]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/nvme/host/pci.c
nvme: refactor set_queue_count
[mirror_ubuntu-zesty-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/pci.h>
35 #include <linux/poison.h>
36 #include <linux/ptrace.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/t10-pi.h>
40 #include <linux/types.h>
41 #include <linux/io-64-nonatomic-lo-hi.h>
42 #include <asm/unaligned.h>
43
44 #include "nvme.h"
45
46 #define NVME_Q_DEPTH 1024
47 #define NVME_AQ_DEPTH 256
48 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
50
51 unsigned char admin_timeout = 60;
52 module_param(admin_timeout, byte, 0644);
53 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
54
55 unsigned char nvme_io_timeout = 30;
56 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
57 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
58
59 unsigned char shutdown_timeout = 5;
60 module_param(shutdown_timeout, byte, 0644);
61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
62
63 static int use_threaded_interrupts;
64 module_param(use_threaded_interrupts, int, 0);
65
66 static bool use_cmb_sqes = true;
67 module_param(use_cmb_sqes, bool, 0644);
68 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
69
70 static LIST_HEAD(dev_list);
71 static struct task_struct *nvme_thread;
72 static struct workqueue_struct *nvme_workq;
73 static wait_queue_head_t nvme_kthread_wait;
74
75 struct nvme_dev;
76 struct nvme_queue;
77 struct nvme_iod;
78
79 static int __nvme_reset(struct nvme_dev *dev);
80 static int nvme_reset(struct nvme_dev *dev);
81 static void nvme_process_cq(struct nvme_queue *nvmeq);
82 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
83 static void nvme_dead_ctrl(struct nvme_dev *dev);
84
85 struct async_cmd_info {
86 struct kthread_work work;
87 struct kthread_worker *worker;
88 struct request *req;
89 u32 result;
90 int status;
91 void *ctx;
92 };
93
94 /*
95 * Represents an NVM Express device. Each nvme_dev is a PCI function.
96 */
97 struct nvme_dev {
98 struct list_head node;
99 struct nvme_queue **queues;
100 struct blk_mq_tag_set tagset;
101 struct blk_mq_tag_set admin_tagset;
102 u32 __iomem *dbs;
103 struct device *dev;
104 struct dma_pool *prp_page_pool;
105 struct dma_pool *prp_small_pool;
106 unsigned queue_count;
107 unsigned online_queues;
108 unsigned max_qid;
109 int q_depth;
110 u32 db_stride;
111 struct msix_entry *entry;
112 void __iomem *bar;
113 struct work_struct reset_work;
114 struct work_struct probe_work;
115 struct work_struct scan_work;
116 bool subsystem;
117 void __iomem *cmb;
118 dma_addr_t cmb_dma_addr;
119 u64 cmb_size;
120 u32 cmbsz;
121
122 struct nvme_ctrl ctrl;
123 };
124
125 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
126 {
127 return container_of(ctrl, struct nvme_dev, ctrl);
128 }
129
130 /*
131 * An NVM Express queue. Each device has at least two (one for admin
132 * commands and one for I/O commands).
133 */
134 struct nvme_queue {
135 struct device *q_dmadev;
136 struct nvme_dev *dev;
137 char irqname[24]; /* nvme4294967295-65535\0 */
138 spinlock_t q_lock;
139 struct nvme_command *sq_cmds;
140 struct nvme_command __iomem *sq_cmds_io;
141 volatile struct nvme_completion *cqes;
142 struct blk_mq_tags **tags;
143 dma_addr_t sq_dma_addr;
144 dma_addr_t cq_dma_addr;
145 u32 __iomem *q_db;
146 u16 q_depth;
147 s16 cq_vector;
148 u16 sq_head;
149 u16 sq_tail;
150 u16 cq_head;
151 u16 qid;
152 u8 cq_phase;
153 u8 cqe_seen;
154 struct async_cmd_info cmdinfo;
155 };
156
157 /*
158 * The nvme_iod describes the data in an I/O, including the list of PRP
159 * entries. You can't see it in this data structure because C doesn't let
160 * me express that. Use nvme_alloc_iod to ensure there's enough space
161 * allocated to store the PRP list.
162 */
163 struct nvme_iod {
164 unsigned long private; /* For the use of the submitter of the I/O */
165 int npages; /* In the PRP list. 0 means small pool in use */
166 int offset; /* Of PRP list */
167 int nents; /* Used in scatterlist */
168 int length; /* Of data, in bytes */
169 dma_addr_t first_dma;
170 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
171 struct scatterlist sg[0];
172 };
173
174 /*
175 * Check we didin't inadvertently grow the command struct
176 */
177 static inline void _nvme_check_size(void)
178 {
179 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
180 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
181 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
182 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
188 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
189 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
191 }
192
193 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
194 struct nvme_completion *);
195
196 struct nvme_cmd_info {
197 nvme_completion_fn fn;
198 void *ctx;
199 int aborted;
200 struct nvme_queue *nvmeq;
201 struct nvme_iod iod[0];
202 };
203
204 /*
205 * Max size of iod being embedded in the request payload
206 */
207 #define NVME_INT_PAGES 2
208 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
209 #define NVME_INT_MASK 0x01
210
211 /*
212 * Will slightly overestimate the number of pages needed. This is OK
213 * as it only leads to a small amount of wasted memory for the lifetime of
214 * the I/O.
215 */
216 static int nvme_npages(unsigned size, struct nvme_dev *dev)
217 {
218 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
219 dev->ctrl.page_size);
220 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
221 }
222
223 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
224 {
225 unsigned int ret = sizeof(struct nvme_cmd_info);
226
227 ret += sizeof(struct nvme_iod);
228 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
229 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
230
231 return ret;
232 }
233
234 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
235 unsigned int hctx_idx)
236 {
237 struct nvme_dev *dev = data;
238 struct nvme_queue *nvmeq = dev->queues[0];
239
240 WARN_ON(hctx_idx != 0);
241 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
242 WARN_ON(nvmeq->tags);
243
244 hctx->driver_data = nvmeq;
245 nvmeq->tags = &dev->admin_tagset.tags[0];
246 return 0;
247 }
248
249 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
250 {
251 struct nvme_queue *nvmeq = hctx->driver_data;
252
253 nvmeq->tags = NULL;
254 }
255
256 static int nvme_admin_init_request(void *data, struct request *req,
257 unsigned int hctx_idx, unsigned int rq_idx,
258 unsigned int numa_node)
259 {
260 struct nvme_dev *dev = data;
261 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
262 struct nvme_queue *nvmeq = dev->queues[0];
263
264 BUG_ON(!nvmeq);
265 cmd->nvmeq = nvmeq;
266 return 0;
267 }
268
269 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
270 unsigned int hctx_idx)
271 {
272 struct nvme_dev *dev = data;
273 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
274
275 if (!nvmeq->tags)
276 nvmeq->tags = &dev->tagset.tags[hctx_idx];
277
278 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
279 hctx->driver_data = nvmeq;
280 return 0;
281 }
282
283 static int nvme_init_request(void *data, struct request *req,
284 unsigned int hctx_idx, unsigned int rq_idx,
285 unsigned int numa_node)
286 {
287 struct nvme_dev *dev = data;
288 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
289 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
290
291 BUG_ON(!nvmeq);
292 cmd->nvmeq = nvmeq;
293 return 0;
294 }
295
296 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
297 nvme_completion_fn handler)
298 {
299 cmd->fn = handler;
300 cmd->ctx = ctx;
301 cmd->aborted = 0;
302 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
303 }
304
305 static void *iod_get_private(struct nvme_iod *iod)
306 {
307 return (void *) (iod->private & ~0x1UL);
308 }
309
310 /*
311 * If bit 0 is set, the iod is embedded in the request payload.
