]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/pci.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
40
41 /*
42 * We handle AEN commands ourselves and don't even let the
43 * block layer know about them.
44 */
45 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0644);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61 .set = io_queue_depth_set,
62 .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78 struct nvme_dev {
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned online_queues;
87 unsigned max_qid;
88 int q_depth;
89 u32 db_stride;
90 void __iomem *bar;
91 unsigned long bar_mapped_size;
92 struct work_struct remove_work;
93 struct mutex shutdown_lock;
94 bool subsystem;
95 void __iomem *cmb;
96 dma_addr_t cmb_dma_addr;
97 u64 cmb_size;
98 u32 cmbsz;
99 u32 cmbloc;
100 struct nvme_ctrl ctrl;
101 struct completion ioq_wait;
102
103 /* shadow doorbell buffer support: */
104 u32 *dbbuf_dbs;
105 dma_addr_t dbbuf_dbs_dma_addr;
106 u32 *dbbuf_eis;
107 dma_addr_t dbbuf_eis_dma_addr;
108
109 /* host memory buffer support: */
110 u64 host_mem_size;
111 u32 nr_host_mem_descs;
112 struct nvme_host_mem_buf_desc *host_mem_descs;
113 void **host_mem_desc_bufs;
114 };
115
116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
117 {
118 int n = 0, ret;
119
120 ret = kstrtoint(val, 10, &n);
121 if (ret != 0 || n < 2)
122 return -EINVAL;
123
124 return param_set_int(val, kp);
125 }
126
127 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
128 {
129 return qid * 2 * stride;
130 }
131
132 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
133 {
134 return (qid * 2 + 1) * stride;
135 }
136
137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
138 {
139 return container_of(ctrl, struct nvme_dev, ctrl);
140 }
141
142 /*
143 * An NVM Express queue. Each device has at least two (one for admin
144 * commands and one for I/O commands).
145 */
146 struct nvme_queue {
147 struct device *q_dmadev;
148 struct nvme_dev *dev;
149 spinlock_t q_lock;
150 struct nvme_command *sq_cmds;
151 struct nvme_command __iomem *sq_cmds_io;
152 volatile struct nvme_completion *cqes;
153 struct blk_mq_tags **tags;
154 dma_addr_t sq_dma_addr;
155 dma_addr_t cq_dma_addr;
156 u32 __iomem *q_db;
157 u16 q_depth;
158 s16 cq_vector;
159 u16 sq_tail;
160 u16 cq_head;
161 u16 qid;
162 u8 cq_phase;
163 u8 cqe_seen;
164 u32 *dbbuf_sq_db;
165 u32 *dbbuf_cq_db;
166 u32 *dbbuf_sq_ei;
167 u32 *dbbuf_cq_ei;
168 };
169
170 /*
171 * The nvme_iod describes the data in an I/O, including the list of PRP
172 * entries. You can't see it in this data structure because C doesn't let
173 * me express that. Use nvme_init_iod to ensure there's enough space
174 * allocated to store the PRP list.
175 */
176 struct nvme_iod {
177 struct nvme_request req;
178 struct nvme_queue *nvmeq;
179 int aborted;
180 int npages; /* In the PRP list. 0 means small pool in use */
181 int nents; /* Used in scatterlist */
182 int length; /* Of data, in bytes */
183 dma_addr_t first_dma;
184 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
185 struct scatterlist *sg;
186 struct scatterlist inline_sg[0];
187 };
188
189 /*
190 * Check we didin't inadvertently grow the command struct
191 */
192 static inline void _nvme_check_size(void)
193 {
194 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
195 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
204 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
205 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
206 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
207 }
208
209 static inline unsigned int nvme_dbbuf_size(u32 stride)
210 {
211 return ((num_possible_cpus() + 1) * 8 * stride);
212 }
213
214 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
215 {
216 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
217
218 if (dev->dbbuf_dbs)
219 return 0;
220
221 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
222 &dev->dbbuf_dbs_dma_addr,
223 GFP_KERNEL);
224 if (!dev->dbbuf_dbs)
225 return -ENOMEM;
226 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
227 &dev->dbbuf_eis_dma_addr,
228 GFP_KERNEL);
229 if (!dev->dbbuf_eis) {
230 dma_free_coherent(dev->dev, mem_size,
231 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
232 dev->dbbuf_dbs = NULL;
233 return -ENOMEM;
234 }
235
236 return 0;
237 }
238
239 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
240 {
241 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
242
243 if (dev->dbbuf_dbs) {
244 dma_free_coherent(dev->dev, mem_size,
245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246 dev->dbbuf_dbs = NULL;
247 }
248 if (dev->dbbuf_eis) {
249 dma_free_coherent(dev->dev, mem_size,
250 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
251 dev->dbbuf_eis = NULL;
252 }
253 }
254
255 static void nvme_dbbuf_init(struct nvme_dev *dev,
256 struct nvme_queue *nvmeq, int qid)
257 {
258 if (!dev->dbbuf_dbs || !qid)
259 return;
260
261 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
262 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
263 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
265 }
266
267 static void nvme_dbbuf_set(struct nvme_dev *dev)
268 {
269 struct nvme_command c;
270
271 if (!dev->dbbuf_dbs)
272 return;
273
274 memset(&c, 0, sizeof(c));
275 c.dbbuf.opcode = nvme_admin_dbbuf;
276 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
277 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
278
279 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
280 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
281 /* Free memory and continue on */
282 nvme_dbbuf_dma_free(dev);
283 }
284 }
285
286 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
287 {
288 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
289 }
290
291 /* Update dbbuf and return true if an MMIO is required */
292 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
293 volatile u32 *dbbuf_ei)
294 {
295 if (dbbuf_db) {
296 u16 old_value;
297
298 /*
299 * Ensure that the queue is written before updating
300 * the doorbell in memory
301 */
302 wmb();
303
304 old_value = *dbbuf_db;
305 *dbbuf_db = value;
306
307 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
308 return false;
309 }
310
311 return true;
312 }
313
314 /*
315 * Max size of iod being embedded in the request payload
316 */
317 #define NVME_INT_PAGES 2
318 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
319
320 /*
321 * Will slightly overestimate the number of pages needed. This is OK
322 * as it only leads to a small amount of wasted memory for the lifetime of
323 * the I/O.
324 */
325 static int nvme_npages(unsigned size, struct nvme_dev *dev)
326 {
327 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
328 dev->ctrl.page_size);
329 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
330 }
331
332 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
333 unsigned int size, unsigned int nseg)
334 {
335 return sizeof(__le64 *) * nvme_npages(size, dev) +
336 sizeof(struct scatterlist) * nseg;
337 }
338
339 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
340 {
341 return sizeof(struct nvme_iod) +
342 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
343 }
344
345 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
346 unsigned int hctx_idx)
347 {
348 struct nvme_dev *dev = data;
349 struct nvme_queue *nvmeq = dev->queues[0];
350
351 WARN_ON(hctx_idx != 0);
352 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
353 WARN_ON(nvmeq->tags);
354
355 hctx->driver_data = nvmeq;
356 nvmeq->tags = &dev->admin_tagset.tags[0];
357 return 0;
358 }
359
360 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
361 {
362 struct nvme_queue *nvmeq = hctx->driver_data;
363
364 nvmeq->tags = NULL;
365 }
366
367 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
368 unsigned int hctx_idx)
369 {
370 struct nvme_dev *dev = data;
371 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
372
373 if (!nvmeq->tags)
374 nvmeq->tags = &dev->tagset.tags[hctx_idx];
375
376 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
377 hctx->driver_data = nvmeq;
378 return 0;
379 }
380
381 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
382 unsigned int hctx_idx, unsigned int numa_node)
383 {
384 struct nvme_dev *dev = set->driver_data;
385 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
386 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
387 struct nvme_queue *nvmeq = dev->queues[queue_idx];
388
389 BUG_ON(!nvmeq);
390 iod->nvmeq = nvmeq;
391 return 0;
392 }
393
394 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
395 {
396 struct nvme_dev *dev = set->driver_data;
397
398 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
399 }
400
401 /**
402 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
403 * @nvmeq: The queue to use
404 * @cmd: The command to send
405 *
406 * Safe to use from interrupt context
407 */
408 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
409 struct nvme_command *cmd)
410 {
411 u16 tail = nvmeq->sq_tail;
412
413 if (nvmeq->sq_cmds_io)
414 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
415 else
416 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
417
418 if (++tail == nvmeq->q_depth)
419 tail = 0;
420 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
421 nvmeq->dbbuf_sq_ei))
422 writel(tail, nvmeq->q_db);
423 nvmeq->sq_tail = tail;
424 }
425
426 static __le64 **iod_list(struct request *req)
427 {
428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
430 }
431
432 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
433 {
434 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
435 int nseg = blk_rq_nr_phys_segments(rq);
436 unsigned int size = blk_rq_payload_bytes(rq);
437
438 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
439 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
440 if (!iod->sg)
441 return BLK_STS_RESOURCE;
442 } else {
443 iod->sg = iod->inline_sg;
444 }
445
446 iod->aborted = 0;
447 iod->npages = -1;
448 iod->nents = 0;
449 iod->length = size;
450
451 return BLK_STS_OK;
452 }
453
454 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
455 {
456 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
457 const int last_prp = dev->ctrl.page_size / 8 - 1;
458 int i;
459 __le64 **list = iod_list(req);
460 dma_addr_t prp_dma = iod->first_dma;
461
462 if (iod->npages == 0)
463 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
464 for (i = 0; i < iod->npages; i++) {
465 __le64 *prp_list = list[i];
466 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
467 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
468 prp_dma = next_prp_dma;
469 }
470
471 if (iod->sg != iod->inline_sg)
472 kfree(iod->sg);
473 }
474
475 #ifdef CONFIG_BLK_DEV_INTEGRITY
476 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
477 {
478 if (be32_to_cpu(pi->ref_tag) == v)
479 pi->ref_tag = cpu_to_be32(p);
480 }
481
482 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
483 {
484 if (be32_to_cpu(pi->ref_tag) == p)
485 pi->ref_tag = cpu_to_be32(v);
486 }
487
488 /**
489 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
490 *
491 * The virtual start sector is the one that was originally submitted by the
492 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
493 * start sector may be different. Remap protection information to match the
494 * physical LBA on writes, and back to the original seed on reads.
