]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/nvme/host/pci.c
nvme: introduce struct nvme_request
[mirror_ubuntu-zesty-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH 1024
50 #define NVME_AQ_DEPTH 256
51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
53
54 /*
55 * We handle AEN commands ourselves and don't even let the
56 * block layer know about them.
57 */
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 struct nvme_ctrl ctrl;
103 struct completion ioq_wait;
104 };
105
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107 {
108 return container_of(ctrl, struct nvme_dev, ctrl);
109 }
110
111 /*
112 * An NVM Express queue. Each device has at least two (one for admin
113 * commands and one for I/O commands).
114 */
115 struct nvme_queue {
116 struct device *q_dmadev;
117 struct nvme_dev *dev;
118 char irqname[24]; /* nvme4294967295-65535\0 */
119 spinlock_t q_lock;
120 struct nvme_command *sq_cmds;
121 struct nvme_command __iomem *sq_cmds_io;
122 volatile struct nvme_completion *cqes;
123 struct blk_mq_tags **tags;
124 dma_addr_t sq_dma_addr;
125 dma_addr_t cq_dma_addr;
126 u32 __iomem *q_db;
127 u16 q_depth;
128 s16 cq_vector;
129 u16 sq_tail;
130 u16 cq_head;
131 u16 qid;
132 u8 cq_phase;
133 u8 cqe_seen;
134 };
135
136 /*
137 * The nvme_iod describes the data in an I/O, including the list of PRP
138 * entries. You can't see it in this data structure because C doesn't let
139 * me express that. Use nvme_init_iod to ensure there's enough space
140 * allocated to store the PRP list.
141 */
142 struct nvme_iod {
143 struct nvme_request req;
144 struct nvme_queue *nvmeq;
145 int aborted;
146 int npages; /* In the PRP list. 0 means small pool in use */
147 int nents; /* Used in scatterlist */
148 int length; /* Of data, in bytes */
149 dma_addr_t first_dma;
150 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
151 struct scatterlist *sg;
152 struct scatterlist inline_sg[0];
153 };
154
155 /*
156 * Check we didin't inadvertently grow the command struct
157 */
158 static inline void _nvme_check_size(void)
159 {
160 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
170 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
172 }
173
174 /*
175 * Max size of iod being embedded in the request payload
176 */
177 #define NVME_INT_PAGES 2
178 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
179
180 /*
181 * Will slightly overestimate the number of pages needed. This is OK
182 * as it only leads to a small amount of wasted memory for the lifetime of
183 * the I/O.
184 */
185 static int nvme_npages(unsigned size, struct nvme_dev *dev)
186 {
187 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
188 dev->ctrl.page_size);
189 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
190 }
191
192 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
193 unsigned int size, unsigned int nseg)
194 {
195 return sizeof(__le64 *) * nvme_npages(size, dev) +
196 sizeof(struct scatterlist) * nseg;
197 }
198
199 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
200 {
201 return sizeof(struct nvme_iod) +
202 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
203 }
204
205 static int nvmeq_irq(struct nvme_queue *nvmeq)
206 {
207 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
208 }
209
210 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211 unsigned int hctx_idx)
212 {
213 struct nvme_dev *dev = data;
214 struct nvme_queue *nvmeq = dev->queues[0];
215
216 WARN_ON(hctx_idx != 0);
217 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
218 WARN_ON(nvmeq->tags);
219
220 hctx->driver_data = nvmeq;
221 nvmeq->tags = &dev->admin_tagset.tags[0];
222 return 0;
223 }
224
225 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
226 {
227 struct nvme_queue *nvmeq = hctx->driver_data;
228
229 nvmeq->tags = NULL;
230 }
231
232 static int nvme_admin_init_request(void *data, struct request *req,
233 unsigned int hctx_idx, unsigned int rq_idx,
234 unsigned int numa_node)
235 {
236 struct nvme_dev *dev = data;
237 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
238 struct nvme_queue *nvmeq = dev->queues[0];
239
240 BUG_ON(!nvmeq);
241 iod->nvmeq = nvmeq;
242 return 0;
243 }
244
245 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
246 unsigned int hctx_idx)
247 {
248 struct nvme_dev *dev = data;
249 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
250
251 if (!nvmeq->tags)
252 nvmeq->tags = &dev->tagset.tags[hctx_idx];
253
254 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
255 hctx->driver_data = nvmeq;
256 return 0;
257 }
258
259 static int nvme_init_request(void *data, struct request *req,
260 unsigned int hctx_idx, unsigned int rq_idx,
261 unsigned int numa_node)
262 {
263 struct nvme_dev *dev = data;
264 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
265 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
266
267 BUG_ON(!nvmeq);
268 iod->nvmeq = nvmeq;
269 return 0;
270 }
271
272 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
273 {
274 struct nvme_dev *dev = set->driver_data;
275
276 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
277 }
278
279 /**
280 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
281 * @nvmeq: The queue to use
282 * @cmd: The command to send
283 *
284 * Safe to use from interrupt context
285 */
286 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
287 struct nvme_command *cmd)
288 {
289 u16 tail = nvmeq->sq_tail;
290
291 if (nvmeq->sq_cmds_io)
292 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
293 else
294 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
295
296 if (++tail == nvmeq->q_depth)
297 tail = 0;
298 writel(tail, nvmeq->q_db);
299 nvmeq->sq_tail = tail;
300 }
301
302 static __le64 **iod_list(struct request *req)
303 {
304 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
305 return (__le64 **)(iod->sg + req->nr_phys_segments);
306 }
307
308 static int nvme_init_iod(struct request *rq, unsigned size,
309 struct nvme_dev *dev)
310 {
311 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
312 int nseg = rq->nr_phys_segments;
313
314 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
315 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
316 if (!iod->sg)
317 return BLK_MQ_RQ_QUEUE_BUSY;
318 } else {
319 iod->sg = iod->inline_sg;
320 }
321
322 iod->aborted = 0;
323 iod->npages = -1;
324 iod->nents = 0;
325 iod->length = size;
326
327 if (!(rq->rq_flags & RQF_DONTPREP)) {
328 rq->retries = 0;
329 rq->rq_flags |= RQF_DONTPREP;
330 }
331 return 0;
332 }
333
334 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
335 {
336 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
337 const int last_prp = dev->ctrl.page_size / 8 - 1;
338 int i;
339 __le64 **list = iod_list(req);
340 dma_addr_t prp_dma = iod->first_dma;
341
342 nvme_cleanup_cmd(req);
343
344 if (iod->npages == 0)
345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346 for (i = 0; i < iod->npages; i++) {
347 __le64 *prp_list = list[i];
348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350 prp_dma = next_prp_dma;
351 }
352
353 if (iod->sg != iod->inline_sg)
354 kfree(iod->sg);
355 }
356
357 #ifdef CONFIG_BLK_DEV_INTEGRITY
358 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
359 {
360 if (be32_to_cpu(pi->ref_tag) == v)
361 pi->ref_tag = cpu_to_be32(p);
362 }
363
364 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
365 {
366 if (be32_to_cpu(pi->ref_tag) == p)
367 pi->ref_tag = cpu_to_be32(v);
368 }
369
370 /**
371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
372 *
373 * The virtual start sector is the one that was originally submitted by the
374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
375 * start sector may be different. Remap protection information to match the
376 * physical LBA on writes, and back to the original seed on reads.