312 */
313 static bool iod_should_kfree(struct nvme_iod *iod)
314 {
315 return (iod->private & NVME_INT_MASK) == 0;
316 }
317
318 /* Special values must be less than 0x1000 */
319 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
320 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
321 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
322 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
323
324 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
325 struct nvme_completion *cqe)
326 {
327 if (ctx == CMD_CTX_CANCELLED)
328 return;
329 if (ctx == CMD_CTX_COMPLETED) {
330 dev_warn(nvmeq->q_dmadev,
331 "completed id %d twice on queue %d\n",
332 cqe->command_id, le16_to_cpup(&cqe->sq_id));
333 return;
334 }
335 if (ctx == CMD_CTX_INVALID) {
336 dev_warn(nvmeq->q_dmadev,
337 "invalid id %d completed on queue %d\n",
338 cqe->command_id, le16_to_cpup(&cqe->sq_id));
339 return;
340 }
341 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
342 }
343
344 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
345 {
346 void *ctx;
347
348 if (fn)
349 *fn = cmd->fn;
350 ctx = cmd->ctx;
351 cmd->fn = special_completion;
352 cmd->ctx = CMD_CTX_CANCELLED;
353 return ctx;
354 }
355
356 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
357 struct nvme_completion *cqe)
358 {
359 u32 result = le32_to_cpup(&cqe->result);
360 u16 status = le16_to_cpup(&cqe->status) >> 1;
361
362 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
363 ++nvmeq->dev->ctrl.event_limit;
364 if (status != NVME_SC_SUCCESS)
365 return;
366
367 switch (result & 0xff07) {
368 case NVME_AER_NOTICE_NS_CHANGED:
369 dev_info(nvmeq->q_dmadev, "rescanning\n");
370 schedule_work(&nvmeq->dev->scan_work);
371 default:
372 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
373 }
374 }
375
376 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
377 struct nvme_completion *cqe)
378 {
379 struct request *req = ctx;
380
381 u16 status = le16_to_cpup(&cqe->status) >> 1;
382 u32 result = le32_to_cpup(&cqe->result);
383
384 blk_mq_free_request(req);
385
386 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
387 ++nvmeq->dev->ctrl.abort_limit;
388 }
389
390 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
391 struct nvme_completion *cqe)
392 {
393 struct async_cmd_info *cmdinfo = ctx;
394 cmdinfo->result = le32_to_cpup(&cqe->result);
395 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
396 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
397 blk_mq_free_request(cmdinfo->req);
398 }
399
400 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
401 unsigned int tag)
402 {
403 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
404
405 return blk_mq_rq_to_pdu(req);
406 }
407
408 /*
409 * Called with local interrupts disabled and the q_lock held. May not sleep.
410 */
411 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
412 nvme_completion_fn *fn)
413 {
414 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
415 void *ctx;
416 if (tag >= nvmeq->q_depth) {
417 *fn = special_completion;
418 return CMD_CTX_INVALID;
419 }
420 if (fn)
421 *fn = cmd->fn;
422 ctx = cmd->ctx;
423 cmd->fn = special_completion;
424 cmd->ctx = CMD_CTX_COMPLETED;
425 return ctx;
426 }
427
428 /**
429 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
430 * @nvmeq: The queue to use
431 * @cmd: The command to send
432 *
433 * Safe to use from interrupt context
434 */
435 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
436 struct nvme_command *cmd)
437 {
438 u16 tail = nvmeq->sq_tail;
439
440 if (nvmeq->sq_cmds_io)
441 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
442 else
443 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
444
445 if (++tail == nvmeq->q_depth)
446 tail = 0;
447 writel(tail, nvmeq->q_db);
448 nvmeq->sq_tail = tail;
449 }
450
451 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
452 {
453 unsigned long flags;
454 spin_lock_irqsave(&nvmeq->q_lock, flags);
455 __nvme_submit_cmd(nvmeq, cmd);
456 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
457 }
458
459 static __le64 **iod_list(struct nvme_iod *iod)
460 {
461 return ((void *)iod) + iod->offset;
462 }
463
464 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
465 unsigned nseg, unsigned long private)
466 {
467 iod->private = private;
468 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
469 iod->npages = -1;
470 iod->length = nbytes;
471 iod->nents = 0;
472 }
473
474 static struct nvme_iod *
475 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
476 unsigned long priv, gfp_t gfp)
477 {
478 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
479 sizeof(__le64 *) * nvme_npages(bytes, dev) +
480 sizeof(struct scatterlist) * nseg, gfp);
481
482 if (iod)
483 iod_init(iod, bytes, nseg, priv);
484
485 return iod;
486 }
487
488 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
489 gfp_t gfp)
490 {
491 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
492 sizeof(struct nvme_dsm_range);
493 struct nvme_iod *iod;
494
495 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
496 size <= NVME_INT_BYTES(dev)) {
497 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
498
499 iod = cmd->iod;
500 iod_init(iod, size, rq->nr_phys_segments,
501 (unsigned long) rq | NVME_INT_MASK);
502 return iod;
503 }
504
505 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
506 (unsigned long) rq, gfp);
507 }
508
509 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
510 {
511 const int last_prp = dev->ctrl.page_size / 8 - 1;
512 int i;
513 __le64 **list = iod_list(iod);
514 dma_addr_t prp_dma = iod->first_dma;
515
516 if (iod->npages == 0)
517 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
518 for (i = 0; i < iod->npages; i++) {
519 __le64 *prp_list = list[i];
520 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
521 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
522 prp_dma = next_prp_dma;
523 }
524
525 if (iod_should_kfree(iod))
526 kfree(iod);
527 }
528
529 #ifdef CONFIG_BLK_DEV_INTEGRITY
530 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
531 {
532 if (be32_to_cpu(pi->ref_tag) == v)
533 pi->ref_tag = cpu_to_be32(p);
534 }
535
536 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
537 {
538 if (be32_to_cpu(pi->ref_tag) == p)
539 pi->ref_tag = cpu_to_be32(v);
540 }
541
542 /**
543 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
544 *
545 * The virtual start sector is the one that was originally submitted by the
546 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
547 * start sector may be different. Remap protection information to match the
548 * physical LBA on writes, and back to the original seed on reads.
549 *
550 * Type 0 and 3 do not have a ref tag, so no remapping required.
551 */
552 static void nvme_dif_remap(struct request *req,
553 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
554 {
555 struct nvme_ns *ns = req->rq_disk->private_data;
556 struct bio_integrity_payload *bip;
557 struct t10_pi_tuple *pi;
558 void *p, *pmap;
559 u32 i, nlb, ts, phys, virt;
560
561 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
562 return;
563
564 bip = bio_integrity(req->bio);
565 if (!bip)
566 return;
567
568 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
569
570 p = pmap;
571 virt = bip_get_seed(bip);
572 phys = nvme_block_nr(ns, blk_rq_pos(req));
573 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
574 ts = ns->disk->queue->integrity.tuple_size;
575
576 for (i = 0; i < nlb; i++, virt++, phys++) {
577 pi = (struct t10_pi_tuple *)p;
578 dif_swap(phys, virt, pi);
579 p += ts;
580 }
581 kunmap_atomic(pmap);
582 }
583 #else /* CONFIG_BLK_DEV_INTEGRITY */
584 static void nvme_dif_remap(struct request *req,
585 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
586 {
587 }
588 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
589 {
590 }
591 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
592 {
593 }
594 #endif
595
596 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
597 struct nvme_completion *cqe)
598 {
599 struct nvme_iod *iod = ctx;
600 struct request *req = iod_get_private(iod);
601 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
602 u16 status = le16_to_cpup(&cqe->status) >> 1;
603 int error = 0;
604
605 if (unlikely(status)) {
606 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
607 && (jiffies - req->start_time) < req->timeout) {
608 unsigned long flags;
609
610 nvme_unmap_data(nvmeq->dev, iod);
611
612 blk_mq_requeue_request(req);
613 spin_lock_irqsave(req->q->queue_lock, flags);
614 if (!blk_queue_stopped(req->q))
615 blk_mq_kick_requeue_list(req->q);
616 spin_unlock_irqrestore(req->q->queue_lock, flags);
617 return;
618 }
619
620 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
621 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
622 error = -EINTR;
623 else
624 error = status;
625 } else {
626 error = nvme_error_status(status);
627 }
628 }
629
630 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
631 u32 result = le32_to_cpup(&cqe->result);
632 req->special = (void *)(uintptr_t)result;
633 }
634
635 if (cmd_rq->aborted)
636 dev_warn(nvmeq->dev->dev,
637 "completing aborted command with status:%04x\n",
638 error);
639
640 nvme_unmap_data(nvmeq->dev, iod);
641 blk_mq_complete_request(req, error);
642 }
643
644 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
645 int total_len)
646 {
647 struct dma_pool *pool;
648 int length = total_len;
649 struct scatterlist *sg = iod->sg;
650 int dma_len = sg_dma_len(sg);
651 u64 dma_addr = sg_dma_address(sg);
652 u32 page_size = dev->ctrl.page_size;
653 int offset = dma_addr & (page_size - 1);
654 __le64 *prp_list;
655 __le64 **list = iod_list(iod);
656 dma_addr_t prp_dma;
657 int nprps, i;
658
659 length -= (page_size - offset);
660 if (length <= 0)
661 return true;
662
663 dma_len -= (page_size - offset);
664 if (dma_len) {
665 dma_addr += (page_size - offset);
666 } else {
667 sg = sg_next(sg);
668 dma_addr = sg_dma_address(sg);
669 dma_len = sg_dma_len(sg);
670 }
671
672 if (length <= page_size) {
673 iod->first_dma = dma_addr;
674 return true;
675 }
676
677 nprps = DIV_ROUND_UP(length, page_size);
678 if (nprps <= (256 / 8)) {
679 pool = dev->prp_small_pool;
680 iod->npages = 0;
681 } else {
682 pool = dev->prp_page_pool;
683 iod->npages = 1;
684 }
685
686 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
687 if (!prp_list) {
688 iod->first_dma = dma_addr;
689 iod->npages = -1;
690 return false;
691 }
692 list[0] = prp_list;
693 iod->first_dma = prp_dma;
694 i = 0;
695 for (;;) {
696 if (i == page_size >> 3) {
697 __le64 *old_prp_list = prp_list;
698 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
699 if (!prp_list)
700 return false;
701 list[iod->npages++] = prp_list;
702 prp_list[0] = old_prp_list[i - 1];
703 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
704 i = 1;
705 }
706 prp_list[i++] = cpu_to_le64(dma_addr);
707 dma_len -= page_size;
708 dma_addr += page_size;
709 length -= page_size;
710 if (length <= 0)
711 break;
712 if (dma_len > 0)
713 continue;
714 BUG_ON(dma_len < 0);
715 sg = sg_next(sg);
716 dma_addr = sg_dma_address(sg);
717 dma_len = sg_dma_len(sg);
718 }
719
720 return true;
721 }
722
723 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
724 struct nvme_command *cmnd)
725 {
726 struct request *req = iod_get_private(iod);
727 struct request_queue *q = req->q;
728 enum dma_data_direction dma_dir = rq_data_dir(req) ?
