1;
1520
1521 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1522 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1523 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1524 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1525 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1526 dev->admin_tagset.driver_data = dev;
1527
1528 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1529 return -ENOMEM;
1530 dev->ctrl.admin_tagset = &dev->admin_tagset;
1531
1532 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1533 if (IS_ERR(dev->ctrl.admin_q)) {
1534 blk_mq_free_tag_set(&dev->admin_tagset);
1535 return -ENOMEM;
1536 }
1537 if (!blk_get_queue(dev->ctrl.admin_q)) {
1538 nvme_dev_remove_admin(dev);
1539 dev->ctrl.admin_q = NULL;
1540 return -ENODEV;
1541 }
1542 } else
1543 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1544
1545 return 0;
1546 }
1547
1548 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1549 {
1550 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1551 }
1552
1553 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1554 {
1555 struct pci_dev *pdev = to_pci_dev(dev->dev);
1556
1557 if (size <= dev->bar_mapped_size)
1558 return 0;
1559 if (size > pci_resource_len(pdev, 0))
1560 return -ENOMEM;
1561 if (dev->bar)
1562 iounmap(dev->bar);
1563 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1564 if (!dev->bar) {
1565 dev->bar_mapped_size = 0;
1566 return -ENOMEM;
1567 }
1568 dev->bar_mapped_size = size;
1569 dev->dbs = dev->bar + NVME_REG_DBS;
1570
1571 return 0;
1572 }
1573
1574 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1575 {
1576 int result;
1577 u32 aqa;
1578 struct nvme_queue *nvmeq;
1579
1580 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1581 if (result < 0)
1582 return result;
1583
1584 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1585 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1586
1587 if (dev->subsystem &&
1588 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1589 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1590
1591 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1592 if (result < 0)
1593 return result;
1594
1595 nvmeq = dev->queues[0];
1596 if (!nvmeq) {
1597 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1598 dev_to_node(dev->dev));
1599 if (!nvmeq)
1600 return -ENOMEM;
1601 }
1602
1603 aqa = nvmeq->q_depth - 1;
1604 aqa |= aqa << 16;
1605
1606 writel(aqa, dev->bar + NVME_REG_AQA);
1607 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1608 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1609
1610 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1611 if (result)
1612 return result;
1613
1614 nvmeq->cq_vector = 0;
1615 nvme_init_queue(nvmeq, 0);
1616 result = queue_request_irq(nvmeq);
1617 if (result) {
1618 nvmeq->cq_vector = -1;
1619 return result;
1620 }
1621
1622 return result;
1623 }
1624
1625 static int nvme_create_io_queues(struct nvme_dev *dev)
1626 {
1627 unsigned i, max;
1628 int ret = 0;
1629
1630 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1631 /* vector == qid - 1, match nvme_create_queue */
1632 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1633 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1634 ret = -ENOMEM;
1635 break;
1636 }
1637 }
1638
1639 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1640 for (i = dev->online_queues; i <= max; i++) {
1641 ret = nvme_create_queue(dev->queues[i], i);
1642 if (ret)
1643 break;
1644 }
1645
1646 /*
1647 * Ignore failing Create SQ/CQ commands, we can continue with less
1648 * than the desired aount of queues, and even a controller without
1649 * I/O queues an still be used to issue admin commands. This might
1650 * be useful to upgrade a buggy firmware for example.