377 *
378 * Type 0 and 3 do not have a ref tag, so no remapping required.
379 */
380 static void nvme_dif_remap(struct request *req,
381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
382 {
383 struct nvme_ns *ns = req->rq_disk->private_data;
384 struct bio_integrity_payload *bip;
385 struct t10_pi_tuple *pi;
386 void *p, *pmap;
387 u32 i, nlb, ts, phys, virt;
388
389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390 return;
391
392 bip = bio_integrity(req->bio);
393 if (!bip)
394 return;
395
396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
397
398 p = pmap;
399 virt = bip_get_seed(bip);
400 phys = nvme_block_nr(ns, blk_rq_pos(req));
401 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
402 ts = ns->disk->queue->integrity.tuple_size;
403
404 for (i = 0; i < nlb; i++, virt++, phys++) {
405 pi = (struct t10_pi_tuple *)p;
406 dif_swap(phys, virt, pi);
407 p += ts;
408 }
409 kunmap_atomic(pmap);
410 }
411 #else /* CONFIG_BLK_DEV_INTEGRITY */
412 static void nvme_dif_remap(struct request *req,
413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
414 {
415 }
416 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
417 {
418 }
419 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
420 {
421 }
422 #endif
423
424 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
425 int total_len)
426 {
427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
428 struct dma_pool *pool;
429 int length = total_len;
430 struct scatterlist *sg = iod->sg;
431 int dma_len = sg_dma_len(sg);
432 u64 dma_addr = sg_dma_address(sg);
433 u32 page_size = dev->ctrl.page_size;
434 int offset = dma_addr & (page_size - 1);
435 __le64 *prp_list;
436 __le64 **list = iod_list(req);
437 dma_addr_t prp_dma;
438 int nprps, i;
439
440 length -= (page_size - offset);
441 if (length <= 0)
442 return true;
443
444 dma_len -= (page_size - offset);
445 if (dma_len) {
446 dma_addr += (page_size - offset);
447 } else {
448 sg = sg_next(sg);
449 dma_addr = sg_dma_address(sg);
450 dma_len = sg_dma_len(sg);
451 }
452
453 if (length <= page_size) {
454 iod->first_dma = dma_addr;
455 return true;
456 }
457
458 nprps = DIV_ROUND_UP(length, page_size);
459 if (nprps <= (256 / 8)) {
460 pool = dev->prp_small_pool;
461 iod->npages = 0;
462 } else {
463 pool = dev->prp_page_pool;
464 iod->npages = 1;
465 }
466
467 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
468 if (!prp_list) {
469 iod->first_dma = dma_addr;
470 iod->npages = -1;
471 return false;
472 }
473 list[0] = prp_list;
474 iod->first_dma = prp_dma;
475 i = 0;
476 for (;;) {
477 if (i == page_size >> 3) {
478 __le64 *old_prp_list = prp_list;
479 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
480 if (!prp_list)
481 return false;
482 list[iod->npages++] = prp_list;
483 prp_list[0] = old_prp_list[i - 1];
484 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
485 i = 1;
486 }
487 prp_list[i++] = cpu_to_le64(dma_addr);
488 dma_len -= page_size;
489 dma_addr += page_size;
490 length -= page_size;
491 if (length <= 0)
492 break;
493 if (dma_len > 0)
494 continue;
495 BUG_ON(dma_len < 0);
496 sg = sg_next(sg);
497 dma_addr = sg_dma_address(sg);
498 dma_len = sg_dma_len(sg);
499 }
500
501 return true;
502 }
503
504 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
505 unsigned size, struct nvme_command *cmnd)
506 {
507 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
508 struct request_queue *q = req->q;
509 enum dma_data_direction dma_dir = rq_data_dir(req) ?
510 DMA_TO_DEVICE : DMA_FROM_DEVICE;
511 int ret = BLK_MQ_RQ_QUEUE_ERROR;
512
513 sg_init_table(iod->sg, req->nr_phys_segments);
514 iod->nents = blk_rq_map_sg(q, req, iod->sg);
515 if (!iod->nents)
516 goto out;
517
518 ret = BLK_MQ_RQ_QUEUE_BUSY;
519 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
520 DMA_ATTR_NO_WARN))
521 goto out;
522
523 if (!nvme_setup_prps(dev, req, size))
524 goto out_unmap;
525
526 ret = BLK_MQ_RQ_QUEUE_ERROR;
527 if (blk_integrity_rq(req)) {
528 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
529 goto out_unmap;
530
531 sg_init_table(&iod->meta_sg, 1);
532 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
533 goto out_unmap;
534
535 if (rq_data_dir(req))
536 nvme_dif_remap(req, nvme_dif_prep);
537
538 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
539 goto out_unmap;
540 }
541
542 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
543 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
544 if (blk_integrity_rq(req))
545 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
546 return BLK_MQ_RQ_QUEUE_OK;
547
548 out_unmap:
549 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
550 out:
551 return ret;
552 }
553
554 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
555 {
556 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
557 enum dma_data_direction dma_dir = rq_data_dir(req) ?
558 DMA_TO_DEVICE : DMA_FROM_DEVICE;
559
560 if (iod->nents) {
561 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
562 if (blk_integrity_rq(req)) {
563 if (!rq_data_dir(req))
564 nvme_dif_remap(req, nvme_dif_complete);
565 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
566 }
567 }
568
569 nvme_free_iod(dev, req);
570 }
571
572 /*
573 * NOTE: ns is NULL when called on the admin queue.
574 */
575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576 const struct blk_mq_queue_data *bd)
577 {
578 struct nvme_ns *ns = hctx->queue->queuedata;
579 struct nvme_queue *nvmeq = hctx->driver_data;
580 struct nvme_dev *dev = nvmeq->dev;
581 struct request *req = bd->rq;
582 struct nvme_command cmnd;
583 unsigned map_len;
584 int ret = BLK_MQ_RQ_QUEUE_OK;
585
586 /*
587 * If formated with metadata, require the block layer provide a buffer
588 * unless this namespace is formated such that the metadata can be
589 * stripped/generated by the controller with PRACT=1.
