]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/nvme/host/pci.c
block: introduce blk_rq_is_passthrough
[mirror_ubuntu-eoan-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH 1024
50 #define NVME_AQ_DEPTH 256
51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
53
54 /*
55 * We handle AEN commands ourselves and don't even let the
56 * block layer know about them.
57 */
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 u32 cmbloc;
103 struct nvme_ctrl ctrl;
104 struct completion ioq_wait;
105 };
106
107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108 {
109 return container_of(ctrl, struct nvme_dev, ctrl);
110 }
111
112 /*
113 * An NVM Express queue. Each device has at least two (one for admin
114 * commands and one for I/O commands).
115 */
116 struct nvme_queue {
117 struct device *q_dmadev;
118 struct nvme_dev *dev;
119 char irqname[24]; /* nvme4294967295-65535\0 */
120 spinlock_t q_lock;
121 struct nvme_command *sq_cmds;
122 struct nvme_command __iomem *sq_cmds_io;
123 volatile struct nvme_completion *cqes;
124 struct blk_mq_tags **tags;
125 dma_addr_t sq_dma_addr;
126 dma_addr_t cq_dma_addr;
127 u32 __iomem *q_db;
128 u16 q_depth;
129 s16 cq_vector;
130 u16 sq_tail;
131 u16 cq_head;
132 u16 qid;
133 u8 cq_phase;
134 u8 cqe_seen;
135 };
136
137 /*
138 * The nvme_iod describes the data in an I/O, including the list of PRP
139 * entries. You can't see it in this data structure because C doesn't let
140 * me express that. Use nvme_init_iod to ensure there's enough space
141 * allocated to store the PRP list.
142 */
143 struct nvme_iod {
144 struct nvme_request req;
145 struct nvme_queue *nvmeq;
146 int aborted;
147 int npages; /* In the PRP list. 0 means small pool in use */
148 int nents; /* Used in scatterlist */
149 int length; /* Of data, in bytes */
150 dma_addr_t first_dma;
151 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
152 struct scatterlist *sg;
153 struct scatterlist inline_sg[0];
154 };
155
156 /*
157 * Check we didin't inadvertently grow the command struct
158 */
159 static inline void _nvme_check_size(void)
160 {
161 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
170 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
173 }
174
175 /*
176 * Max size of iod being embedded in the request payload
177 */
178 #define NVME_INT_PAGES 2
179 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
180
181 /*
182 * Will slightly overestimate the number of pages needed. This is OK
183 * as it only leads to a small amount of wasted memory for the lifetime of
184 * the I/O.
185 */
186 static int nvme_npages(unsigned size, struct nvme_dev *dev)
187 {
188 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
189 dev->ctrl.page_size);
190 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191 }
192
193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
194 unsigned int size, unsigned int nseg)
195 {
196 return sizeof(__le64 *) * nvme_npages(size, dev) +
197 sizeof(struct scatterlist) * nseg;
198 }
199
200 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201 {
202 return sizeof(struct nvme_iod) +
203 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
204 }
205
206 static int nvmeq_irq(struct nvme_queue *nvmeq)
207 {
208 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
209 }
210
211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 unsigned int hctx_idx)
213 {
214 struct nvme_dev *dev = data;
215 struct nvme_queue *nvmeq = dev->queues[0];
216
217 WARN_ON(hctx_idx != 0);
218 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
219 WARN_ON(nvmeq->tags);
220
221 hctx->driver_data = nvmeq;
222 nvmeq->tags = &dev->admin_tagset.tags[0];
223 return 0;
224 }
225
226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
227 {
228 struct nvme_queue *nvmeq = hctx->driver_data;
229
230 nvmeq->tags = NULL;
231 }
232
233 static int nvme_admin_init_request(void *data, struct request *req,
234 unsigned int hctx_idx, unsigned int rq_idx,
235 unsigned int numa_node)
236 {
237 struct nvme_dev *dev = data;
238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
239 struct nvme_queue *nvmeq = dev->queues[0];
240
241 BUG_ON(!nvmeq);
242 iod->nvmeq = nvmeq;
243 return 0;
244 }
245
246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
247 unsigned int hctx_idx)
248 {
249 struct nvme_dev *dev = data;
250 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
251
252 if (!nvmeq->tags)
253 nvmeq->tags = &dev->tagset.tags[hctx_idx];
254
255 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
256 hctx->driver_data = nvmeq;
257 return 0;
258 }
259
260 static int nvme_init_request(void *data, struct request *req,
261 unsigned int hctx_idx, unsigned int rq_idx,
262 unsigned int numa_node)
263 {
264 struct nvme_dev *dev = data;
265 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268 BUG_ON(!nvmeq);
269 iod->nvmeq = nvmeq;
270 return 0;
271 }
272
273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
274 {
275 struct nvme_dev *dev = set->driver_data;
276
277 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
278 }
279
280 /**
281 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
282 * @nvmeq: The queue to use
283 * @cmd: The command to send
284 *
285 * Safe to use from interrupt context
286 */
287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
288 struct nvme_command *cmd)
289 {
290 u16 tail = nvmeq->sq_tail;
291
292 if (nvmeq->sq_cmds_io)
293 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
294 else
295 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
296
297 if (++tail == nvmeq->q_depth)
298 tail = 0;
299 writel(tail, nvmeq->q_db);
300 nvmeq->sq_tail = tail;
301 }
302
303 static __le64 **iod_list(struct request *req)
304 {
305 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
306 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
307 }
308
309 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
310 {
311 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
312 int nseg = blk_rq_nr_phys_segments(rq);
313 unsigned int size = blk_rq_payload_bytes(rq);
314
315 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
316 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
317 if (!iod->sg)
318 return BLK_MQ_RQ_QUEUE_BUSY;
319 } else {
320 iod->sg = iod->inline_sg;
321 }
322
323 iod->aborted = 0;
324 iod->npages = -1;
325 iod->nents = 0;
326 iod->length = size;
327
328 if (!(rq->rq_flags & RQF_DONTPREP)) {
329 rq->retries = 0;
330 rq->rq_flags |= RQF_DONTPREP;
331 }
332 return BLK_MQ_RQ_QUEUE_OK;
333 }
334
335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
336 {
337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
338 const int last_prp = dev->ctrl.page_size / 8 - 1;
339 int i;
340 __le64 **list = iod_list(req);
341 dma_addr_t prp_dma = iod->first_dma;
342
343 if (iod->npages == 0)
344 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345 for (i = 0; i < iod->npages; i++) {
346 __le64 *prp_list = list[i];
347 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349 prp_dma = next_prp_dma;
350 }
351
352 if (iod->sg != iod->inline_sg)
353 kfree(iod->sg);
354 }
355
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359 if (be32_to_cpu(pi->ref_tag) == v)
360 pi->ref_tag = cpu_to_be32(p);
361 }
362
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365 if (be32_to_cpu(pi->ref_tag) == p)
366 pi->ref_tag = cpu_to_be32(v);
367 }
368
369 /**
370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371 *
372 * The virtual start sector is the one that was originally submitted by the
373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374 * start sector may be different. Remap protection information to match the
375 * physical LBA on writes, and back to the original seed on reads.
376 *
377 * Type 0 and 3 do not have a ref tag, so no remapping required.