495 *
496 * Type 0 and 3 do not have a ref tag, so no remapping required.
497 */
498 static void nvme_dif_remap(struct request *req,
499 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
500 {
501 struct nvme_ns *ns = req->rq_disk->private_data;
502 struct bio_integrity_payload *bip;
503 struct t10_pi_tuple *pi;
504 void *p, *pmap;
505 u32 i, nlb, ts, phys, virt;
506
507 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
508 return;
509
510 bip = bio_integrity(req->bio);
511 if (!bip)
512 return;
513
514 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
515
516 p = pmap;
517 virt = bip_get_seed(bip);
518 phys = nvme_block_nr(ns, blk_rq_pos(req));
519 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
520 ts = ns->disk->queue->integrity.tuple_size;
521
522 for (i = 0; i < nlb; i++, virt++, phys++) {
523 pi = (struct t10_pi_tuple *)p;
524 dif_swap(phys, virt, pi);
525 p += ts;
526 }
527 kunmap_atomic(pmap);
528 }
529 #else /* CONFIG_BLK_DEV_INTEGRITY */
530 static void nvme_dif_remap(struct request *req,
531 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
532 {
533 }
534 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535 {
536 }
537 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
538 {
539 }
540 #endif
541
542 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
543 {
544 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545 struct dma_pool *pool;
546 int length = blk_rq_payload_bytes(req);
547 struct scatterlist *sg = iod->sg;
548 int dma_len = sg_dma_len(sg);
549 u64 dma_addr = sg_dma_address(sg);
550 u32 page_size = dev->ctrl.page_size;
551 int offset = dma_addr & (page_size - 1);
552 __le64 *prp_list;
553 __le64 **list = iod_list(req);
554 dma_addr_t prp_dma;
555 int nprps, i;
556
557 length -= (page_size - offset);
558 if (length <= 0)
559 return true;
560
561 dma_len -= (page_size - offset);
562 if (dma_len) {
563 dma_addr += (page_size - offset);
564 } else {
565 sg = sg_next(sg);
566 dma_addr = sg_dma_address(sg);
567 dma_len = sg_dma_len(sg);
568 }
569
570 if (length <= page_size) {
571 iod->first_dma = dma_addr;
572 return true;
573 }
574
575 nprps = DIV_ROUND_UP(length, page_size);
576 if (nprps <= (256 / 8)) {
577 pool = dev->prp_small_pool;
578 iod->npages = 0;
579 } else {
580 pool = dev->prp_page_pool;
581 iod->npages = 1;
582 }
583
584 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
585 if (!prp_list) {
586 iod->first_dma = dma_addr;
587 iod->npages = -1;
588 return false;
589 }
590 list[0] = prp_list;
591 iod->first_dma = prp_dma;
592 i = 0;
593 for (;;) {
594 if (i == page_size >> 3) {
595 __le64 *old_prp_list = prp_list;
596 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
597 if (!prp_list)
598 return false;
599 list[iod->npages++] = prp_list;
600 prp_list[0] = old_prp_list[i - 1];
601 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
602 i = 1;
603 }
604 prp_list[i++] = cpu_to_le64(dma_addr);
605 dma_len -= page_size;
606 dma_addr += page_size;
607 length -= page_size;
608 if (length <= 0)
609 break;
610 if (dma_len > 0)
611 continue;
612 BUG_ON(dma_len < 0);
613 sg = sg_next(sg);
614 dma_addr = sg_dma_address(sg);
615 dma_len = sg_dma_len(sg);
616 }
617
618 return true;
619 }
620
621 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
622 struct nvme_command *cmnd)
623 {
624 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
625 struct request_queue *q = req->q;
626 enum dma_data_direction dma_dir = rq_data_dir(req) ?
627 DMA_TO_DEVICE : DMA_FROM_DEVICE;
628 blk_status_t ret = BLK_STS_IOERR;
629
630 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
631 iod->nents = blk_rq_map_sg(q, req, iod->sg);
632 if (!iod->nents)
633 goto out;
634
635 ret = BLK_STS_RESOURCE;
636 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
637 DMA_ATTR_NO_WARN))
638 goto out;
639
640 if (!nvme_setup_prps(dev, req))
641 goto out_unmap;
642
643 ret = BLK_STS_IOERR;
644 if (blk_integrity_rq(req)) {
645 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
646 goto out_unmap;
647
648 sg_init_table(&iod->meta_sg, 1);
649 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
650 goto out_unmap;
651
652 if (rq_data_dir(req))
653 nvme_dif_remap(req, nvme_dif_prep);
654
655 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
656 goto out_unmap;
657 }
658
659 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
660 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
661 if (blk_integrity_rq(req))
662 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
663 return BLK_STS_OK;
664
665 out_unmap:
666 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
667 out:
668 return ret;
669 }
670
671 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
672 {
673 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
674 enum dma_data_direction dma_dir = rq_data_dir(req) ?
675 DMA_TO_DEVICE : DMA_FROM_DEVICE;
676
677 if (iod->nents) {
678 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
679 if (blk_integrity_rq(req)) {
680 if (!rq_data_dir(req))
681 nvme_dif_remap(req, nvme_dif_complete);
682 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
683 }
684 }
685
686 nvme_cleanup_cmd(req);
687 nvme_free_iod(dev, req);
688 }
689
690 /*
691 * NOTE: ns is NULL when called on the admin queue.
692 */
693 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
694 const struct blk_mq_queue_data *bd)
695 {
696 struct nvme_ns *ns = hctx->queue->queuedata;
697 struct nvme_queue *nvmeq = hctx->driver_data;
698 struct nvme_dev *dev = nvmeq->dev;
699 struct request *req = bd->rq;
700 struct nvme_command cmnd;
701 blk_status_t ret;
702
703 ret = nvme_setup_cmd(ns, req, &cmnd);
704 if (ret)
705 return ret;
706
707 ret = nvme_init_iod(req, dev);
708 if (ret)
709 goto out_free_cmd;
710
711 if (blk_rq_nr_phys_segments(req)) {
712 ret = nvme_map_data(dev, req, &cmnd);
713 if (ret)
714 goto out_cleanup_iod;
715 }
716
717 blk_mq_start_request(req);
718
719 spin_lock_irq(&nvmeq->q_lock);
720 if (unlikely(nvmeq->cq_vector < 0)) {
721 ret = BLK_STS_IOERR;
722 spin_unlock_irq(&nvmeq->q_lock);
723 goto out_cleanup_iod;
724 }
725 __nvme_submit_cmd(nvmeq, &cmnd);
726 nvme_process_cq(nvmeq);
727 spin_unlock_irq(&nvmeq->q_lock);
728 return BLK_STS_OK;
729 out_cleanup_iod:
730 nvme_free_iod(dev, req);
731 out_free_cmd:
732 nvme_cleanup_cmd(req);
733 return ret;
734 }
735
736 static void nvme_pci_complete_rq(struct request *req)
737 {
738 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
739
740 nvme_unmap_data(iod->nvmeq->dev, req);
741 nvme_complete_rq(req);
742 }
743
744 /* We read the CQE phase first to check if the rest of the entry is valid */
745 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
746 u16 phase)
747 {
748 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
749 }
750
751 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
752 {
753 u16 head = nvmeq->cq_head;
754
755 if (likely(nvmeq->cq_vector >= 0)) {
756 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
757 nvmeq->dbbuf_cq_ei))
758 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
759 }
760 }
761
762 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
763 struct nvme_completion *cqe)
764 {
765 struct request *req;
766
767 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
768 dev_warn(nvmeq->dev->ctrl.device,
769 "invalid id %d completed on queue %d\n",
770 cqe->command_id, le16_to_cpu(cqe->sq_id));
771 return;
772 }
773
774 /*
775 * AEN requests are special as they don't time out and can
776 * survive any kind of queue freeze and often don't respond to
777 * aborts. We don't even bother to allocate a struct request
778 * for them but rather special case them here.