590 */
591 if (ns && ns->ms && !blk_integrity_rq(req)) {
592 if (!(ns->pi_type && ns->ms == 8) &&
593 req->cmd_type != REQ_TYPE_DRV_PRIV) {
594 blk_mq_end_request(req, -EFAULT);
595 return BLK_MQ_RQ_QUEUE_OK;
596 }
597 }
598
599 map_len = nvme_map_len(req);
600 ret = nvme_init_iod(req, map_len, dev);
601 if (ret)
602 return ret;
603
604 ret = nvme_setup_cmd(ns, req, &cmnd);
605 if (ret)
606 goto out;
607
608 if (req->nr_phys_segments)
609 ret = nvme_map_data(dev, req, map_len, &cmnd);
610
611 if (ret)
612 goto out;
613
614 cmnd.common.command_id = req->tag;
615 blk_mq_start_request(req);
616
617 spin_lock_irq(&nvmeq->q_lock);
618 if (unlikely(nvmeq->cq_vector < 0)) {
619 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
620 ret = BLK_MQ_RQ_QUEUE_BUSY;
621 else
622 ret = BLK_MQ_RQ_QUEUE_ERROR;
623 spin_unlock_irq(&nvmeq->q_lock);
624 goto out;
625 }
626 __nvme_submit_cmd(nvmeq, &cmnd);
627 nvme_process_cq(nvmeq);
628 spin_unlock_irq(&nvmeq->q_lock);
629 return BLK_MQ_RQ_QUEUE_OK;
630 out:
631 nvme_free_iod(dev, req);
632 return ret;
633 }
634
635 static void nvme_complete_rq(struct request *req)
636 {
637 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
638 struct nvme_dev *dev = iod->nvmeq->dev;
639 int error = 0;
640
641 nvme_unmap_data(dev, req);
642
643 if (unlikely(req->errors)) {
644 if (nvme_req_needs_retry(req, req->errors)) {
645 req->retries++;
646 nvme_requeue_req(req);
647 return;
648 }
649
650 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
651 error = req->errors;
652 else
653 error = nvme_error_status(req->errors);
654 }
655
656 if (unlikely(iod->aborted)) {
657 dev_warn(dev->ctrl.device,
658 "completing aborted command with status: %04x\n",
659 req->errors);
660 }
661
662 blk_mq_end_request(req, error);
663 }
664
665 /* We read the CQE phase first to check if the rest of the entry is valid */
666 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
667 u16 phase)
668 {
669 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
670 }
671
672 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
673 {
674 u16 head, phase;
675
676 head = nvmeq->cq_head;
677 phase = nvmeq->cq_phase;
678
679 while (nvme_cqe_valid(nvmeq, head, phase)) {
680 struct nvme_completion cqe = nvmeq->cqes[head];
681 struct request *req;
682
683 if (++head == nvmeq->q_depth) {
684 head = 0;
685 phase = !phase;
686 }
687
688 if (tag && *tag == cqe.command_id)
689 *tag = -1;
690
691 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
692 dev_warn(nvmeq->dev->ctrl.device,
693 "invalid id %d completed on queue %d\n",
694 cqe.command_id, le16_to_cpu(cqe.sq_id));
695 continue;
696 }
697
698 /*
699 * AEN requests are special as they don't time out and can
700 * survive any kind of queue freeze and often don't respond to
701 * aborts. We don't even bother to allocate a struct request
702 * for them but rather special case them here.
703 */
704 if (unlikely(nvmeq->qid == 0 &&
705 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
706 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
707 continue;
708 }
709
710 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
711 nvme_req(req)->result = cqe.result;
712 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
713
714 }
715
716 /* If the controller ignores the cq head doorbell and continuously
717 * writes to the queue, it is theoretically possible to wrap around
718 * the queue twice and mistakenly return IRQ_NONE. Linux only
719 * requires that 0.1% of your interrupts are handled, so this isn't
720 * a big problem.
721 */
722 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
723 return;
724
725 if (likely(nvmeq->cq_vector >= 0))
726 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
727 nvmeq->cq_head = head;
728 nvmeq->cq_phase = phase;
729
730 nvmeq->cqe_seen = 1;
731 }
732
733 static void nvme_process_cq(struct nvme_queue *nvmeq)
734 {
735 __nvme_process_cq(nvmeq, NULL);
736 }
737
738 static irqreturn_t nvme_irq(int irq, void *data)
739 {
740 irqreturn_t result;
741 struct nvme_queue *nvmeq = data;
742 spin_lock(&nvmeq->q_lock);
743 nvme_process_cq(nvmeq);
744 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
745 nvmeq->cqe_seen = 0;
746 spin_unlock(&nvmeq->q_lock);
747 return result;
748 }
749
750 static irqreturn_t nvme_irq_check(int irq, void *data)
751 {
752 struct nvme_queue *nvmeq = data;
753 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
754 return IRQ_WAKE_THREAD;
755 return IRQ_NONE;
756 }
757
758 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
759 {
760 struct nvme_queue *nvmeq = hctx->driver_data;
761
762 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
763 spin_lock_irq(&nvmeq->q_lock);
764 __nvme_process_cq(nvmeq, &tag);
765 spin_unlock_irq(&nvmeq->q_lock);
766
767 if (tag == -1)
768 return 1;
769 }
770
771 return 0;
772 }
773
774 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
775 {
776 struct nvme_dev *dev = to_nvme_dev(ctrl);
777 struct nvme_queue *nvmeq = dev->queues[0];
778 struct nvme_command c;
779
780 memset(&c, 0, sizeof(c));
781 c.common.opcode = nvme_admin_async_event;
782 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
783
784 spin_lock_irq(&nvmeq->q_lock);
785 __nvme_submit_cmd(nvmeq, &c);
786 spin_unlock_irq(&nvmeq->q_lock);
787 }
788
789 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
790 {
791 struct nvme_command c;
792
793 memset(&c, 0, sizeof(c));
794 c.delete_queue.opcode = opcode;
795 c.delete_queue.qid = cpu_to_le16(id);
796
797 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
798 }
799
800 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
801 struct nvme_queue *nvmeq)
802 {
803 struct nvme_command c;
804 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
805
806 /*
807 * Note: we (ab)use the fact the the prp fields survive if no data
808 * is attached to the request.
809 */
810 memset(&c, 0, sizeof(c));
811 c.create_cq.opcode = nvme_admin_create_cq;
812 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
813 c.create_cq.cqid = cpu_to_le16(qid);
814 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
815 c.create_cq.cq_flags = cpu_to_le16(flags);
816 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
817
818 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
819 }
820
821 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
822 struct nvme_queue *nvmeq)
823 {
824 struct nvme_command c;
825 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
826
827 /*
828 * Note: we (ab)use the fact the the prp fields survive if no data
829 * is attached to the request.
830 */
831 memset(&c, 0, sizeof(c));
832 c.create_sq.opcode = nvme_admin_create_sq;
833 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
834 c.create_sq.sqid = cpu_to_le16(qid);
835 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
836 c.create_sq.sq_flags = cpu_to_le16(flags);
837 c.create_sq.cqid = cpu_to_le16(qid);
838
839 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
840 }
841
842 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
843 {
844 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
845 }
846
847 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
848 {
849 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
850 }
851
852 static void abort_endio(struct request *req, int error)
853 {
854 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
855 struct nvme_queue *nvmeq = iod->nvmeq;
856 u16 status = req->errors;
857
858 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
859 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
860 blk_mq_free_request(req);
861 }
862
863 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
864 {
865 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
866 struct nvme_queue *nvmeq = iod->nvmeq;
867 struct nvme_dev *dev = nvmeq->dev;
868 struct request *abort_req;
869 struct nvme_command cmd;
870
871 /*
872 * Shutdown immediately if controller times out while starting. The
873 * reset work will see the pci device disabled when it gets the forced
874 * cancellation error. All outstanding requests are completed on
875 * shutdown, so we return BLK_EH_HANDLED.
876 */
877 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
878 dev_warn(dev->ctrl.device,
879 "I/O %d QID %d timeout, disable controller\n",
880 req->tag, nvmeq->qid);
881 nvme_dev_disable(dev, false);
882 req->errors = NVME_SC_CANCELLED;
883 return BLK_EH_HANDLED;
884 }
885
886 /*
887 * Shutdown the controller immediately and schedule a reset if the
888 * command was already aborted once before and still hasn't been
889 * returned to the driver, or if this is the admin queue.