378 */
379 static void nvme_dif_remap(struct request *req,
380 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382 struct nvme_ns *ns = req->rq_disk->private_data;
383 struct bio_integrity_payload *bip;
384 struct t10_pi_tuple *pi;
385 void *p, *pmap;
386 u32 i, nlb, ts, phys, virt;
387
388 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389 return;
390
391 bip = bio_integrity(req->bio);
392 if (!bip)
393 return;
394
395 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396
397 p = pmap;
398 virt = bip_get_seed(bip);
399 phys = nvme_block_nr(ns, blk_rq_pos(req));
400 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401 ts = ns->disk->queue->integrity.tuple_size;
402
403 for (i = 0; i < nlb; i++, virt++, phys++) {
404 pi = (struct t10_pi_tuple *)p;
405 dif_swap(phys, virt, pi);
406 p += ts;
407 }
408 kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
424 {
425 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426 struct dma_pool *pool;
427 int length = blk_rq_payload_bytes(req);
428 struct scatterlist *sg = iod->sg;
429 int dma_len = sg_dma_len(sg);
430 u64 dma_addr = sg_dma_address(sg);
431 u32 page_size = dev->ctrl.page_size;
432 int offset = dma_addr & (page_size - 1);
433 __le64 *prp_list;
434 __le64 **list = iod_list(req);
435 dma_addr_t prp_dma;
436 int nprps, i;
437
438 length -= (page_size - offset);
439 if (length <= 0)
440 return true;
441
442 dma_len -= (page_size - offset);
443 if (dma_len) {
444 dma_addr += (page_size - offset);
445 } else {
446 sg = sg_next(sg);
447 dma_addr = sg_dma_address(sg);
448 dma_len = sg_dma_len(sg);
449 }
450
451 if (length <= page_size) {
452 iod->first_dma = dma_addr;
453 return true;
454 }
455
456 nprps = DIV_ROUND_UP(length, page_size);
457 if (nprps <= (256 / 8)) {
458 pool = dev->prp_small_pool;
459 iod->npages = 0;
460 } else {
461 pool = dev->prp_page_pool;
462 iod->npages = 1;
463 }
464
465 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
466 if (!prp_list) {
467 iod->first_dma = dma_addr;
468 iod->npages = -1;
469 return false;
470 }
471 list[0] = prp_list;
472 iod->first_dma = prp_dma;
473 i = 0;
474 for (;;) {
475 if (i == page_size >> 3) {
476 __le64 *old_prp_list = prp_list;
477 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
478 if (!prp_list)
479 return false;
480 list[iod->npages++] = prp_list;
481 prp_list[0] = old_prp_list[i - 1];
482 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
483 i = 1;
484 }
485 prp_list[i++] = cpu_to_le64(dma_addr);
486 dma_len -= page_size;
487 dma_addr += page_size;
488 length -= page_size;
489 if (length <= 0)
490 break;
491 if (dma_len > 0)
492 continue;
493 BUG_ON(dma_len < 0);
494 sg = sg_next(sg);
495 dma_addr = sg_dma_address(sg);
496 dma_len = sg_dma_len(sg);
497 }
498
499 return true;
500 }
501
502 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
503 struct nvme_command *cmnd)
504 {
505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
506 struct request_queue *q = req->q;
507 enum dma_data_direction dma_dir = rq_data_dir(req) ?
508 DMA_TO_DEVICE : DMA_FROM_DEVICE;
509 int ret = BLK_MQ_RQ_QUEUE_ERROR;
510
511 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
512 iod->nents = blk_rq_map_sg(q, req, iod->sg);
513 if (!iod->nents)
514 goto out;
515
516 ret = BLK_MQ_RQ_QUEUE_BUSY;
517 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
518 DMA_ATTR_NO_WARN))
519 goto out;
520
521 if (!nvme_setup_prps(dev, req))
522 goto out_unmap;
523
524 ret = BLK_MQ_RQ_QUEUE_ERROR;
525 if (blk_integrity_rq(req)) {
526 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
527 goto out_unmap;
528
529 sg_init_table(&iod->meta_sg, 1);
530 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
531 goto out_unmap;
532
533 if (rq_data_dir(req))
534 nvme_dif_remap(req, nvme_dif_prep);
535
536 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
537 goto out_unmap;
538 }
539
540 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
541 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
542 if (blk_integrity_rq(req))
543 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
544 return BLK_MQ_RQ_QUEUE_OK;
545
546 out_unmap:
547 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548 out:
549 return ret;
550 }
551
552 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
553 {
554 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
555 enum dma_data_direction dma_dir = rq_data_dir(req) ?
556 DMA_TO_DEVICE : DMA_FROM_DEVICE;
557
558 if (iod->nents) {
559 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
560 if (blk_integrity_rq(req)) {
561 if (!rq_data_dir(req))
562 nvme_dif_remap(req, nvme_dif_complete);
563 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
564 }
565 }
566
567 nvme_cleanup_cmd(req);
568 nvme_free_iod(dev, req);
569 }
570
571 /*
572 * NOTE: ns is NULL when called on the admin queue.
573 */
574 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
575 const struct blk_mq_queue_data *bd)
576 {
577 struct nvme_ns *ns = hctx->queue->queuedata;
578 struct nvme_queue *nvmeq = hctx->driver_data;
579 struct nvme_dev *dev = nvmeq->dev;
580 struct request *req = bd->rq;
581 struct nvme_command cmnd;
582 int ret = BLK_MQ_RQ_QUEUE_OK;
583
584 /*
585 * If formated with metadata, require the block layer provide a buffer
586 * unless this namespace is formated such that the metadata can be
587 * stripped/generated by the controller with PRACT=1.