1651 */
1652 return ret >= 0 ? 0 : ret;
1653 }
1654
1655 static ssize_t nvme_cmb_show(struct device *dev,
1656 struct device_attribute *attr,
1657 char *buf)
1658 {
1659 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1660
1661 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1662 ndev->cmbloc, ndev->cmbsz);
1663 }
1664 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1665
1666 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1667 {
1668 u64 szu, size, offset;
1669 resource_size_t bar_size;
1670 struct pci_dev *pdev = to_pci_dev(dev->dev);
1671 void __iomem *cmb;
1672 int bar;
1673
1674 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1675 if (!(NVME_CMB_SZ(dev->cmbsz)))
1676 return NULL;
1677 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1678
1679 if (!use_cmb_sqes)
1680 return NULL;
1681
1682 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1683 size = szu * NVME_CMB_SZ(dev->cmbsz);
1684 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1685 bar = NVME_CMB_BIR(dev->cmbloc);
1686 bar_size = pci_resource_len(pdev, bar);
1687
1688 if (offset > bar_size)
1689 return NULL;
1690
1691 /*
1692 * Controllers may support a CMB size larger than their BAR,
1693 * for example, due to being behind a bridge. Reduce the CMB to
1694 * the reported size of the BAR
1695 */
1696 if (size > bar_size - offset)
1697 size = bar_size - offset;
1698
1699 cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1700 if (!cmb)
1701 return NULL;
1702
1703 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1704 dev->cmb_size = size;
1705 return cmb;
1706 }
1707
1708 static inline void nvme_release_cmb(struct nvme_dev *dev)
1709 {
1710 if (dev->cmb) {
1711 iounmap(dev->cmb);
1712 dev->cmb = NULL;
1713 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1714 &dev_attr_cmb.attr, NULL);
1715 dev->cmbsz = 0;
1716 }
1717 }
1718
1719 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1720 {
1721 u64 dma_addr = dev->host_mem_descs_dma;
1722 struct nvme_command c;
1723 int ret;
1724
1725 memset(&c, 0, sizeof(c));
1726 c.features.opcode = nvme_admin_set_features;
1727 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1728 c.features.dword11 = cpu_to_le32(bits);
1729 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1730 ilog2(dev->ctrl.page_size));
1731 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1732 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1733 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1734
1735 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1736 if (ret) {
1737 dev_warn(dev->ctrl.device,
1738 "failed to set host mem (err %d, flags %#x).\n",
1739 ret, bits);
1740 }
1741 return ret;
1742 }
1743
1744 static void nvme_free_host_mem(struct nvme_dev *dev)
1745 {
1746 int i;
1747
1748 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1749 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1750 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1751
1752 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1753 le64_to_cpu(desc->addr));
1754 }
1755
1756 kfree(dev->host_mem_desc_bufs);
1757 dev->host_mem_desc_bufs = NULL;
1758 dma_free_coherent(dev->dev,
1759 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1760 dev->host_mem_descs, dev->host_mem_descs_dma);
1761 dev->host_mem_descs = NULL;
1762 }
1763
1764 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1765 u32 chunk_size)
1766 {
1767 struct nvme_host_mem_buf_desc *descs;
1768 u32 max_entries, len;
1769 dma_addr_t descs_dma;
1770 int i = 0;
1771 void **bufs;
1772 u64 size = 0, tmp;
1773
1774 tmp = (preferred + chunk_size - 1);
1775 do_div(tmp, chunk_size);
1776 max_entries = tmp;
1777
1778 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1779 max_entries = dev->ctrl.hmmaxd;
1780
1781 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1782 &descs_dma, GFP_KERNEL);
1783 if (!descs)
1784 goto out;
1785
1786 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1787 if (!bufs)
1788 goto out_free_descs;
1789
1790 for (size = 0; size < preferred; size += len) {
1791 dma_addr_t dma_addr;
1792
1793 len = min_t(u64, chunk_size, preferred - size);
1794 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1795 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1796 if (!bufs[i])
1797 break;
1798
1799 descs[i].addr = cpu_to_le64(dma_addr);
1800 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1801 i++;
1802 }
1803
1804 if (!size)
1805 goto out_free_bufs;
1806
1807 dev->nr_host_mem_descs = i;
1808 dev->host_mem_size = size;
1809 dev->host_mem_descs = descs;
1810 dev->host_mem_descs_dma = descs_dma;
1811 dev->host_mem_desc_bufs = bufs;
1812 return 0;
1813
1814 out_free_bufs:
1815 while (--i >= 0) {
1816 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1817
1818 dma_free_coherent(dev->dev, size, bufs[i],
1819 le64_to_cpu(descs[i].addr));
1820 }
1821
1822 kfree(bufs);
1823 out_free_descs:
1824 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1825 descs_dma);
1826 out:
1827 dev->host_mem_descs = NULL;
1828 return -ENOMEM;
1829 }
1830
1831 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1832 {
1833 u32 chunk_size;
1834
1835 /* start big and work our way down */
1836 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1837 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1838 chunk_size /= 2) {
1839 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1840 if (!min || dev->host_mem_size >= min)
1841 return 0;
1842 nvme_free_host_mem(dev);
1843 }
1844 }
1845
1846 return -ENOMEM;
1847 }
1848
1849 static int nvme_setup_host_mem(struct nvme_dev *dev)
1850 {
1851 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1852 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1853 u64 min = (u64)dev->ctrl.hmmin * 4096;
1854 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1855 int ret = 0;
1856
1857 preferred = min(preferred, max);
1858 if (min > max) {
1859 dev_warn(dev->ctrl.device,
1860 "min host memory (%lld MiB) above limit (%d MiB).\n",
1861 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1862 nvme_free_host_mem(dev);
1863 return 0;
1864 }
1865
1866 /*
1867 * If we already have a buffer allocated check if we can reuse it.