890 */
891 if (!nvmeq->qid || iod->aborted) {
892 dev_warn(dev->ctrl.device,
893 "I/O %d QID %d timeout, reset controller\n",
894 req->tag, nvmeq->qid);
895 nvme_dev_disable(dev, false);
896 queue_work(nvme_workq, &dev->reset_work);
897
898 /*
899 * Mark the request as handled, since the inline shutdown
900 * forces all outstanding requests to complete.
901 */
902 req->errors = NVME_SC_CANCELLED;
903 return BLK_EH_HANDLED;
904 }
905
906 iod->aborted = 1;
907
908 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
909 atomic_inc(&dev->ctrl.abort_limit);
910 return BLK_EH_RESET_TIMER;
911 }
912
913 memset(&cmd, 0, sizeof(cmd));
914 cmd.abort.opcode = nvme_admin_abort_cmd;
915 cmd.abort.cid = req->tag;
916 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
917
918 dev_warn(nvmeq->dev->ctrl.device,
919 "I/O %d QID %d timeout, aborting\n",
920 req->tag, nvmeq->qid);
921
922 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
923 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
924 if (IS_ERR(abort_req)) {
925 atomic_inc(&dev->ctrl.abort_limit);
926 return BLK_EH_RESET_TIMER;
927 }
928
929 abort_req->timeout = ADMIN_TIMEOUT;
930 abort_req->end_io_data = NULL;
931 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
932
933 /*
934 * The aborted req will be completed on receiving the abort req.
935 * We enable the timer again. If hit twice, it'll cause a device reset,
936 * as the device then is in a faulty state.
937 */
938 return BLK_EH_RESET_TIMER;
939 }
940
941 static void nvme_free_queue(struct nvme_queue *nvmeq)
942 {
943 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
944 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
945 if (nvmeq->sq_cmds)
946 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
947 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
948 kfree(nvmeq);
949 }
950
951 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
952 {
953 int i;
954
955 for (i = dev->queue_count - 1; i >= lowest; i--) {
956 struct nvme_queue *nvmeq = dev->queues[i];
957 dev->queue_count--;
958 dev->queues[i] = NULL;
959 nvme_free_queue(nvmeq);
960 }
961 }
962
963 /**
964 * nvme_suspend_queue - put queue into suspended state
965 * @nvmeq - queue to suspend
966 */
967 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
968 {
969 int vector;
970
971 spin_lock_irq(&nvmeq->q_lock);
972 if (nvmeq->cq_vector == -1) {
973 spin_unlock_irq(&nvmeq->q_lock);
974 return 1;
975 }
976 vector = nvmeq_irq(nvmeq);
977 nvmeq->dev->online_queues--;
978 nvmeq->cq_vector = -1;
979 spin_unlock_irq(&nvmeq->q_lock);
980
981 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
982 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
983
984 free_irq(vector, nvmeq);
985
986 return 0;
987 }
988
989 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
990 {
991 struct nvme_queue *nvmeq = dev->queues[0];
992
993 if (!nvmeq)
994 return;
995 if (nvme_suspend_queue(nvmeq))
996 return;
997
998 if (shutdown)
999 nvme_shutdown_ctrl(&dev->ctrl);
1000 else
1001 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1002 dev->bar + NVME_REG_CAP));
1003
1004 spin_lock_irq(&nvmeq->q_lock);
1005 nvme_process_cq(nvmeq);
1006 spin_unlock_irq(&nvmeq->q_lock);
1007 }
1008
1009 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1010 int entry_size)
1011 {
1012 int q_depth = dev->q_depth;
1013 unsigned q_size_aligned = roundup(q_depth * entry_size,
1014 dev->ctrl.page_size);
1015
1016 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1017 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1018 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1019 q_depth = div_u64(mem_per_q, entry_size);
1020
1021 /*
1022 * Ensure the reduced q_depth is above some threshold where it
1023 * would be better to map queues in system memory with the
1024 * original depth
1025 */
1026 if (q_depth < 64)
1027 return -ENOMEM;
1028 }
1029
1030 return q_depth;
1031 }
1032
1033 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1034 int qid, int depth)
1035 {
1036 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1037 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1038 dev->ctrl.page_size);
1039 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1040 nvmeq->sq_cmds_io = dev->cmb + offset;
1041 } else {
1042 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1043 &nvmeq->sq_dma_addr, GFP_KERNEL);
1044 if (!nvmeq->sq_cmds)
1045 return -ENOMEM;
1046 }
1047
1048 return 0;
1049 }
1050
1051 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1052 int depth)
1053 {
1054 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1055 if (!nvmeq)
1056 return NULL;
1057
1058 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1059 &nvmeq->cq_dma_addr, GFP_KERNEL);
1060 if (!nvmeq->cqes)
1061 goto free_nvmeq;
1062
1063 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1064 goto free_cqdma;
1065
1066 nvmeq->q_dmadev = dev->dev;
1067 nvmeq->dev = dev;
1068 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1069 dev->ctrl.instance, qid);
1070 spin_lock_init(&nvmeq->q_lock);
1071 nvmeq->cq_head = 0;
1072 nvmeq->cq_phase = 1;
1073 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1074 nvmeq->q_depth = depth;
1075 nvmeq->qid = qid;
1076 nvmeq->cq_vector = -1;
1077 dev->queues[qid] = nvmeq;
1078 dev->queue_count++;
1079
1080 return nvmeq;
1081
1082 free_cqdma:
1083 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1084 nvmeq->cq_dma_addr);
1085 free_nvmeq:
1086 kfree(nvmeq);
1087 return NULL;
1088 }
1089
1090 static int queue_request_irq(struct nvme_queue *nvmeq)
1091 {
1092 if (use_threaded_interrupts)
1093 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1094 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1095 else
1096 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1097 nvmeq->irqname, nvmeq);
1098 }
1099
1100 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1101 {
1102 struct nvme_dev *dev = nvmeq->dev;
1103
1104 spin_lock_irq(&nvmeq->q_lock);
1105 nvmeq->sq_tail = 0;
1106 nvmeq->cq_head = 0;
1107 nvmeq->cq_phase = 1;
1108 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1109 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1110 dev->online_queues++;
1111 spin_unlock_irq(&nvmeq->q_lock);
1112 }
1113
1114 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1115 {
1116 struct nvme_dev *dev = nvmeq->dev;
1117 int result;
1118
1119 nvmeq->cq_vector = qid - 1;
1120 result = adapter_alloc_cq(dev, qid, nvmeq);
1121 if (result < 0)
1122 return result;
1123
1124 result = adapter_alloc_sq(dev, qid, nvmeq);
1125 if (result < 0)
1126 goto release_cq;
1127
1128 result = queue_request_irq(nvmeq);
1129 if (result < 0)
1130 goto release_sq;
1131
1132 nvme_init_queue(nvmeq, qid);
1133 return result;
1134
1135 release_sq:
1136 adapter_delete_sq(dev, qid);
1137 release_cq:
1138 adapter_delete_cq(dev, qid);
1139 return result;
1140 }
1141
1142 static struct blk_mq_ops nvme_mq_admin_ops = {
1143 .queue_rq = nvme_queue_rq,
1144 .complete = nvme_complete_rq,
1145 .init_hctx = nvme_admin_init_hctx,
1146 .exit_hctx = nvme_admin_exit_hctx,
1147 .init_request = nvme_admin_init_request,
1148 .timeout = nvme_timeout,
1149 };
1150
1151 static struct blk_mq_ops nvme_mq_ops = {
1152 .queue_rq = nvme_queue_rq,
1153 .complete = nvme_complete_rq,
1154 .init_hctx = nvme_init_hctx,
1155 .init_request = nvme_init_request,
1156 .map_queues = nvme_pci_map_queues,
1157 .timeout = nvme_timeout,
1158 .poll = nvme_poll,
1159 };
1160
1161 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1162 {
1163 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1164 /*
1165 * If the controller was reset during removal, it's possible
1166 * user requests may be waiting on a stopped queue. Start the
1167 * queue to flush these to completion.