588 */
589 if (ns && ns->ms && !blk_integrity_rq(req)) {
590 if (!(ns->pi_type && ns->ms == 8) &&
591 !blk_rq_is_passthrough(req)) {
592 blk_mq_end_request(req, -EFAULT);
593 return BLK_MQ_RQ_QUEUE_OK;
594 }
595 }
596
597 ret = nvme_setup_cmd(ns, req, &cmnd);
598 if (ret != BLK_MQ_RQ_QUEUE_OK)
599 return ret;
600
601 ret = nvme_init_iod(req, dev);
602 if (ret != BLK_MQ_RQ_QUEUE_OK)
603 goto out_free_cmd;
604
605 if (blk_rq_nr_phys_segments(req))
606 ret = nvme_map_data(dev, req, &cmnd);
607
608 if (ret != BLK_MQ_RQ_QUEUE_OK)
609 goto out_cleanup_iod;
610
611 blk_mq_start_request(req);
612
613 spin_lock_irq(&nvmeq->q_lock);
614 if (unlikely(nvmeq->cq_vector < 0)) {
615 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
616 ret = BLK_MQ_RQ_QUEUE_BUSY;
617 else
618 ret = BLK_MQ_RQ_QUEUE_ERROR;
619 spin_unlock_irq(&nvmeq->q_lock);
620 goto out_cleanup_iod;
621 }
622 __nvme_submit_cmd(nvmeq, &cmnd);
623 nvme_process_cq(nvmeq);
624 spin_unlock_irq(&nvmeq->q_lock);
625 return BLK_MQ_RQ_QUEUE_OK;
626 out_cleanup_iod:
627 nvme_free_iod(dev, req);
628 out_free_cmd:
629 nvme_cleanup_cmd(req);
630 return ret;
631 }
632
633 static void nvme_complete_rq(struct request *req)
634 {
635 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
636 struct nvme_dev *dev = iod->nvmeq->dev;
637 int error = 0;
638
639 nvme_unmap_data(dev, req);
640
641 if (unlikely(req->errors)) {
642 if (nvme_req_needs_retry(req, req->errors)) {
643 req->retries++;
644 nvme_requeue_req(req);
645 return;
646 }
647
648 if (blk_rq_is_passthrough(req))
649 error = req->errors;
650 else
651 error = nvme_error_status(req->errors);
652 }
653
654 if (unlikely(iod->aborted)) {
655 dev_warn(dev->ctrl.device,
656 "completing aborted command with status: %04x\n",
657 req->errors);
658 }
659
660 blk_mq_end_request(req, error);
661 }
662
663 /* We read the CQE phase first to check if the rest of the entry is valid */
664 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
665 u16 phase)
666 {
667 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
668 }
669
670 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
671 {
672 u16 head, phase;
673
674 head = nvmeq->cq_head;
675 phase = nvmeq->cq_phase;
676
677 while (nvme_cqe_valid(nvmeq, head, phase)) {
678 struct nvme_completion cqe = nvmeq->cqes[head];
679 struct request *req;
680
681 if (++head == nvmeq->q_depth) {
682 head = 0;
683 phase = !phase;
684 }
685
686 if (tag && *tag == cqe.command_id)
687 *tag = -1;
688
689 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
690 dev_warn(nvmeq->dev->ctrl.device,
691 "invalid id %d completed on queue %d\n",
692 cqe.command_id, le16_to_cpu(cqe.sq_id));
693 continue;
694 }
695
696 /*
697 * AEN requests are special as they don't time out and can
698 * survive any kind of queue freeze and often don't respond to
699 * aborts. We don't even bother to allocate a struct request
700 * for them but rather special case them here.
701 */
702 if (unlikely(nvmeq->qid == 0 &&
703 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
704 nvme_complete_async_event(&nvmeq->dev->ctrl,
705 cqe.status, &cqe.result);
706 continue;
707 }
708
709 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
710 nvme_req(req)->result = cqe.result;
711 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
712 }
713
714 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
715 return;
716
717 if (likely(nvmeq->cq_vector >= 0))
718 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
719 nvmeq->cq_head = head;
720 nvmeq->cq_phase = phase;
721
722 nvmeq->cqe_seen = 1;
723 }
724
725 static void nvme_process_cq(struct nvme_queue *nvmeq)
726 {
727 __nvme_process_cq(nvmeq, NULL);
728 }
729
730 static irqreturn_t nvme_irq(int irq, void *data)
731 {
732 irqreturn_t result;
733 struct nvme_queue *nvmeq = data;
734 spin_lock(&nvmeq->q_lock);
735 nvme_process_cq(nvmeq);
736 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
737 nvmeq->cqe_seen = 0;
738 spin_unlock(&nvmeq->q_lock);
739 return result;
740 }
741
742 static irqreturn_t nvme_irq_check(int irq, void *data)
743 {
744 struct nvme_queue *nvmeq = data;
745 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
746 return IRQ_WAKE_THREAD;
747 return IRQ_NONE;
748 }
749
750 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
751 {
752 struct nvme_queue *nvmeq = hctx->driver_data;
753
754 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
755 spin_lock_irq(&nvmeq->q_lock);
756 __nvme_process_cq(nvmeq, &tag);
757 spin_unlock_irq(&nvmeq->q_lock);
758
759 if (tag == -1)
760 return 1;
761 }
762
763 return 0;
764 }
765
766 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
767 {
768 struct nvme_dev *dev = to_nvme_dev(ctrl);
769 struct nvme_queue *nvmeq = dev->queues[0];
770 struct nvme_command c;
771
772 memset(&c, 0, sizeof(c));
773 c.common.opcode = nvme_admin_async_event;
774 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
775
776 spin_lock_irq(&nvmeq->q_lock);
777 __nvme_submit_cmd(nvmeq, &c);
778 spin_unlock_irq(&nvmeq->q_lock);
779 }
780
781 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
782 {
783 struct nvme_command c;
784
785 memset(&c, 0, sizeof(c));
786 c.delete_queue.opcode = opcode;
787 c.delete_queue.qid = cpu_to_le16(id);
788
789 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
790 }
791
792 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
793 struct nvme_queue *nvmeq)
794 {
795 struct nvme_command c;
796 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
797
798 /*
799 * Note: we (ab)use the fact the the prp fields survive if no data
800 * is attached to the request.
801 */
802 memset(&c, 0, sizeof(c));
803 c.create_cq.opcode = nvme_admin_create_cq;
804 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
805 c.create_cq.cqid = cpu_to_le16(qid);
806 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
807 c.create_cq.cq_flags = cpu_to_le16(flags);
808 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
809
810 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
811 }
812
813 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
814 struct nvme_queue *nvmeq)
815 {
816 struct nvme_command c;
817 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
818
819 /*
820 * Note: we (ab)use the fact the the prp fields survive if no data
821 * is attached to the request.
822 */
823 memset(&c, 0, sizeof(c));
824 c.create_sq.opcode = nvme_admin_create_sq;
825 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
826 c.create_sq.sqid = cpu_to_le16(qid);
827 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
828 c.create_sq.sq_flags = cpu_to_le16(flags);
829 c.create_sq.cqid = cpu_to_le16(qid);
830
831 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
832 }
833
834 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
835 {
836 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
837 }
838
839 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
840 {
841 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
842 }
843
844 static void abort_endio(struct request *req, int error)
845 {
846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 struct nvme_queue *nvmeq = iod->nvmeq;
848 u16 status = req->errors;
849
850 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
851 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
852 blk_mq_free_request(req);
853 }
854
855 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
856 {
857 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
858 struct nvme_queue *nvmeq = iod->nvmeq;
859 struct nvme_dev *dev = nvmeq->dev;
860 struct request *abort_req;
861 struct nvme_command cmd;
862
863 /*
864 * Shutdown immediately if controller times out while starting. The
865 * reset work will see the pci device disabled when it gets the forced
866 * cancellation error. All outstanding requests are completed on
867 * shutdown, so we return BLK_EH_HANDLED.
868 */
869 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
870 dev_warn(dev->ctrl.device,
871 "I/O %d QID %d timeout, disable controller\n",
872 req->tag, nvmeq->qid);
873 nvme_dev_disable(dev, false);
874 req->errors = NVME_SC_CANCELLED;
875 return BLK_EH_HANDLED;
876 }
877
878 /*
879 * Shutdown the controller immediately and schedule a reset if the
880 * command was already aborted once before and still hasn't been
881 * returned to the driver, or if this is the admin queue.
882 */
883 if (!nvmeq->qid || iod->aborted) {
884 dev_warn(dev->ctrl.device,
885 "I/O %d QID %d timeout, reset controller\n",
886 req->tag, nvmeq->qid);
887 nvme_dev_disable(dev, false);
888 nvme_reset(dev);
889
890 /*
891 * Mark the request as handled, since the inline shutdown
892 * forces all outstanding requests to complete.