1868 */
1869 if (dev->host_mem_descs) {
1870 if (dev->host_mem_size >= min)
1871 enable_bits |= NVME_HOST_MEM_RETURN;
1872 else
1873 nvme_free_host_mem(dev);
1874 }
1875
1876 if (!dev->host_mem_descs) {
1877 if (nvme_alloc_host_mem(dev, min, preferred)) {
1878 dev_warn(dev->ctrl.device,
1879 "failed to allocate host memory buffer.\n");
1880 return 0; /* controller must work without HMB */
1881 }
1882
1883 dev_info(dev->ctrl.device,
1884 "allocated %lld MiB host memory buffer.\n",
1885 dev->host_mem_size >> ilog2(SZ_1M));
1886 }
1887
1888 ret = nvme_set_host_mem(dev, enable_bits);
1889 if (ret)
1890 nvme_free_host_mem(dev);
1891 return ret;
1892 }
1893
1894 static int nvme_setup_io_queues(struct nvme_dev *dev)
1895 {
1896 struct nvme_queue *adminq = dev->queues[0];
1897 struct pci_dev *pdev = to_pci_dev(dev->dev);
1898 int result, nr_io_queues;
1899 unsigned long size;
1900
1901 nr_io_queues = num_present_cpus();
1902 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1903 if (result < 0)
1904 return result;
1905
1906 if (nr_io_queues == 0)
1907 return 0;
1908
1909 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1910 result = nvme_cmb_qdepth(dev, nr_io_queues,
1911 sizeof(struct nvme_command));
1912 if (result > 0)
1913 dev->q_depth = result;
1914 else
1915 nvme_release_cmb(dev);
1916 }
1917
1918 do {
1919 size = db_bar_size(dev, nr_io_queues);
1920 result = nvme_remap_bar(dev, size);
1921 if (!result)
1922 break;
1923 if (!--nr_io_queues)
1924 return -ENOMEM;
1925 } while (1);
1926 adminq->q_db = dev->dbs;
1927
1928 /* Deregister the admin queue's interrupt */
1929 pci_free_irq(pdev, 0, adminq);
1930
1931 /*
1932 * If we enable msix early due to not intx, disable it again before
1933 * setting up the full range we need.
1934 */
1935 pci_free_irq_vectors(pdev);
1936 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1937 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1938 if (nr_io_queues <= 0)
1939 return -EIO;
1940 dev->max_qid = nr_io_queues;
1941
1942 /*
1943 * Should investigate if there's a performance win from allocating
1944 * more queues than interrupt vectors; it might allow the submission
1945 * path to scale better, even if the receive path is limited by the
1946 * number of interrupts.
1947 */
1948
1949 result = queue_request_irq(adminq);
1950 if (result) {
1951 adminq->cq_vector = -1;
1952 return result;
1953 }
1954 return nvme_create_io_queues(dev);
1955 }
1956
1957 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1958 {
1959 struct nvme_queue *nvmeq = req->end_io_data;
1960
1961 blk_mq_free_request(req);
1962 complete(&nvmeq->dev->ioq_wait);
1963 }
1964
1965 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1966 {
1967 struct nvme_queue *nvmeq = req->end_io_data;
1968
1969 if (!error) {
1970 unsigned long flags;
1971
1972 /*
1973 * We might be called with the AQ q_lock held
1974 * and the I/O queue q_lock should always
1975 * nest inside the AQ one.
1976 */
1977 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1978 SINGLE_DEPTH_NESTING);
1979 nvme_process_cq(nvmeq);
1980 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1981 }
1982
1983 nvme_del_queue_end(req, error);
1984 }
1985
1986 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1987 {
1988 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1989 struct request *req;
1990 struct nvme_command cmd;
1991
1992 memset(&cmd, 0, sizeof(cmd));
1993 cmd.delete_queue.opcode = opcode;
1994 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1995
1996 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1997 if (IS_ERR(req))
1998 return PTR_ERR(req);
1999
2000 req->timeout = ADMIN_TIMEOUT;
2001 req->end_io_data = nvmeq;
2002
2003 blk_execute_rq_nowait(q, NULL, req, false,
2004 opcode == nvme_admin_delete_cq ?