1168 */
1169 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1170 blk_cleanup_queue(dev->ctrl.admin_q);
1171 blk_mq_free_tag_set(&dev->admin_tagset);
1172 }
1173 }
1174
1175 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1176 {
1177 if (!dev->ctrl.admin_q) {
1178 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1179 dev->admin_tagset.nr_hw_queues = 1;
1180
1181 /*
1182 * Subtract one to leave an empty queue entry for 'Full Queue'
1183 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1184 */
1185 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1186 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1187 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1188 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1189 dev->admin_tagset.driver_data = dev;
1190
1191 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1192 return -ENOMEM;
1193
1194 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1195 if (IS_ERR(dev->ctrl.admin_q)) {
1196 blk_mq_free_tag_set(&dev->admin_tagset);
1197 return -ENOMEM;
1198 }
1199 if (!blk_get_queue(dev->ctrl.admin_q)) {
1200 nvme_dev_remove_admin(dev);
1201 dev->ctrl.admin_q = NULL;
1202 return -ENODEV;
1203 }
1204 } else
1205 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1206
1207 return 0;
1208 }
1209
1210 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1211 {
1212 int result;
1213 u32 aqa;
1214 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1215 struct nvme_queue *nvmeq;
1216
1217 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1218 NVME_CAP_NSSRC(cap) : 0;
1219
1220 if (dev->subsystem &&
1221 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1222 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1223
1224 result = nvme_disable_ctrl(&dev->ctrl, cap);
1225 if (result < 0)
1226 return result;
1227
1228 nvmeq = dev->queues[0];
1229 if (!nvmeq) {
1230 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1231 if (!nvmeq)
1232 return -ENOMEM;
1233 }
1234
1235 aqa = nvmeq->q_depth - 1;
1236 aqa |= aqa << 16;
1237
1238 writel(aqa, dev->bar + NVME_REG_AQA);
1239 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1240 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1241
1242 result = nvme_enable_ctrl(&dev->ctrl, cap);
1243 if (result)
1244 goto free_nvmeq;
1245
1246 nvmeq->cq_vector = 0;
1247 result = queue_request_irq(nvmeq);
1248 if (result) {
1249 nvmeq->cq_vector = -1;
1250 goto free_nvmeq;
1251 }
1252
1253 return result;
1254
1255 free_nvmeq:
1256 nvme_free_queues(dev, 0);
1257 return result;
1258 }
1259
1260 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1261 {
1262
1263 /* If true, indicates loss of adapter communication, possibly by a
1264 * NVMe Subsystem reset.
1265 */
1266 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1267
1268 /* If there is a reset ongoing, we shouldn't reset again. */
1269 if (work_busy(&dev->reset_work))
1270 return false;
1271
1272 /* We shouldn't reset unless the controller is on fatal error state
1273 * _or_ if we lost the communication with it.
1274 */
1275 if (!(csts & NVME_CSTS_CFS) && !nssro)
1276 return false;
1277
1278 /* If PCI error recovery process is happening, we cannot reset or
1279 * the recovery mechanism will surely fail.
1280 */
1281 if (pci_channel_offline(to_pci_dev(dev->dev)))
1282 return false;
1283
1284 return true;
1285 }
1286
1287 static void nvme_watchdog_timer(unsigned long data)
1288 {
1289 struct nvme_dev *dev = (struct nvme_dev *)data;
1290 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1291
1292 /* Skip controllers under certain specific conditions. */
1293 if (nvme_should_reset(dev, csts)) {
1294 if (queue_work(nvme_workq, &dev->reset_work))
1295 dev_warn(dev->dev,
1296 "Failed status: 0x%x, reset controller.\n",
1297 csts);
1298 return;
1299 }
1300
1301 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1302 }
1303
1304 static int nvme_create_io_queues(struct nvme_dev *dev)
1305 {
1306 unsigned i, max;
1307 int ret = 0;
1308
1309 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1310 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1311 ret = -ENOMEM;
1312 break;
1313 }
1314 }
1315
1316 max = min(dev->max_qid, dev->queue_count - 1);
1317 for (i = dev->online_queues; i <= max; i++) {
1318 ret = nvme_create_queue(dev->queues[i], i);
1319 if (ret) {
1320 nvme_free_queues(dev, i);
1321 break;
1322 }
1323 }
1324
1325 /*
1326 * Ignore failing Create SQ/CQ commands, we can continue with less
1327 * than the desired aount of queues, and even a controller without
1328 * I/O queues an still be used to issue admin commands. This might
1329 * be useful to upgrade a buggy firmware for example.
1330 */
1331 return ret >= 0 ? 0 : ret;
1332 }
1333
1334 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1335 {
1336 u64 szu, size, offset;
1337 u32 cmbloc;
1338 resource_size_t bar_size;
1339 struct pci_dev *pdev = to_pci_dev(dev->dev);
1340 void __iomem *cmb;
1341 dma_addr_t dma_addr;
1342
1343 if (!use_cmb_sqes)
1344 return NULL;
1345
1346 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1347 if (!(NVME_CMB_SZ(dev->cmbsz)))
1348 return NULL;
1349
1350 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1351
1352 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1353 size = szu * NVME_CMB_SZ(dev->cmbsz);
1354 offset = szu * NVME_CMB_OFST(cmbloc);
1355 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1356
1357 if (offset > bar_size)
1358 return NULL;
1359
1360 /*
1361 * Controllers may support a CMB size larger than their BAR,
1362 * for example, due to being behind a bridge. Reduce the CMB to
1363 * the reported size of the BAR
1364 */
1365 if (size > bar_size - offset)
1366 size = bar_size - offset;
1367
1368 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1369 cmb = ioremap_wc(dma_addr, size);
1370 if (!cmb)
1371 return NULL;
1372
1373 dev->cmb_dma_addr = dma_addr;
1374 dev->cmb_size = size;
1375 return cmb;
1376 }
1377
1378 static inline void nvme_release_cmb(struct nvme_dev *dev)
1379 {
1380 if (dev->cmb) {
1381 iounmap(dev->cmb);
1382 dev->cmb = NULL;
1383 }
1384 }
1385
1386 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1387 {
1388 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1389 }
1390
1391 static int nvme_setup_io_queues(struct nvme_dev *dev)
1392 {
1393 struct nvme_queue *adminq = dev->queues[0];
1394 struct pci_dev *pdev = to_pci_dev(dev->dev);
1395 int result, nr_io_queues, size;
1396
1397 nr_io_queues = num_online_cpus();
1398 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1399 if (result < 0)
1400 return result;
1401
1402 if (nr_io_queues == 0)
1403 return 0;
1404
1405 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1406 result = nvme_cmb_qdepth(dev, nr_io_queues,
1407 sizeof(struct nvme_command));
1408 if (result > 0)
1409 dev->q_depth = result;
1410 else
1411 nvme_release_cmb(dev);
1412 }
1413
1414 size = db_bar_size(dev, nr_io_queues);
1415 if (size > 8192) {
1416 iounmap(dev->bar);
1417 do {
1418 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1419 if (dev->bar)
1420 break;
1421 if (!--nr_io_queues)
1422 return -ENOMEM;
1423 size = db_bar_size(dev, nr_io_queues);
1424 } while (1);
1425 dev->dbs = dev->bar + 4096;
1426 adminq->q_db = dev->dbs;
1427 }
1428
1429 /* Deregister the admin queue's interrupt */
1430 free_irq(pci_irq_vector(pdev, 0), adminq);
1431
1432 /*
1433 * If we enable msix early due to not intx, disable it again before
1434 * setting up the full range we need.