729 DMA_TO_DEVICE : DMA_FROM_DEVICE;
730 int ret = BLK_MQ_RQ_QUEUE_ERROR;
731
732 sg_init_table(iod->sg, req->nr_phys_segments);
733 iod->nents = blk_rq_map_sg(q, req, iod->sg);
734 if (!iod->nents)
735 goto out;
736
737 ret = BLK_MQ_RQ_QUEUE_BUSY;
738 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
739 goto out;
740
741 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
742 goto out_unmap;
743
744 ret = BLK_MQ_RQ_QUEUE_ERROR;
745 if (blk_integrity_rq(req)) {
746 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
747 goto out_unmap;
748
749 sg_init_table(iod->meta_sg, 1);
750 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
751 goto out_unmap;
752
753 if (rq_data_dir(req))
754 nvme_dif_remap(req, nvme_dif_prep);
755
756 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
757 goto out_unmap;
758 }
759
760 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
761 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
762 if (blk_integrity_rq(req))
763 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
764 return BLK_MQ_RQ_QUEUE_OK;
765
766 out_unmap:
767 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
768 out:
769 return ret;
770 }
771
772 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
773 {
774 struct request *req = iod_get_private(iod);
775 enum dma_data_direction dma_dir = rq_data_dir(req) ?
776 DMA_TO_DEVICE : DMA_FROM_DEVICE;
777
778 if (iod->nents) {
779 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
780 if (blk_integrity_rq(req)) {
781 if (!rq_data_dir(req))
782 nvme_dif_remap(req, nvme_dif_complete);
783 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
784 }
785 }
786
787 nvme_free_iod(dev, iod);
788 }
789
790 /*
791 * We reuse the small pool to allocate the 16-byte range here as it is not
792 * worth having a special pool for these or additional cases to handle freeing
793 * the iod.
794 */
795 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
796 struct nvme_iod *iod, struct nvme_command *cmnd)
797 {
798 struct request *req = iod_get_private(iod);
799 struct nvme_dsm_range *range;
800
801 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
802 &iod->first_dma);
803 if (!range)
804 return BLK_MQ_RQ_QUEUE_BUSY;
805 iod_list(iod)[0] = (__le64 *)range;
806 iod->npages = 0;
807
808 range->cattr = cpu_to_le32(0);
809 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
810 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
811
812 memset(cmnd, 0, sizeof(*cmnd));
813 cmnd->dsm.opcode = nvme_cmd_dsm;
814 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
815 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
816 cmnd->dsm.nr = 0;
817 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
818 return BLK_MQ_RQ_QUEUE_OK;
819 }
820
821 /*
822 * NOTE: ns is NULL when called on the admin queue.
823 */
824 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
825 const struct blk_mq_queue_data *bd)
826 {
827 struct nvme_ns *ns = hctx->queue->queuedata;
828 struct nvme_queue *nvmeq = hctx->driver_data;
829 struct nvme_dev *dev = nvmeq->dev;
830 struct request *req = bd->rq;
831 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
832 struct nvme_iod *iod;
833 struct nvme_command cmnd;
834 int ret = BLK_MQ_RQ_QUEUE_OK;
835
836 /*
837 * If formated with metadata, require the block layer provide a buffer
838 * unless this namespace is formated such that the metadata can be
839 * stripped/generated by the controller with PRACT=1.
840 */
841 if (ns && ns->ms && !blk_integrity_rq(req)) {
842 if (!(ns->pi_type && ns->ms == 8) &&
843 req->cmd_type != REQ_TYPE_DRV_PRIV) {
844 blk_mq_complete_request(req, -EFAULT);
845 return BLK_MQ_RQ_QUEUE_OK;
846 }
847 }
848
849 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
850 if (!iod)
851 return BLK_MQ_RQ_QUEUE_BUSY;
852
853 if (req->cmd_flags & REQ_DISCARD) {
854 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
855 } else {
856 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
857 memcpy(&cmnd, req->cmd, sizeof(cmnd));
858 else if (req->cmd_flags & REQ_FLUSH)
859 nvme_setup_flush(ns, &cmnd);
860 else
861 nvme_setup_rw(ns, req, &cmnd);
862
863 if (req->nr_phys_segments)
864 ret = nvme_map_data(dev, iod, &cmnd);
865 }
866
867 if (ret)
868 goto out;
869
870 cmnd.common.command_id = req->tag;
871 nvme_set_info(cmd, iod, req_completion);
872
873 spin_lock_irq(&nvmeq->q_lock);
874 __nvme_submit_cmd(nvmeq, &cmnd);
875 nvme_process_cq(nvmeq);
876 spin_unlock_irq(&nvmeq->q_lock);
877 return BLK_MQ_RQ_QUEUE_OK;
878 out:
879 nvme_free_iod(dev, iod);
880 return ret;
881 }
882
883 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
884 {
885 u16 head, phase;
886
887 head = nvmeq->cq_head;
888 phase = nvmeq->cq_phase;
889
890 for (;;) {
891 void *ctx;
892 nvme_completion_fn fn;
893 struct nvme_completion cqe = nvmeq->cqes[head];
894 if ((le16_to_cpu(cqe.status) & 1) != phase)
895 break;
896 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
897 if (++head == nvmeq->q_depth) {
898 head = 0;
899 phase = !phase;
900 }
901 if (tag && *tag == cqe.command_id)
902 *tag = -1;
903 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
904 fn(nvmeq, ctx, &cqe);
905 }
906
907 /* If the controller ignores the cq head doorbell and continuously
908 * writes to the queue, it is theoretically possible to wrap around
909 * the queue twice and mistakenly return IRQ_NONE. Linux only
910 * requires that 0.1% of your interrupts are handled, so this isn't
911 * a big problem.
912 */
913 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
914 return;
915
916 if (likely(nvmeq->cq_vector >= 0))
917 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
918 nvmeq->cq_head = head;
919 nvmeq->cq_phase = phase;
920
921 nvmeq->cqe_seen = 1;
922 }
923
924 static void nvme_process_cq(struct nvme_queue *nvmeq)
925 {
926 __nvme_process_cq(nvmeq, NULL);
927 }
928
929 static irqreturn_t nvme_irq(int irq, void *data)
930 {
931 irqreturn_t result;
932 struct nvme_queue *nvmeq = data;
933 spin_lock(&nvmeq->q_lock);
934 nvme_process_cq(nvmeq);
935 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
936 nvmeq->cqe_seen = 0;
937 spin_unlock(&nvmeq->q_lock);
938 return result;
939 }
940
941 static irqreturn_t nvme_irq_check(int irq, void *data)
942 {
943 struct nvme_queue *nvmeq = data;
944 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
945 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
946 return IRQ_NONE;
947 return IRQ_WAKE_THREAD;
948 }
949
950 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
951 {
952 struct nvme_queue *nvmeq = hctx->driver_data;
953
954 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
955 nvmeq->cq_phase) {
956 spin_lock_irq(&nvmeq->q_lock);
957 __nvme_process_cq(nvmeq, &tag);
958 spin_unlock_irq(&nvmeq->q_lock);
959
960 if (tag == -1)
961 return 1;
962 }
963
964 return 0;
965 }
966
967 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
968 {
969 struct nvme_queue *nvmeq = dev->queues[0];
970 struct nvme_command c;
971 struct nvme_cmd_info *cmd_info;
972 struct request *req;
973
974 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
975 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
976 if (IS_ERR(req))
977 return PTR_ERR(req);
978
979 req->cmd_flags |= REQ_NO_TIMEOUT;
980 cmd_info = blk_mq_rq_to_pdu(req);
981 nvme_set_info(cmd_info, NULL, async_req_completion);
982
983 memset(&c, 0, sizeof(c));
984 c.common.opcode = nvme_admin_async_event;
985 c.common.command_id = req->tag;
986
987 blk_mq_free_request(req);
988 __nvme_submit_cmd(nvmeq, &c);
989 return 0;
990 }
991
992 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
993 struct nvme_command *cmd,
994 struct async_cmd_info *cmdinfo, unsigned timeout)
995 {
996 struct nvme_queue *nvmeq = dev->queues[0];
997 struct request *req;
998 struct nvme_cmd_info *cmd_rq;
999
1000 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
1001 if (IS_ERR(req))
1002 return PTR_ERR(req);
1003
1004 req->timeout = timeout;
1005 cmd_rq = blk_mq_rq_to_pdu(req);
1006 cmdinfo->req = req;
1007 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1008 cmdinfo->status = -EINTR;
1009
1010 cmd->common.command_id = req->tag;
1011
1012 nvme_submit_cmd(nvmeq, cmd);
1013 return 0;
1014 }
1015
1016 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1017 {
1018 struct nvme_command c;
1019
1020 memset(&c, 0, sizeof(c));
1021 c.delete_queue.opcode = opcode;
1022 c.delete_queue.qid = cpu_to_le16(id);
1023
1024 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1025 }
1026
1027 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1028 struct nvme_queue *nvmeq)
1029 {
1030 struct nvme_command c;
1031 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1032
1033 /*
1034 * Note: we (ab)use the fact the the prp fields survive if no data
1035 * is attached to the request.