893 */
894 req->errors = NVME_SC_CANCELLED;
895 return BLK_EH_HANDLED;
896 }
897
898 iod->aborted = 1;
899
900 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
901 atomic_inc(&dev->ctrl.abort_limit);
902 return BLK_EH_RESET_TIMER;
903 }
904
905 memset(&cmd, 0, sizeof(cmd));
906 cmd.abort.opcode = nvme_admin_abort_cmd;
907 cmd.abort.cid = req->tag;
908 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
909
910 dev_warn(nvmeq->dev->ctrl.device,
911 "I/O %d QID %d timeout, aborting\n",
912 req->tag, nvmeq->qid);
913
914 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
915 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
916 if (IS_ERR(abort_req)) {
917 atomic_inc(&dev->ctrl.abort_limit);
918 return BLK_EH_RESET_TIMER;
919 }
920
921 abort_req->timeout = ADMIN_TIMEOUT;
922 abort_req->end_io_data = NULL;
923 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
924
925 /*
926 * The aborted req will be completed on receiving the abort req.
927 * We enable the timer again. If hit twice, it'll cause a device reset,
928 * as the device then is in a faulty state.
929 */
930 return BLK_EH_RESET_TIMER;
931 }
932
933 static void nvme_free_queue(struct nvme_queue *nvmeq)
934 {
935 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
936 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
937 if (nvmeq->sq_cmds)
938 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
939 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
940 kfree(nvmeq);
941 }
942
943 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
944 {
945 int i;
946
947 for (i = dev->queue_count - 1; i >= lowest; i--) {
948 struct nvme_queue *nvmeq = dev->queues[i];
949 dev->queue_count--;
950 dev->queues[i] = NULL;
951 nvme_free_queue(nvmeq);
952 }
953 }
954
955 /**
956 * nvme_suspend_queue - put queue into suspended state
957 * @nvmeq - queue to suspend
958 */
959 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
960 {
961 int vector;
962
963 spin_lock_irq(&nvmeq->q_lock);
964 if (nvmeq->cq_vector == -1) {
965 spin_unlock_irq(&nvmeq->q_lock);
966 return 1;
967 }
968 vector = nvmeq_irq(nvmeq);
969 nvmeq->dev->online_queues--;
970 nvmeq->cq_vector = -1;
971 spin_unlock_irq(&nvmeq->q_lock);
972
973 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
974 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
975
976 free_irq(vector, nvmeq);
977
978 return 0;
979 }
980
981 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
982 {
983 struct nvme_queue *nvmeq = dev->queues[0];
984
985 if (!nvmeq)
986 return;
987 if (nvme_suspend_queue(nvmeq))
988 return;
989
990 if (shutdown)
991 nvme_shutdown_ctrl(&dev->ctrl);
992 else
993 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
994 dev->bar + NVME_REG_CAP));
995
996 spin_lock_irq(&nvmeq->q_lock);
997 nvme_process_cq(nvmeq);
998 spin_unlock_irq(&nvmeq->q_lock);
999 }
1000
1001 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1002 int entry_size)
1003 {
1004 int q_depth = dev->q_depth;
1005 unsigned q_size_aligned = roundup(q_depth * entry_size,
1006 dev->ctrl.page_size);
1007
1008 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1009 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1010 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1011 q_depth = div_u64(mem_per_q, entry_size);
1012
1013 /*
1014 * Ensure the reduced q_depth is above some threshold where it
1015 * would be better to map queues in system memory with the
1016 * original depth
1017 */
1018 if (q_depth < 64)
1019 return -ENOMEM;
1020 }
1021
1022 return q_depth;
1023 }
1024
1025 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1026 int qid, int depth)
1027 {
1028 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1029 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1030 dev->ctrl.page_size);
1031 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1032 nvmeq->sq_cmds_io = dev->cmb + offset;
1033 } else {
1034 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1035 &nvmeq->sq_dma_addr, GFP_KERNEL);
1036 if (!nvmeq->sq_cmds)
1037 return -ENOMEM;
1038 }
1039
1040 return 0;
1041 }
1042
1043 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1044 int depth)
1045 {
1046 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1047 if (!nvmeq)
1048 return NULL;
1049
1050 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1051 &nvmeq->cq_dma_addr, GFP_KERNEL);
1052 if (!nvmeq->cqes)
1053 goto free_nvmeq;
1054
1055 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1056 goto free_cqdma;
1057
1058 nvmeq->q_dmadev = dev->dev;
1059 nvmeq->dev = dev;
1060 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1061 dev->ctrl.instance, qid);
1062 spin_lock_init(&nvmeq->q_lock);
1063 nvmeq->cq_head = 0;
1064 nvmeq->cq_phase = 1;
1065 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1066 nvmeq->q_depth = depth;
1067 nvmeq->qid = qid;
1068 nvmeq->cq_vector = -1;
1069 dev->queues[qid] = nvmeq;
1070 dev->queue_count++;
1071
1072 return nvmeq;
1073
1074 free_cqdma:
1075 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1076 nvmeq->cq_dma_addr);
1077 free_nvmeq:
1078 kfree(nvmeq);
1079 return NULL;
1080 }
1081
1082 static int queue_request_irq(struct nvme_queue *nvmeq)
1083 {
1084 if (use_threaded_interrupts)
1085 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1086 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1087 else
1088 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1089 nvmeq->irqname, nvmeq);
1090 }
1091
1092 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1093 {
1094 struct nvme_dev *dev = nvmeq->dev;
1095
1096 spin_lock_irq(&nvmeq->q_lock);
1097 nvmeq->sq_tail = 0;
1098 nvmeq->cq_head = 0;
1099 nvmeq->cq_phase = 1;
1100 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1101 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1102 dev->online_queues++;
1103 spin_unlock_irq(&nvmeq->q_lock);
1104 }
1105
1106 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1107 {
1108 struct nvme_dev *dev = nvmeq->dev;
1109 int result;
1110
1111 nvmeq->cq_vector = qid - 1;
1112 result = adapter_alloc_cq(dev, qid, nvmeq);
1113 if (result < 0)
1114 return result;
1115
1116 result = adapter_alloc_sq(dev, qid, nvmeq);
1117 if (result < 0)
1118 goto release_cq;
1119
1120 result = queue_request_irq(nvmeq);
1121 if (result < 0)
1122 goto release_sq;
1123
1124 nvme_init_queue(nvmeq, qid);
1125 return result;
1126
1127 release_sq:
1128 adapter_delete_sq(dev, qid);
1129 release_cq:
1130 adapter_delete_cq(dev, qid);
1131 return result;
1132 }
1133
1134 static struct blk_mq_ops nvme_mq_admin_ops = {
1135 .queue_rq = nvme_queue_rq,
1136 .complete = nvme_complete_rq,
1137 .init_hctx = nvme_admin_init_hctx,
1138 .exit_hctx = nvme_admin_exit_hctx,
1139 .init_request = nvme_admin_init_request,
1140 .timeout = nvme_timeout,
1141 };
1142
1143 static struct blk_mq_ops nvme_mq_ops = {
1144 .queue_rq = nvme_queue_rq,
1145 .complete = nvme_complete_rq,
1146 .init_hctx = nvme_init_hctx,
1147 .init_request = nvme_init_request,
1148 .map_queues = nvme_pci_map_queues,
1149 .timeout = nvme_timeout,
1150 .poll = nvme_poll,
1151 };
1152
1153 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1154 {
1155 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1156 /*
1157 * If the controller was reset during removal, it's possible
1158 * user requests may be waiting on a stopped queue. Start the
1159 * queue to flush these to completion.
