]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
nvme/pci: Don't set reserved SQ create flags
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46 #include <linux/sed-opal.h>
47
48 #include "nvme.h"
49
50 #define NVME_Q_DEPTH 1024
51 #define NVME_AQ_DEPTH 256
52 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
53 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
54
55 /*
56 * We handle AEN commands ourselves and don't even let the
57 * block layer know about them.
58 */
59 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
60
61 static int use_threaded_interrupts;
62 module_param(use_threaded_interrupts, int, 0);
63
64 static bool use_cmb_sqes = true;
65 module_param(use_cmb_sqes, bool, 0644);
66 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
67
68 static struct workqueue_struct *nvme_workq;
69
70 struct nvme_dev;
71 struct nvme_queue;
72
73 static int nvme_reset(struct nvme_dev *dev);
74 static void nvme_process_cq(struct nvme_queue *nvmeq);
75 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
76
77 /*
78 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 */
80 struct nvme_dev {
81 struct nvme_queue **queues;
82 struct blk_mq_tag_set tagset;
83 struct blk_mq_tag_set admin_tagset;
84 u32 __iomem *dbs;
85 struct device *dev;
86 struct dma_pool *prp_page_pool;
87 struct dma_pool *prp_small_pool;
88 unsigned queue_count;
89 unsigned online_queues;
90 unsigned max_qid;
91 int q_depth;
92 u32 db_stride;
93 void __iomem *bar;
94 struct work_struct reset_work;
95 struct work_struct remove_work;
96 struct timer_list watchdog_timer;
97 struct mutex shutdown_lock;
98 bool subsystem;
99 void __iomem *cmb;
100 dma_addr_t cmb_dma_addr;
101 u64 cmb_size;
102 u32 cmbsz;
103 u32 cmbloc;
104 struct nvme_ctrl ctrl;
105 struct completion ioq_wait;
106 };
107
108 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109 {
110 return container_of(ctrl, struct nvme_dev, ctrl);
111 }
112
113 /*
114 * An NVM Express queue. Each device has at least two (one for admin
115 * commands and one for I/O commands).
116 */
117 struct nvme_queue {
118 struct device *q_dmadev;
119 struct nvme_dev *dev;
120 char irqname[24]; /* nvme4294967295-65535\0 */
121 spinlock_t q_lock;
122 struct nvme_command *sq_cmds;
123 struct nvme_command __iomem *sq_cmds_io;
124 volatile struct nvme_completion *cqes;
125 struct blk_mq_tags **tags;
126 dma_addr_t sq_dma_addr;
127 dma_addr_t cq_dma_addr;
128 u32 __iomem *q_db;
129 u16 q_depth;
130 s16 cq_vector;
131 u16 sq_tail;
132 u16 cq_head;
133 u16 qid;
134 u8 cq_phase;
135 u8 cqe_seen;
136 };
137
138 /*
139 * The nvme_iod describes the data in an I/O, including the list of PRP
140 * entries. You can't see it in this data structure because C doesn't let
141 * me express that. Use nvme_init_iod to ensure there's enough space
142 * allocated to store the PRP list.
143 */
144 struct nvme_iod {
145 struct nvme_request req;
146 struct nvme_queue *nvmeq;
147 int aborted;
148 int npages; /* In the PRP list. 0 means small pool in use */
149 int nents; /* Used in scatterlist */
150 int length; /* Of data, in bytes */
151 dma_addr_t first_dma;
152 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
153 struct scatterlist *sg;
154 struct scatterlist inline_sg[0];
155 };
156
157 /*
158 * Check we didin't inadvertently grow the command struct
159 */
160 static inline void _nvme_check_size(void)
161 {
162 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
172 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
173 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
174 }
175
176 /*
177 * Max size of iod being embedded in the request payload
178 */
179 #define NVME_INT_PAGES 2
180 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
181
182 /*
183 * Will slightly overestimate the number of pages needed. This is OK
184 * as it only leads to a small amount of wasted memory for the lifetime of
185 * the I/O.
186 */
187 static int nvme_npages(unsigned size, struct nvme_dev *dev)
188 {
189 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
190 dev->ctrl.page_size);
191 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
192 }
193
194 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
195 unsigned int size, unsigned int nseg)
196 {
197 return sizeof(__le64 *) * nvme_npages(size, dev) +
198 sizeof(struct scatterlist) * nseg;
199 }
200
201 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
202 {
203 return sizeof(struct nvme_iod) +
204 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
205 }
206
207 static int nvmeq_irq(struct nvme_queue *nvmeq)
208 {
209 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
210 }
211
212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
214 {
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
222 hctx->driver_data = nvmeq;
223 nvmeq->tags = &dev->admin_tagset.tags[0];
224 return 0;
225 }
226
227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228 {
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232 }
233
234 static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
237 {
238 struct nvme_dev *dev = data;
239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
243 iod->nvmeq = nvmeq;
244 return 0;
245 }
246
247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
249 {
250 struct nvme_dev *dev = data;
251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
252
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
255
256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
257 hctx->driver_data = nvmeq;
258 return 0;
259 }
260
261 static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
264 {
265 struct nvme_dev *dev = data;
266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
270 iod->nvmeq = nvmeq;
271 return 0;
272 }
273
274 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
275 {
276 struct nvme_dev *dev = set->driver_data;
277
278 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
279 }
280
281 /**
282 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
283 * @nvmeq: The queue to use
284 * @cmd: The command to send
285 *
286 * Safe to use from interrupt context
287 */
288 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
289 struct nvme_command *cmd)
290 {
291 u16 tail = nvmeq->sq_tail;
292
293 if (nvmeq->sq_cmds_io)
294 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
295 else
296 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
297
298 if (++tail == nvmeq->q_depth)
299 tail = 0;
300 writel(tail, nvmeq->q_db);
301 nvmeq->sq_tail = tail;
302 }
303
304 static __le64 **iod_list(struct request *req)
305 {
306 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
307 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
308 }
309
310 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
311 {
312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
313 int nseg = blk_rq_nr_phys_segments(rq);
314 unsigned int size = blk_rq_payload_bytes(rq);
315
316 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
317 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
318 if (!iod->sg)
319 return BLK_MQ_RQ_QUEUE_BUSY;
320 } else {
321 iod->sg = iod->inline_sg;
322 }
323
324 iod->aborted = 0;
325 iod->npages = -1;
326 iod->nents = 0;
327 iod->length = size;
328
329 return BLK_MQ_RQ_QUEUE_OK;
330 }
331
332 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
333 {
334 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
335 const int last_prp = dev->ctrl.page_size / 8 - 1;
336 int i;
337 __le64 **list = iod_list(req);
338 dma_addr_t prp_dma = iod->first_dma;
339
340 if (iod->npages == 0)
341 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
342 for (i = 0; i < iod->npages; i++) {
343 __le64 *prp_list = list[i];
344 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
345 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
346 prp_dma = next_prp_dma;
347 }
348
349 if (iod->sg != iod->inline_sg)
350 kfree(iod->sg);
351 }
352
353 #ifdef CONFIG_BLK_DEV_INTEGRITY
354 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
355 {
356 if (be32_to_cpu(pi->ref_tag) == v)
357 pi->ref_tag = cpu_to_be32(p);
358 }
359
360 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
361 {
362 if (be32_to_cpu(pi->ref_tag) == p)
363 pi->ref_tag = cpu_to_be32(v);
364 }
365
366 /**
367 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
368 *
369 * The virtual start sector is the one that was originally submitted by the
370 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
371 * start sector may be different. Remap protection information to match the
372 * physical LBA on writes, and back to the original seed on reads.