1036 */
1037 memset(&c, 0, sizeof(c));
1038 c.create_cq.opcode = nvme_admin_create_cq;
1039 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1040 c.create_cq.cqid = cpu_to_le16(qid);
1041 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1042 c.create_cq.cq_flags = cpu_to_le16(flags);
1043 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1044
1045 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1046 }
1047
1048 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1049 struct nvme_queue *nvmeq)
1050 {
1051 struct nvme_command c;
1052 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1053
1054 /*
1055 * Note: we (ab)use the fact the the prp fields survive if no data
1056 * is attached to the request.
1057 */
1058 memset(&c, 0, sizeof(c));
1059 c.create_sq.opcode = nvme_admin_create_sq;
1060 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1061 c.create_sq.sqid = cpu_to_le16(qid);
1062 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1063 c.create_sq.sq_flags = cpu_to_le16(flags);
1064 c.create_sq.cqid = cpu_to_le16(qid);
1065
1066 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1067 }
1068
1069 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1070 {
1071 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1072 }
1073
1074 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1075 {
1076 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1077 }
1078
1079 /**
1080 * nvme_abort_req - Attempt aborting a request
1081 *
1082 * Schedule controller reset if the command was already aborted once before and
1083 * still hasn't been returned to the driver, or if this is the admin queue.
1084 */
1085 static void nvme_abort_req(struct request *req)
1086 {
1087 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1088 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1089 struct nvme_dev *dev = nvmeq->dev;
1090 struct request *abort_req;
1091 struct nvme_cmd_info *abort_cmd;
1092 struct nvme_command cmd;
1093
1094 if (!nvmeq->qid || cmd_rq->aborted) {
1095 spin_lock(&dev_list_lock);
1096 if (!__nvme_reset(dev)) {
1097 dev_warn(dev->dev,
1098 "I/O %d QID %d timeout, reset controller\n",
1099 req->tag, nvmeq->qid);
1100 }
1101 spin_unlock(&dev_list_lock);
1102 return;
1103 }
1104
1105 if (!dev->ctrl.abort_limit)
1106 return;
1107
1108 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1109 BLK_MQ_REQ_NOWAIT);
1110 if (IS_ERR(abort_req))
1111 return;
1112
1113 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1114 nvme_set_info(abort_cmd, abort_req, abort_completion);
1115
1116 memset(&cmd, 0, sizeof(cmd));
1117 cmd.abort.opcode = nvme_admin_abort_cmd;
1118 cmd.abort.cid = req->tag;
1119 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1120 cmd.abort.command_id = abort_req->tag;
1121
1122 --dev->ctrl.abort_limit;
1123 cmd_rq->aborted = 1;
1124
1125 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1126 nvmeq->qid);
1127 nvme_submit_cmd(dev->queues[0], &cmd);
1128 }
1129
1130 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1131 {
1132 struct nvme_queue *nvmeq = data;
1133 void *ctx;
1134 nvme_completion_fn fn;
1135 struct nvme_cmd_info *cmd;
1136 struct nvme_completion cqe;
1137
1138 if (!blk_mq_request_started(req))
1139 return;
1140
1141 cmd = blk_mq_rq_to_pdu(req);
1142
1143 if (cmd->ctx == CMD_CTX_CANCELLED)
1144 return;
1145
1146 if (blk_queue_dying(req->q))
1147 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1148 else
1149 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1150
1151
1152 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1153 req->tag, nvmeq->qid);
1154 ctx = cancel_cmd_info(cmd, &fn);
1155 fn(nvmeq, ctx, &cqe);
1156 }
1157
1158 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1159 {
1160 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1161 struct nvme_queue *nvmeq = cmd->nvmeq;
1162
1163 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1164 nvmeq->qid);
1165 spin_lock_irq(&nvmeq->q_lock);
1166 nvme_abort_req(req);
1167 spin_unlock_irq(&nvmeq->q_lock);
1168
1169 /*
1170 * The aborted req will be completed on receiving the abort req.
1171 * We enable the timer again. If hit twice, it'll cause a device reset,
1172 * as the device then is in a faulty state.
1173 */
1174 return BLK_EH_RESET_TIMER;
1175 }
1176
1177 static void nvme_free_queue(struct nvme_queue *nvmeq)
1178 {
1179 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1180 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1181 if (nvmeq->sq_cmds)
1182 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1183 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1184 kfree(nvmeq);
1185 }
1186
1187 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1188 {
1189 int i;
1190
1191 for (i = dev->queue_count - 1; i >= lowest; i--) {
1192 struct nvme_queue *nvmeq = dev->queues[i];
1193 dev->queue_count--;
1194 dev->queues[i] = NULL;
1195 nvme_free_queue(nvmeq);
1196 }
1197 }
1198
1199 /**
1200 * nvme_suspend_queue - put queue into suspended state
1201 * @nvmeq - queue to suspend
1202 */
1203 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1204 {
1205 int vector;
1206
1207 spin_lock_irq(&nvmeq->q_lock);
1208 if (nvmeq->cq_vector == -1) {
1209 spin_unlock_irq(&nvmeq->q_lock);
1210 return 1;
1211 }
1212 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1213 nvmeq->dev->online_queues--;
1214 nvmeq->cq_vector = -1;
1215 spin_unlock_irq(&nvmeq->q_lock);
1216
1217 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1218 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1219
1220 irq_set_affinity_hint(vector, NULL);
1221 free_irq(vector, nvmeq);
1222
1223 return 0;
1224 }
1225
1226 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1227 {
1228 spin_lock_irq(&nvmeq->q_lock);
1229 if (nvmeq->tags && *nvmeq->tags)
1230 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1231 spin_unlock_irq(&nvmeq->q_lock);
1232 }
1233
1234 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1235 {
1236 struct nvme_queue *nvmeq = dev->queues[qid];
1237
1238 if (!nvmeq)
1239 return;
1240 if (nvme_suspend_queue(nvmeq))
1241 return;
1242
1243 /* Don't tell the adapter to delete the admin queue.