1160 */
1161 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1162 blk_cleanup_queue(dev->ctrl.admin_q);
1163 blk_mq_free_tag_set(&dev->admin_tagset);
1164 }
1165 }
1166
1167 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1168 {
1169 if (!dev->ctrl.admin_q) {
1170 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1171 dev->admin_tagset.nr_hw_queues = 1;
1172
1173 /*
1174 * Subtract one to leave an empty queue entry for 'Full Queue'
1175 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1176 */
1177 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1178 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1179 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1180 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1181 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1182 dev->admin_tagset.driver_data = dev;
1183
1184 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1185 return -ENOMEM;
1186
1187 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1188 if (IS_ERR(dev->ctrl.admin_q)) {
1189 blk_mq_free_tag_set(&dev->admin_tagset);
1190 return -ENOMEM;
1191 }
1192 if (!blk_get_queue(dev->ctrl.admin_q)) {
1193 nvme_dev_remove_admin(dev);
1194 dev->ctrl.admin_q = NULL;
1195 return -ENODEV;
1196 }
1197 } else
1198 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1199
1200 return 0;
1201 }
1202
1203 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1204 {
1205 int result;
1206 u32 aqa;
1207 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1208 struct nvme_queue *nvmeq;
1209
1210 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1211 NVME_CAP_NSSRC(cap) : 0;
1212
1213 if (dev->subsystem &&
1214 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1215 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1216
1217 result = nvme_disable_ctrl(&dev->ctrl, cap);
1218 if (result < 0)
1219 return result;
1220
1221 nvmeq = dev->queues[0];
1222 if (!nvmeq) {
1223 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1224 if (!nvmeq)
1225 return -ENOMEM;
1226 }
1227
1228 aqa = nvmeq->q_depth - 1;
1229 aqa |= aqa << 16;
1230
1231 writel(aqa, dev->bar + NVME_REG_AQA);
1232 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1233 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1234
1235 result = nvme_enable_ctrl(&dev->ctrl, cap);
1236 if (result)
1237 return result;
1238
1239 nvmeq->cq_vector = 0;
1240 result = queue_request_irq(nvmeq);
1241 if (result) {
1242 nvmeq->cq_vector = -1;
1243 return result;
1244 }
1245
1246 return result;
1247 }
1248
1249 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1250 {
1251
1252 /* If true, indicates loss of adapter communication, possibly by a
1253 * NVMe Subsystem reset.
1254 */
1255 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1256
1257 /* If there is a reset ongoing, we shouldn't reset again. */
1258 if (work_busy(&dev->reset_work))
1259 return false;
1260
1261 /* We shouldn't reset unless the controller is on fatal error state
1262 * _or_ if we lost the communication with it.
1263 */
1264 if (!(csts & NVME_CSTS_CFS) && !nssro)
1265 return false;
1266
1267 /* If PCI error recovery process is happening, we cannot reset or
1268 * the recovery mechanism will surely fail.
1269 */
1270 if (pci_channel_offline(to_pci_dev(dev->dev)))
1271 return false;
1272
1273 return true;
1274 }
1275
1276 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1277 {
1278 /* Read a config register to help see what died. */
1279 u16 pci_status;
1280 int result;
1281
1282 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1283 &pci_status);
1284 if (result == PCIBIOS_SUCCESSFUL)
1285 dev_warn(dev->dev,
1286 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1287 csts, pci_status);
1288 else
1289 dev_warn(dev->dev,
1290 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1291 csts, result);
1292 }
1293
1294 static void nvme_watchdog_timer(unsigned long data)
1295 {
1296 struct nvme_dev *dev = (struct nvme_dev *)data;
1297 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1298
1299 /* Skip controllers under certain specific conditions. */
1300 if (nvme_should_reset(dev, csts)) {
1301 if (!nvme_reset(dev))
1302 nvme_warn_reset(dev, csts);
1303 return;
1304 }
1305
1306 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1307 }
1308
1309 static int nvme_create_io_queues(struct nvme_dev *dev)
1310 {
1311 unsigned i, max;
1312 int ret = 0;
1313
1314 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1315 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1316 ret = -ENOMEM;
1317 break;
1318 }
1319 }
1320
1321 max = min(dev->max_qid, dev->queue_count - 1);
1322 for (i = dev->online_queues; i <= max; i++) {
1323 ret = nvme_create_queue(dev->queues[i], i);
1324 if (ret)
1325 break;
1326 }
1327
1328 /*
1329 * Ignore failing Create SQ/CQ commands, we can continue with less
1330 * than the desired aount of queues, and even a controller without
1331 * I/O queues an still be used to issue admin commands. This might
1332 * be useful to upgrade a buggy firmware for example.
1333 */
1334 return ret >= 0 ? 0 : ret;
1335 }
1336
1337 static ssize_t nvme_cmb_show(struct device *dev,
1338 struct device_attribute *attr,
1339 char *buf)
1340 {
1341 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1342
1343 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1344 ndev->cmbloc, ndev->cmbsz);
1345 }
1346 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1347
1348 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1349 {
1350 u64 szu, size, offset;
1351 resource_size_t bar_size;
1352 struct pci_dev *pdev = to_pci_dev(dev->dev);
1353 void __iomem *cmb;
1354 dma_addr_t dma_addr;
1355
1356 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1357 if (!(NVME_CMB_SZ(dev->cmbsz)))
1358 return NULL;
1359 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1360
1361 if (!use_cmb_sqes)
1362 return NULL;
1363
1364 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1365 size = szu * NVME_CMB_SZ(dev->cmbsz);
1366 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1367 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1368
1369 if (offset > bar_size)
1370 return NULL;
1371
1372 /*
1373 * Controllers may support a CMB size larger than their BAR,
1374 * for example, due to being behind a bridge. Reduce the CMB to
1375 * the reported size of the BAR
1376 */
1377 if (size > bar_size - offset)
1378 size = bar_size - offset;
1379
1380 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1381 cmb = ioremap_wc(dma_addr, size);
1382 if (!cmb)
1383 return NULL;
1384
1385 dev->cmb_dma_addr = dma_addr;
1386 dev->cmb_size = size;
1387 return cmb;
1388 }
1389
1390 static inline void nvme_release_cmb(struct nvme_dev *dev)
1391 {
1392 if (dev->cmb) {
1393 iounmap(dev->cmb);
1394 dev->cmb = NULL;
1395 }
1396 }
1397
1398 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1399 {
1400 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1401 }
1402
1403 static int nvme_setup_io_queues(struct nvme_dev *dev)
1404 {
1405 struct nvme_queue *adminq = dev->queues[0];
1406 struct pci_dev *pdev = to_pci_dev(dev->dev);
1407 int result, nr_io_queues, size;
1408
1409 nr_io_queues = num_online_cpus();
1410 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1411 if (result < 0)
1412 return result;
1413
1414 if (nr_io_queues == 0)
1415 return 0;
1416
1417 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1418 result = nvme_cmb_qdepth(dev, nr_io_queues,
1419 sizeof(struct nvme_command));
1420 if (result > 0)
1421 dev->q_depth = result;
1422 else
1423 nvme_release_cmb(dev);
1424 }
1425
1426 size = db_bar_size(dev, nr_io_queues);
1427 if (size > 8192) {
1428 iounmap(dev->bar);
1429 do {
1430 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1431 if (dev->bar)
1432 break;
1433 if (!--nr_io_queues)
1434 return -ENOMEM;
1435 size = db_bar_size(dev, nr_io_queues);
1436 } while (1);
1437 dev->dbs = dev->bar + 4096;
1438 adminq->q_db = dev->dbs;
1439 }
1440
1441 /* Deregister the admin queue's interrupt */
1442 free_irq(pci_irq_vector(pdev, 0), adminq);
1443
1444 /*
1445 * If we enable msix early due to not intx, disable it again before
1446 * setting up the full range we need.