779 */
780 if (unlikely(nvmeq->qid == 0 &&
781 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
782 nvme_complete_async_event(&nvmeq->dev->ctrl,
783 cqe->status, &cqe->result);
784 return;
785 }
786
787 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
788 nvme_end_request(req, cqe->status, cqe->result);
789 }
790
791 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
792 struct nvme_completion *cqe)
793 {
794 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
795 *cqe = nvmeq->cqes[nvmeq->cq_head];
796
797 if (++nvmeq->cq_head == nvmeq->q_depth) {
798 nvmeq->cq_head = 0;
799 nvmeq->cq_phase = !nvmeq->cq_phase;
800 }
801 return true;
802 }
803 return false;
804 }
805
806 static void nvme_process_cq(struct nvme_queue *nvmeq)
807 {
808 struct nvme_completion cqe;
809 int consumed = 0;
810
811 while (nvme_read_cqe(nvmeq, &cqe)) {
812 nvme_handle_cqe(nvmeq, &cqe);
813 consumed++;
814 }
815
816 if (consumed) {
817 nvme_ring_cq_doorbell(nvmeq);
818 nvmeq->cqe_seen = 1;
819 }
820 }
821
822 static irqreturn_t nvme_irq(int irq, void *data)
823 {
824 irqreturn_t result;
825 struct nvme_queue *nvmeq = data;
826 spin_lock(&nvmeq->q_lock);
827 nvme_process_cq(nvmeq);
828 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
829 nvmeq->cqe_seen = 0;
830 spin_unlock(&nvmeq->q_lock);
831 return result;
832 }
833
834 static irqreturn_t nvme_irq_check(int irq, void *data)
835 {
836 struct nvme_queue *nvmeq = data;
837 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
838 return IRQ_WAKE_THREAD;
839 return IRQ_NONE;
840 }
841
842 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
843 {
844 struct nvme_completion cqe;
845 int found = 0, consumed = 0;
846
847 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
848 return 0;
849
850 spin_lock_irq(&nvmeq->q_lock);
851 while (nvme_read_cqe(nvmeq, &cqe)) {
852 nvme_handle_cqe(nvmeq, &cqe);
853 consumed++;
854
855 if (tag == cqe.command_id) {
856 found = 1;
857 break;
858 }
859 }
860
861 if (consumed)
862 nvme_ring_cq_doorbell(nvmeq);
863 spin_unlock_irq(&nvmeq->q_lock);
864
865 return found;
866 }
867
868 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
869 {
870 struct nvme_queue *nvmeq = hctx->driver_data;
871
872 return __nvme_poll(nvmeq, tag);
873 }
874
875 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
876 {
877 struct nvme_dev *dev = to_nvme_dev(ctrl);
878 struct nvme_queue *nvmeq = dev->queues[0];
879 struct nvme_command c;
880
881 memset(&c, 0, sizeof(c));
882 c.common.opcode = nvme_admin_async_event;
883 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
884
885 spin_lock_irq(&nvmeq->q_lock);
886 __nvme_submit_cmd(nvmeq, &c);
887 spin_unlock_irq(&nvmeq->q_lock);
888 }
889
890 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
891 {
892 struct nvme_command c;
893
894 memset(&c, 0, sizeof(c));
895 c.delete_queue.opcode = opcode;
896 c.delete_queue.qid = cpu_to_le16(id);
897
898 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
899 }
900
901 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
902 struct nvme_queue *nvmeq)
903 {
904 struct nvme_command c;
905 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
906
907 /*
908 * Note: we (ab)use the fact the the prp fields survive if no data
909 * is attached to the request.
910 */
911 memset(&c, 0, sizeof(c));
912 c.create_cq.opcode = nvme_admin_create_cq;
913 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
914 c.create_cq.cqid = cpu_to_le16(qid);
915 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
916 c.create_cq.cq_flags = cpu_to_le16(flags);
917 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
918
919 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
920 }
921
922 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
923 struct nvme_queue *nvmeq)
924 {
925 struct nvme_command c;
926 int flags = NVME_QUEUE_PHYS_CONTIG;
927
928 /*
929 * Note: we (ab)use the fact the the prp fields survive if no data
930 * is attached to the request.
931 */
932 memset(&c, 0, sizeof(c));
933 c.create_sq.opcode = nvme_admin_create_sq;
934 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
935 c.create_sq.sqid = cpu_to_le16(qid);
936 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
937 c.create_sq.sq_flags = cpu_to_le16(flags);
938 c.create_sq.cqid = cpu_to_le16(qid);
939
940 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
941 }
942
943 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
944 {
945 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
946 }
947
948 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
949 {
950 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
951 }
952
953 static void abort_endio(struct request *req, blk_status_t error)
954 {
955 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
956 struct nvme_queue *nvmeq = iod->nvmeq;
957
958 dev_warn(nvmeq->dev->ctrl.device,
959 "Abort status: 0x%x", nvme_req(req)->status);
960 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
961 blk_mq_free_request(req);
962 }
963
964 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
965 {
966
967 /* If true, indicates loss of adapter communication, possibly by a
968 * NVMe Subsystem reset.
969 */
970 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
971
972 /* If there is a reset ongoing, we shouldn't reset again. */
973 if (dev->ctrl.state == NVME_CTRL_RESETTING)
974 return false;
975
976 /* We shouldn't reset unless the controller is on fatal error state
977 * _or_ if we lost the communication with it.
978 */
979 if (!(csts & NVME_CSTS_CFS) && !nssro)
980 return false;
981
982 /* If PCI error recovery process is happening, we cannot reset or
983 * the recovery mechanism will surely fail.
984 */
985 if (pci_channel_offline(to_pci_dev(dev->dev)))
986 return false;
987
988 return true;
989 }
990
991 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
992 {
993 /* Read a config register to help see what died. */
994 u16 pci_status;
995 int result;
996
997 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
998 &pci_status);
999 if (result == PCIBIOS_SUCCESSFUL)
1000 dev_warn(dev->ctrl.device,
1001 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1002 csts, pci_status);
1003 else
1004 dev_warn(dev->ctrl.device,
1005 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1006 csts, result);
1007 }
1008
1009 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1010 {
1011 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1012 struct nvme_queue *nvmeq = iod->nvmeq;
1013 struct nvme_dev *dev = nvmeq->dev;
1014 struct request *abort_req;
1015 struct nvme_command cmd;
1016 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1017
1018 /*
1019 * Reset immediately if the controller is failed
1020 */
1021 if (nvme_should_reset(dev, csts)) {
1022 nvme_warn_reset(dev, csts);
1023 nvme_dev_disable(dev, false);
1024 nvme_reset_ctrl(&dev->ctrl);
1025 return BLK_EH_HANDLED;
1026 }
1027
1028 /*
1029 * Did we miss an interrupt?
1030 */
1031 if (__nvme_poll(nvmeq, req->tag)) {
1032 dev_warn(dev->ctrl.device,
1033 "I/O %d QID %d timeout, completion polled\n",
1034 req->tag, nvmeq->qid);
1035 return BLK_EH_HANDLED;
1036 }
1037
1038 /*
1039 * Shutdown immediately if controller times out while starting. The
1040 * reset work will see the pci device disabled when it gets the forced
1041 * cancellation error. All outstanding requests are completed on
1042 * shutdown, so we return BLK_EH_HANDLED.