2005 nvme_del_cq_end : nvme_del_queue_end);
2006 return 0;
2007 }
2008
2009 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
2010 {
2011 int pass;
2012 unsigned long timeout;
2013 u8 opcode = nvme_admin_delete_sq;
2014
2015 for (pass = 0; pass < 2; pass++) {
2016 int sent = 0, i = queues;
2017
2018 reinit_completion(&dev->ioq_wait);
2019 retry:
2020 timeout = ADMIN_TIMEOUT;
2021 for (; i > 0; i--, sent++)
2022 if (nvme_delete_queue(dev->queues[i], opcode))
2023 break;
2024
2025 while (sent--) {
2026 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2027 if (timeout == 0)
2028 return;
2029 if (i)
2030 goto retry;
2031 }
2032 opcode = nvme_admin_delete_cq;
2033 }
2034 }
2035
2036 /*
2037 * Return: error value if an error occurred setting up the queues or calling
2038 * Identify Device. 0 if these succeeded, even if adding some of the
2039 * namespaces failed. At the moment, these failures are silent. TBD which
2040 * failures should be reported.
2041 */
2042 static int nvme_dev_add(struct nvme_dev *dev)
2043 {
2044 if (!dev->ctrl.tagset) {
2045 dev->tagset.ops = &nvme_mq_ops;
2046 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2047 dev->tagset.timeout = NVME_IO_TIMEOUT;
2048 dev->tagset.numa_node = dev_to_node(dev->dev);
2049 dev->tagset.queue_depth =
2050 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2051 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2052 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2053 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2054 nvme_pci_cmd_size(dev, true));
2055 }
2056 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2057 dev->tagset.driver_data = dev;
2058
2059 if (blk_mq_alloc_tag_set(&dev->tagset))
2060 return 0;
2061 dev->ctrl.tagset = &dev->tagset;
2062
2063 nvme_dbbuf_set(dev);
2064 } else {
2065 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2066
2067 /* Free previously allocated queues that are no longer usable */
2068 nvme_free_queues(dev, dev->online_queues);
2069 }
2070
2071 return 0;
2072 }
2073
2074 static int nvme_pci_enable(struct nvme_dev *dev)
2075 {
2076 int result = -ENOMEM;
2077 struct pci_dev *pdev = to_pci_dev(dev->dev);
2078
2079 if (pci_enable_device_mem(pdev))
2080 return result;
2081
2082 pci_set_master(pdev);
2083
2084 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2085 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2086 goto disable;
2087
2088 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2089 result = -ENODEV;
2090 goto disable;
2091 }
2092
2093 /*
2094 * Some devices and/or platforms don't advertise or work with INTx
2095 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2096 * adjust this later.
2097 */
2098 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2099 if (result < 0)
2100 return result;
2101
2102 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2103
2104 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2105 io_queue_depth);
2106 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2107 dev->dbs = dev->bar + 4096;
2108
2109 /*
2110 * Temporary fix for the Apple controller found in the MacBook8,1 and
2111 * some MacBook7,1 to avoid controller resets and data loss.
2112 */
2113 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2114 dev->q_depth = 2;
2115 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2116 "set queue depth=%u to work around controller resets\n",
2117 dev->q_depth);
2118 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2119 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2120 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2121 dev->q_depth = 64;
2122 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2123 "set queue depth=%u\n", dev->q_depth);
2124 }
2125
2126 /*
2127 * CMBs can currently only exist on >=1.2 PCIe devices. We only
2128 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
2129 * has no name we can pass NULL as final argument to
2130 * sysfs_add_file_to_group.