1435 */
1436 pci_free_irq_vectors(pdev);
1437 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1438 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1439 if (nr_io_queues <= 0)
1440 return -EIO;
1441 dev->max_qid = nr_io_queues;
1442
1443 /*
1444 * Should investigate if there's a performance win from allocating
1445 * more queues than interrupt vectors; it might allow the submission
1446 * path to scale better, even if the receive path is limited by the
1447 * number of interrupts.
1448 */
1449
1450 result = queue_request_irq(adminq);
1451 if (result) {
1452 adminq->cq_vector = -1;
1453 goto free_queues;
1454 }
1455 return nvme_create_io_queues(dev);
1456
1457 free_queues:
1458 nvme_free_queues(dev, 1);
1459 return result;
1460 }
1461
1462 static void nvme_del_queue_end(struct request *req, int error)
1463 {
1464 struct nvme_queue *nvmeq = req->end_io_data;
1465
1466 blk_mq_free_request(req);
1467 complete(&nvmeq->dev->ioq_wait);
1468 }
1469
1470 static void nvme_del_cq_end(struct request *req, int error)
1471 {
1472 struct nvme_queue *nvmeq = req->end_io_data;
1473
1474 if (!error) {
1475 unsigned long flags;
1476
1477 /*
1478 * We might be called with the AQ q_lock held
1479 * and the I/O queue q_lock should always
1480 * nest inside the AQ one.
1481 */
1482 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1483 SINGLE_DEPTH_NESTING);
1484 nvme_process_cq(nvmeq);
1485 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1486 }
1487
1488 nvme_del_queue_end(req, error);
1489 }
1490
1491 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1492 {
1493 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1494 struct request *req;
1495 struct nvme_command cmd;
1496
1497 memset(&cmd, 0, sizeof(cmd));
1498 cmd.delete_queue.opcode = opcode;
1499 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1500
1501 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1502 if (IS_ERR(req))
1503 return PTR_ERR(req);
1504
1505 req->timeout = ADMIN_TIMEOUT;
1506 req->end_io_data = nvmeq;
1507
1508 blk_execute_rq_nowait(q, NULL, req, false,
1509 opcode == nvme_admin_delete_cq ?
1510 nvme_del_cq_end : nvme_del_queue_end);
1511 return 0;
1512 }
1513
1514 static void nvme_disable_io_queues(struct nvme_dev *dev)
1515 {
1516 int pass, queues = dev->online_queues - 1;
1517 unsigned long timeout;
1518 u8 opcode = nvme_admin_delete_sq;
1519
1520 for (pass = 0; pass < 2; pass++) {
1521 int sent = 0, i = queues;
1522
1523 reinit_completion(&dev->ioq_wait);
1524 retry:
1525 timeout = ADMIN_TIMEOUT;
1526 for (; i > 0; i--, sent++)
1527 if (nvme_delete_queue(dev->queues[i], opcode))
1528 break;
1529
1530 while (sent--) {
1531 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1532 if (timeout == 0)
1533 return;
1534 if (i)
1535 goto retry;
1536 }
1537 opcode = nvme_admin_delete_cq;
1538 }
1539 }
1540
1541 /*
1542 * Return: error value if an error occurred setting up the queues or calling
1543 * Identify Device. 0 if these succeeded, even if adding some of the
1544 * namespaces failed. At the moment, these failures are silent. TBD which
1545 * failures should be reported.
1546 */
1547 static int nvme_dev_add(struct nvme_dev *dev)
1548 {
1549 if (!dev->ctrl.tagset) {
1550 dev->tagset.ops = &nvme_mq_ops;
1551 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1552 dev->tagset.timeout = NVME_IO_TIMEOUT;
1553 dev->tagset.numa_node = dev_to_node(dev->dev);
1554 dev->tagset.queue_depth =
1555 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1556 dev->tagset.cmd_size = nvme_cmd_size(dev);
1557 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1558 dev->tagset.driver_data = dev;
1559
1560 if (blk_mq_alloc_tag_set(&dev->tagset))
1561 return 0;
1562 dev->ctrl.tagset = &dev->tagset;
1563 } else {
1564 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1565
1566 /* Free previously allocated queues that are no longer usable */
1567 nvme_free_queues(dev, dev->online_queues);
1568 }
1569
1570 return 0;
1571 }
1572
1573 static int nvme_pci_enable(struct nvme_dev *dev)
1574 {
1575 u64 cap;
1576 int result = -ENOMEM;
1577 struct pci_dev *pdev = to_pci_dev(dev->dev);
1578
1579 if (pci_enable_device_mem(pdev))
1580 return result;
1581
1582 pci_set_master(pdev);
1583
1584 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1585 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1586 goto disable;
1587
1588 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1589 result = -ENODEV;
1590 goto disable;
1591 }
1592
1593 /*
1594 * Some devices and/or platforms don't advertise or work with INTx
1595 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1596 * adjust this later.
1597 */
1598 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1599 if (result < 0)
1600 return result;
1601
1602 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1603
1604 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1605 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1606 dev->dbs = dev->bar + 4096;
1607
1608 /*
1609 * Temporary fix for the Apple controller found in the MacBook8,1 and
1610 * some MacBook7,1 to avoid controller resets and data loss.
1611 */
1612 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1613 dev->q_depth = 2;
1614 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1615 "queue depth=%u to work around controller resets\n",
1616 dev->q_depth);
1617 }
1618
1619 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1620 dev->cmb = nvme_map_cmb(dev);
1621
1622 pci_enable_pcie_error_reporting(pdev);
1623 pci_save_state(pdev);
1624 return 0;
1625
1626 disable:
1627 pci_disable_device(pdev);
1628 return result;
1629 }
1630
1631 static void nvme_dev_unmap(struct nvme_dev *dev)
1632 {
1633 if (dev->bar)
1634 iounmap(dev->bar);
1635 pci_release_mem_regions(to_pci_dev(dev->dev));
1636 }
1637
1638 static void nvme_pci_disable(struct nvme_dev *dev)
1639 {
1640 struct pci_dev *pdev = to_pci_dev(dev->dev);
1641
1642 pci_free_irq_vectors(pdev);
1643
1644 if (pci_is_enabled(pdev)) {
1645 pci_disable_pcie_error_reporting(pdev);
1646 pci_disable_device(pdev);
1647 }
1648 }
1649
1650 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1651 {
1652 int i;
1653 u32 csts = -1;
1654
1655 del_timer_sync(&dev->watchdog_timer);
1656
1657 mutex_lock(&dev->shutdown_lock);
1658 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1659 nvme_stop_queues(&dev->ctrl);
1660 csts = readl(dev->bar + NVME_REG_CSTS);
1661 }
1662
1663 for (i = dev->queue_count - 1; i > 0; i--)
1664 nvme_suspend_queue(dev->queues[i]);
1665
1666 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1667 /* A device might become IO incapable very soon during
1668 * probe, before the admin queue is configured. Thus,
1669 * queue_count can be 0 here.