1043 */
1044 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1045 dev_warn(dev->ctrl.device,
1046 "I/O %d QID %d timeout, disable controller\n",
1047 req->tag, nvmeq->qid);
1048 nvme_dev_disable(dev, false);
1049 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1050 return BLK_EH_HANDLED;
1051 }
1052
1053 /*
1054 * Shutdown the controller immediately and schedule a reset if the
1055 * command was already aborted once before and still hasn't been
1056 * returned to the driver, or if this is the admin queue.
1057 */
1058 if (!nvmeq->qid || iod->aborted) {
1059 dev_warn(dev->ctrl.device,
1060 "I/O %d QID %d timeout, reset controller\n",
1061 req->tag, nvmeq->qid);
1062 nvme_dev_disable(dev, false);
1063 nvme_reset_ctrl(&dev->ctrl);
1064
1065 /*
1066 * Mark the request as handled, since the inline shutdown
1067 * forces all outstanding requests to complete.
1068 */
1069 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1070 return BLK_EH_HANDLED;
1071 }
1072
1073 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1074 atomic_inc(&dev->ctrl.abort_limit);
1075 return BLK_EH_RESET_TIMER;
1076 }
1077 iod->aborted = 1;
1078
1079 memset(&cmd, 0, sizeof(cmd));
1080 cmd.abort.opcode = nvme_admin_abort_cmd;
1081 cmd.abort.cid = req->tag;
1082 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1083
1084 dev_warn(nvmeq->dev->ctrl.device,
1085 "I/O %d QID %d timeout, aborting\n",
1086 req->tag, nvmeq->qid);
1087
1088 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1089 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1090 if (IS_ERR(abort_req)) {
1091 atomic_inc(&dev->ctrl.abort_limit);
1092 return BLK_EH_RESET_TIMER;
1093 }
1094
1095 abort_req->timeout = ADMIN_TIMEOUT;
1096 abort_req->end_io_data = NULL;
1097 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1098
1099 /*
1100 * The aborted req will be completed on receiving the abort req.
1101 * We enable the timer again. If hit twice, it'll cause a device reset,
1102 * as the device then is in a faulty state.
1103 */
1104 return BLK_EH_RESET_TIMER;
1105 }
1106
1107 static void nvme_free_queue(struct nvme_queue *nvmeq)
1108 {
1109 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1110 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1111 if (nvmeq->sq_cmds)
1112 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1113 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1114 kfree(nvmeq);
1115 }
1116
1117 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1118 {
1119 int i;
1120
1121 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1122 struct nvme_queue *nvmeq = dev->queues[i];
1123 dev->ctrl.queue_count--;
1124 dev->queues[i] = NULL;
1125 nvme_free_queue(nvmeq);
1126 }
1127 }
1128
1129 /**
1130 * nvme_suspend_queue - put queue into suspended state
1131 * @nvmeq - queue to suspend
1132 */
1133 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1134 {
1135 int vector;
1136
1137 spin_lock_irq(&nvmeq->q_lock);
1138 if (nvmeq->cq_vector == -1) {
1139 spin_unlock_irq(&nvmeq->q_lock);
1140 return 1;
1141 }
1142 vector = nvmeq->cq_vector;
1143 nvmeq->dev->online_queues--;
1144 nvmeq->cq_vector = -1;
1145 spin_unlock_irq(&nvmeq->q_lock);
1146
1147 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1148 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1149
1150 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1151
1152 return 0;
1153 }
1154
1155 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1156 {
1157 struct nvme_queue *nvmeq = dev->queues[0];
1158
1159 if (!nvmeq)
1160 return;
1161 if (nvme_suspend_queue(nvmeq))
1162 return;
1163
1164 if (shutdown)
1165 nvme_shutdown_ctrl(&dev->ctrl);
1166 else
1167 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1168
1169 spin_lock_irq(&nvmeq->q_lock);
1170 nvme_process_cq(nvmeq);
1171 spin_unlock_irq(&nvmeq->q_lock);
1172 }
1173
1174 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1175 int entry_size)
1176 {
1177 int q_depth = dev->q_depth;
1178 unsigned q_size_aligned = roundup(q_depth * entry_size,
1179 dev->ctrl.page_size);
1180
1181 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1182 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1183 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1184 q_depth = div_u64(mem_per_q, entry_size);
1185
1186 /*
1187 * Ensure the reduced q_depth is above some threshold where it
1188 * would be better to map queues in system memory with the
1189 * original depth
1190 */
1191 if (q_depth < 64)
1192 return -ENOMEM;
1193 }
1194
1195 return q_depth;
1196 }
1197
1198 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1199 int qid, int depth)
1200 {
1201 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1202 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1203 dev->ctrl.page_size);
1204 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1205 nvmeq->sq_cmds_io = dev->cmb + offset;
1206 } else {
1207 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1208 &nvmeq->sq_dma_addr, GFP_KERNEL);
1209 if (!nvmeq->sq_cmds)
1210 return -ENOMEM;
1211 }
1212
1213 return 0;
1214 }
1215
1216 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1217 int depth, int node)
1218 {
1219 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1220 node);
1221 if (!nvmeq)
1222 return NULL;
1223
1224 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1225 &nvmeq->cq_dma_addr, GFP_KERNEL);
1226 if (!nvmeq->cqes)
1227 goto free_nvmeq;
1228
1229 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1230 goto free_cqdma;
1231
1232 nvmeq->q_dmadev = dev->dev;
1233 nvmeq->dev = dev;
1234 spin_lock_init(&nvmeq->q_lock);
1235 nvmeq->cq_head = 0;
1236 nvmeq->cq_phase = 1;
1237 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1238 nvmeq->q_depth = depth;
1239 nvmeq->qid = qid;
1240 nvmeq->cq_vector = -1;
1241 dev->queues[qid] = nvmeq;
1242 dev->ctrl.queue_count++;
1243
1244 return nvmeq;
1245
1246 free_cqdma:
1247 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1248 nvmeq->cq_dma_addr);
1249 free_nvmeq:
1250 kfree(nvmeq);
1251 return NULL;
1252 }
1253
1254 static int queue_request_irq(struct nvme_queue *nvmeq)
1255 {
1256 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1257 int nr = nvmeq->dev->ctrl.instance;
1258
1259 if (use_threaded_interrupts) {
1260 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1261 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1262 } else {
1263 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1264 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1265 }
1266 }
1267
1268 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1269 {
1270 struct nvme_dev *dev = nvmeq->dev;
1271
1272 spin_lock_irq(&nvmeq->q_lock);
1273 nvmeq->sq_tail = 0;
1274 nvmeq->cq_head = 0;
1275 nvmeq->cq_phase = 1;
1276 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1277 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1278 nvme_dbbuf_init(dev, nvmeq, qid);
1279 dev->online_queues++;
1280 spin_unlock_irq(&nvmeq->q_lock);
1281 }
1282
1283 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1284 {
1285 struct nvme_dev *dev = nvmeq->dev;
1286 int result;
1287
1288 nvmeq->cq_vector = qid - 1;
1289 result = adapter_alloc_cq(dev, qid, nvmeq);
1290 if (result < 0)
1291 return result;
1292
1293 result = adapter_alloc_sq(dev, qid, nvmeq);
1294 if (result < 0)
1295 goto release_cq;
1296
1297 result = queue_request_irq(nvmeq);
1298 if (result < 0)
1299 goto release_sq;
1300
1301 nvme_init_queue(nvmeq, qid);
1302 return result;
1303
1304 release_sq:
1305 adapter_delete_sq(dev, qid);
1306 release_cq:
1307 adapter_delete_cq(dev, qid);
1308 return result;
1309 }
1310
1311 static const struct blk_mq_ops nvme_mq_admin_ops = {
1312 .queue_rq = nvme_queue_rq,
1313 .complete = nvme_pci_complete_rq,
1314 .init_hctx = nvme_admin_init_hctx,
1315 .exit_hctx = nvme_admin_exit_hctx,
1316 .init_request = nvme_init_request,
1317 .timeout = nvme_timeout,
1318 };
1319
1320 static const struct blk_mq_ops nvme_mq_ops = {
1321 .queue_rq = nvme_queue_rq,
1322 .complete = nvme_pci_complete_rq,
1323 .init_hctx = nvme_init_hctx,
1324 .init_request = nvme_init_request,
1325 .map_queues = nvme_pci_map_queues,
1326 .timeout = nvme_timeout,
1327 .poll = nvme_poll,
1328 };
1329
1330 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1331 {
1332 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1333 /*
1334 * If the controller was reset during removal, it's possible
1335 * user requests may be waiting on a stopped queue. Start the
1336 * queue to flush these to completion.