2131 */
2132
2133 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
2134 dev->cmb = nvme_map_cmb(dev);
2135 if (dev->cmb) {
2136 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
2137 &dev_attr_cmb.attr, NULL))
2138 dev_warn(dev->ctrl.device,
2139 "failed to add sysfs attribute for CMB\n");
2140 }
2141 }
2142
2143 pci_enable_pcie_error_reporting(pdev);
2144 pci_save_state(pdev);
2145 return 0;
2146
2147 disable:
2148 pci_disable_device(pdev);
2149 return result;
2150 }
2151
2152 static void nvme_dev_unmap(struct nvme_dev *dev)
2153 {
2154 if (dev->bar)
2155 iounmap(dev->bar);
2156 pci_release_mem_regions(to_pci_dev(dev->dev));
2157 }
2158
2159 static void nvme_pci_disable(struct nvme_dev *dev)
2160 {
2161 struct pci_dev *pdev = to_pci_dev(dev->dev);
2162
2163 nvme_release_cmb(dev);
2164 pci_free_irq_vectors(pdev);
2165
2166 if (pci_is_enabled(pdev)) {
2167 pci_disable_pcie_error_reporting(pdev);
2168 pci_disable_device(pdev);
2169 }
2170 }
2171
2172 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2173 {
2174 int i, queues;
2175 bool dead = true;
2176 struct pci_dev *pdev = to_pci_dev(dev->dev);
2177
2178 mutex_lock(&dev->shutdown_lock);
2179 if (pci_is_enabled(pdev)) {
2180 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2181
2182 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2183 dev->ctrl.state == NVME_CTRL_RESETTING)
2184 nvme_start_freeze(&dev->ctrl);
2185 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2186 pdev->error_state != pci_channel_io_normal);
2187 }
2188
2189 /*
2190 * Give the controller a chance to complete all entered requests if
2191 * doing a safe shutdown.
2192 */
2193 if (!dead) {
2194 if (shutdown)
2195 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2196
2197 /*
2198 * If the controller is still alive tell it to stop using the
2199 * host memory buffer. In theory the shutdown / reset should
2200 * make sure that it doesn't access the host memoery anymore,
2201 * but I'd rather be safe than sorry..
2202 */
2203 if (dev->host_mem_descs)
2204 nvme_set_host_mem(dev, 0);
2205
2206 }
2207 nvme_stop_queues(&dev->ctrl);
2208
2209 queues = dev->online_queues - 1;
2210 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2211 nvme_suspend_queue(dev->queues[i]);
2212
2213 if (dead) {
2214 /* A device might become IO incapable very soon during
2215 * probe, before the admin queue is configured. Thus,
2216 * queue_count can be 0 here.
2217 */
2218 if (dev->ctrl.queue_count)
2219 nvme_suspend_queue(dev->queues[0]);
2220 } else {
2221 nvme_disable_io_queues(dev, queues);
2222 nvme_disable_admin_queue(dev, shutdown);
2223 }
2224 nvme_pci_disable(dev);
2225
2226 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2227 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2228
2229 /*
2230 * The driver will not be starting up queues again if shutting down so
2231 * must flush all entered requests to their failed completion to avoid
2232 * deadlocking blk-mq hot-cpu notifier.
2233 */
2234 if (shutdown)
2235 nvme_start_queues(&dev->ctrl);
2236 mutex_unlock(&dev->shutdown_lock);
2237 }
2238
2239 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2240 {
2241 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2242 PAGE_SIZE, PAGE_SIZE, 0);
2243 if (!dev->prp_page_pool)
2244 return -ENOMEM;
2245
2246 /* Optimisation for I/Os between 4k and 128k */
2247 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2248 256, 256, 0);
2249 if (!dev->prp_small_pool) {
2250 dma_pool_destroy(dev->prp_page_pool);
2251 return -ENOMEM;
2252 }
2253 return 0;
2254 }
2255
2256 static void nvme_release_prp_pools(struct nvme_dev *dev)
2257 {
2258 dma_pool_destroy(dev->prp_page_pool);
2259 dma_pool_destroy(dev->prp_small_pool);
2260 }
2261
2262 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2263 {
2264 struct nvme_dev *dev = to_nvme_dev(ctrl);
2265
2266 nvme_dbbuf_dma_free(dev);
2267 put_device(dev->dev);
2268 if (dev->tagset.tags)
2269 blk_mq_free_tag_set(&dev->tagset);
2270 if (dev->ctrl.admin_q)
2271 blk_put_queue(dev->ctrl.admin_q);
2272 kfree(dev->queues);
2273 free_opal_dev(dev->ctrl.opal_dev);
2274 kfree(dev);
2275 }
2276
2277 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2278 {
2279 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2280
2281 nvme_get_ctrl(&dev->ctrl);
2282 nvme_dev_disable(dev, false);
2283 if (!queue_work(nvme_wq, &dev->remove_work))
2284 nvme_put_ctrl(&dev->ctrl);
2285 }
2286
2287 static void nvme_reset_work(struct work_struct *work)
2288 {
2289 struct nvme_dev *dev =
2290 container_of(work, struct nvme_dev, ctrl.reset_work);
2291 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2292 int result = -ENODEV;
2293
2294 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2295 goto out;
2296
2297 /*
2298 * If we're called to reset a live controller first shut it down before
2299 * moving on.