373 *
374 * Type 0 and 3 do not have a ref tag, so no remapping required.
375 */
376 static void nvme_dif_remap(struct request *req,
377 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
378 {
379 struct nvme_ns *ns = req->rq_disk->private_data;
380 struct bio_integrity_payload *bip;
381 struct t10_pi_tuple *pi;
382 void *p, *pmap;
383 u32 i, nlb, ts, phys, virt;
384
385 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
386 return;
387
388 bip = bio_integrity(req->bio);
389 if (!bip)
390 return;
391
392 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
393
394 p = pmap;
395 virt = bip_get_seed(bip);
396 phys = nvme_block_nr(ns, blk_rq_pos(req));
397 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
398 ts = ns->disk->queue->integrity.tuple_size;
399
400 for (i = 0; i < nlb; i++, virt++, phys++) {
401 pi = (struct t10_pi_tuple *)p;
402 dif_swap(phys, virt, pi);
403 p += ts;
404 }
405 kunmap_atomic(pmap);
406 }
407 #else /* CONFIG_BLK_DEV_INTEGRITY */
408 static void nvme_dif_remap(struct request *req,
409 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
410 {
411 }
412 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
413 {
414 }
415 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 #endif
419
420 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
421 {
422 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
423 struct dma_pool *pool;
424 int length = blk_rq_payload_bytes(req);
425 struct scatterlist *sg = iod->sg;
426 int dma_len = sg_dma_len(sg);
427 u64 dma_addr = sg_dma_address(sg);
428 u32 page_size = dev->ctrl.page_size;
429 int offset = dma_addr & (page_size - 1);
430 __le64 *prp_list;
431 __le64 **list = iod_list(req);
432 dma_addr_t prp_dma;
433 int nprps, i;
434
435 length -= (page_size - offset);
436 if (length <= 0)
437 return true;
438
439 dma_len -= (page_size - offset);
440 if (dma_len) {
441 dma_addr += (page_size - offset);
442 } else {
443 sg = sg_next(sg);
444 dma_addr = sg_dma_address(sg);
445 dma_len = sg_dma_len(sg);
446 }
447
448 if (length <= page_size) {
449 iod->first_dma = dma_addr;
450 return true;
451 }
452
453 nprps = DIV_ROUND_UP(length, page_size);
454 if (nprps <= (256 / 8)) {
455 pool = dev->prp_small_pool;
456 iod->npages = 0;
457 } else {
458 pool = dev->prp_page_pool;
459 iod->npages = 1;
460 }
461
462 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
463 if (!prp_list) {
464 iod->first_dma = dma_addr;
465 iod->npages = -1;
466 return false;
467 }
468 list[0] = prp_list;
469 iod->first_dma = prp_dma;
470 i = 0;
471 for (;;) {
472 if (i == page_size >> 3) {
473 __le64 *old_prp_list = prp_list;
474 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
475 if (!prp_list)
476 return false;
477 list[iod->npages++] = prp_list;
478 prp_list[0] = old_prp_list[i - 1];
479 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
480 i = 1;
481 }
482 prp_list[i++] = cpu_to_le64(dma_addr);
483 dma_len -= page_size;
484 dma_addr += page_size;
485 length -= page_size;
486 if (length <= 0)
487 break;
488 if (dma_len > 0)
489 continue;
490 BUG_ON(dma_len < 0);
491 sg = sg_next(sg);
492 dma_addr = sg_dma_address(sg);
493 dma_len = sg_dma_len(sg);
494 }
495
496 return true;
497 }
498
499 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
500 struct nvme_command *cmnd)
501 {
502 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
503 struct request_queue *q = req->q;
504 enum dma_data_direction dma_dir = rq_data_dir(req) ?
505 DMA_TO_DEVICE : DMA_FROM_DEVICE;
506 int ret = BLK_MQ_RQ_QUEUE_ERROR;
507
508 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
509 iod->nents = blk_rq_map_sg(q, req, iod->sg);
510 if (!iod->nents)
511 goto out;
512
513 ret = BLK_MQ_RQ_QUEUE_BUSY;
514 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
515 DMA_ATTR_NO_WARN))
516 goto out;
517
518 if (!nvme_setup_prps(dev, req))
519 goto out_unmap;
520
521 ret = BLK_MQ_RQ_QUEUE_ERROR;
522 if (blk_integrity_rq(req)) {
523 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
524 goto out_unmap;
525
526 sg_init_table(&iod->meta_sg, 1);
527 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
528 goto out_unmap;
529
530 if (rq_data_dir(req))
531 nvme_dif_remap(req, nvme_dif_prep);
532
533 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
534 goto out_unmap;
535 }
536
537 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
538 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
539 if (blk_integrity_rq(req))
540 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
541 return BLK_MQ_RQ_QUEUE_OK;
542
543 out_unmap:
544 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
545 out:
546 return ret;
547 }
548
549 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
550 {
551 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
552 enum dma_data_direction dma_dir = rq_data_dir(req) ?
553 DMA_TO_DEVICE : DMA_FROM_DEVICE;
554
555 if (iod->nents) {
556 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
557 if (blk_integrity_rq(req)) {
558 if (!rq_data_dir(req))
559 nvme_dif_remap(req, nvme_dif_complete);
560 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
561 }
562 }
563
564 nvme_cleanup_cmd(req);
565 nvme_free_iod(dev, req);
566 }
567
568 /*
569 * NOTE: ns is NULL when called on the admin queue.
570 */
571 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
572 const struct blk_mq_queue_data *bd)
573 {
574 struct nvme_ns *ns = hctx->queue->queuedata;
575 struct nvme_queue *nvmeq = hctx->driver_data;
576 struct nvme_dev *dev = nvmeq->dev;
577 struct request *req = bd->rq;
578 struct nvme_command cmnd;
579 int ret = BLK_MQ_RQ_QUEUE_OK;
580
581 /*
582 * If formated with metadata, require the block layer provide a buffer
583 * unless this namespace is formated such that the metadata can be
584 * stripped/generated by the controller with PRACT=1.