1337 */
1338 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1339 blk_cleanup_queue(dev->ctrl.admin_q);
1340 blk_mq_free_tag_set(&dev->admin_tagset);
1341 }
1342 }
1343
1344 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1345 {
1346 if (!dev->ctrl.admin_q) {
1347 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1348 dev->admin_tagset.nr_hw_queues = 1;
1349
1350 /*
1351 * Subtract one to leave an empty queue entry for 'Full Queue'
1352 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1353 */
1354 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1355 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1356 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1357 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1358 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1359 dev->admin_tagset.driver_data = dev;
1360
1361 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1362 return -ENOMEM;
1363
1364 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1365 if (IS_ERR(dev->ctrl.admin_q)) {
1366 blk_mq_free_tag_set(&dev->admin_tagset);
1367 return -ENOMEM;
1368 }
1369 if (!blk_get_queue(dev->ctrl.admin_q)) {
1370 nvme_dev_remove_admin(dev);
1371 dev->ctrl.admin_q = NULL;
1372 return -ENODEV;
1373 }
1374 } else
1375 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1376
1377 return 0;
1378 }
1379
1380 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1381 {
1382 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1383 }
1384
1385 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1386 {
1387 struct pci_dev *pdev = to_pci_dev(dev->dev);
1388
1389 if (size <= dev->bar_mapped_size)
1390 return 0;
1391 if (size > pci_resource_len(pdev, 0))
1392 return -ENOMEM;
1393 if (dev->bar)
1394 iounmap(dev->bar);
1395 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1396 if (!dev->bar) {
1397 dev->bar_mapped_size = 0;
1398 return -ENOMEM;
1399 }
1400 dev->bar_mapped_size = size;
1401 dev->dbs = dev->bar + NVME_REG_DBS;
1402
1403 return 0;
1404 }
1405
1406 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1407 {
1408 int result;
1409 u32 aqa;
1410 struct nvme_queue *nvmeq;
1411
1412 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1413 if (result < 0)
1414 return result;
1415
1416 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1417 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1418
1419 if (dev->subsystem &&
1420 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1421 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1422
1423 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1424 if (result < 0)
1425 return result;
1426
1427 nvmeq = dev->queues[0];
1428 if (!nvmeq) {
1429 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1430 dev_to_node(dev->dev));
1431 if (!nvmeq)
1432 return -ENOMEM;
1433 }
1434
1435 aqa = nvmeq->q_depth - 1;
1436 aqa |= aqa << 16;
1437
1438 writel(aqa, dev->bar + NVME_REG_AQA);
1439 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1440 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1441
1442 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1443 if (result)
1444 return result;
1445
1446 nvmeq->cq_vector = 0;
1447 result = queue_request_irq(nvmeq);
1448 if (result) {
1449 nvmeq->cq_vector = -1;
1450 return result;
1451 }
1452
1453 return result;
1454 }
1455
1456 static int nvme_create_io_queues(struct nvme_dev *dev)
1457 {
1458 unsigned i, max;
1459 int ret = 0;
1460
1461 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1462 /* vector == qid - 1, match nvme_create_queue */
1463 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1464 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1465 ret = -ENOMEM;
1466 break;
1467 }
1468 }
1469
1470 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1471 for (i = dev->online_queues; i <= max; i++) {
1472 ret = nvme_create_queue(dev->queues[i], i);
1473 if (ret)
1474 break;
1475 }
1476
1477 /*
1478 * Ignore failing Create SQ/CQ commands, we can continue with less
1479 * than the desired aount of queues, and even a controller without
1480 * I/O queues an still be used to issue admin commands. This might
1481 * be useful to upgrade a buggy firmware for example.
1482 */
1483 return ret >= 0 ? 0 : ret;
1484 }
1485
1486 static ssize_t nvme_cmb_show(struct device *dev,
1487 struct device_attribute *attr,
1488 char *buf)
1489 {
1490 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1491
1492 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1493 ndev->cmbloc, ndev->cmbsz);
1494 }
1495 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1496
1497 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1498 {
1499 u64 szu, size, offset;
1500 resource_size_t bar_size;
1501 struct pci_dev *pdev = to_pci_dev(dev->dev);
1502 void __iomem *cmb;
1503 dma_addr_t dma_addr;
1504
1505 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1506 if (!(NVME_CMB_SZ(dev->cmbsz)))
1507 return NULL;
1508 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1509
1510 if (!use_cmb_sqes)
1511 return NULL;
1512
1513 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1514 size = szu * NVME_CMB_SZ(dev->cmbsz);
1515 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1516 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1517
1518 if (offset > bar_size)
1519 return NULL;
1520
1521 /*
1522 * Controllers may support a CMB size larger than their BAR,
1523 * for example, due to being behind a bridge. Reduce the CMB to
1524 * the reported size of the BAR
1525 */
1526 if (size > bar_size - offset)
1527 size = bar_size - offset;
1528
1529 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1530 cmb = ioremap_wc(dma_addr, size);
1531 if (!cmb)
1532 return NULL;
1533
1534 dev->cmb_dma_addr = dma_addr;
1535 dev->cmb_size = size;
1536 return cmb;
1537 }
1538
1539 static inline void nvme_release_cmb(struct nvme_dev *dev)
1540 {
1541 if (dev->cmb) {
1542 iounmap(dev->cmb);
1543 dev->cmb = NULL;
1544 if (dev->cmbsz) {
1545 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1546 &dev_attr_cmb.attr, NULL);
1547 dev->cmbsz = 0;
1548 }
1549 }
1550 }
1551
1552 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1553 {
1554 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1555 struct nvme_command c;
1556 u64 dma_addr;
1557 int ret;
1558
1559 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1560 DMA_TO_DEVICE);
1561 if (dma_mapping_error(dev->dev, dma_addr))
1562 return -ENOMEM;
1563
1564 memset(&c, 0, sizeof(c));
1565 c.features.opcode = nvme_admin_set_features;
1566 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1567 c.features.dword11 = cpu_to_le32(bits);
1568 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1569 ilog2(dev->ctrl.page_size));
1570 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1571 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1572 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1573
1574 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1575 if (ret) {
1576 dev_warn(dev->ctrl.device,
1577 "failed to set host mem (err %d, flags %#x).\n",
1578 ret, bits);
1579 }
1580 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1581 return ret;
1582 }
1583
1584 static void nvme_free_host_mem(struct nvme_dev *dev)
1585 {
1586 int i;
1587
1588 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1589 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1590 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1591
1592 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1593 le64_to_cpu(desc->addr));
1594 }
1595
1596 kfree(dev->host_mem_desc_bufs);
1597 dev->host_mem_desc_bufs = NULL;
1598 kfree(dev->host_mem_descs);
1599 dev->host_mem_descs = NULL;
1600 }
1601
1602 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1603 {
1604 struct nvme_host_mem_buf_desc *descs;
1605 u32 chunk_size, max_entries;
1606 int i = 0;
1607 void **bufs;
1608 u64 size = 0, tmp;
1609
1610 /* start big and work our way down */
1611 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1612 retry:
1613 tmp = (preferred + chunk_size - 1);
1614 do_div(tmp, chunk_size);
1615 max_entries = tmp;
1616 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1617 if (!descs)
1618 goto out;
1619
1620 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1621 if (!bufs)
1622 goto out_free_descs;
1623
1624 for (size = 0; size < preferred; size += chunk_size) {
1625 u32 len = min_t(u64, chunk_size, preferred - size);
1626 dma_addr_t dma_addr;
1627
1628 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1629 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1630 if (!bufs[i])
1631 break;
1632
1633 descs[i].addr = cpu_to_le64(dma_addr);
1634 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1635 i++;
1636 }
1637
1638 if (!size || (min && size < min)) {
1639 dev_warn(dev->ctrl.device,
1640 "failed to allocate host memory buffer.\n");
1641 goto out_free_bufs;
1642 }
1643
1644 dev_info(dev->ctrl.device,
1645 "allocated %lld MiB host memory buffer.\n",
1646 size >> ilog2(SZ_1M));
1647 dev->nr_host_mem_descs = i;
1648 dev->host_mem_size = size;
1649 dev->host_mem_descs = descs;
1650 dev->host_mem_desc_bufs = bufs;
1651 return 0;
1652
1653 out_free_bufs:
1654 while (--i >= 0) {
1655 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1656
1657 dma_free_coherent(dev->dev, size, bufs[i],
1658 le64_to_cpu(descs[i].addr));
1659 }
1660
1661 kfree(bufs);
1662 out_free_descs:
1663 kfree(descs);
1664 out:
1665 /* try a smaller chunk size if we failed early */
1666 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1667 chunk_size /= 2;
1668 goto retry;
1669 }
1670 dev->host_mem_descs = NULL;
1671 return -ENOMEM;
1672 }
1673
1674 static void nvme_setup_host_mem(struct nvme_dev *dev)
1675 {
1676 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1677 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1678 u64 min = (u64)dev->ctrl.hmmin * 4096;
1679 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1680
1681 preferred = min(preferred, max);
1682 if (min > max) {
1683 dev_warn(dev->ctrl.device,
1684 "min host memory (%lld MiB) above limit (%d MiB).\n",
1685 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1686 nvme_free_host_mem(dev);
1687 return;
1688 }
1689
1690 /*
1691 * If we already have a buffer allocated check if we can reuse it.