2300 */
2301 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2302 nvme_dev_disable(dev, false);
2303
2304 result = nvme_pci_enable(dev);
2305 if (result)
2306 goto out;
2307
2308 result = nvme_pci_configure_admin_queue(dev);
2309 if (result)
2310 goto out;
2311
2312 result = nvme_alloc_admin_tags(dev);
2313 if (result)
2314 goto out;
2315
2316 result = nvme_init_identify(&dev->ctrl);
2317 if (result)
2318 goto out;
2319
2320 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2321 if (!dev->ctrl.opal_dev)
2322 dev->ctrl.opal_dev =
2323 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2324 else if (was_suspend)
2325 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2326 } else {
2327 free_opal_dev(dev->ctrl.opal_dev);
2328 dev->ctrl.opal_dev = NULL;
2329 }
2330
2331 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2332 result = nvme_dbbuf_dma_alloc(dev);
2333 if (result)
2334 dev_warn(dev->dev,
2335 "unable to allocate dma for dbbuf\n");
2336 }
2337
2338 if (dev->ctrl.hmpre) {
2339 result = nvme_setup_host_mem(dev);
2340 if (result < 0)
2341 goto out;
2342 }
2343
2344 result = nvme_setup_io_queues(dev);
2345 if (result)
2346 goto out;
2347
2348 /*
2349 * Keep the controller around but remove all namespaces if we don't have
2350 * any working I/O queue.
2351 */
2352 if (dev->online_queues < 2) {
2353 dev_warn(dev->ctrl.device, "IO queues not created\n");
2354 nvme_kill_queues(&dev->ctrl);
2355 nvme_remove_namespaces(&dev->ctrl);
2356 } else {
2357 nvme_start_queues(&dev->ctrl);
2358 nvme_wait_freeze(&dev->ctrl);
2359 nvme_dev_add(dev);
2360 nvme_unfreeze(&dev->ctrl);
2361 }
2362
2363 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2364 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2365 goto out;
2366 }
2367
2368 nvme_start_ctrl(&dev->ctrl);
2369 return;
2370
2371 out:
2372 nvme_remove_dead_ctrl(dev, result);
2373 }
2374
2375 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2376 {
2377 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2378 struct pci_dev *pdev = to_pci_dev(dev->dev);
2379
2380 nvme_kill_queues(&dev->ctrl);
2381 if (pci_get_drvdata(pdev))
2382 device_release_driver(&pdev->dev);
2383 nvme_put_ctrl(&dev->ctrl);
2384 }
2385
2386 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2387 {
2388 *val = readl(to_nvme_dev(ctrl)->bar + off);
2389 return 0;
2390 }
2391
2392 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2393 {
2394 writel(val, to_nvme_dev(ctrl)->bar + off);
2395 return 0;
2396 }
2397
2398 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2399 {
2400 *val = readq(to_nvme_dev(ctrl)->bar + off);
2401 return 0;
2402 }
2403
2404 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2405 .name = "pcie",
2406 .module = THIS_MODULE,
2407 .flags = NVME_F_METADATA_SUPPORTED,
2408 .reg_read32 = nvme_pci_reg_read32,
2409 .reg_write32 = nvme_pci_reg_write32,
2410 .reg_read64 = nvme_pci_reg_read64,
2411 .free_ctrl = nvme_pci_free_ctrl,
2412 .submit_async_event = nvme_pci_submit_async_event,
2413 };
2414
2415 static int nvme_dev_map(struct nvme_dev *dev)
2416 {
2417 struct pci_dev *pdev = to_pci_dev(dev->dev);
2418
2419 if (pci_request_mem_regions(pdev, "nvme"))
2420 return -ENODEV;
2421
2422 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2423 goto release;
2424
2425 return 0;
2426 release:
2427 pci_release_mem_regions(pdev);
2428 return -ENODEV;
2429 }
2430
2431 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2432 {
2433 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2434 /*
2435 * Several Samsung devices seem to drop off the PCIe bus
2436 * randomly when APST is on and uses the deepest sleep state.
2437 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2438 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2439 * 950 PRO 256GB", but it seems to be restricted to two Dell
2440 * laptops.