585 */
586 if (ns && ns->ms && !blk_integrity_rq(req)) {
587 if (!(ns->pi_type && ns->ms == 8) &&
588 !blk_rq_is_passthrough(req)) {
589 blk_mq_end_request(req, -EFAULT);
590 return BLK_MQ_RQ_QUEUE_OK;
591 }
592 }
593
594 ret = nvme_setup_cmd(ns, req, &cmnd);
595 if (ret != BLK_MQ_RQ_QUEUE_OK)
596 return ret;
597
598 ret = nvme_init_iod(req, dev);
599 if (ret != BLK_MQ_RQ_QUEUE_OK)
600 goto out_free_cmd;
601
602 if (blk_rq_nr_phys_segments(req))
603 ret = nvme_map_data(dev, req, &cmnd);
604
605 if (ret != BLK_MQ_RQ_QUEUE_OK)
606 goto out_cleanup_iod;
607
608 blk_mq_start_request(req);
609
610 spin_lock_irq(&nvmeq->q_lock);
611 if (unlikely(nvmeq->cq_vector < 0)) {
612 ret = BLK_MQ_RQ_QUEUE_ERROR;
613 spin_unlock_irq(&nvmeq->q_lock);
614 goto out_cleanup_iod;
615 }
616 __nvme_submit_cmd(nvmeq, &cmnd);
617 nvme_process_cq(nvmeq);
618 spin_unlock_irq(&nvmeq->q_lock);
619 return BLK_MQ_RQ_QUEUE_OK;
620 out_cleanup_iod:
621 nvme_free_iod(dev, req);
622 out_free_cmd:
623 nvme_cleanup_cmd(req);
624 return ret;
625 }
626
627 static void nvme_pci_complete_rq(struct request *req)
628 {
629 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
630
631 nvme_unmap_data(iod->nvmeq->dev, req);
632 nvme_complete_rq(req);
633 }
634
635 /* We read the CQE phase first to check if the rest of the entry is valid */
636 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
637 u16 phase)
638 {
639 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
640 }
641
642 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
643 {
644 u16 head, phase;
645
646 head = nvmeq->cq_head;
647 phase = nvmeq->cq_phase;
648
649 while (nvme_cqe_valid(nvmeq, head, phase)) {
650 struct nvme_completion cqe = nvmeq->cqes[head];
651 struct request *req;
652
653 if (++head == nvmeq->q_depth) {
654 head = 0;
655 phase = !phase;
656 }
657
658 if (tag && *tag == cqe.command_id)
659 *tag = -1;
660
661 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
662 dev_warn(nvmeq->dev->ctrl.device,
663 "invalid id %d completed on queue %d\n",
664 cqe.command_id, le16_to_cpu(cqe.sq_id));
665 continue;
666 }
667
668 /*
669 * AEN requests are special as they don't time out and can
670 * survive any kind of queue freeze and often don't respond to
671 * aborts. We don't even bother to allocate a struct request
672 * for them but rather special case them here.
673 */
674 if (unlikely(nvmeq->qid == 0 &&
675 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
676 nvme_complete_async_event(&nvmeq->dev->ctrl,
677 cqe.status, &cqe.result);
678 continue;
679 }
680
681 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
682 nvme_end_request(req, cqe.status, cqe.result);
683 }
684
685 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
686 return;
687
688 if (likely(nvmeq->cq_vector >= 0))
689 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
690 nvmeq->cq_head = head;
691 nvmeq->cq_phase = phase;
692
693 nvmeq->cqe_seen = 1;
694 }
695
696 static void nvme_process_cq(struct nvme_queue *nvmeq)
697 {
698 __nvme_process_cq(nvmeq, NULL);
699 }
700
701 static irqreturn_t nvme_irq(int irq, void *data)
702 {
703 irqreturn_t result;
704 struct nvme_queue *nvmeq = data;
705 spin_lock(&nvmeq->q_lock);
706 nvme_process_cq(nvmeq);
707 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
708 nvmeq->cqe_seen = 0;
709 spin_unlock(&nvmeq->q_lock);
710 return result;
711 }
712
713 static irqreturn_t nvme_irq_check(int irq, void *data)
714 {
715 struct nvme_queue *nvmeq = data;
716 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
717 return IRQ_WAKE_THREAD;
718 return IRQ_NONE;
719 }
720
721 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
722 {
723 struct nvme_queue *nvmeq = hctx->driver_data;
724
725 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
726 spin_lock_irq(&nvmeq->q_lock);
727 __nvme_process_cq(nvmeq, &tag);
728 spin_unlock_irq(&nvmeq->q_lock);
729
730 if (tag == -1)
731 return 1;
732 }
733
734 return 0;
735 }
736
737 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
738 {
739 struct nvme_dev *dev = to_nvme_dev(ctrl);
740 struct nvme_queue *nvmeq = dev->queues[0];
741 struct nvme_command c;
742
743 memset(&c, 0, sizeof(c));
744 c.common.opcode = nvme_admin_async_event;
745 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
746
747 spin_lock_irq(&nvmeq->q_lock);
748 __nvme_submit_cmd(nvmeq, &c);
749 spin_unlock_irq(&nvmeq->q_lock);
750 }
751
752 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
753 {
754 struct nvme_command c;
755
756 memset(&c, 0, sizeof(c));
757 c.delete_queue.opcode = opcode;
758 c.delete_queue.qid = cpu_to_le16(id);
759
760 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
761 }
762
763 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
764 struct nvme_queue *nvmeq)
765 {
766 struct nvme_command c;
767 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
768
769 /*
770 * Note: we (ab)use the fact the the prp fields survive if no data
771 * is attached to the request.
772 */
773 memset(&c, 0, sizeof(c));
774 c.create_cq.opcode = nvme_admin_create_cq;
775 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
776 c.create_cq.cqid = cpu_to_le16(qid);
777 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
778 c.create_cq.cq_flags = cpu_to_le16(flags);
779 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
780
781 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
782 }
783
784 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
785 struct nvme_queue *nvmeq)
786 {
787 struct nvme_command c;
788 int flags = NVME_QUEUE_PHYS_CONTIG;
789
790 /*
791 * Note: we (ab)use the fact the the prp fields survive if no data
792 * is attached to the request.
793 */
794 memset(&c, 0, sizeof(c));
795 c.create_sq.opcode = nvme_admin_create_sq;
796 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
797 c.create_sq.sqid = cpu_to_le16(qid);
798 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
799 c.create_sq.sq_flags = cpu_to_le16(flags);
800 c.create_sq.cqid = cpu_to_le16(qid);
801
802 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
803 }
804
805 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
806 {
807 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
808 }
809
810 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
811 {
812 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
813 }
814
815 static void abort_endio(struct request *req, int error)
816 {
817 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
818 struct nvme_queue *nvmeq = iod->nvmeq;
819
820 dev_warn(nvmeq->dev->ctrl.device,
821 "Abort status: 0x%x", nvme_req(req)->status);
822 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
823 blk_mq_free_request(req);
824 }
825
826 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
827 {
828 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
829 struct nvme_queue *nvmeq = iod->nvmeq;
830 struct nvme_dev *dev = nvmeq->dev;
831 struct request *abort_req;
832 struct nvme_command cmd;
833
834 /*
835 * Shutdown immediately if controller times out while starting. The
836 * reset work will see the pci device disabled when it gets the forced
837 * cancellation error. All outstanding requests are completed on
838 * shutdown, so we return BLK_EH_HANDLED.
839 */
840 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
841 dev_warn(dev->ctrl.device,
842 "I/O %d QID %d timeout, disable controller\n",
843 req->tag, nvmeq->qid);
844 nvme_dev_disable(dev, false);
845 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
846 return BLK_EH_HANDLED;
847 }
848
849 /*
850 * Shutdown the controller immediately and schedule a reset if the
851 * command was already aborted once before and still hasn't been
852 * returned to the driver, or if this is the admin queue.
853 */
854 if (!nvmeq->qid || iod->aborted) {
855 dev_warn(dev->ctrl.device,
856 "I/O %d QID %d timeout, reset controller\n",
857 req->tag, nvmeq->qid);
858 nvme_dev_disable(dev, false);
859 nvme_reset(dev);
860
861 /*
862 * Mark the request as handled, since the inline shutdown
863 * forces all outstanding requests to complete.
864 */
865 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
866 return BLK_EH_HANDLED;
867 }
868
869 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
870 atomic_inc(&dev->ctrl.abort_limit);
871 return BLK_EH_RESET_TIMER;
872 }
873 iod->aborted = 1;
874
875 memset(&cmd, 0, sizeof(cmd));
876 cmd.abort.opcode = nvme_admin_abort_cmd;
877 cmd.abort.cid = req->tag;
878 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
879
880 dev_warn(nvmeq->dev->ctrl.device,
881 "I/O %d QID %d timeout, aborting\n",
882 req->tag, nvmeq->qid);
883
884 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
885 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
886 if (IS_ERR(abort_req)) {
887 atomic_inc(&dev->ctrl.abort_limit);
888 return BLK_EH_RESET_TIMER;
889 }
890
891 abort_req->timeout = ADMIN_TIMEOUT;
892 abort_req->end_io_data = NULL;
893 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
894
895 /*
896 * The aborted req will be completed on receiving the abort req.