1244 * Don't tell a removed adapter to delete IO queues. */
1245 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1246 adapter_delete_sq(dev, qid);
1247 adapter_delete_cq(dev, qid);
1248 }
1249
1250 spin_lock_irq(&nvmeq->q_lock);
1251 nvme_process_cq(nvmeq);
1252 spin_unlock_irq(&nvmeq->q_lock);
1253 }
1254
1255 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1256 int entry_size)
1257 {
1258 int q_depth = dev->q_depth;
1259 unsigned q_size_aligned = roundup(q_depth * entry_size,
1260 dev->ctrl.page_size);
1261
1262 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1263 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1264 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1265 q_depth = div_u64(mem_per_q, entry_size);
1266
1267 /*
1268 * Ensure the reduced q_depth is above some threshold where it
1269 * would be better to map queues in system memory with the
1270 * original depth
1271 */
1272 if (q_depth < 64)
1273 return -ENOMEM;
1274 }
1275
1276 return q_depth;
1277 }
1278
1279 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1280 int qid, int depth)
1281 {
1282 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1283 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1284 dev->ctrl.page_size);
1285 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1286 nvmeq->sq_cmds_io = dev->cmb + offset;
1287 } else {
1288 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1289 &nvmeq->sq_dma_addr, GFP_KERNEL);
1290 if (!nvmeq->sq_cmds)
1291 return -ENOMEM;
1292 }
1293
1294 return 0;
1295 }
1296
1297 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1298 int depth)
1299 {
1300 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1301 if (!nvmeq)
1302 return NULL;
1303
1304 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1305 &nvmeq->cq_dma_addr, GFP_KERNEL);
1306 if (!nvmeq->cqes)
1307 goto free_nvmeq;
1308
1309 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1310 goto free_cqdma;
1311
1312 nvmeq->q_dmadev = dev->dev;
1313 nvmeq->dev = dev;
1314 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1315 dev->ctrl.instance, qid);
1316 spin_lock_init(&nvmeq->q_lock);
1317 nvmeq->cq_head = 0;
1318 nvmeq->cq_phase = 1;
1319 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1320 nvmeq->q_depth = depth;
1321 nvmeq->qid = qid;
1322 nvmeq->cq_vector = -1;
1323 dev->queues[qid] = nvmeq;
1324
1325 /* make sure queue descriptor is set before queue count, for kthread */
1326 mb();
1327 dev->queue_count++;
1328
1329 return nvmeq;
1330
1331 free_cqdma:
1332 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1333 nvmeq->cq_dma_addr);
1334 free_nvmeq:
1335 kfree(nvmeq);
1336 return NULL;
1337 }
1338
1339 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1340 const char *name)
1341 {
1342 if (use_threaded_interrupts)
1343 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1344 nvme_irq_check, nvme_irq, IRQF_SHARED,
1345 name, nvmeq);
1346 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1347 IRQF_SHARED, name, nvmeq);
1348 }
1349
1350 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1351 {
1352 struct nvme_dev *dev = nvmeq->dev;
1353
1354 spin_lock_irq(&nvmeq->q_lock);
1355 nvmeq->sq_tail = 0;
1356 nvmeq->cq_head = 0;
1357 nvmeq->cq_phase = 1;
1358 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1359 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1360 dev->online_queues++;
1361 spin_unlock_irq(&nvmeq->q_lock);
1362 }
1363
1364 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1365 {
1366 struct nvme_dev *dev = nvmeq->dev;
1367 int result;
1368
1369 nvmeq->cq_vector = qid - 1;
1370 result = adapter_alloc_cq(dev, qid, nvmeq);
1371 if (result < 0)
1372 return result;
1373
1374 result = adapter_alloc_sq(dev, qid, nvmeq);
1375 if (result < 0)
1376 goto release_cq;
1377
1378 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1379 if (result < 0)
1380 goto release_sq;
1381
1382 nvme_init_queue(nvmeq, qid);
1383 return result;
1384
1385 release_sq:
1386 adapter_delete_sq(dev, qid);
1387 release_cq:
1388 adapter_delete_cq(dev, qid);
1389 return result;
1390 }
1391
1392 static struct blk_mq_ops nvme_mq_admin_ops = {
1393 .queue_rq = nvme_queue_rq,
1394 .map_queue = blk_mq_map_queue,
1395 .init_hctx = nvme_admin_init_hctx,
1396 .exit_hctx = nvme_admin_exit_hctx,
1397 .init_request = nvme_admin_init_request,
1398 .timeout = nvme_timeout,
1399 };
1400
1401 static struct blk_mq_ops nvme_mq_ops = {
1402 .queue_rq = nvme_queue_rq,
1403 .map_queue = blk_mq_map_queue,
1404 .init_hctx = nvme_init_hctx,
1405 .init_request = nvme_init_request,
1406 .timeout = nvme_timeout,
1407 .poll = nvme_poll,
1408 };
1409
1410 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1411 {
1412 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1413 blk_cleanup_queue(dev->ctrl.admin_q);
1414 blk_mq_free_tag_set(&dev->admin_tagset);
1415 }
1416 }
1417
1418 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1419 {
1420 if (!dev->ctrl.admin_q) {
1421 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1422 dev->admin_tagset.nr_hw_queues = 1;
1423 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1424 dev->admin_tagset.reserved_tags = 1;
1425 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1426 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1427 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1428 dev->admin_tagset.driver_data = dev;
1429
1430 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1431 return -ENOMEM;
1432
1433 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1434 if (IS_ERR(dev->ctrl.admin_q)) {
1435 blk_mq_free_tag_set(&dev->admin_tagset);
1436 return -ENOMEM;
1437 }
1438 if (!blk_get_queue(dev->ctrl.admin_q)) {
1439 nvme_dev_remove_admin(dev);
1440 dev->ctrl.admin_q = NULL;
1441 return -ENODEV;
1442 }
1443 } else
1444 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1445
1446 return 0;
1447 }
1448
1449 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1450 {
1451 int result;
1452 u32 aqa;
1453 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1454 struct nvme_queue *nvmeq;
1455
1456 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1457 NVME_CAP_NSSRC(cap) : 0;
1458
1459 if (dev->subsystem &&
1460 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1461 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1462
1463 result = nvme_disable_ctrl(&dev->ctrl, cap);
1464 if (result < 0)
1465 return result;
1466
1467 nvmeq = dev->queues[0];
1468 if (!nvmeq) {
1469 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1470 if (!nvmeq)
1471 return -ENOMEM;
1472 }
1473
1474 aqa = nvmeq->q_depth - 1;
1475 aqa |= aqa << 16;
1476
1477 writel(aqa, dev->bar + NVME_REG_AQA);
1478 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1479 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1480
1481 result = nvme_enable_ctrl(&dev->ctrl, cap);
1482 if (result)
1483 goto free_nvmeq;
1484
1485 nvmeq->cq_vector = 0;
1486 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1487 if (result) {
1488 nvmeq->cq_vector = -1;
1489 goto free_nvmeq;
1490 }
1491
1492 return result;
1493
1494 free_nvmeq:
1495 nvme_free_queues(dev, 0);
1496 return result;
1497 }
1498
1499 static int nvme_kthread(void *data)
1500 {
1501 struct nvme_dev *dev, *next;
1502
1503 while (!kthread_should_stop()) {
1504 set_current_state(TASK_INTERRUPTIBLE);
1505 spin_lock(&dev_list_lock);
1506 list_for_each_entry_safe(dev, next, &dev_list, node) {
1507 int i;
1508 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1509
1510 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1511 csts & NVME_CSTS_CFS) {
1512 if (!__nvme_reset(dev)) {
1513 dev_warn(dev->dev,
1514 "Failed status: %x, reset controller\n",
1515 readl(dev->bar + NVME_REG_CSTS));
1516 }
1517 continue;
1518 }
1519 for (i = 0; i < dev->queue_count; i++) {
1520 struct nvme_queue *nvmeq = dev->queues[i];
1521 if (!nvmeq)
1522 continue;
1523 spin_lock_irq(&nvmeq->q_lock);
1524 nvme_process_cq(nvmeq);
1525
1526 while (i == 0 && dev->ctrl.event_limit > 0) {
1527 if (nvme_submit_async_admin_req(dev))
1528 break;
1529 dev->ctrl.event_limit--;
1530 }
1531 spin_unlock_irq(&nvmeq->q_lock);
1532 }
1533 }
1534 spin_unlock(&dev_list_lock);
1535 schedule_timeout(round_jiffies_relative(HZ));
1536 }
1537 return 0;
1538 }
1539
1540 /*
1541 * Create I/O queues. Failing to create an I/O queue is not an issue,
1542 * we can continue with less than the desired amount of queues, and
1543 * even a controller without I/O queues an still be used to issue
1544 * admin commands. This might be useful to upgrade a buggy firmware
1545 * for example.
1546 */
1547 static void nvme_create_io_queues(struct nvme_dev *dev)
1548 {
1549 unsigned i;
1550
1551 for (i = dev->queue_count; i <= dev->max_qid; i++)
1552 if (!nvme_alloc_queue(dev, i, dev->q_depth))
1553 break;
1554
1555 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
1556 if (nvme_create_queue(dev->queues[i], i)) {
1557 nvme_free_queues(dev, i);
1558 break;
1559 }
1560 }
1561
1562 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1563 {
1564 u64 szu, size, offset;
1565 u32 cmbloc;
1566 resource_size_t bar_size;
1567 struct pci_dev *pdev = to_pci_dev(dev->dev);
1568 void __iomem *cmb;
1569 dma_addr_t dma_addr;
1570
1571 if (!use_cmb_sqes)
1572 return NULL;
1573
1574 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1575 if (!(NVME_CMB_SZ(dev->cmbsz)))
1576 return NULL;
1577
1578 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1579
1580 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1581 size = szu * NVME_CMB_SZ(dev->cmbsz);
1582 offset = szu * NVME_CMB_OFST(cmbloc);
1583 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1584
1585 if (offset > bar_size)
1586 return NULL;
1587
1588 /*
1589 * Controllers may support a CMB size larger than their BAR,
1590 * for example, due to being behind a bridge. Reduce the CMB to
1591 * the reported size of the BAR
1592 */
1593 if (size > bar_size - offset)
1594 size = bar_size - offset;
1595
1596 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1597 cmb = ioremap_wc(dma_addr, size);
1598 if (!cmb)
1599 return NULL;
1600
1601 dev->cmb_dma_addr = dma_addr;
1602 dev->cmb_size = size;
1603 return cmb;
1604 }
1605
1606 static inline void nvme_release_cmb(struct nvme_dev *dev)
1607 {
1608 if (dev->cmb) {
1609 iounmap(dev->cmb);
1610 dev->cmb = NULL;
1611 }
1612 }
1613
1614 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1615 {
1616 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1617 }
1618
1619 static int nvme_setup_io_queues(struct nvme_dev *dev)
1620 {
1621 struct nvme_queue *adminq = dev->queues[0];
1622 struct pci_dev *pdev = to_pci_dev(dev->dev);
1623 int result, i, vecs, nr_io_queues, size;
1624
1625 nr_io_queues = num_possible_cpus();
1626 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1627 if (result < 0)
1628 return result;
1629
1630 /*
1631 * Degraded controllers might return an error when setting the queue
1632 * count. We still want to be able to bring them online and offer
1633 * access to the admin queue, as that might be only way to fix them up.