1447 */
1448 pci_free_irq_vectors(pdev);
1449 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1450 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1451 if (nr_io_queues <= 0)
1452 return -EIO;
1453 dev->max_qid = nr_io_queues;
1454
1455 /*
1456 * Should investigate if there's a performance win from allocating
1457 * more queues than interrupt vectors; it might allow the submission
1458 * path to scale better, even if the receive path is limited by the
1459 * number of interrupts.
1460 */
1461
1462 result = queue_request_irq(adminq);
1463 if (result) {
1464 adminq->cq_vector = -1;
1465 return result;
1466 }
1467 return nvme_create_io_queues(dev);
1468 }
1469
1470 static void nvme_del_queue_end(struct request *req, int error)
1471 {
1472 struct nvme_queue *nvmeq = req->end_io_data;
1473
1474 blk_mq_free_request(req);
1475 complete(&nvmeq->dev->ioq_wait);
1476 }
1477
1478 static void nvme_del_cq_end(struct request *req, int error)
1479 {
1480 struct nvme_queue *nvmeq = req->end_io_data;
1481
1482 if (!error) {
1483 unsigned long flags;
1484
1485 /*
1486 * We might be called with the AQ q_lock held
1487 * and the I/O queue q_lock should always
1488 * nest inside the AQ one.
1489 */
1490 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1491 SINGLE_DEPTH_NESTING);
1492 nvme_process_cq(nvmeq);
1493 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1494 }
1495
1496 nvme_del_queue_end(req, error);
1497 }
1498
1499 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1500 {
1501 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1502 struct request *req;
1503 struct nvme_command cmd;
1504
1505 memset(&cmd, 0, sizeof(cmd));
1506 cmd.delete_queue.opcode = opcode;
1507 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1508
1509 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1510 if (IS_ERR(req))
1511 return PTR_ERR(req);
1512
1513 req->timeout = ADMIN_TIMEOUT;
1514 req->end_io_data = nvmeq;
1515
1516 blk_execute_rq_nowait(q, NULL, req, false,
1517 opcode == nvme_admin_delete_cq ?
1518 nvme_del_cq_end : nvme_del_queue_end);
1519 return 0;
1520 }
1521
1522 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1523 {
1524 int pass;
1525 unsigned long timeout;
1526 u8 opcode = nvme_admin_delete_sq;
1527
1528 for (pass = 0; pass < 2; pass++) {
1529 int sent = 0, i = queues;
1530
1531 reinit_completion(&dev->ioq_wait);
1532 retry:
1533 timeout = ADMIN_TIMEOUT;
1534 for (; i > 0; i--, sent++)
1535 if (nvme_delete_queue(dev->queues[i], opcode))
1536 break;
1537
1538 while (sent--) {
1539 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1540 if (timeout == 0)
1541 return;
1542 if (i)
1543 goto retry;
1544 }
1545 opcode = nvme_admin_delete_cq;
1546 }
1547 }
1548
1549 /*
1550 * Return: error value if an error occurred setting up the queues or calling
1551 * Identify Device. 0 if these succeeded, even if adding some of the
1552 * namespaces failed. At the moment, these failures are silent. TBD which
1553 * failures should be reported.
1554 */
1555 static int nvme_dev_add(struct nvme_dev *dev)
1556 {
1557 if (!dev->ctrl.tagset) {
1558 dev->tagset.ops = &nvme_mq_ops;
1559 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1560 dev->tagset.timeout = NVME_IO_TIMEOUT;
1561 dev->tagset.numa_node = dev_to_node(dev->dev);
1562 dev->tagset.queue_depth =
1563 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1564 dev->tagset.cmd_size = nvme_cmd_size(dev);
1565 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1566 dev->tagset.driver_data = dev;
1567
1568 if (blk_mq_alloc_tag_set(&dev->tagset))
1569 return 0;
1570 dev->ctrl.tagset = &dev->tagset;
1571 } else {
1572 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1573
1574 /* Free previously allocated queues that are no longer usable */
1575 nvme_free_queues(dev, dev->online_queues);
1576 }
1577
1578 return 0;
1579 }
1580
1581 static int nvme_pci_enable(struct nvme_dev *dev)
1582 {
1583 u64 cap;
1584 int result = -ENOMEM;
1585 struct pci_dev *pdev = to_pci_dev(dev->dev);
1586
1587 if (pci_enable_device_mem(pdev))
1588 return result;
1589
1590 pci_set_master(pdev);
1591
1592 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1593 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1594 goto disable;
1595
1596 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1597 result = -ENODEV;
1598 goto disable;
1599 }
1600
1601 /*
1602 * Some devices and/or platforms don't advertise or work with INTx
1603 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1604 * adjust this later.
1605 */
1606 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1607 if (result < 0)
1608 return result;
1609
1610 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1611
1612 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1613 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1614 dev->dbs = dev->bar + 4096;
1615
1616 /*
1617 * Temporary fix for the Apple controller found in the MacBook8,1 and
1618 * some MacBook7,1 to avoid controller resets and data loss.
1619 */
1620 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1621 dev->q_depth = 2;
1622 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1623 "queue depth=%u to work around controller resets\n",
1624 dev->q_depth);
1625 }
1626
1627 /*
1628 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1629 * populate sysfs if a CMB is implemented. Note that we add the
1630 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1631 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1632 * NULL as final argument to sysfs_add_file_to_group.
1633 */
1634
1635 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1636 dev->cmb = nvme_map_cmb(dev);
1637
1638 if (dev->cmbsz) {
1639 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1640 &dev_attr_cmb.attr, NULL))
1641 dev_warn(dev->dev,
1642 "failed to add sysfs attribute for CMB\n");
1643 }
1644 }
1645
1646 pci_enable_pcie_error_reporting(pdev);
1647 pci_save_state(pdev);
1648 return 0;
1649
1650 disable:
1651 pci_disable_device(pdev);
1652 return result;
1653 }
1654
1655 static void nvme_dev_unmap(struct nvme_dev *dev)
1656 {
1657 if (dev->bar)
1658 iounmap(dev->bar);
1659 pci_release_mem_regions(to_pci_dev(dev->dev));
1660 }
1661
1662 static void nvme_pci_disable(struct nvme_dev *dev)
1663 {
1664 struct pci_dev *pdev = to_pci_dev(dev->dev);
1665
1666 pci_free_irq_vectors(pdev);
1667
1668 if (pci_is_enabled(pdev)) {
1669 pci_disable_pcie_error_reporting(pdev);
1670 pci_disable_device(pdev);
1671 }
1672 }
1673
1674 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1675 {
1676 int i, queues;
1677 u32 csts = -1;
1678
1679 del_timer_sync(&dev->watchdog_timer);
1680
1681 mutex_lock(&dev->shutdown_lock);
1682 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1683 nvme_stop_queues(&dev->ctrl);
1684 csts = readl(dev->bar + NVME_REG_CSTS);
1685 }
1686
1687 queues = dev->online_queues - 1;
1688 for (i = dev->queue_count - 1; i > 0; i--)
1689 nvme_suspend_queue(dev->queues[i]);
1690
1691 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1692 /* A device might become IO incapable very soon during
1693 * probe, before the admin queue is configured. Thus,
1694 * queue_count can be 0 here.