897 * We enable the timer again. If hit twice, it'll cause a device reset,
898 * as the device then is in a faulty state.
899 */
900 return BLK_EH_RESET_TIMER;
901 }
902
903 static void nvme_free_queue(struct nvme_queue *nvmeq)
904 {
905 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
906 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
907 if (nvmeq->sq_cmds)
908 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
909 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
910 kfree(nvmeq);
911 }
912
913 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
914 {
915 int i;
916
917 for (i = dev->queue_count - 1; i >= lowest; i--) {
918 struct nvme_queue *nvmeq = dev->queues[i];
919 dev->queue_count--;
920 dev->queues[i] = NULL;
921 nvme_free_queue(nvmeq);
922 }
923 }
924
925 /**
926 * nvme_suspend_queue - put queue into suspended state
927 * @nvmeq - queue to suspend
928 */
929 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
930 {
931 int vector;
932
933 spin_lock_irq(&nvmeq->q_lock);
934 if (nvmeq->cq_vector == -1) {
935 spin_unlock_irq(&nvmeq->q_lock);
936 return 1;
937 }
938 vector = nvmeq_irq(nvmeq);
939 nvmeq->dev->online_queues--;
940 nvmeq->cq_vector = -1;
941 spin_unlock_irq(&nvmeq->q_lock);
942
943 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
944 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
945
946 free_irq(vector, nvmeq);
947
948 return 0;
949 }
950
951 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
952 {
953 struct nvme_queue *nvmeq = dev->queues[0];
954
955 if (!nvmeq)
956 return;
957 if (nvme_suspend_queue(nvmeq))
958 return;
959
960 if (shutdown)
961 nvme_shutdown_ctrl(&dev->ctrl);
962 else
963 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
964 dev->bar + NVME_REG_CAP));
965
966 spin_lock_irq(&nvmeq->q_lock);
967 nvme_process_cq(nvmeq);
968 spin_unlock_irq(&nvmeq->q_lock);
969 }
970
971 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
972 int entry_size)
973 {
974 int q_depth = dev->q_depth;
975 unsigned q_size_aligned = roundup(q_depth * entry_size,
976 dev->ctrl.page_size);
977
978 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
979 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
980 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
981 q_depth = div_u64(mem_per_q, entry_size);
982
983 /*
984 * Ensure the reduced q_depth is above some threshold where it
985 * would be better to map queues in system memory with the
986 * original depth
987 */
988 if (q_depth < 64)
989 return -ENOMEM;
990 }
991
992 return q_depth;
993 }
994
995 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
996 int qid, int depth)
997 {
998 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
999 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1000 dev->ctrl.page_size);
1001 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1002 nvmeq->sq_cmds_io = dev->cmb + offset;
1003 } else {
1004 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1005 &nvmeq->sq_dma_addr, GFP_KERNEL);
1006 if (!nvmeq->sq_cmds)
1007 return -ENOMEM;
1008 }
1009
1010 return 0;
1011 }
1012
1013 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1014 int depth, int node)
1015 {
1016 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1017 node);
1018 if (!nvmeq)
1019 return NULL;
1020
1021 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1022 &nvmeq->cq_dma_addr, GFP_KERNEL);
1023 if (!nvmeq->cqes)
1024 goto free_nvmeq;
1025
1026 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1027 goto free_cqdma;
1028
1029 nvmeq->q_dmadev = dev->dev;
1030 nvmeq->dev = dev;
1031 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1032 dev->ctrl.instance, qid);
1033 spin_lock_init(&nvmeq->q_lock);
1034 nvmeq->cq_head = 0;
1035 nvmeq->cq_phase = 1;
1036 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1037 nvmeq->q_depth = depth;
1038 nvmeq->qid = qid;
1039 nvmeq->cq_vector = -1;
1040 dev->queues[qid] = nvmeq;
1041 dev->queue_count++;
1042
1043 return nvmeq;
1044
1045 free_cqdma:
1046 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1047 nvmeq->cq_dma_addr);
1048 free_nvmeq:
1049 kfree(nvmeq);
1050 return NULL;
1051 }
1052
1053 static int queue_request_irq(struct nvme_queue *nvmeq)
1054 {
1055 if (use_threaded_interrupts)
1056 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1057 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1058 else
1059 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1060 nvmeq->irqname, nvmeq);
1061 }
1062
1063 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1064 {
1065 struct nvme_dev *dev = nvmeq->dev;
1066
1067 spin_lock_irq(&nvmeq->q_lock);
1068 nvmeq->sq_tail = 0;
1069 nvmeq->cq_head = 0;
1070 nvmeq->cq_phase = 1;
1071 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1072 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1073 dev->online_queues++;
1074 spin_unlock_irq(&nvmeq->q_lock);
1075 }
1076
1077 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1078 {
1079 struct nvme_dev *dev = nvmeq->dev;
1080 int result;
1081
1082 nvmeq->cq_vector = qid - 1;
1083 result = adapter_alloc_cq(dev, qid, nvmeq);
1084 if (result < 0)
1085 return result;
1086
1087 result = adapter_alloc_sq(dev, qid, nvmeq);
1088 if (result < 0)
1089 goto release_cq;
1090
1091 result = queue_request_irq(nvmeq);
1092 if (result < 0)
1093 goto release_sq;
1094
1095 nvme_init_queue(nvmeq, qid);
1096 return result;
1097
1098 release_sq:
1099 adapter_delete_sq(dev, qid);
1100 release_cq:
1101 adapter_delete_cq(dev, qid);
1102 return result;
1103 }
1104
1105 static const struct blk_mq_ops nvme_mq_admin_ops = {
1106 .queue_rq = nvme_queue_rq,
1107 .complete = nvme_pci_complete_rq,
1108 .init_hctx = nvme_admin_init_hctx,
1109 .exit_hctx = nvme_admin_exit_hctx,
1110 .init_request = nvme_admin_init_request,
1111 .timeout = nvme_timeout,
1112 };
1113
1114 static const struct blk_mq_ops nvme_mq_ops = {
1115 .queue_rq = nvme_queue_rq,
1116 .complete = nvme_pci_complete_rq,
1117 .init_hctx = nvme_init_hctx,
1118 .init_request = nvme_init_request,
1119 .map_queues = nvme_pci_map_queues,
1120 .timeout = nvme_timeout,
1121 .poll = nvme_poll,
1122 };
1123
1124 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1125 {
1126 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1127 /*
1128 * If the controller was reset during removal, it's possible
1129 * user requests may be waiting on a stopped queue. Start the
1130 * queue to flush these to completion.