1692 */
1693 if (dev->host_mem_descs) {
1694 if (dev->host_mem_size >= min)
1695 enable_bits |= NVME_HOST_MEM_RETURN;
1696 else
1697 nvme_free_host_mem(dev);
1698 }
1699
1700 if (!dev->host_mem_descs) {
1701 if (nvme_alloc_host_mem(dev, min, preferred))
1702 return;
1703 }
1704
1705 if (nvme_set_host_mem(dev, enable_bits))
1706 nvme_free_host_mem(dev);
1707 }
1708
1709 static int nvme_setup_io_queues(struct nvme_dev *dev)
1710 {
1711 struct nvme_queue *adminq = dev->queues[0];
1712 struct pci_dev *pdev = to_pci_dev(dev->dev);
1713 int result, nr_io_queues;
1714 unsigned long size;
1715
1716 nr_io_queues = num_present_cpus();
1717 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1718 if (result < 0)
1719 return result;
1720
1721 if (nr_io_queues == 0)
1722 return 0;
1723
1724 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1725 result = nvme_cmb_qdepth(dev, nr_io_queues,
1726 sizeof(struct nvme_command));
1727 if (result > 0)
1728 dev->q_depth = result;
1729 else
1730 nvme_release_cmb(dev);
1731 }
1732
1733 do {
1734 size = db_bar_size(dev, nr_io_queues);
1735 result = nvme_remap_bar(dev, size);
1736 if (!result)
1737 break;
1738 if (!--nr_io_queues)
1739 return -ENOMEM;
1740 } while (1);
1741 adminq->q_db = dev->dbs;
1742
1743 /* Deregister the admin queue's interrupt */
1744 pci_free_irq(pdev, 0, adminq);
1745
1746 /*
1747 * If we enable msix early due to not intx, disable it again before
1748 * setting up the full range we need.
1749 */
1750 pci_free_irq_vectors(pdev);
1751 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1752 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1753 if (nr_io_queues <= 0)
1754 return -EIO;
1755 dev->max_qid = nr_io_queues;
1756
1757 /*
1758 * Should investigate if there's a performance win from allocating
1759 * more queues than interrupt vectors; it might allow the submission
1760 * path to scale better, even if the receive path is limited by the
1761 * number of interrupts.
1762 */
1763
1764 result = queue_request_irq(adminq);
1765 if (result) {
1766 adminq->cq_vector = -1;
1767 return result;
1768 }
1769 return nvme_create_io_queues(dev);
1770 }
1771
1772 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1773 {
1774 struct nvme_queue *nvmeq = req->end_io_data;
1775
1776 blk_mq_free_request(req);
1777 complete(&nvmeq->dev->ioq_wait);
1778 }
1779
1780 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1781 {
1782 struct nvme_queue *nvmeq = req->end_io_data;
1783
1784 if (!error) {
1785 unsigned long flags;
1786
1787 /*
1788 * We might be called with the AQ q_lock held
1789 * and the I/O queue q_lock should always
1790 * nest inside the AQ one.
1791 */
1792 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1793 SINGLE_DEPTH_NESTING);
1794 nvme_process_cq(nvmeq);
1795 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1796 }
1797
1798 nvme_del_queue_end(req, error);
1799 }
1800
1801 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1802 {
1803 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1804 struct request *req;
1805 struct nvme_command cmd;
1806
1807 memset(&cmd, 0, sizeof(cmd));
1808 cmd.delete_queue.opcode = opcode;
1809 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1810
1811 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1812 if (IS_ERR(req))
1813 return PTR_ERR(req);
1814
1815 req->timeout = ADMIN_TIMEOUT;
1816 req->end_io_data = nvmeq;
1817
1818 blk_execute_rq_nowait(q, NULL, req, false,
1819 opcode == nvme_admin_delete_cq ?
1820 nvme_del_cq_end : nvme_del_queue_end);
1821 return 0;
1822 }
1823
1824 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1825 {
1826 int pass;
1827 unsigned long timeout;
1828 u8 opcode = nvme_admin_delete_sq;
1829
1830 for (pass = 0; pass < 2; pass++) {
1831 int sent = 0, i = queues;
1832
1833 reinit_completion(&dev->ioq_wait);
1834 retry:
1835 timeout = ADMIN_TIMEOUT;
1836 for (; i > 0; i--, sent++)
1837 if (nvme_delete_queue(dev->queues[i], opcode))
1838 break;
1839
1840 while (sent--) {
1841 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1842 if (timeout == 0)
1843 return;
1844 if (i)
1845 goto retry;
1846 }
1847 opcode = nvme_admin_delete_cq;
1848 }
1849 }
1850
1851 /*
1852 * Return: error value if an error occurred setting up the queues or calling
1853 * Identify Device. 0 if these succeeded, even if adding some of the
1854 * namespaces failed. At the moment, these failures are silent. TBD which
1855 * failures should be reported.
1856 */
1857 static int nvme_dev_add(struct nvme_dev *dev)
1858 {
1859 if (!dev->ctrl.tagset) {
1860 dev->tagset.ops = &nvme_mq_ops;
1861 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1862 dev->tagset.timeout = NVME_IO_TIMEOUT;
1863 dev->tagset.numa_node = dev_to_node(dev->dev);
1864 dev->tagset.queue_depth =
1865 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1866 dev->tagset.cmd_size = nvme_cmd_size(dev);
1867 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1868 dev->tagset.driver_data = dev;
1869
1870 if (blk_mq_alloc_tag_set(&dev->tagset))
1871 return 0;
1872 dev->ctrl.tagset = &dev->tagset;
1873
1874 nvme_dbbuf_set(dev);
1875 } else {
1876 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1877
1878 /* Free previously allocated queues that are no longer usable */
1879 nvme_free_queues(dev, dev->online_queues);
1880 }
1881
1882 return 0;
1883 }
1884
1885 static int nvme_pci_enable(struct nvme_dev *dev)
1886 {
1887 int result = -ENOMEM;
1888 struct pci_dev *pdev = to_pci_dev(dev->dev);
1889
1890 if (pci_enable_device_mem(pdev))
1891 return result;
1892
1893 pci_set_master(pdev);
1894
1895 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1896 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1897 goto disable;
1898
1899 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1900 result = -ENODEV;
1901 goto disable;
1902 }
1903
1904 /*
1905 * Some devices and/or platforms don't advertise or work with INTx
1906 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1907 * adjust this later.
1908 */
1909 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1910 if (result < 0)
1911 return result;
1912
1913 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1914
1915 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1916 io_queue_depth);
1917 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1918 dev->dbs = dev->bar + 4096;
1919
1920 /*
1921 * Temporary fix for the Apple controller found in the MacBook8,1 and
1922 * some MacBook7,1 to avoid controller resets and data loss.
1923 */
1924 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1925 dev->q_depth = 2;
1926 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1927 "set queue depth=%u to work around controller resets\n",
1928 dev->q_depth);
1929 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1930 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1931 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1932 dev->q_depth = 64;
1933 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1934 "set queue depth=%u\n", dev->q_depth);
1935 }
1936
1937 /*
1938 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1939 * populate sysfs if a CMB is implemented. Note that we add the
1940 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1941 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1942 * NULL as final argument to sysfs_add_file_to_group.