2441 */
2442 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2443 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2444 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2445 return NVME_QUIRK_NO_DEEPEST_PS;
2446 }
2447
2448 return 0;
2449 }
2450
2451 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2452 {
2453 int node, result = -ENOMEM;
2454 struct nvme_dev *dev;
2455 unsigned long quirks = id->driver_data;
2456
2457 node = dev_to_node(&pdev->dev);
2458 if (node == NUMA_NO_NODE)
2459 set_dev_node(&pdev->dev, first_memory_node);
2460
2461 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2462 if (!dev)
2463 return -ENOMEM;
2464 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2465 GFP_KERNEL, node);
2466 if (!dev->queues)
2467 goto free;
2468
2469 dev->dev = get_device(&pdev->dev);
2470 pci_set_drvdata(pdev, dev);
2471
2472 result = nvme_dev_map(dev);
2473 if (result)
2474 goto put_pci;
2475
2476 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2477 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2478 mutex_init(&dev->shutdown_lock);
2479 init_completion(&dev->ioq_wait);
2480
2481 result = nvme_setup_prp_pools(dev);
2482 if (result)
2483 goto unmap;
2484
2485 quirks |= check_dell_samsung_bug(pdev);
2486
2487 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2488 quirks);
2489 if (result)
2490 goto release_pools;
2491
2492 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2493 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2494
2495 queue_work(nvme_wq, &dev->ctrl.reset_work);
2496 return 0;
2497
2498 release_pools:
2499 nvme_release_prp_pools(dev);
2500 unmap:
2501 nvme_dev_unmap(dev);
2502 put_pci:
2503 put_device(dev->dev);
2504 free:
2505 kfree(dev->queues);
2506 kfree(dev);
2507 return result;
2508 }
2509
2510 static void nvme_reset_prepare(struct pci_dev *pdev)
2511 {
2512 struct nvme_dev *dev = pci_get_drvdata(pdev);
2513 nvme_dev_disable(dev, false);
2514 }
2515
2516 static void nvme_reset_done(struct pci_dev *pdev)
2517 {
2518 struct nvme_dev *dev = pci_get_drvdata(pdev);
2519 nvme_reset_ctrl(&dev->ctrl);
2520 }
2521
2522 static void nvme_shutdown(struct pci_dev *pdev)
2523 {
2524 struct nvme_dev *dev = pci_get_drvdata(pdev);
2525 nvme_dev_disable(dev, true);
2526 }
2527
2528 /*
2529 * The driver's remove may be called on a device in a partially initialized
2530 * state. This function must not have any dependencies on the device state in
2531 * order to proceed.
2532 */
2533 static void nvme_remove(struct pci_dev *pdev)
2534 {
2535 struct nvme_dev *dev = pci_get_drvdata(pdev);
2536
2537 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2538
2539 cancel_work_sync(&dev->ctrl.reset_work);
2540 pci_set_drvdata(pdev, NULL);
2541
2542 if (!pci_device_is_present(pdev)) {
2543 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2544 nvme_dev_disable(dev, false);
2545 }
2546
2547 flush_work(&dev->ctrl.reset_work);
2548 nvme_stop_ctrl(&dev->ctrl);
2549 nvme_remove_namespaces(&dev->ctrl);
2550 nvme_dev_disable(dev, true);
2551 nvme_free_host_mem(dev);
2552 nvme_dev_remove_admin(dev);
2553 nvme_free_queues(dev, 0);
2554 nvme_uninit_ctrl(&dev->ctrl);
2555 nvme_release_prp_pools(dev);
2556 nvme_dev_unmap(dev);
2557 nvme_put_ctrl(&dev->ctrl);
2558 }
2559
2560 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2561 {
2562 int ret = 0;
2563
2564 if (numvfs == 0) {
2565 if (pci_vfs_assigned(pdev)) {
2566 dev_warn(&pdev->dev,
2567 "Cannot disable SR-IOV VFs while assigned\n");
2568 return -EPERM;
2569 }
2570 pci_disable_sriov(pdev);
2571 return 0;
2572 }
2573
2574 ret = pci_enable_sriov(pdev, numvfs);
2575 return ret ? ret : numvfs;
2576 }
2577
2578 #ifdef CONFIG_PM_SLEEP
2579 static int nvme_suspend(struct device *dev)
2580 {
2581 struct pci_dev *pdev = to_pci_dev(dev);
2582 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2583
2584 nvme_dev_disable(ndev, true);
2585 return 0;
2586 }
2587
2588 static int nvme_resume(struct device *dev)
2589 {
2590 struct pci_dev *pdev = to_pci_dev(dev);
2591 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2592
2593 nvme_reset_ctrl(&ndev->ctrl);
2594 return 0;
2595 }
2596 #endif
2597
2598 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2599
2600 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2601 pci_channel_state_t state)
2602 {
2603 struct nvme_dev *dev = pci_get_drvdata(pdev);
2604
2605 /*
2606 * A frozen channel requires a reset. When detected, this method will
2607 * shutdown the controller to quiesce. The controller will be restarted
2608 * after the slot reset through driver's slot_reset callback.