1131 */
1132 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1133 blk_cleanup_queue(dev->ctrl.admin_q);
1134 blk_mq_free_tag_set(&dev->admin_tagset);
1135 }
1136 }
1137
1138 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1139 {
1140 if (!dev->ctrl.admin_q) {
1141 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1142 dev->admin_tagset.nr_hw_queues = 1;
1143
1144 /*
1145 * Subtract one to leave an empty queue entry for 'Full Queue'
1146 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1147 */
1148 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1149 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1150 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1151 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1152 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1153 dev->admin_tagset.driver_data = dev;
1154
1155 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1156 return -ENOMEM;
1157
1158 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1159 if (IS_ERR(dev->ctrl.admin_q)) {
1160 blk_mq_free_tag_set(&dev->admin_tagset);
1161 return -ENOMEM;
1162 }
1163 if (!blk_get_queue(dev->ctrl.admin_q)) {
1164 nvme_dev_remove_admin(dev);
1165 dev->ctrl.admin_q = NULL;
1166 return -ENODEV;
1167 }
1168 } else
1169 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1170
1171 return 0;
1172 }
1173
1174 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1175 {
1176 int result;
1177 u32 aqa;
1178 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1179 struct nvme_queue *nvmeq;
1180
1181 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1182 NVME_CAP_NSSRC(cap) : 0;
1183
1184 if (dev->subsystem &&
1185 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1186 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1187
1188 result = nvme_disable_ctrl(&dev->ctrl, cap);
1189 if (result < 0)
1190 return result;
1191
1192 nvmeq = dev->queues[0];
1193 if (!nvmeq) {
1194 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1195 dev_to_node(dev->dev));
1196 if (!nvmeq)
1197 return -ENOMEM;
1198 }
1199
1200 aqa = nvmeq->q_depth - 1;
1201 aqa |= aqa << 16;
1202
1203 writel(aqa, dev->bar + NVME_REG_AQA);
1204 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1205 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1206
1207 result = nvme_enable_ctrl(&dev->ctrl, cap);
1208 if (result)
1209 return result;
1210
1211 nvmeq->cq_vector = 0;
1212 result = queue_request_irq(nvmeq);
1213 if (result) {
1214 nvmeq->cq_vector = -1;
1215 return result;
1216 }
1217
1218 return result;
1219 }
1220
1221 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1222 {
1223
1224 /* If true, indicates loss of adapter communication, possibly by a
1225 * NVMe Subsystem reset.
1226 */
1227 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1228
1229 /* If there is a reset ongoing, we shouldn't reset again. */
1230 if (work_busy(&dev->reset_work))
1231 return false;
1232
1233 /* We shouldn't reset unless the controller is on fatal error state
1234 * _or_ if we lost the communication with it.
1235 */
1236 if (!(csts & NVME_CSTS_CFS) && !nssro)
1237 return false;
1238
1239 /* If PCI error recovery process is happening, we cannot reset or
1240 * the recovery mechanism will surely fail.
1241 */
1242 if (pci_channel_offline(to_pci_dev(dev->dev)))
1243 return false;
1244
1245 return true;
1246 }
1247
1248 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1249 {
1250 /* Read a config register to help see what died. */
1251 u16 pci_status;
1252 int result;
1253
1254 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1255 &pci_status);
1256 if (result == PCIBIOS_SUCCESSFUL)
1257 dev_warn(dev->dev,
1258 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1259 csts, pci_status);
1260 else
1261 dev_warn(dev->dev,
1262 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1263 csts, result);
1264 }
1265
1266 static void nvme_watchdog_timer(unsigned long data)
1267 {
1268 struct nvme_dev *dev = (struct nvme_dev *)data;
1269 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1270
1271 /* Skip controllers under certain specific conditions. */
1272 if (nvme_should_reset(dev, csts)) {
1273 if (!nvme_reset(dev))
1274 nvme_warn_reset(dev, csts);
1275 return;
1276 }
1277
1278 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1279 }
1280
1281 static int nvme_create_io_queues(struct nvme_dev *dev)
1282 {
1283 unsigned i, max;
1284 int ret = 0;
1285
1286 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1287 /* vector == qid - 1, match nvme_create_queue */
1288 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1289 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1290 ret = -ENOMEM;
1291 break;
1292 }
1293 }
1294
1295 max = min(dev->max_qid, dev->queue_count - 1);
1296 for (i = dev->online_queues; i <= max; i++) {
1297 ret = nvme_create_queue(dev->queues[i], i);
1298 if (ret)
1299 break;
1300 }
1301
1302 /*
1303 * Ignore failing Create SQ/CQ commands, we can continue with less
1304 * than the desired aount of queues, and even a controller without
1305 * I/O queues an still be used to issue admin commands. This might
1306 * be useful to upgrade a buggy firmware for example.
1307 */
1308 return ret >= 0 ? 0 : ret;
1309 }
1310
1311 static ssize_t nvme_cmb_show(struct device *dev,
1312 struct device_attribute *attr,
1313 char *buf)
1314 {
1315 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1316
1317 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1318 ndev->cmbloc, ndev->cmbsz);
1319 }
1320 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1321
1322 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1323 {
1324 u64 szu, size, offset;
1325 resource_size_t bar_size;
1326 struct pci_dev *pdev = to_pci_dev(dev->dev);
1327 void __iomem *cmb;
1328 dma_addr_t dma_addr;
1329
1330 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1331 if (!(NVME_CMB_SZ(dev->cmbsz)))
1332 return NULL;
1333 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1334
1335 if (!use_cmb_sqes)
1336 return NULL;
1337
1338 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1339 size = szu * NVME_CMB_SZ(dev->cmbsz);
1340 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1341 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1342
1343 if (offset > bar_size)
1344 return NULL;
1345
1346 /*
1347 * Controllers may support a CMB size larger than their BAR,
1348 * for example, due to being behind a bridge. Reduce the CMB to
1349 * the reported size of the BAR
1350 */
1351 if (size > bar_size - offset)
1352 size = bar_size - offset;
1353
1354 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1355 cmb = ioremap_wc(dma_addr, size);
1356 if (!cmb)
1357 return NULL;
1358
1359 dev->cmb_dma_addr = dma_addr;
1360 dev->cmb_size = size;
1361 return cmb;
1362 }
1363
1364 static inline void nvme_release_cmb(struct nvme_dev *dev)
1365 {
1366 if (dev->cmb) {
1367 iounmap(dev->cmb);
1368 dev->cmb = NULL;
1369 }
1370 }
1371
1372 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1373 {
1374 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1375 }
1376
1377 static int nvme_setup_io_queues(struct nvme_dev *dev)
1378 {
1379 struct nvme_queue *adminq = dev->queues[0];
1380 struct pci_dev *pdev = to_pci_dev(dev->dev);
1381 int result, nr_io_queues, size;
1382
1383 nr_io_queues = num_online_cpus();
1384 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1385 if (result < 0)
1386 return result;
1387
1388 if (nr_io_queues == 0)
1389 return 0;
1390
1391 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1392 result = nvme_cmb_qdepth(dev, nr_io_queues,
1393 sizeof(struct nvme_command));
1394 if (result > 0)
1395 dev->q_depth = result;
1396 else
1397 nvme_release_cmb(dev);
1398 }
1399
1400 size = db_bar_size(dev, nr_io_queues);
1401 if (size > 8192) {
1402 iounmap(dev->bar);
1403 do {
1404 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1405 if (dev->bar)
1406 break;
1407 if (!--nr_io_queues)
1408 return -ENOMEM;
1409 size = db_bar_size(dev, nr_io_queues);
1410 } while (1);
1411 dev->dbs = dev->bar + 4096;
1412 adminq->q_db = dev->dbs;
1413 }
1414
1415 /* Deregister the admin queue's interrupt */
1416 free_irq(pci_irq_vector(pdev, 0), adminq);
1417
1418 /*
1419 * If we enable msix early due to not intx, disable it again before
1420 * setting up the full range we need.