1943 */
1944
1945 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1946 dev->cmb = nvme_map_cmb(dev);
1947
1948 if (dev->cmbsz) {
1949 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1950 &dev_attr_cmb.attr, NULL))
1951 dev_warn(dev->ctrl.device,
1952 "failed to add sysfs attribute for CMB\n");
1953 }
1954 }
1955
1956 pci_enable_pcie_error_reporting(pdev);
1957 pci_save_state(pdev);
1958 return 0;
1959
1960 disable:
1961 pci_disable_device(pdev);
1962 return result;
1963 }
1964
1965 static void nvme_dev_unmap(struct nvme_dev *dev)
1966 {
1967 if (dev->bar)
1968 iounmap(dev->bar);
1969 pci_release_mem_regions(to_pci_dev(dev->dev));
1970 }
1971
1972 static void nvme_pci_disable(struct nvme_dev *dev)
1973 {
1974 struct pci_dev *pdev = to_pci_dev(dev->dev);
1975
1976 nvme_release_cmb(dev);
1977 pci_free_irq_vectors(pdev);
1978
1979 if (pci_is_enabled(pdev)) {
1980 pci_disable_pcie_error_reporting(pdev);
1981 pci_disable_device(pdev);
1982 }
1983 }
1984
1985 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1986 {
1987 int i, queues;
1988 bool dead = true;
1989 struct pci_dev *pdev = to_pci_dev(dev->dev);
1990
1991 mutex_lock(&dev->shutdown_lock);
1992 if (pci_is_enabled(pdev)) {
1993 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1994
1995 if (dev->ctrl.state == NVME_CTRL_LIVE ||
1996 dev->ctrl.state == NVME_CTRL_RESETTING)
1997 nvme_start_freeze(&dev->ctrl);
1998 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1999 pdev->error_state != pci_channel_io_normal);
2000 }
2001
2002 /*
2003 * Give the controller a chance to complete all entered requests if
2004 * doing a safe shutdown.
2005 */
2006 if (!dead) {
2007 if (shutdown)
2008 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2009
2010 /*
2011 * If the controller is still alive tell it to stop using the
2012 * host memory buffer. In theory the shutdown / reset should
2013 * make sure that it doesn't access the host memoery anymore,
2014 * but I'd rather be safe than sorry..
2015 */
2016 if (dev->host_mem_descs)
2017 nvme_set_host_mem(dev, 0);
2018
2019 }
2020 nvme_stop_queues(&dev->ctrl);
2021
2022 queues = dev->online_queues - 1;
2023 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2024 nvme_suspend_queue(dev->queues[i]);
2025
2026 if (dead) {
2027 /* A device might become IO incapable very soon during
2028 * probe, before the admin queue is configured. Thus,
2029 * queue_count can be 0 here.
2030 */
2031 if (dev->ctrl.queue_count)
2032 nvme_suspend_queue(dev->queues[0]);
2033 } else {
2034 nvme_disable_io_queues(dev, queues);
2035 nvme_disable_admin_queue(dev, shutdown);
2036 }
2037 nvme_pci_disable(dev);
2038
2039 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2040 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2041
2042 /*
2043 * The driver will not be starting up queues again if shutting down so
2044 * must flush all entered requests to their failed completion to avoid
2045 * deadlocking blk-mq hot-cpu notifier.
2046 */
2047 if (shutdown)
2048 nvme_start_queues(&dev->ctrl);
2049 mutex_unlock(&dev->shutdown_lock);
2050 }
2051
2052 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2053 {
2054 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2055 PAGE_SIZE, PAGE_SIZE, 0);
2056 if (!dev->prp_page_pool)
2057 return -ENOMEM;
2058
2059 /* Optimisation for I/Os between 4k and 128k */
2060 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2061 256, 256, 0);
2062 if (!dev->prp_small_pool) {
2063 dma_pool_destroy(dev->prp_page_pool);
2064 return -ENOMEM;
2065 }
2066 return 0;
2067 }
2068
2069 static void nvme_release_prp_pools(struct nvme_dev *dev)
2070 {
2071 dma_pool_destroy(dev->prp_page_pool);
2072 dma_pool_destroy(dev->prp_small_pool);
2073 }
2074
2075 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2076 {
2077 struct nvme_dev *dev = to_nvme_dev(ctrl);
2078
2079 nvme_dbbuf_dma_free(dev);
2080 put_device(dev->dev);
2081 if (dev->tagset.tags)
2082 blk_mq_free_tag_set(&dev->tagset);
2083 if (dev->ctrl.admin_q)
2084 blk_put_queue(dev->ctrl.admin_q);
2085 kfree(dev->queues);
2086 free_opal_dev(dev->ctrl.opal_dev);
2087 kfree(dev);
2088 }
2089
2090 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2091 {
2092 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2093
2094 kref_get(&dev->ctrl.kref);
2095 nvme_dev_disable(dev, false);
2096 if (!schedule_work(&dev->remove_work))
2097 nvme_put_ctrl(&dev->ctrl);
2098 }
2099
2100 static void nvme_reset_work(struct work_struct *work)
2101 {
2102 struct nvme_dev *dev =
2103 container_of(work, struct nvme_dev, ctrl.reset_work);
2104 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2105 int result = -ENODEV;
2106
2107 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2108 goto out;
2109
2110 /*
2111 * If we're called to reset a live controller first shut it down before
2112 * moving on.
2113 */
2114 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2115 nvme_dev_disable(dev, false);
2116
2117 result = nvme_pci_enable(dev);
2118 if (result)
2119 goto out;
2120
2121 result = nvme_pci_configure_admin_queue(dev);
2122 if (result)
2123 goto out;
2124
2125 nvme_init_queue(dev->queues[0], 0);
2126 result = nvme_alloc_admin_tags(dev);
2127 if (result)
2128 goto out;
2129
2130 result = nvme_init_identify(&dev->ctrl);
2131 if (result)
2132 goto out;
2133
2134 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2135 if (!dev->ctrl.opal_dev)
2136 dev->ctrl.opal_dev =
2137 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2138 else if (was_suspend)
2139 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2140 } else {
2141 free_opal_dev(dev->ctrl.opal_dev);
2142 dev->ctrl.opal_dev = NULL;
2143 }
2144
2145 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2146 result = nvme_dbbuf_dma_alloc(dev);
2147 if (result)
2148 dev_warn(dev->dev,
2149 "unable to allocate dma for dbbuf\n");
2150 }
2151
2152 if (dev->ctrl.hmpre)
2153 nvme_setup_host_mem(dev);
2154
2155 result = nvme_setup_io_queues(dev);
2156 if (result)
2157 goto out;
2158
2159 /*
2160 * Keep the controller around but remove all namespaces if we don't have
2161 * any working I/O queue.
2162 */
2163 if (dev->online_queues < 2) {
2164 dev_warn(dev->ctrl.device, "IO queues not created\n");
2165 nvme_kill_queues(&dev->ctrl);
2166 nvme_remove_namespaces(&dev->ctrl);
2167 } else {
2168 nvme_start_queues(&dev->ctrl);
2169 nvme_wait_freeze(&dev->ctrl);
2170 nvme_dev_add(dev);
2171 nvme_unfreeze(&dev->ctrl);
2172 }
2173
2174 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2175 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2176 goto out;
2177 }
2178
2179 nvme_start_ctrl(&dev->ctrl);
2180 return;
2181
2182 out:
2183 nvme_remove_dead_ctrl(dev, result);
2184 }
2185
2186 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2187 {
2188 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2189 struct pci_dev *pdev = to_pci_dev(dev->dev);
2190
2191 nvme_kill_queues(&dev->ctrl);
2192 if (pci_get_drvdata(pdev))
2193 device_release_driver(&pdev->dev);
2194 nvme_put_ctrl(&dev->ctrl);
2195 }
2196
2197 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2198 {
2199 *val = readl(to_nvme_dev(ctrl)->bar + off);
2200 return 0;
2201 }
2202
2203 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2204 {
2205 writel(val, to_nvme_dev(ctrl)->bar + off);
2206 return 0;
2207 }
2208
2209 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2210 {
2211 *val = readq(to_nvme_dev(ctrl)->bar + off);
2212 return 0;
2213 }
2214
2215 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2216 .name = "pcie",
2217 .module = THIS_MODULE,
2218 .flags = NVME_F_METADATA_SUPPORTED,
2219 .reg_read32 = nvme_pci_reg_read32,
2220 .reg_write32 = nvme_pci_reg_write32,
2221 .reg_read64 = nvme_pci_reg_read64,
2222 .free_ctrl = nvme_pci_free_ctrl,
2223 .submit_async_event = nvme_pci_submit_async_event,
2224 };
2225
2226 static int nvme_dev_map(struct nvme_dev *dev)
2227 {
2228 struct pci_dev *pdev = to_pci_dev(dev->dev);
2229
2230 if (pci_request_mem_regions(pdev, "nvme"))
2231 return -ENODEV;
2232
2233 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2234 goto release;
2235
2236 return 0;
2237 release:
2238 pci_release_mem_regions(pdev);
2239 return -ENODEV;
2240 }
2241
2242 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2243 {
2244 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2245 /*
2246 * Several Samsung devices seem to drop off the PCIe bus
2247 * randomly when APST is on and uses the deepest sleep state.