1634 */
1635 if (result > 0) {
1636 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1637 nr_io_queues = 0;
1638 result = 0;
1639 }
1640
1641 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1642 result = nvme_cmb_qdepth(dev, nr_io_queues,
1643 sizeof(struct nvme_command));
1644 if (result > 0)
1645 dev->q_depth = result;
1646 else
1647 nvme_release_cmb(dev);
1648 }
1649
1650 size = db_bar_size(dev, nr_io_queues);
1651 if (size > 8192) {
1652 iounmap(dev->bar);
1653 do {
1654 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1655 if (dev->bar)
1656 break;
1657 if (!--nr_io_queues)
1658 return -ENOMEM;
1659 size = db_bar_size(dev, nr_io_queues);
1660 } while (1);
1661 dev->dbs = dev->bar + 4096;
1662 adminq->q_db = dev->dbs;
1663 }
1664
1665 /* Deregister the admin queue's interrupt */
1666 free_irq(dev->entry[0].vector, adminq);
1667
1668 /*
1669 * If we enable msix early due to not intx, disable it again before
1670 * setting up the full range we need.
1671 */
1672 if (!pdev->irq)
1673 pci_disable_msix(pdev);
1674
1675 for (i = 0; i < nr_io_queues; i++)
1676 dev->entry[i].entry = i;
1677 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1678 if (vecs < 0) {
1679 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1680 if (vecs < 0) {
1681 vecs = 1;
1682 } else {
1683 for (i = 0; i < vecs; i++)
1684 dev->entry[i].vector = i + pdev->irq;
1685 }
1686 }
1687
1688 /*
1689 * Should investigate if there's a performance win from allocating
1690 * more queues than interrupt vectors; it might allow the submission
1691 * path to scale better, even if the receive path is limited by the
1692 * number of interrupts.
1693 */
1694 nr_io_queues = vecs;
1695 dev->max_qid = nr_io_queues;
1696
1697 result = queue_request_irq(dev, adminq, adminq->irqname);
1698 if (result) {
1699 adminq->cq_vector = -1;
1700 goto free_queues;
1701 }
1702
1703 /* Free previously allocated queues that are no longer usable */
1704 nvme_free_queues(dev, nr_io_queues + 1);
1705 nvme_create_io_queues(dev);
1706
1707 return 0;
1708
1709 free_queues:
1710 nvme_free_queues(dev, 1);
1711 return result;
1712 }
1713
1714 static void nvme_set_irq_hints(struct nvme_dev *dev)
1715 {
1716 struct nvme_queue *nvmeq;
1717 int i;
1718
1719 for (i = 0; i < dev->online_queues; i++) {
1720 nvmeq = dev->queues[i];
1721
1722 if (!nvmeq->tags || !(*nvmeq->tags))
1723 continue;
1724
1725 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1726 blk_mq_tags_cpumask(*nvmeq->tags));
1727 }
1728 }
1729
1730 static void nvme_dev_scan(struct work_struct *work)
1731 {
1732 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1733
1734 if (!dev->tagset.tags)
1735 return;
1736 nvme_scan_namespaces(&dev->ctrl);
1737 nvme_set_irq_hints(dev);
1738 }
1739
1740 /*
1741 * Return: error value if an error occurred setting up the queues or calling
1742 * Identify Device. 0 if these succeeded, even if adding some of the
1743 * namespaces failed. At the moment, these failures are silent. TBD which
1744 * failures should be reported.
1745 */
1746 static int nvme_dev_add(struct nvme_dev *dev)
1747 {
1748 if (!dev->ctrl.tagset) {
1749 dev->tagset.ops = &nvme_mq_ops;
1750 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1751 dev->tagset.timeout = NVME_IO_TIMEOUT;
1752 dev->tagset.numa_node = dev_to_node(dev->dev);
1753 dev->tagset.queue_depth =
1754 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1755 dev->tagset.cmd_size = nvme_cmd_size(dev);
1756 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1757 dev->tagset.driver_data = dev;
1758
1759 if (blk_mq_alloc_tag_set(&dev->tagset))
1760 return 0;
1761 dev->ctrl.tagset = &dev->tagset;
1762 }
1763 schedule_work(&dev->scan_work);
1764 return 0;
1765 }
1766
1767 static int nvme_dev_map(struct nvme_dev *dev)
1768 {
1769 u64 cap;
1770 int bars, result = -ENOMEM;
1771 struct pci_dev *pdev = to_pci_dev(dev->dev);
1772
1773 if (pci_enable_device_mem(pdev))
1774 return result;
1775
1776 dev->entry[0].vector = pdev->irq;
1777 pci_set_master(pdev);
1778 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1779 if (!bars)
1780 goto disable_pci;
1781
1782 if (pci_request_selected_regions(pdev, bars, "nvme"))
1783 goto disable_pci;
1784
1785 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1786 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1787 goto disable;
1788
1789 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1790 if (!dev->bar)
1791 goto disable;
1792
1793 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1794 result = -ENODEV;
1795 goto unmap;
1796 }
1797
1798 /*
1799 * Some devices don't advertse INTx interrupts, pre-enable a single
1800 * MSIX vec for setup. We'll adjust this later.
1801 */
1802 if (!pdev->irq) {
1803 result = pci_enable_msix(pdev, dev->entry, 1);
1804 if (result < 0)
1805 goto unmap;
1806 }
1807
1808 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1809
1810 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1811 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1812 dev->dbs = dev->bar + 4096;
1813 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1814 dev->cmb = nvme_map_cmb(dev);
1815
1816 return 0;
1817
1818 unmap:
1819 iounmap(dev->bar);
1820 dev->bar = NULL;
1821 disable:
1822 pci_release_regions(pdev);
1823 disable_pci:
1824 pci_disable_device(pdev);
1825 return result;
1826 }
1827
1828 static void nvme_dev_unmap(struct nvme_dev *dev)
1829 {
1830 struct pci_dev *pdev = to_pci_dev(dev->dev);
1831
1832 if (pdev->msi_enabled)
1833 pci_disable_msi(pdev);
1834 else if (pdev->msix_enabled)
1835 pci_disable_msix(pdev);
1836
1837 if (dev->bar) {
1838 iounmap(dev->bar);
1839 dev->bar = NULL;
1840 pci_release_regions(pdev);
1841 }
1842
1843 if (pci_is_enabled(pdev))
1844 pci_disable_device(pdev);
1845 }
1846
1847 struct nvme_delq_ctx {
1848 struct task_struct *waiter;
1849 struct kthread_worker *worker;
1850 atomic_t refcount;
1851 };
1852
1853 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1854 {
1855 dq->waiter = current;
1856 mb();
1857
1858 for (;;) {
1859 set_current_state(TASK_KILLABLE);
1860 if (!atomic_read(&dq->refcount))
1861 break;
1862 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1863 fatal_signal_pending(current)) {
1864 /*
1865 * Disable the controller first since we can't trust it
1866 * at this point, but leave the admin queue enabled
1867 * until all queue deletion requests are flushed.
1868 * FIXME: This may take a while if there are more h/w
1869 * queues than admin tags.