2609 */
2610 switch (state) {
2611 case pci_channel_io_normal:
2612 return PCI_ERS_RESULT_CAN_RECOVER;
2613 case pci_channel_io_frozen:
2614 dev_warn(dev->ctrl.device,
2615 "frozen state error detected, reset controller\n");
2616 nvme_dev_disable(dev, false);
2617 return PCI_ERS_RESULT_NEED_RESET;
2618 case pci_channel_io_perm_failure:
2619 dev_warn(dev->ctrl.device,
2620 "failure state error detected, request disconnect\n");
2621 return PCI_ERS_RESULT_DISCONNECT;
2622 }
2623 return PCI_ERS_RESULT_NEED_RESET;
2624 }
2625
2626 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2627 {
2628 struct nvme_dev *dev = pci_get_drvdata(pdev);
2629
2630 dev_info(dev->ctrl.device, "restart after slot reset\n");
2631 pci_restore_state(pdev);
2632 nvme_reset_ctrl(&dev->ctrl);
2633 return PCI_ERS_RESULT_RECOVERED;
2634 }
2635
2636 static void nvme_error_resume(struct pci_dev *pdev)
2637 {
2638 pci_cleanup_aer_uncorrect_error_status(pdev);
2639 }
2640
2641 static const struct pci_error_handlers nvme_err_handler = {
2642 .error_detected = nvme_error_detected,
2643 .slot_reset = nvme_slot_reset,
2644 .resume = nvme_error_resume,
2645 .reset_prepare = nvme_reset_prepare,
2646 .reset_done = nvme_reset_done,
2647 };
2648
2649 static const struct pci_device_id nvme_id_table[] = {
2650 { PCI_VDEVICE(INTEL, 0x0953),
2651 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2652 NVME_QUIRK_DEALLOCATE_ZEROES, },
2653 { PCI_VDEVICE(INTEL, 0x0a53),
2654 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2655 NVME_QUIRK_DEALLOCATE_ZEROES, },
2656 { PCI_VDEVICE(INTEL, 0x0a54),
2657 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2658 NVME_QUIRK_DEALLOCATE_ZEROES, },
2659 { PCI_VDEVICE(INTEL, 0x0a55),
2660 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2661 NVME_QUIRK_DEALLOCATE_ZEROES, },
2662 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2663 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2664 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2665 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2666 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2667 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2668 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2669 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2670 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2671 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2672 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2673 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2674 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2675 .driver_data = NVME_QUIRK_LIGHTNVM, },
2676 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2677 .driver_data = NVME_QUIRK_LIGHTNVM, },
2678 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2679 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2680 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2681 { 0, }
2682 };
2683 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2684
2685 static struct pci_driver nvme_driver = {
2686 .name = "nvme",
2687 .id_table = nvme_id_table,
2688 .probe = nvme_probe,
2689 .remove = nvme_remove,
2690 .shutdown = nvme_shutdown,
2691 .driver = {
2692 .pm = &nvme_dev_pm_ops,
2693 },
2694 .sriov_configure = nvme_pci_sriov_configure,
2695 .err_handler = &nvme_err_handler,
2696 };
2697
2698 static int __init nvme_init(void)
2699 {
2700 return pci_register_driver(&nvme_driver);
2701 }
2702
2703 static void __exit nvme_exit(void)
2704 {
2705 pci_unregister_driver(&nvme_driver);
2706 flush_workqueue(nvme_wq);
2707 _nvme_check_size();
2708 }
2709
2710 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2711 MODULE_LICENSE("GPL");
2712 MODULE_VERSION("1.0");
2713 module_init(nvme_init);
2714 module_exit(nvme_exit);