1695 */
1696 if (dev->queue_count)
1697 nvme_suspend_queue(dev->queues[0]);
1698 } else {
1699 nvme_disable_io_queues(dev, queues);
1700 nvme_disable_admin_queue(dev, shutdown);
1701 }
1702 nvme_pci_disable(dev);
1703
1704 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1705 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1706 mutex_unlock(&dev->shutdown_lock);
1707 }
1708
1709 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1710 {
1711 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1712 PAGE_SIZE, PAGE_SIZE, 0);
1713 if (!dev->prp_page_pool)
1714 return -ENOMEM;
1715
1716 /* Optimisation for I/Os between 4k and 128k */
1717 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1718 256, 256, 0);
1719 if (!dev->prp_small_pool) {
1720 dma_pool_destroy(dev->prp_page_pool);
1721 return -ENOMEM;
1722 }
1723 return 0;
1724 }
1725
1726 static void nvme_release_prp_pools(struct nvme_dev *dev)
1727 {
1728 dma_pool_destroy(dev->prp_page_pool);
1729 dma_pool_destroy(dev->prp_small_pool);
1730 }
1731
1732 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1733 {
1734 struct nvme_dev *dev = to_nvme_dev(ctrl);
1735
1736 put_device(dev->dev);
1737 if (dev->tagset.tags)
1738 blk_mq_free_tag_set(&dev->tagset);
1739 if (dev->ctrl.admin_q)
1740 blk_put_queue(dev->ctrl.admin_q);
1741 kfree(dev->queues);
1742 kfree(dev);
1743 }
1744
1745 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1746 {
1747 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1748
1749 kref_get(&dev->ctrl.kref);
1750 nvme_dev_disable(dev, false);
1751 if (!schedule_work(&dev->remove_work))
1752 nvme_put_ctrl(&dev->ctrl);
1753 }
1754
1755 static void nvme_reset_work(struct work_struct *work)
1756 {
1757 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1758 int result = -ENODEV;
1759
1760 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1761 goto out;
1762
1763 /*
1764 * If we're called to reset a live controller first shut it down before
1765 * moving on.
1766 */
1767 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1768 nvme_dev_disable(dev, false);
1769
1770 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1771 goto out;
1772
1773 result = nvme_pci_enable(dev);
1774 if (result)
1775 goto out;
1776
1777 result = nvme_configure_admin_queue(dev);
1778 if (result)
1779 goto out;
1780
1781 nvme_init_queue(dev->queues[0], 0);
1782 result = nvme_alloc_admin_tags(dev);
1783 if (result)
1784 goto out;
1785
1786 result = nvme_init_identify(&dev->ctrl);
1787 if (result)
1788 goto out;
1789
1790 result = nvme_setup_io_queues(dev);
1791 if (result)
1792 goto out;
1793
1794 /*
1795 * A controller that can not execute IO typically requires user
1796 * intervention to correct. For such degraded controllers, the driver
1797 * should not submit commands the user did not request, so skip
1798 * registering for asynchronous event notification on this condition.
1799 */
1800 if (dev->online_queues > 1)
1801 nvme_queue_async_events(&dev->ctrl);
1802
1803 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1804
1805 /*
1806 * Keep the controller around but remove all namespaces if we don't have
1807 * any working I/O queue.
1808 */
1809 if (dev->online_queues < 2) {
1810 dev_warn(dev->ctrl.device, "IO queues not created\n");
1811 nvme_kill_queues(&dev->ctrl);
1812 nvme_remove_namespaces(&dev->ctrl);
1813 } else {
1814 nvme_start_queues(&dev->ctrl);
1815 nvme_dev_add(dev);
1816 }
1817
1818 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1819 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1820 goto out;
1821 }
1822
1823 if (dev->online_queues > 1)
1824 nvme_queue_scan(&dev->ctrl);
1825 return;
1826
1827 out:
1828 nvme_remove_dead_ctrl(dev, result);
1829 }
1830
1831 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1832 {
1833 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1834 struct pci_dev *pdev = to_pci_dev(dev->dev);
1835
1836 nvme_kill_queues(&dev->ctrl);
1837 if (pci_get_drvdata(pdev))
1838 device_release_driver(&pdev->dev);
1839 nvme_put_ctrl(&dev->ctrl);
1840 }
1841
1842 static int nvme_reset(struct nvme_dev *dev)
1843 {
1844 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1845 return -ENODEV;
1846 if (work_busy(&dev->reset_work))
1847 return -ENODEV;
1848 if (!queue_work(nvme_workq, &dev->reset_work))
1849 return -EBUSY;
1850 return 0;
1851 }
1852
1853 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1854 {
1855 *val = readl(to_nvme_dev(ctrl)->bar + off);
1856 return 0;
1857 }
1858
1859 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1860 {
1861 writel(val, to_nvme_dev(ctrl)->bar + off);
1862 return 0;
1863 }
1864
1865 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1866 {
1867 *val = readq(to_nvme_dev(ctrl)->bar + off);
1868 return 0;
1869 }
1870
1871 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1872 {
1873 struct nvme_dev *dev = to_nvme_dev(ctrl);
1874 int ret = nvme_reset(dev);
1875
1876 if (!ret)
1877 flush_work(&dev->reset_work);
1878 return ret;
1879 }
1880
1881 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1882 .name = "pcie",
1883 .module = THIS_MODULE,
1884 .reg_read32 = nvme_pci_reg_read32,
1885 .reg_write32 = nvme_pci_reg_write32,
1886 .reg_read64 = nvme_pci_reg_read64,
1887 .reset_ctrl = nvme_pci_reset_ctrl,
1888 .free_ctrl = nvme_pci_free_ctrl,
1889 .submit_async_event = nvme_pci_submit_async_event,
1890 };
1891
1892 static int nvme_dev_map(struct nvme_dev *dev)
1893 {
1894 struct pci_dev *pdev = to_pci_dev(dev->dev);
1895
1896 if (pci_request_mem_regions(pdev, "nvme"))
1897 return -ENODEV;
1898
1899 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1900 if (!dev->bar)
1901 goto release;
1902
1903 return 0;
1904 release:
1905 pci_release_mem_regions(pdev);
1906 return -ENODEV;
1907 }
1908
1909 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1910 {
1911 int node, result = -ENOMEM;
1912 struct nvme_dev *dev;
1913
1914 node = dev_to_node(&pdev->dev);
1915 if (node == NUMA_NO_NODE)
1916 set_dev_node(&pdev->dev, first_memory_node);
1917
1918 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1919 if (!dev)
1920 return -ENOMEM;
1921 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1922 GFP_KERNEL, node);
1923 if (!dev->queues)
1924 goto free;
1925
1926 dev->dev = get_device(&pdev->dev);
1927 pci_set_drvdata(pdev, dev);
1928
1929 result = nvme_dev_map(dev);
1930 if (result)
1931 goto free;
1932
1933 INIT_WORK(&dev->reset_work, nvme_reset_work);
1934 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1935 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1936 (unsigned long)dev);
1937 mutex_init(&dev->shutdown_lock);
1938 init_completion(&dev->ioq_wait);
1939
1940 result = nvme_setup_prp_pools(dev);
1941 if (result)
1942 goto put_pci;
1943
1944 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1945 id->driver_data);
1946 if (result)
1947 goto release_pools;
1948
1949 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1950
1951 queue_work(nvme_workq, &dev->reset_work);
1952 return 0;
1953
1954 release_pools:
1955 nvme_release_prp_pools(dev);
1956 put_pci:
1957 put_device(dev->dev);
1958 nvme_dev_unmap(dev);
1959 free:
1960 kfree(dev->queues);
1961 kfree(dev);
1962 return result;
1963 }
1964
1965 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1966 {
1967 struct nvme_dev *dev = pci_get_drvdata(pdev);
1968
1969 if (prepare)
1970 nvme_dev_disable(dev, false);
1971 else
1972 nvme_reset(dev);
1973 }
1974
1975 static void nvme_shutdown(struct pci_dev *pdev)
1976 {
1977 struct nvme_dev *dev = pci_get_drvdata(pdev);
1978 nvme_dev_disable(dev, true);
1979 }
1980
1981 /*
1982 * The driver's remove may be called on a device in a partially initialized
1983 * state. This function must not have any dependencies on the device state in
1984 * order to proceed.