1421 */
1422 pci_free_irq_vectors(pdev);
1423 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1424 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1425 if (nr_io_queues <= 0)
1426 return -EIO;
1427 dev->max_qid = nr_io_queues;
1428
1429 /*
1430 * Should investigate if there's a performance win from allocating
1431 * more queues than interrupt vectors; it might allow the submission
1432 * path to scale better, even if the receive path is limited by the
1433 * number of interrupts.
1434 */
1435
1436 result = queue_request_irq(adminq);
1437 if (result) {
1438 adminq->cq_vector = -1;
1439 return result;
1440 }
1441 return nvme_create_io_queues(dev);
1442 }
1443
1444 static void nvme_del_queue_end(struct request *req, int error)
1445 {
1446 struct nvme_queue *nvmeq = req->end_io_data;
1447
1448 blk_mq_free_request(req);
1449 complete(&nvmeq->dev->ioq_wait);
1450 }
1451
1452 static void nvme_del_cq_end(struct request *req, int error)
1453 {
1454 struct nvme_queue *nvmeq = req->end_io_data;
1455
1456 if (!error) {
1457 unsigned long flags;
1458
1459 /*
1460 * We might be called with the AQ q_lock held
1461 * and the I/O queue q_lock should always
1462 * nest inside the AQ one.
1463 */
1464 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1465 SINGLE_DEPTH_NESTING);
1466 nvme_process_cq(nvmeq);
1467 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1468 }
1469
1470 nvme_del_queue_end(req, error);
1471 }
1472
1473 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1474 {
1475 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1476 struct request *req;
1477 struct nvme_command cmd;
1478
1479 memset(&cmd, 0, sizeof(cmd));
1480 cmd.delete_queue.opcode = opcode;
1481 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1482
1483 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1484 if (IS_ERR(req))
1485 return PTR_ERR(req);
1486
1487 req->timeout = ADMIN_TIMEOUT;
1488 req->end_io_data = nvmeq;
1489
1490 blk_execute_rq_nowait(q, NULL, req, false,
1491 opcode == nvme_admin_delete_cq ?
1492 nvme_del_cq_end : nvme_del_queue_end);
1493 return 0;
1494 }
1495
1496 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1497 {
1498 int pass;
1499 unsigned long timeout;
1500 u8 opcode = nvme_admin_delete_sq;
1501
1502 for (pass = 0; pass < 2; pass++) {
1503 int sent = 0, i = queues;
1504
1505 reinit_completion(&dev->ioq_wait);
1506 retry:
1507 timeout = ADMIN_TIMEOUT;
1508 for (; i > 0; i--, sent++)
1509 if (nvme_delete_queue(dev->queues[i], opcode))
1510 break;
1511
1512 while (sent--) {
1513 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1514 if (timeout == 0)
1515 return;
1516 if (i)
1517 goto retry;
1518 }
1519 opcode = nvme_admin_delete_cq;
1520 }
1521 }
1522
1523 /*
1524 * Return: error value if an error occurred setting up the queues or calling
1525 * Identify Device. 0 if these succeeded, even if adding some of the
1526 * namespaces failed. At the moment, these failures are silent. TBD which
1527 * failures should be reported.
1528 */
1529 static int nvme_dev_add(struct nvme_dev *dev)
1530 {
1531 if (!dev->ctrl.tagset) {
1532 dev->tagset.ops = &nvme_mq_ops;
1533 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1534 dev->tagset.timeout = NVME_IO_TIMEOUT;
1535 dev->tagset.numa_node = dev_to_node(dev->dev);
1536 dev->tagset.queue_depth =
1537 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1538 dev->tagset.cmd_size = nvme_cmd_size(dev);
1539 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1540 dev->tagset.driver_data = dev;
1541
1542 if (blk_mq_alloc_tag_set(&dev->tagset))
1543 return 0;
1544 dev->ctrl.tagset = &dev->tagset;
1545 } else {
1546 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1547
1548 /* Free previously allocated queues that are no longer usable */
1549 nvme_free_queues(dev, dev->online_queues);
1550 }
1551
1552 return 0;
1553 }
1554
1555 static int nvme_pci_enable(struct nvme_dev *dev)
1556 {
1557 u64 cap;
1558 int result = -ENOMEM;
1559 struct pci_dev *pdev = to_pci_dev(dev->dev);
1560
1561 if (pci_enable_device_mem(pdev))
1562 return result;
1563
1564 pci_set_master(pdev);
1565
1566 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1567 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1568 goto disable;
1569
1570 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1571 result = -ENODEV;
1572 goto disable;
1573 }
1574
1575 /*
1576 * Some devices and/or platforms don't advertise or work with INTx
1577 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1578 * adjust this later.
1579 */
1580 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1581 if (result < 0)
1582 return result;
1583
1584 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1585
1586 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1587 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1588 dev->dbs = dev->bar + 4096;
1589
1590 /*
1591 * Temporary fix for the Apple controller found in the MacBook8,1 and
1592 * some MacBook7,1 to avoid controller resets and data loss.
1593 */
1594 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1595 dev->q_depth = 2;
1596 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1597 "queue depth=%u to work around controller resets\n",
1598 dev->q_depth);
1599 }
1600
1601 /*
1602 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1603 * populate sysfs if a CMB is implemented. Note that we add the
1604 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1605 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1606 * NULL as final argument to sysfs_add_file_to_group.
1607 */
1608
1609 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1610 dev->cmb = nvme_map_cmb(dev);
1611
1612 if (dev->cmbsz) {
1613 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1614 &dev_attr_cmb.attr, NULL))
1615 dev_warn(dev->dev,
1616 "failed to add sysfs attribute for CMB\n");
1617 }
1618 }
1619
1620 pci_enable_pcie_error_reporting(pdev);
1621 pci_save_state(pdev);
1622 return 0;
1623
1624 disable:
1625 pci_disable_device(pdev);
1626 return result;
1627 }
1628
1629 static void nvme_dev_unmap(struct nvme_dev *dev)
1630 {
1631 if (dev->bar)
1632 iounmap(dev->bar);
1633 pci_release_mem_regions(to_pci_dev(dev->dev));
1634 }
1635
1636 static void nvme_pci_disable(struct nvme_dev *dev)
1637 {
1638 struct pci_dev *pdev = to_pci_dev(dev->dev);
1639
1640 pci_free_irq_vectors(pdev);
1641
1642 if (pci_is_enabled(pdev)) {
1643 pci_disable_pcie_error_reporting(pdev);
1644 pci_disable_device(pdev);
1645 }
1646 }
1647
1648 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1649 {
1650 int i, queues;
1651 bool dead = true;
1652 struct pci_dev *pdev = to_pci_dev(dev->dev);
1653
1654 del_timer_sync(&dev->watchdog_timer);
1655
1656 mutex_lock(&dev->shutdown_lock);
1657 if (pci_is_enabled(pdev)) {
1658 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1659
1660 if (dev->ctrl.state == NVME_CTRL_LIVE)
1661 nvme_start_freeze(&dev->ctrl);
1662 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1663 pdev->error_state != pci_channel_io_normal);
1664 }
1665
1666 /*
1667 * Give the controller a chance to complete all entered requests if
1668 * doing a safe shutdown.
1669 */
1670 if (!dead && shutdown)
1671 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1672 nvme_stop_queues(&dev->ctrl);
1673
1674 queues = dev->online_queues - 1;
1675 for (i = dev->queue_count - 1; i > 0; i--)
1676 nvme_suspend_queue(dev->queues[i]);
1677
1678 if (dead) {
1679 /* A device might become IO incapable very soon during
1680 * probe, before the admin queue is configured. Thus,
1681 * queue_count can be 0 here.