2248 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2249 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2250 * 950 PRO 256GB", but it seems to be restricted to two Dell
2251 * laptops.
2252 */
2253 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2254 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2255 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2256 return NVME_QUIRK_NO_DEEPEST_PS;
2257 }
2258
2259 return 0;
2260 }
2261
2262 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2263 {
2264 int node, result = -ENOMEM;
2265 struct nvme_dev *dev;
2266 unsigned long quirks = id->driver_data;
2267
2268 node = dev_to_node(&pdev->dev);
2269 if (node == NUMA_NO_NODE)
2270 set_dev_node(&pdev->dev, first_memory_node);
2271
2272 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2273 if (!dev)
2274 return -ENOMEM;
2275 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2276 GFP_KERNEL, node);
2277 if (!dev->queues)
2278 goto free;
2279
2280 dev->dev = get_device(&pdev->dev);
2281 pci_set_drvdata(pdev, dev);
2282
2283 result = nvme_dev_map(dev);
2284 if (result)
2285 goto free;
2286
2287 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2288 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2289 mutex_init(&dev->shutdown_lock);
2290 init_completion(&dev->ioq_wait);
2291
2292 result = nvme_setup_prp_pools(dev);
2293 if (result)
2294 goto put_pci;
2295
2296 quirks |= check_dell_samsung_bug(pdev);
2297
2298 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2299 quirks);
2300 if (result)
2301 goto release_pools;
2302
2303 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2304 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2305
2306 queue_work(nvme_wq, &dev->ctrl.reset_work);
2307 return 0;
2308
2309 release_pools:
2310 nvme_release_prp_pools(dev);
2311 put_pci:
2312 put_device(dev->dev);
2313 nvme_dev_unmap(dev);
2314 free:
2315 kfree(dev->queues);
2316 kfree(dev);
2317 return result;
2318 }
2319
2320 static void nvme_reset_prepare(struct pci_dev *pdev)
2321 {
2322 struct nvme_dev *dev = pci_get_drvdata(pdev);
2323 nvme_dev_disable(dev, false);
2324 }
2325
2326 static void nvme_reset_done(struct pci_dev *pdev)
2327 {
2328 struct nvme_dev *dev = pci_get_drvdata(pdev);
2329 nvme_reset_ctrl(&dev->ctrl);
2330 }
2331
2332 static void nvme_shutdown(struct pci_dev *pdev)
2333 {
2334 struct nvme_dev *dev = pci_get_drvdata(pdev);
2335 nvme_dev_disable(dev, true);
2336 }
2337
2338 /*
2339 * The driver's remove may be called on a device in a partially initialized
2340 * state. This function must not have any dependencies on the device state in
2341 * order to proceed.
2342 */
2343 static void nvme_remove(struct pci_dev *pdev)
2344 {
2345 struct nvme_dev *dev = pci_get_drvdata(pdev);
2346
2347 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2348
2349 cancel_work_sync(&dev->ctrl.reset_work);
2350 pci_set_drvdata(pdev, NULL);
2351
2352 if (!pci_device_is_present(pdev)) {
2353 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2354 nvme_dev_disable(dev, false);
2355 }
2356
2357 flush_work(&dev->ctrl.reset_work);
2358 nvme_stop_ctrl(&dev->ctrl);
2359 nvme_remove_namespaces(&dev->ctrl);
2360 nvme_dev_disable(dev, true);
2361 nvme_free_host_mem(dev);
2362 nvme_dev_remove_admin(dev);
2363 nvme_free_queues(dev, 0);
2364 nvme_uninit_ctrl(&dev->ctrl);
2365 nvme_release_prp_pools(dev);
2366 nvme_dev_unmap(dev);
2367 nvme_put_ctrl(&dev->ctrl);
2368 }
2369
2370 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2371 {
2372 int ret = 0;
2373
2374 if (numvfs == 0) {
2375 if (pci_vfs_assigned(pdev)) {
2376 dev_warn(&pdev->dev,
2377 "Cannot disable SR-IOV VFs while assigned\n");
2378 return -EPERM;
2379 }
2380 pci_disable_sriov(pdev);
2381 return 0;
2382 }
2383
2384 ret = pci_enable_sriov(pdev, numvfs);
2385 return ret ? ret : numvfs;
2386 }
2387
2388 #ifdef CONFIG_PM_SLEEP
2389 static int nvme_suspend(struct device *dev)
2390 {
2391 struct pci_dev *pdev = to_pci_dev(dev);
2392 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2393
2394 nvme_dev_disable(ndev, true);
2395 return 0;
2396 }
2397
2398 static int nvme_resume(struct device *dev)
2399 {
2400 struct pci_dev *pdev = to_pci_dev(dev);
2401 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2402
2403 nvme_reset_ctrl(&ndev->ctrl);
2404 return 0;
2405 }
2406 #endif
2407
2408 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2409
2410 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2411 pci_channel_state_t state)
2412 {
2413 struct nvme_dev *dev = pci_get_drvdata(pdev);
2414
2415 /*
2416 * A frozen channel requires a reset. When detected, this method will
2417 * shutdown the controller to quiesce. The controller will be restarted
2418 * after the slot reset through driver's slot_reset callback.
2419 */
2420 switch (state) {
2421 case pci_channel_io_normal:
2422 return PCI_ERS_RESULT_CAN_RECOVER;
2423 case pci_channel_io_frozen:
2424 dev_warn(dev->ctrl.device,
2425 "frozen state error detected, reset controller\n");
2426 nvme_dev_disable(dev, false);
2427 return PCI_ERS_RESULT_NEED_RESET;
2428 case pci_channel_io_perm_failure:
2429 dev_warn(dev->ctrl.device,
2430 "failure state error detected, request disconnect\n");
2431 return PCI_ERS_RESULT_DISCONNECT;
2432 }
2433 return PCI_ERS_RESULT_NEED_RESET;
2434 }
2435
2436 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2437 {
2438 struct nvme_dev *dev = pci_get_drvdata(pdev);
2439
2440 dev_info(dev->ctrl.device, "restart after slot reset\n");
2441 pci_restore_state(pdev);
2442 nvme_reset_ctrl(&dev->ctrl);
2443 return PCI_ERS_RESULT_RECOVERED;
2444 }
2445
2446 static void nvme_error_resume(struct pci_dev *pdev)
2447 {
2448 pci_cleanup_aer_uncorrect_error_status(pdev);
2449 }
2450
2451 static const struct pci_error_handlers nvme_err_handler = {
2452 .error_detected = nvme_error_detected,
2453 .slot_reset = nvme_slot_reset,
2454 .resume = nvme_error_resume,
2455 .reset_prepare = nvme_reset_prepare,
2456 .reset_done = nvme_reset_done,
2457 };
2458
2459 static const struct pci_device_id nvme_id_table[] = {
2460 { PCI_VDEVICE(INTEL, 0x0953),
2461 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2462 NVME_QUIRK_DEALLOCATE_ZEROES, },
2463 { PCI_VDEVICE(INTEL, 0x0a53),
2464 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2465 NVME_QUIRK_DEALLOCATE_ZEROES, },
2466 { PCI_VDEVICE(INTEL, 0x0a54),
2467 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2468 NVME_QUIRK_DEALLOCATE_ZEROES, },
2469 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2470 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2471 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2472 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2473 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2474 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2475 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2476 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2477 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2478 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2479 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2480 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2481 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2482 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2483 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2484 { 0, }
2485 };
2486 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2487
2488 static struct pci_driver nvme_driver = {
2489 .name = "nvme",
2490 .id_table = nvme_id_table,
2491 .probe = nvme_probe,
2492 .remove = nvme_remove,
2493 .shutdown = nvme_shutdown,
2494 .driver = {
2495 .pm = &nvme_dev_pm_ops,
2496 },
2497 .sriov_configure = nvme_pci_sriov_configure,
2498 .err_handler = &nvme_err_handler,
2499 };
2500
2501 static int __init nvme_init(void)
2502 {
2503 return pci_register_driver(&nvme_driver);
2504 }
2505
2506 static void __exit nvme_exit(void)
2507 {
2508 pci_unregister_driver(&nvme_driver);
2509 _nvme_check_size();
2510 }
2511
2512 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2513 MODULE_LICENSE("GPL");
2514 MODULE_VERSION("1.0");
2515 module_init(nvme_init);
2516 module_exit(nvme_exit);