1985 */
1986 static void nvme_remove(struct pci_dev *pdev)
1987 {
1988 struct nvme_dev *dev = pci_get_drvdata(pdev);
1989
1990 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1991
1992 pci_set_drvdata(pdev, NULL);
1993
1994 if (!pci_device_is_present(pdev))
1995 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1996
1997 flush_work(&dev->reset_work);
1998 nvme_uninit_ctrl(&dev->ctrl);
1999 nvme_dev_disable(dev, true);
2000 nvme_dev_remove_admin(dev);
2001 nvme_free_queues(dev, 0);
2002 nvme_release_cmb(dev);
2003 nvme_release_prp_pools(dev);
2004 nvme_dev_unmap(dev);
2005 nvme_put_ctrl(&dev->ctrl);
2006 }
2007
2008 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2009 {
2010 int ret = 0;
2011
2012 if (numvfs == 0) {
2013 if (pci_vfs_assigned(pdev)) {
2014 dev_warn(&pdev->dev,
2015 "Cannot disable SR-IOV VFs while assigned\n");
2016 return -EPERM;
2017 }
2018 pci_disable_sriov(pdev);
2019 return 0;
2020 }
2021
2022 ret = pci_enable_sriov(pdev, numvfs);
2023 return ret ? ret : numvfs;
2024 }
2025
2026 #ifdef CONFIG_PM_SLEEP
2027 static int nvme_suspend(struct device *dev)
2028 {
2029 struct pci_dev *pdev = to_pci_dev(dev);
2030 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2031
2032 nvme_dev_disable(ndev, true);
2033 return 0;
2034 }
2035
2036 static int nvme_resume(struct device *dev)
2037 {
2038 struct pci_dev *pdev = to_pci_dev(dev);
2039 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2040
2041 nvme_reset(ndev);
2042 return 0;
2043 }
2044 #endif
2045
2046 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2047
2048 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2049 pci_channel_state_t state)
2050 {
2051 struct nvme_dev *dev = pci_get_drvdata(pdev);
2052
2053 /*
2054 * A frozen channel requires a reset. When detected, this method will
2055 * shutdown the controller to quiesce. The controller will be restarted
2056 * after the slot reset through driver's slot_reset callback.
2057 */
2058 switch (state) {
2059 case pci_channel_io_normal:
2060 return PCI_ERS_RESULT_CAN_RECOVER;
2061 case pci_channel_io_frozen:
2062 dev_warn(dev->ctrl.device,
2063 "frozen state error detected, reset controller\n");
2064 nvme_dev_disable(dev, false);
2065 return PCI_ERS_RESULT_NEED_RESET;
2066 case pci_channel_io_perm_failure:
2067 dev_warn(dev->ctrl.device,
2068 "failure state error detected, request disconnect\n");
2069 return PCI_ERS_RESULT_DISCONNECT;
2070 }
2071 return PCI_ERS_RESULT_NEED_RESET;
2072 }
2073
2074 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2075 {
2076 struct nvme_dev *dev = pci_get_drvdata(pdev);
2077
2078 dev_info(dev->ctrl.device, "restart after slot reset\n");
2079 pci_restore_state(pdev);
2080 nvme_reset(dev);
2081 return PCI_ERS_RESULT_RECOVERED;
2082 }
2083
2084 static void nvme_error_resume(struct pci_dev *pdev)
2085 {
2086 pci_cleanup_aer_uncorrect_error_status(pdev);
2087 }
2088
2089 static const struct pci_error_handlers nvme_err_handler = {
2090 .error_detected = nvme_error_detected,
2091 .slot_reset = nvme_slot_reset,
2092 .resume = nvme_error_resume,
2093 .reset_notify = nvme_reset_notify,
2094 };
2095
2096 static const struct pci_device_id nvme_id_table[] = {
2097 { PCI_VDEVICE(INTEL, 0x0953),
2098 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2099 NVME_QUIRK_DISCARD_ZEROES, },
2100 { PCI_VDEVICE(INTEL, 0x0a53),
2101 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2102 NVME_QUIRK_DISCARD_ZEROES, },
2103 { PCI_VDEVICE(INTEL, 0x0a54),
2104 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2105 NVME_QUIRK_DISCARD_ZEROES, },
2106 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2107 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2108 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2109 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2110 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2111 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2112 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2113 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2114 { 0, }
2115 };
2116 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2117
2118 static struct pci_driver nvme_driver = {
2119 .name = "nvme",
2120 .id_table = nvme_id_table,
2121 .probe = nvme_probe,
2122 .remove = nvme_remove,
2123 .shutdown = nvme_shutdown,
2124 .driver = {
2125 .pm = &nvme_dev_pm_ops,
2126 },
2127 .sriov_configure = nvme_pci_sriov_configure,
2128 .err_handler = &nvme_err_handler,
2129 };
2130
2131 static int __init nvme_init(void)
2132 {
2133 int result;
2134
2135 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2136 if (!nvme_workq)
2137 return -ENOMEM;
2138
2139 result = pci_register_driver(&nvme_driver);
2140 if (result)
2141 destroy_workqueue(nvme_workq);
2142 return result;
2143 }
2144
2145 static void __exit nvme_exit(void)
2146 {
2147 pci_unregister_driver(&nvme_driver);
2148 destroy_workqueue(nvme_workq);
2149 _nvme_check_size();
2150 }
2151
2152 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2153 MODULE_LICENSE("GPL");
2154 MODULE_VERSION("1.0");
2155 module_init(nvme_init);
2156 module_exit(nvme_exit);