1870 */
1871 set_current_state(TASK_RUNNING);
1872 nvme_disable_ctrl(&dev->ctrl,
1873 lo_hi_readq(dev->bar + NVME_REG_CAP));
1874 nvme_clear_queue(dev->queues[0]);
1875 flush_kthread_worker(dq->worker);
1876 nvme_disable_queue(dev, 0);
1877 return;
1878 }
1879 }
1880 set_current_state(TASK_RUNNING);
1881 }
1882
1883 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1884 {
1885 atomic_dec(&dq->refcount);
1886 if (dq->waiter)
1887 wake_up_process(dq->waiter);
1888 }
1889
1890 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1891 {
1892 atomic_inc(&dq->refcount);
1893 return dq;
1894 }
1895
1896 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1897 {
1898 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1899 nvme_put_dq(dq);
1900
1901 spin_lock_irq(&nvmeq->q_lock);
1902 nvme_process_cq(nvmeq);
1903 spin_unlock_irq(&nvmeq->q_lock);
1904 }
1905
1906 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1907 kthread_work_func_t fn)
1908 {
1909 struct nvme_command c;
1910
1911 memset(&c, 0, sizeof(c));
1912 c.delete_queue.opcode = opcode;
1913 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1914
1915 init_kthread_work(&nvmeq->cmdinfo.work, fn);
1916 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1917 ADMIN_TIMEOUT);
1918 }
1919
1920 static void nvme_del_cq_work_handler(struct kthread_work *work)
1921 {
1922 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1923 cmdinfo.work);
1924 nvme_del_queue_end(nvmeq);
1925 }
1926
1927 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1928 {
1929 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1930 nvme_del_cq_work_handler);
1931 }
1932
1933 static void nvme_del_sq_work_handler(struct kthread_work *work)
1934 {
1935 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1936 cmdinfo.work);
1937 int status = nvmeq->cmdinfo.status;
1938
1939 if (!status)
1940 status = nvme_delete_cq(nvmeq);
1941 if (status)
1942 nvme_del_queue_end(nvmeq);
1943 }
1944
1945 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1946 {
1947 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1948 nvme_del_sq_work_handler);
1949 }
1950
1951 static void nvme_del_queue_start(struct kthread_work *work)
1952 {
1953 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1954 cmdinfo.work);
1955 if (nvme_delete_sq(nvmeq))
1956 nvme_del_queue_end(nvmeq);
1957 }
1958
1959 static void nvme_disable_io_queues(struct nvme_dev *dev)
1960 {
1961 int i;
1962 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1963 struct nvme_delq_ctx dq;
1964 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1965 &worker, "nvme%d", dev->ctrl.instance);
1966
1967 if (IS_ERR(kworker_task)) {
1968 dev_err(dev->dev,
1969 "Failed to create queue del task\n");
1970 for (i = dev->queue_count - 1; i > 0; i--)
1971 nvme_disable_queue(dev, i);
1972 return;
1973 }
1974
1975 dq.waiter = NULL;
1976 atomic_set(&dq.refcount, 0);
1977 dq.worker = &worker;
1978 for (i = dev->queue_count - 1; i > 0; i--) {
1979 struct nvme_queue *nvmeq = dev->queues[i];
1980
1981 if (nvme_suspend_queue(nvmeq))
1982 continue;
1983 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1984 nvmeq->cmdinfo.worker = dq.worker;
1985 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1986 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1987 }
1988 nvme_wait_dq(&dq, dev);
1989 kthread_stop(kworker_task);
1990 }
1991
1992 /*
1993 * Remove the node from the device list and check
1994 * for whether or not we need to stop the nvme_thread.
1995 */
1996 static void nvme_dev_list_remove(struct nvme_dev *dev)
1997 {
1998 struct task_struct *tmp = NULL;
1999
2000 spin_lock(&dev_list_lock);
2001 list_del_init(&dev->node);
2002 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2003 tmp = nvme_thread;
2004 nvme_thread = NULL;
2005 }
2006 spin_unlock(&dev_list_lock);
2007
2008 if (tmp)
2009 kthread_stop(tmp);
2010 }
2011
2012 static void nvme_freeze_queues(struct nvme_dev *dev)
2013 {
2014 struct nvme_ns *ns;
2015
2016 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2017 blk_mq_freeze_queue_start(ns->queue);
2018
2019 spin_lock_irq(ns->queue->queue_lock);
2020 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2021 spin_unlock_irq(ns->queue->queue_lock);
2022
2023 blk_mq_cancel_requeue_work(ns->queue);
2024 blk_mq_stop_hw_queues(ns->queue);
2025 }
2026 }
2027
2028 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2029 {
2030 struct nvme_ns *ns;
2031
2032 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2033 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2034 blk_mq_unfreeze_queue(ns->queue);
2035 blk_mq_start_stopped_hw_queues(ns->queue, true);
2036 blk_mq_kick_requeue_list(ns->queue);
2037 }
2038 }
2039
2040 static void nvme_dev_shutdown(struct nvme_dev *dev)
2041 {
2042 int i;
2043 u32 csts = -1;
2044
2045 nvme_dev_list_remove(dev);
2046
2047 if (dev->bar) {
2048 nvme_freeze_queues(dev);
2049 csts = readl(dev->bar + NVME_REG_CSTS);
2050 }
2051 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2052 for (i = dev->queue_count - 1; i >= 0; i--) {
2053 struct nvme_queue *nvmeq = dev->queues[i];
2054 nvme_suspend_queue(nvmeq);
2055 }
2056 } else {
2057 nvme_disable_io_queues(dev);
2058 nvme_shutdown_ctrl(&dev->ctrl);
2059 nvme_disable_queue(dev, 0);
2060 }
2061 nvme_dev_unmap(dev);
2062
2063 for (i = dev->queue_count - 1; i >= 0; i--)
2064 nvme_clear_queue(dev->queues[i]);
2065 }
2066
2067 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2068 {
2069 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2070 PAGE_SIZE, PAGE_SIZE, 0);
2071 if (!dev->prp_page_pool)
2072 return -ENOMEM;
2073
2074 /* Optimisation for I/Os between 4k and 128k */
2075 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2076 256, 256, 0);
2077 if (!dev->prp_small_pool) {
2078 dma_pool_destroy(dev->prp_page_pool);
2079 return -ENOMEM;
2080 }
2081 return 0;
2082 }
2083
2084 static void nvme_release_prp_pools(struct nvme_dev *dev)
2085 {
2086 dma_pool_destroy(dev->prp_page_pool);
2087 dma_pool_destroy(dev->prp_small_pool);
2088 }
2089
2090 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2091 {
2092 struct nvme_dev *dev = to_nvme_dev(ctrl);
2093
2094 put_device(dev->dev);
2095 if (dev->tagset.tags)
2096 blk_mq_free_tag_set(&dev->tagset);
2097 if (dev->ctrl.admin_q)
2098 blk_put_queue(dev->ctrl.admin_q);
2099 kfree(dev->queues);
2100 kfree(dev->entry);
2101 kfree(dev);
2102 }
2103
2104 static void nvme_probe_work(struct work_struct *work)
2105 {
2106 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2107 bool start_thread = false;
2108 int result;
2109
2110 result = nvme_dev_map(dev);
2111 if (result)
2112 goto out;
2113
2114 result = nvme_configure_admin_queue(dev);
2115 if (result)
2116 goto unmap;
2117
2118 spin_lock(&dev_list_lock);
2119 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2120 start_thread = true;
2121 nvme_thread = NULL;
2122 }
2123 list_add(&dev->node, &dev_list);
2124 spin_unlock(&dev_list_lock);
2125
2126 if (start_thread) {
2127 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2128 wake_up_all(&nvme_kthread_wait);
2129 } else
2130 wait_event_killable(nvme_kthread_wait, nvme_thread);
2131
2132 if (IS_ERR_OR_NULL(nvme_thread)) {
2133 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2134 goto disable;
2135 }
2136
2137 nvme_init_queue(dev->queues[0], 0);
2138 result = nvme_alloc_admin_tags(dev);
2139 if (result)
2140 goto disable;
2141
2142 result = nvme_init_identify(&dev->ctrl);
2143 if (result)
2144 goto free_tags;
2145
2146 result = nvme_setup_io_queues(dev);
2147 if (result)
2148 goto free_tags;
2149
2150 dev->ctrl.event_limit = 1;
2151
2152 /*
2153 * Keep the controller around but remove all namespaces if we don't have
2154 * any working I/O queue.