1682 */
1683 if (dev->queue_count)
1684 nvme_suspend_queue(dev->queues[0]);
1685 } else {
1686 nvme_disable_io_queues(dev, queues);
1687 nvme_disable_admin_queue(dev, shutdown);
1688 }
1689 nvme_pci_disable(dev);
1690
1691 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1692 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1693
1694 /*
1695 * The driver will not be starting up queues again if shutting down so
1696 * must flush all entered requests to their failed completion to avoid
1697 * deadlocking blk-mq hot-cpu notifier.
1698 */
1699 if (shutdown)
1700 nvme_start_queues(&dev->ctrl);
1701 mutex_unlock(&dev->shutdown_lock);
1702 }
1703
1704 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1705 {
1706 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1707 PAGE_SIZE, PAGE_SIZE, 0);
1708 if (!dev->prp_page_pool)
1709 return -ENOMEM;
1710
1711 /* Optimisation for I/Os between 4k and 128k */
1712 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1713 256, 256, 0);
1714 if (!dev->prp_small_pool) {
1715 dma_pool_destroy(dev->prp_page_pool);
1716 return -ENOMEM;
1717 }
1718 return 0;
1719 }
1720
1721 static void nvme_release_prp_pools(struct nvme_dev *dev)
1722 {
1723 dma_pool_destroy(dev->prp_page_pool);
1724 dma_pool_destroy(dev->prp_small_pool);
1725 }
1726
1727 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1728 {
1729 struct nvme_dev *dev = to_nvme_dev(ctrl);
1730
1731 put_device(dev->dev);
1732 if (dev->tagset.tags)
1733 blk_mq_free_tag_set(&dev->tagset);
1734 if (dev->ctrl.admin_q)
1735 blk_put_queue(dev->ctrl.admin_q);
1736 kfree(dev->queues);
1737 free_opal_dev(dev->ctrl.opal_dev);
1738 kfree(dev);
1739 }
1740
1741 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1742 {
1743 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1744
1745 kref_get(&dev->ctrl.kref);
1746 nvme_dev_disable(dev, false);
1747 if (!schedule_work(&dev->remove_work))
1748 nvme_put_ctrl(&dev->ctrl);
1749 }
1750
1751 static void nvme_reset_work(struct work_struct *work)
1752 {
1753 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1754 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1755 int result = -ENODEV;
1756
1757 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1758 goto out;
1759
1760 /*
1761 * If we're called to reset a live controller first shut it down before
1762 * moving on.
1763 */
1764 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1765 nvme_dev_disable(dev, false);
1766
1767 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1768 goto out;
1769
1770 result = nvme_pci_enable(dev);
1771 if (result)
1772 goto out;
1773
1774 result = nvme_configure_admin_queue(dev);
1775 if (result)
1776 goto out;
1777
1778 nvme_init_queue(dev->queues[0], 0);
1779 result = nvme_alloc_admin_tags(dev);
1780 if (result)
1781 goto out;
1782
1783 result = nvme_init_identify(&dev->ctrl);
1784 if (result)
1785 goto out;
1786
1787 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1788 if (!dev->ctrl.opal_dev)
1789 dev->ctrl.opal_dev =
1790 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1791 else if (was_suspend)
1792 opal_unlock_from_suspend(dev->ctrl.opal_dev);
1793 } else {
1794 free_opal_dev(dev->ctrl.opal_dev);
1795 dev->ctrl.opal_dev = NULL;
1796 }
1797
1798 result = nvme_setup_io_queues(dev);
1799 if (result)
1800 goto out;
1801
1802 /*
1803 * A controller that can not execute IO typically requires user
1804 * intervention to correct. For such degraded controllers, the driver
1805 * should not submit commands the user did not request, so skip
1806 * registering for asynchronous event notification on this condition.
1807 */
1808 if (dev->online_queues > 1)
1809 nvme_queue_async_events(&dev->ctrl);
1810
1811 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1812
1813 /*
1814 * Keep the controller around but remove all namespaces if we don't have
1815 * any working I/O queue.
1816 */
1817 if (dev->online_queues < 2) {
1818 dev_warn(dev->ctrl.device, "IO queues not created\n");
1819 nvme_kill_queues(&dev->ctrl);
1820 nvme_remove_namespaces(&dev->ctrl);
1821 } else {
1822 nvme_start_queues(&dev->ctrl);
1823 nvme_wait_freeze(&dev->ctrl);
1824 nvme_dev_add(dev);
1825 nvme_unfreeze(&dev->ctrl);
1826 }
1827
1828 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1829 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1830 goto out;
1831 }
1832
1833 if (dev->online_queues > 1)
1834 nvme_queue_scan(&dev->ctrl);
1835 return;
1836
1837 out:
1838 nvme_remove_dead_ctrl(dev, result);
1839 }
1840
1841 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1842 {
1843 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1844 struct pci_dev *pdev = to_pci_dev(dev->dev);
1845
1846 nvme_kill_queues(&dev->ctrl);
1847 if (pci_get_drvdata(pdev))
1848 device_release_driver(&pdev->dev);
1849 nvme_put_ctrl(&dev->ctrl);
1850 }
1851
1852 static int nvme_reset(struct nvme_dev *dev)
1853 {
1854 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1855 return -ENODEV;
1856 if (work_busy(&dev->reset_work))
1857 return -ENODEV;
1858 if (!queue_work(nvme_workq, &dev->reset_work))
1859 return -EBUSY;
1860 return 0;
1861 }
1862
1863 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1864 {
1865 *val = readl(to_nvme_dev(ctrl)->bar + off);
1866 return 0;
1867 }
1868
1869 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1870 {
1871 writel(val, to_nvme_dev(ctrl)->bar + off);
1872 return 0;
1873 }
1874
1875 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1876 {
1877 *val = readq(to_nvme_dev(ctrl)->bar + off);
1878 return 0;
1879 }
1880
1881 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1882 {
1883 struct nvme_dev *dev = to_nvme_dev(ctrl);
1884 int ret = nvme_reset(dev);
1885
1886 if (!ret)
1887 flush_work(&dev->reset_work);
1888 return ret;
1889 }
1890
1891 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1892 .name = "pcie",
1893 .module = THIS_MODULE,
1894 .reg_read32 = nvme_pci_reg_read32,
1895 .reg_write32 = nvme_pci_reg_write32,
1896 .reg_read64 = nvme_pci_reg_read64,
1897 .reset_ctrl = nvme_pci_reset_ctrl,
1898 .free_ctrl = nvme_pci_free_ctrl,
1899 .submit_async_event = nvme_pci_submit_async_event,
1900 };
1901
1902 static int nvme_dev_map(struct nvme_dev *dev)
1903 {
1904 struct pci_dev *pdev = to_pci_dev(dev->dev);
1905
1906 if (pci_request_mem_regions(pdev, "nvme"))
1907 return -ENODEV;
1908
1909 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1910 if (!dev->bar)
1911 goto release;
1912
1913 return 0;
1914 release:
1915 pci_release_mem_regions(pdev);
1916 return -ENODEV;
1917 }
1918
1919 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1920 {
1921 int node, result = -ENOMEM;
1922 struct nvme_dev *dev;
1923
1924 node = dev_to_node(&pdev->dev);
1925 if (node == NUMA_NO_NODE)
1926 set_dev_node(&pdev->dev, first_memory_node);
1927
1928 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1929 if (!dev)
1930 return -ENOMEM;
1931 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1932 GFP_KERNEL, node);
1933 if (!dev->queues)
1934 goto free;
1935
1936 dev->dev = get_device(&pdev->dev);
1937 pci_set_drvdata(pdev, dev);
1938
1939 result = nvme_dev_map(dev);
1940 if (result)
1941 goto free;
1942
1943 INIT_WORK(&dev->reset_work, nvme_reset_work);
1944 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1945 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1946 (unsigned long)dev);
1947 mutex_init(&dev->shutdown_lock);
1948 init_completion(&dev->ioq_wait);
1949
1950 result = nvme_setup_prp_pools(dev);
1951 if (result)
1952 goto put_pci;
1953
1954 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1955 id->driver_data);
1956 if (result)
1957 goto release_pools;
1958
1959 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1960
1961 queue_work(nvme_workq, &dev->reset_work);
1962 return 0;
1963
1964 release_pools:
1965 nvme_release_prp_pools(dev);
1966 put_pci:
1967 put_device(dev->dev);
1968 nvme_dev_unmap(dev);
1969 free:
1970 kfree(dev->queues);
1971 kfree(dev);
1972 return result;
1973 }
1974
1975 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1976 {
1977 struct nvme_dev *dev = pci_get_drvdata(pdev);
1978
1979 if (prepare)
1980 nvme_dev_disable(dev, false);
1981 else
1982 nvme_reset(dev);
1983 }
1984
1985 static void nvme_shutdown(struct pci_dev *pdev)
1986 {
1987 struct nvme_dev *dev = pci_get_drvdata(pdev);
1988 nvme_dev_disable(dev, true);
1989 }
1990
1991 /*
1992 * The driver's remove may be called on a device in a partially initialized
1993 * state. This function must not have any dependencies on the device state in
1994 * order to proceed.