1670 */
1671 if (dev->queue_count)
1672 nvme_suspend_queue(dev->queues[0]);
1673 } else {
1674 nvme_disable_io_queues(dev);
1675 nvme_disable_admin_queue(dev, shutdown);
1676 }
1677 nvme_pci_disable(dev);
1678
1679 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1680 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1681 mutex_unlock(&dev->shutdown_lock);
1682 }
1683
1684 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1685 {
1686 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1687 PAGE_SIZE, PAGE_SIZE, 0);
1688 if (!dev->prp_page_pool)
1689 return -ENOMEM;
1690
1691 /* Optimisation for I/Os between 4k and 128k */
1692 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1693 256, 256, 0);
1694 if (!dev->prp_small_pool) {
1695 dma_pool_destroy(dev->prp_page_pool);
1696 return -ENOMEM;
1697 }
1698 return 0;
1699 }
1700
1701 static void nvme_release_prp_pools(struct nvme_dev *dev)
1702 {
1703 dma_pool_destroy(dev->prp_page_pool);
1704 dma_pool_destroy(dev->prp_small_pool);
1705 }
1706
1707 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1708 {
1709 struct nvme_dev *dev = to_nvme_dev(ctrl);
1710
1711 put_device(dev->dev);
1712 if (dev->tagset.tags)
1713 blk_mq_free_tag_set(&dev->tagset);
1714 if (dev->ctrl.admin_q)
1715 blk_put_queue(dev->ctrl.admin_q);
1716 kfree(dev->queues);
1717 kfree(dev);
1718 }
1719
1720 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1721 {
1722 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1723
1724 kref_get(&dev->ctrl.kref);
1725 nvme_dev_disable(dev, false);
1726 if (!schedule_work(&dev->remove_work))
1727 nvme_put_ctrl(&dev->ctrl);
1728 }
1729
1730 static void nvme_reset_work(struct work_struct *work)
1731 {
1732 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1733 int result = -ENODEV;
1734
1735 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1736 goto out;
1737
1738 /*
1739 * If we're called to reset a live controller first shut it down before
1740 * moving on.
1741 */
1742 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1743 nvme_dev_disable(dev, false);
1744
1745 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1746 goto out;
1747
1748 result = nvme_pci_enable(dev);
1749 if (result)
1750 goto out;
1751
1752 result = nvme_configure_admin_queue(dev);
1753 if (result)
1754 goto out;
1755
1756 nvme_init_queue(dev->queues[0], 0);
1757 result = nvme_alloc_admin_tags(dev);
1758 if (result)
1759 goto out;
1760
1761 result = nvme_init_identify(&dev->ctrl);
1762 if (result)
1763 goto out;
1764
1765 result = nvme_setup_io_queues(dev);
1766 if (result)
1767 goto out;
1768
1769 /*
1770 * A controller that can not execute IO typically requires user
1771 * intervention to correct. For such degraded controllers, the driver
1772 * should not submit commands the user did not request, so skip
1773 * registering for asynchronous event notification on this condition.
1774 */
1775 if (dev->online_queues > 1)
1776 nvme_queue_async_events(&dev->ctrl);
1777
1778 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1779
1780 /*
1781 * Keep the controller around but remove all namespaces if we don't have
1782 * any working I/O queue.
1783 */
1784 if (dev->online_queues < 2) {
1785 dev_warn(dev->ctrl.device, "IO queues not created\n");
1786 nvme_kill_queues(&dev->ctrl);
1787 nvme_remove_namespaces(&dev->ctrl);
1788 } else {
1789 nvme_start_queues(&dev->ctrl);
1790 nvme_dev_add(dev);
1791 }
1792
1793 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1794 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1795 goto out;
1796 }
1797
1798 if (dev->online_queues > 1)
1799 nvme_queue_scan(&dev->ctrl);
1800 return;
1801
1802 out:
1803 nvme_remove_dead_ctrl(dev, result);
1804 }
1805
1806 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1807 {
1808 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1809 struct pci_dev *pdev = to_pci_dev(dev->dev);
1810
1811 nvme_kill_queues(&dev->ctrl);
1812 if (pci_get_drvdata(pdev))
1813 device_release_driver(&pdev->dev);
1814 nvme_put_ctrl(&dev->ctrl);
1815 }
1816
1817 static int nvme_reset(struct nvme_dev *dev)
1818 {
1819 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1820 return -ENODEV;
1821
1822 if (!queue_work(nvme_workq, &dev->reset_work))
1823 return -EBUSY;
1824
1825 flush_work(&dev->reset_work);
1826 return 0;
1827 }
1828
1829 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1830 {
1831 *val = readl(to_nvme_dev(ctrl)->bar + off);
1832 return 0;
1833 }
1834
1835 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1836 {
1837 writel(val, to_nvme_dev(ctrl)->bar + off);
1838 return 0;
1839 }
1840
1841 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1842 {
1843 *val = readq(to_nvme_dev(ctrl)->bar + off);
1844 return 0;
1845 }
1846
1847 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1848 {
1849 return nvme_reset(to_nvme_dev(ctrl));
1850 }
1851
1852 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1853 .name = "pcie",
1854 .module = THIS_MODULE,
1855 .reg_read32 = nvme_pci_reg_read32,
1856 .reg_write32 = nvme_pci_reg_write32,
1857 .reg_read64 = nvme_pci_reg_read64,
1858 .reset_ctrl = nvme_pci_reset_ctrl,
1859 .free_ctrl = nvme_pci_free_ctrl,
1860 .submit_async_event = nvme_pci_submit_async_event,
1861 };
1862
1863 static int nvme_dev_map(struct nvme_dev *dev)
1864 {
1865 struct pci_dev *pdev = to_pci_dev(dev->dev);
1866
1867 if (pci_request_mem_regions(pdev, "nvme"))
1868 return -ENODEV;
1869
1870 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1871 if (!dev->bar)
1872 goto release;
1873
1874 return 0;
1875 release:
1876 pci_release_mem_regions(pdev);
1877 return -ENODEV;
1878 }
1879
1880 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1881 {
1882 int node, result = -ENOMEM;
1883 struct nvme_dev *dev;
1884
1885 node = dev_to_node(&pdev->dev);
1886 if (node == NUMA_NO_NODE)
1887 set_dev_node(&pdev->dev, first_memory_node);
1888
1889 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1890 if (!dev)
1891 return -ENOMEM;
1892 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1893 GFP_KERNEL, node);
1894 if (!dev->queues)
1895 goto free;
1896
1897 dev->dev = get_device(&pdev->dev);
1898 pci_set_drvdata(pdev, dev);
1899
1900 result = nvme_dev_map(dev);
1901 if (result)
1902 goto free;
1903
1904 INIT_WORK(&dev->reset_work, nvme_reset_work);
1905 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1906 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1907 (unsigned long)dev);
1908 mutex_init(&dev->shutdown_lock);
1909 init_completion(&dev->ioq_wait);
1910
1911 result = nvme_setup_prp_pools(dev);
1912 if (result)
1913 goto put_pci;
1914
1915 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1916 id->driver_data);
1917 if (result)
1918 goto release_pools;
1919
1920 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1921
1922 queue_work(nvme_workq, &dev->reset_work);
1923 return 0;
1924
1925 release_pools:
1926 nvme_release_prp_pools(dev);
1927 put_pci:
1928 put_device(dev->dev);
1929 nvme_dev_unmap(dev);
1930 free:
1931 kfree(dev->queues);
1932 kfree(dev);
1933 return result;
1934 }
1935
1936 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1937 {
1938 struct nvme_dev *dev = pci_get_drvdata(pdev);
1939
1940 if (prepare)
1941 nvme_dev_disable(dev, false);
1942 else
1943 queue_work(nvme_workq, &dev->reset_work);
1944 }
1945
1946 static void nvme_shutdown(struct pci_dev *pdev)
1947 {
1948 struct nvme_dev *dev = pci_get_drvdata(pdev);
1949 nvme_dev_disable(dev, true);
1950 }
1951
1952 /*
1953 * The driver's remove may be called on a device in a partially initialized
1954 * state. This function must not have any dependencies on the device state in
1955 * order to proceed.