2155 */
2156 if (dev->online_queues < 2) {
2157 dev_warn(dev->dev, "IO queues not created\n");
2158 nvme_remove_namespaces(&dev->ctrl);
2159 } else {
2160 nvme_unfreeze_queues(dev);
2161 nvme_dev_add(dev);
2162 }
2163
2164 return;
2165
2166 free_tags:
2167 nvme_dev_remove_admin(dev);
2168 blk_put_queue(dev->ctrl.admin_q);
2169 dev->ctrl.admin_q = NULL;
2170 dev->queues[0]->tags = NULL;
2171 disable:
2172 nvme_disable_queue(dev, 0);
2173 nvme_dev_list_remove(dev);
2174 unmap:
2175 nvme_dev_unmap(dev);
2176 out:
2177 if (!work_busy(&dev->reset_work))
2178 nvme_dead_ctrl(dev);
2179 }
2180
2181 static int nvme_remove_dead_ctrl(void *arg)
2182 {
2183 struct nvme_dev *dev = (struct nvme_dev *)arg;
2184 struct pci_dev *pdev = to_pci_dev(dev->dev);
2185
2186 if (pci_get_drvdata(pdev))
2187 pci_stop_and_remove_bus_device_locked(pdev);
2188 nvme_put_ctrl(&dev->ctrl);
2189 return 0;
2190 }
2191
2192 static void nvme_dead_ctrl(struct nvme_dev *dev)
2193 {
2194 dev_warn(dev->dev, "Device failed to resume\n");
2195 kref_get(&dev->ctrl.kref);
2196 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2197 dev->ctrl.instance))) {
2198 dev_err(dev->dev,
2199 "Failed to start controller remove task\n");
2200 nvme_put_ctrl(&dev->ctrl);
2201 }
2202 }
2203
2204 static void nvme_reset_work(struct work_struct *ws)
2205 {
2206 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2207 bool in_probe = work_busy(&dev->probe_work);
2208
2209 nvme_dev_shutdown(dev);
2210
2211 /* Synchronize with device probe so that work will see failure status
2212 * and exit gracefully without trying to schedule another reset */
2213 flush_work(&dev->probe_work);
2214
2215 /* Fail this device if reset occured during probe to avoid
2216 * infinite initialization loops. */
2217 if (in_probe) {
2218 nvme_dead_ctrl(dev);
2219 return;
2220 }
2221 /* Schedule device resume asynchronously so the reset work is available
2222 * to cleanup errors that may occur during reinitialization */
2223 schedule_work(&dev->probe_work);
2224 }
2225
2226 static int __nvme_reset(struct nvme_dev *dev)
2227 {
2228 if (work_pending(&dev->reset_work))
2229 return -EBUSY;
2230 list_del_init(&dev->node);
2231 queue_work(nvme_workq, &dev->reset_work);
2232 return 0;
2233 }
2234
2235 static int nvme_reset(struct nvme_dev *dev)
2236 {
2237 int ret;
2238
2239 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2240 return -ENODEV;
2241
2242 spin_lock(&dev_list_lock);
2243 ret = __nvme_reset(dev);
2244 spin_unlock(&dev_list_lock);
2245
2246 if (!ret) {
2247 flush_work(&dev->reset_work);
2248 flush_work(&dev->probe_work);
2249 return 0;
2250 }
2251
2252 return ret;
2253 }
2254
2255 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2256 {
2257 *val = readl(to_nvme_dev(ctrl)->bar + off);
2258 return 0;
2259 }
2260
2261 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2262 {
2263 writel(val, to_nvme_dev(ctrl)->bar + off);
2264 return 0;
2265 }
2266
2267 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2268 {
2269 *val = readq(to_nvme_dev(ctrl)->bar + off);
2270 return 0;
2271 }
2272
2273 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2274 {
2275 struct nvme_dev *dev = to_nvme_dev(ctrl);
2276
2277 return !dev->bar || dev->online_queues < 2;
2278 }
2279
2280 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2281 {
2282 return nvme_reset(to_nvme_dev(ctrl));
2283 }
2284
2285 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2286 .reg_read32 = nvme_pci_reg_read32,
2287 .reg_write32 = nvme_pci_reg_write32,
2288 .reg_read64 = nvme_pci_reg_read64,
2289 .io_incapable = nvme_pci_io_incapable,
2290 .reset_ctrl = nvme_pci_reset_ctrl,
2291 .free_ctrl = nvme_pci_free_ctrl,
2292 };
2293
2294 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2295 {
2296 int node, result = -ENOMEM;
2297 struct nvme_dev *dev;
2298
2299 node = dev_to_node(&pdev->dev);
2300 if (node == NUMA_NO_NODE)
2301 set_dev_node(&pdev->dev, 0);
2302
2303 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2304 if (!dev)
2305 return -ENOMEM;
2306 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2307 GFP_KERNEL, node);
2308 if (!dev->entry)
2309 goto free;
2310 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2311 GFP_KERNEL, node);
2312 if (!dev->queues)
2313 goto free;
2314
2315 dev->dev = get_device(&pdev->dev);
2316 pci_set_drvdata(pdev, dev);
2317
2318 INIT_LIST_HEAD(&dev->node);
2319 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2320 INIT_WORK(&dev->probe_work, nvme_probe_work);
2321 INIT_WORK(&dev->reset_work, nvme_reset_work);
2322
2323 result = nvme_setup_prp_pools(dev);
2324 if (result)
2325 goto put_pci;
2326
2327 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2328 id->driver_data);
2329 if (result)
2330 goto release_pools;
2331
2332 schedule_work(&dev->probe_work);
2333 return 0;
2334
2335 release_pools:
2336 nvme_release_prp_pools(dev);
2337 put_pci:
2338 put_device(dev->dev);
2339 free:
2340 kfree(dev->queues);
2341 kfree(dev->entry);
2342 kfree(dev);
2343 return result;
2344 }
2345
2346 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2347 {
2348 struct nvme_dev *dev = pci_get_drvdata(pdev);
2349
2350 if (prepare)
2351 nvme_dev_shutdown(dev);
2352 else
2353 schedule_work(&dev->probe_work);
2354 }
2355
2356 static void nvme_shutdown(struct pci_dev *pdev)
2357 {
2358 struct nvme_dev *dev = pci_get_drvdata(pdev);
2359 nvme_dev_shutdown(dev);
2360 }
2361
2362 static void nvme_remove(struct pci_dev *pdev)
2363 {
2364 struct nvme_dev *dev = pci_get_drvdata(pdev);
2365
2366 spin_lock(&dev_list_lock);
2367 list_del_init(&dev->node);
2368 spin_unlock(&dev_list_lock);
2369
2370 pci_set_drvdata(pdev, NULL);
2371 flush_work(&dev->probe_work);
2372 flush_work(&dev->reset_work);
2373 flush_work(&dev->scan_work);
2374 nvme_remove_namespaces(&dev->ctrl);
2375 nvme_dev_shutdown(dev);
2376 nvme_dev_remove_admin(dev);
2377 nvme_free_queues(dev, 0);
2378 nvme_release_cmb(dev);
2379 nvme_release_prp_pools(dev);
2380 nvme_put_ctrl(&dev->ctrl);
2381 }
2382
2383 /* These functions are yet to be implemented */
2384 #define nvme_error_detected NULL
2385 #define nvme_dump_registers NULL
2386 #define nvme_link_reset NULL
2387 #define nvme_slot_reset NULL
2388 #define nvme_error_resume NULL
2389
2390 #ifdef CONFIG_PM_SLEEP
2391 static int nvme_suspend(struct device *dev)
2392 {
2393 struct pci_dev *pdev = to_pci_dev(dev);
2394 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2395
2396 nvme_dev_shutdown(ndev);
2397 return 0;
2398 }
2399
2400 static int nvme_resume(struct device *dev)
2401 {
2402 struct pci_dev *pdev = to_pci_dev(dev);
2403 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2404
2405 schedule_work(&ndev->probe_work);
2406 return 0;
2407 }
2408 #endif
2409
2410 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2411
2412 static const struct pci_error_handlers nvme_err_handler = {
2413 .error_detected = nvme_error_detected,
2414 .mmio_enabled = nvme_dump_registers,
2415 .link_reset = nvme_link_reset,
2416 .slot_reset = nvme_slot_reset,
2417 .resume = nvme_error_resume,
2418 .reset_notify = nvme_reset_notify,
2419 };
2420
2421 /* Move to pci_ids.h later */
2422 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2423
2424 static const struct pci_device_id nvme_id_table[] = {
2425 { PCI_VDEVICE(INTEL, 0x0953),
2426 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2427 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2428 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2429 { 0, }
2430 };
2431 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2432
2433 static struct pci_driver nvme_driver = {
2434 .name = "nvme",
2435 .id_table = nvme_id_table,
2436 .probe = nvme_probe,
2437 .remove = nvme_remove,
2438 .shutdown = nvme_shutdown,
2439 .driver = {
2440 .pm = &nvme_dev_pm_ops,
2441 },
2442 .err_handler = &nvme_err_handler,
2443 };
2444
2445 static int __init nvme_init(void)
2446 {
2447 int result;
2448
2449 init_waitqueue_head(&nvme_kthread_wait);
2450
2451 nvme_workq = create_singlethread_workqueue("nvme");
2452 if (!nvme_workq)
2453 return -ENOMEM;
2454
2455 result = nvme_core_init();
2456 if (result < 0)
2457 goto kill_workq;
2458
2459 result = pci_register_driver(&nvme_driver);
2460 if (result)
2461 goto core_exit;
2462 return 0;
2463
2464 core_exit:
2465 nvme_core_exit();
2466 kill_workq:
2467 destroy_workqueue(nvme_workq);
2468 return result;
2469 }
2470
2471 static void __exit nvme_exit(void)
2472 {
2473 pci_unregister_driver(&nvme_driver);
2474 nvme_core_exit();
2475 destroy_workqueue(nvme_workq);
2476 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2477 _nvme_check_size();
2478 }
2479
2480 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2481 MODULE_LICENSE("GPL");
2482 MODULE_VERSION("1.0");
2483 module_init(nvme_init);
2484 module_exit(nvme_exit);