1995 */
1996 static void nvme_remove(struct pci_dev *pdev)
1997 {
1998 struct nvme_dev *dev = pci_get_drvdata(pdev);
1999
2000 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2001
2002 pci_set_drvdata(pdev, NULL);
2003
2004 if (!pci_device_is_present(pdev)) {
2005 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2006 nvme_dev_disable(dev, false);
2007 }
2008
2009 flush_work(&dev->reset_work);
2010 nvme_uninit_ctrl(&dev->ctrl);
2011 nvme_dev_disable(dev, true);
2012 nvme_dev_remove_admin(dev);
2013 nvme_free_queues(dev, 0);
2014 nvme_release_cmb(dev);
2015 nvme_release_prp_pools(dev);
2016 nvme_dev_unmap(dev);
2017 nvme_put_ctrl(&dev->ctrl);
2018 }
2019
2020 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2021 {
2022 int ret = 0;
2023
2024 if (numvfs == 0) {
2025 if (pci_vfs_assigned(pdev)) {
2026 dev_warn(&pdev->dev,
2027 "Cannot disable SR-IOV VFs while assigned\n");
2028 return -EPERM;
2029 }
2030 pci_disable_sriov(pdev);
2031 return 0;
2032 }
2033
2034 ret = pci_enable_sriov(pdev, numvfs);
2035 return ret ? ret : numvfs;
2036 }
2037
2038 #ifdef CONFIG_PM_SLEEP
2039 static int nvme_suspend(struct device *dev)
2040 {
2041 struct pci_dev *pdev = to_pci_dev(dev);
2042 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2043
2044 nvme_dev_disable(ndev, true);
2045 return 0;
2046 }
2047
2048 static int nvme_resume(struct device *dev)
2049 {
2050 struct pci_dev *pdev = to_pci_dev(dev);
2051 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2052
2053 nvme_reset(ndev);
2054 return 0;
2055 }
2056 #endif
2057
2058 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2059
2060 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2061 pci_channel_state_t state)
2062 {
2063 struct nvme_dev *dev = pci_get_drvdata(pdev);
2064
2065 /*
2066 * A frozen channel requires a reset. When detected, this method will
2067 * shutdown the controller to quiesce. The controller will be restarted
2068 * after the slot reset through driver's slot_reset callback.
2069 */
2070 switch (state) {
2071 case pci_channel_io_normal:
2072 return PCI_ERS_RESULT_CAN_RECOVER;
2073 case pci_channel_io_frozen:
2074 dev_warn(dev->ctrl.device,
2075 "frozen state error detected, reset controller\n");
2076 nvme_dev_disable(dev, false);
2077 return PCI_ERS_RESULT_NEED_RESET;
2078 case pci_channel_io_perm_failure:
2079 dev_warn(dev->ctrl.device,
2080 "failure state error detected, request disconnect\n");
2081 return PCI_ERS_RESULT_DISCONNECT;
2082 }
2083 return PCI_ERS_RESULT_NEED_RESET;
2084 }
2085
2086 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2087 {
2088 struct nvme_dev *dev = pci_get_drvdata(pdev);
2089
2090 dev_info(dev->ctrl.device, "restart after slot reset\n");
2091 pci_restore_state(pdev);
2092 nvme_reset(dev);
2093 return PCI_ERS_RESULT_RECOVERED;
2094 }
2095
2096 static void nvme_error_resume(struct pci_dev *pdev)
2097 {
2098 pci_cleanup_aer_uncorrect_error_status(pdev);
2099 }
2100
2101 static const struct pci_error_handlers nvme_err_handler = {
2102 .error_detected = nvme_error_detected,
2103 .slot_reset = nvme_slot_reset,
2104 .resume = nvme_error_resume,
2105 .reset_notify = nvme_reset_notify,
2106 };
2107
2108 static const struct pci_device_id nvme_id_table[] = {
2109 { PCI_VDEVICE(INTEL, 0x0953),
2110 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2111 NVME_QUIRK_DEALLOCATE_ZEROES, },
2112 { PCI_VDEVICE(INTEL, 0x0a53),
2113 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2114 NVME_QUIRK_DEALLOCATE_ZEROES, },
2115 { PCI_VDEVICE(INTEL, 0x0a54),
2116 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2117 NVME_QUIRK_DEALLOCATE_ZEROES, },
2118 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2119 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2120 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2121 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2122 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2123 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2124 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2125 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2126 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2127 { 0, }
2128 };
2129 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2130
2131 static struct pci_driver nvme_driver = {
2132 .name = "nvme",
2133 .id_table = nvme_id_table,
2134 .probe = nvme_probe,
2135 .remove = nvme_remove,
2136 .shutdown = nvme_shutdown,
2137 .driver = {
2138 .pm = &nvme_dev_pm_ops,
2139 },
2140 .sriov_configure = nvme_pci_sriov_configure,
2141 .err_handler = &nvme_err_handler,
2142 };
2143
2144 static int __init nvme_init(void)
2145 {
2146 int result;
2147
2148 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2149 if (!nvme_workq)
2150 return -ENOMEM;
2151
2152 result = pci_register_driver(&nvme_driver);
2153 if (result)
2154 destroy_workqueue(nvme_workq);
2155 return result;
2156 }
2157
2158 static void __exit nvme_exit(void)
2159 {
2160 pci_unregister_driver(&nvme_driver);
2161 destroy_workqueue(nvme_workq);
2162 _nvme_check_size();
2163 }
2164
2165 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2166 MODULE_LICENSE("GPL");
2167 MODULE_VERSION("1.0");
2168 module_init(nvme_init);
2169 module_exit(nvme_exit);