1956 */
1957 static void nvme_remove(struct pci_dev *pdev)
1958 {
1959 struct nvme_dev *dev = pci_get_drvdata(pdev);
1960
1961 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1962
1963 pci_set_drvdata(pdev, NULL);
1964
1965 if (!pci_device_is_present(pdev))
1966 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1967
1968 flush_work(&dev->reset_work);
1969 nvme_uninit_ctrl(&dev->ctrl);
1970 nvme_dev_disable(dev, true);
1971 nvme_dev_remove_admin(dev);
1972 nvme_free_queues(dev, 0);
1973 nvme_release_cmb(dev);
1974 nvme_release_prp_pools(dev);
1975 nvme_dev_unmap(dev);
1976 nvme_put_ctrl(&dev->ctrl);
1977 }
1978
1979 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
1980 {
1981 int ret = 0;
1982
1983 if (numvfs == 0) {
1984 if (pci_vfs_assigned(pdev)) {
1985 dev_warn(&pdev->dev,
1986 "Cannot disable SR-IOV VFs while assigned\n");
1987 return -EPERM;
1988 }
1989 pci_disable_sriov(pdev);
1990 return 0;
1991 }
1992
1993 ret = pci_enable_sriov(pdev, numvfs);
1994 return ret ? ret : numvfs;
1995 }
1996
1997 #ifdef CONFIG_PM_SLEEP
1998 static int nvme_suspend(struct device *dev)
1999 {
2000 struct pci_dev *pdev = to_pci_dev(dev);
2001 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2002
2003 nvme_dev_disable(ndev, true);
2004 return 0;
2005 }
2006
2007 static int nvme_resume(struct device *dev)
2008 {
2009 struct pci_dev *pdev = to_pci_dev(dev);
2010 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2011
2012 queue_work(nvme_workq, &ndev->reset_work);
2013 return 0;
2014 }
2015 #endif
2016
2017 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2018
2019 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2020 pci_channel_state_t state)
2021 {
2022 struct nvme_dev *dev = pci_get_drvdata(pdev);
2023
2024 /*
2025 * A frozen channel requires a reset. When detected, this method will
2026 * shutdown the controller to quiesce. The controller will be restarted
2027 * after the slot reset through driver's slot_reset callback.
2028 */
2029 switch (state) {
2030 case pci_channel_io_normal:
2031 return PCI_ERS_RESULT_CAN_RECOVER;
2032 case pci_channel_io_frozen:
2033 dev_warn(dev->ctrl.device,
2034 "frozen state error detected, reset controller\n");
2035 nvme_dev_disable(dev, false);
2036 return PCI_ERS_RESULT_NEED_RESET;
2037 case pci_channel_io_perm_failure:
2038 dev_warn(dev->ctrl.device,
2039 "failure state error detected, request disconnect\n");
2040 return PCI_ERS_RESULT_DISCONNECT;
2041 }
2042 return PCI_ERS_RESULT_NEED_RESET;
2043 }
2044
2045 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2046 {
2047 struct nvme_dev *dev = pci_get_drvdata(pdev);
2048
2049 dev_info(dev->ctrl.device, "restart after slot reset\n");
2050 pci_restore_state(pdev);
2051 queue_work(nvme_workq, &dev->reset_work);
2052 return PCI_ERS_RESULT_RECOVERED;
2053 }
2054
2055 static void nvme_error_resume(struct pci_dev *pdev)
2056 {
2057 pci_cleanup_aer_uncorrect_error_status(pdev);
2058 }
2059
2060 static const struct pci_error_handlers nvme_err_handler = {
2061 .error_detected = nvme_error_detected,
2062 .slot_reset = nvme_slot_reset,
2063 .resume = nvme_error_resume,
2064 .reset_notify = nvme_reset_notify,
2065 };
2066
2067 /* Move to pci_ids.h later */
2068 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2069
2070 static const struct pci_device_id nvme_id_table[] = {
2071 { PCI_VDEVICE(INTEL, 0x0953),
2072 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2073 NVME_QUIRK_DISCARD_ZEROES, },
2074 { PCI_VDEVICE(INTEL, 0x0a53),
2075 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2076 NVME_QUIRK_DISCARD_ZEROES, },
2077 { PCI_VDEVICE(INTEL, 0x0a54),
2078 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2079 NVME_QUIRK_DISCARD_ZEROES, },
2080 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2081 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2082 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2083 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2084 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2085 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2086 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2087 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2088 { 0, }
2089 };
2090 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2091
2092 static struct pci_driver nvme_driver = {
2093 .name = "nvme",
2094 .id_table = nvme_id_table,
2095 .probe = nvme_probe,
2096 .remove = nvme_remove,
2097 .shutdown = nvme_shutdown,
2098 .driver = {
2099 .pm = &nvme_dev_pm_ops,
2100 },
2101 .sriov_configure = nvme_pci_sriov_configure,
2102 .err_handler = &nvme_err_handler,
2103 };
2104
2105 static int __init nvme_init(void)
2106 {
2107 int result;
2108
2109 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2110 if (!nvme_workq)
2111 return -ENOMEM;
2112
2113 result = pci_register_driver(&nvme_driver);
2114 if (result)
2115 destroy_workqueue(nvme_workq);
2116 return result;
2117 }
2118
2119 static void __exit nvme_exit(void)
2120 {
2121 pci_unregister_driver(&nvme_driver);
2122 destroy_workqueue(nvme_workq);
2123 _nvme_check_size();
2124 }
2125
2126 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2127 MODULE_LICENSE("GPL");
2128 MODULE_VERSION("1.0");
2129 module_init(nvme_init);
2130 module_exit(nvme_exit);