]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/pci.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/errno.h>
24 #include <linux/fs.h>
25 #include <linux/genhd.h>
26 #include <linux/hdreg.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kernel.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/t10-pi.h>
43 #include <linux/timer.h>
44 #include <linux/types.h>
45 #include <linux/io-64-nonatomic-lo-hi.h>
46 #include <asm/unaligned.h>
47 #include <linux/sed-opal.h>
48
49 #include "nvme.h"
50
51 #define NVME_Q_DEPTH 1024
52 #define NVME_AQ_DEPTH 256
53 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
55
56 /*
57 * We handle AEN commands ourselves and don't even let the
58 * block layer know about them.
59 */
60 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
61
62 static int use_threaded_interrupts;
63 module_param(use_threaded_interrupts, int, 0);
64
65 static bool use_cmb_sqes = true;
66 module_param(use_cmb_sqes, bool, 0644);
67 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
68
69 static struct workqueue_struct *nvme_workq;
70
71 struct nvme_dev;
72 struct nvme_queue;
73
74 static int nvme_reset(struct nvme_dev *dev);
75 static void nvme_process_cq(struct nvme_queue *nvmeq);
76 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
77
78 /*
79 * Represents an NVM Express device. Each nvme_dev is a PCI function.
80 */
81 struct nvme_dev {
82 struct nvme_queue **queues;
83 struct blk_mq_tag_set tagset;
84 struct blk_mq_tag_set admin_tagset;
85 u32 __iomem *dbs;
86 struct device *dev;
87 struct dma_pool *prp_page_pool;
88 struct dma_pool *prp_small_pool;
89 unsigned queue_count;
90 unsigned online_queues;
91 unsigned max_qid;
92 int q_depth;
93 u32 db_stride;
94 void __iomem *bar;
95 struct work_struct reset_work;
96 struct work_struct remove_work;
97 struct timer_list watchdog_timer;
98 struct mutex shutdown_lock;
99 bool subsystem;
100 void __iomem *cmb;
101 dma_addr_t cmb_dma_addr;
102 u64 cmb_size;
103 u32 cmbsz;
104 u32 cmbloc;
105 struct nvme_ctrl ctrl;
106 struct completion ioq_wait;
107 u32 *dbbuf_dbs;
108 dma_addr_t dbbuf_dbs_dma_addr;
109 u32 *dbbuf_eis;
110 dma_addr_t dbbuf_eis_dma_addr;
111 };
112
113 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
114 {
115 return qid * 2 * stride;
116 }
117
118 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
119 {
120 return (qid * 2 + 1) * stride;
121 }
122
123 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
124 {
125 return container_of(ctrl, struct nvme_dev, ctrl);
126 }
127
128 /*
129 * An NVM Express queue. Each device has at least two (one for admin
130 * commands and one for I/O commands).
131 */
132 struct nvme_queue {
133 struct device *q_dmadev;
134 struct nvme_dev *dev;
135 spinlock_t q_lock;
136 struct nvme_command *sq_cmds;
137 struct nvme_command __iomem *sq_cmds_io;
138 volatile struct nvme_completion *cqes;
139 struct blk_mq_tags **tags;
140 dma_addr_t sq_dma_addr;
141 dma_addr_t cq_dma_addr;
142 u32 __iomem *q_db;
143 u16 q_depth;
144 s16 cq_vector;
145 u16 sq_tail;
146 u16 cq_head;
147 u16 qid;
148 u8 cq_phase;
149 u8 cqe_seen;
150 u32 *dbbuf_sq_db;
151 u32 *dbbuf_cq_db;
152 u32 *dbbuf_sq_ei;
153 u32 *dbbuf_cq_ei;
154 };
155
156 /*
157 * The nvme_iod describes the data in an I/O, including the list of PRP
158 * entries. You can't see it in this data structure because C doesn't let
159 * me express that. Use nvme_init_iod to ensure there's enough space
160 * allocated to store the PRP list.
161 */
162 struct nvme_iod {
163 struct nvme_request req;
164 struct nvme_queue *nvmeq;
165 int aborted;
166 int npages; /* In the PRP list. 0 means small pool in use */
167 int nents; /* Used in scatterlist */
168 int length; /* Of data, in bytes */
169 dma_addr_t first_dma;
170 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
171 struct scatterlist *sg;
172 struct scatterlist inline_sg[0];
173 };
174
175 /*
176 * Check we didin't inadvertently grow the command struct
177 */
178 static inline void _nvme_check_size(void)
179 {
180 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
181 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
182 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
189 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
190 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
191 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
192 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
193 }
194
195 static inline unsigned int nvme_dbbuf_size(u32 stride)
196 {
197 return ((num_possible_cpus() + 1) * 8 * stride);
198 }
199
200 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
201 {
202 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
203
204 if (dev->dbbuf_dbs)
205 return 0;
206
207 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
208 &dev->dbbuf_dbs_dma_addr,
209 GFP_KERNEL);
210 if (!dev->dbbuf_dbs)
211 return -ENOMEM;
212 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
213 &dev->dbbuf_eis_dma_addr,
214 GFP_KERNEL);
215 if (!dev->dbbuf_eis) {
216 dma_free_coherent(dev->dev, mem_size,
217 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
218 dev->dbbuf_dbs = NULL;
219 return -ENOMEM;
220 }
221
222 return 0;
223 }
224
225 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
226 {
227 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
228
229 if (dev->dbbuf_dbs) {
230 dma_free_coherent(dev->dev, mem_size,
231 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
232 dev->dbbuf_dbs = NULL;
233 }
234 if (dev->dbbuf_eis) {
235 dma_free_coherent(dev->dev, mem_size,
236 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
237 dev->dbbuf_eis = NULL;
238 }
239 }
240
241 static void nvme_dbbuf_init(struct nvme_dev *dev,
242 struct nvme_queue *nvmeq, int qid)
243 {
244 if (!dev->dbbuf_dbs || !qid)
245 return;
246
247 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
248 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
249 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
250 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
251 }
252
253 static void nvme_dbbuf_set(struct nvme_dev *dev)
254 {
255 struct nvme_command c;
256
257 if (!dev->dbbuf_dbs)
258 return;
259
260 memset(&c, 0, sizeof(c));
261 c.dbbuf.opcode = nvme_admin_dbbuf;
262 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
263 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
264
265 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
266 dev_warn(dev->dev, "unable to set dbbuf\n");
267 /* Free memory and continue on */
268 nvme_dbbuf_dma_free(dev);
269 }
270 }
271
272 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
273 {
274 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
275 }
276
277 /* Update dbbuf and return true if an MMIO is required */
278 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
279 volatile u32 *dbbuf_ei)
280 {
281 if (dbbuf_db) {
282 u16 old_value;
283
284 /*
285 * Ensure that the queue is written before updating
286 * the doorbell in memory
287 */
288 wmb();
289
290 old_value = *dbbuf_db;
291 *dbbuf_db = value;
292
293 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
294 return false;
295 }
296
297 return true;
298 }
299
300 /*
301 * Max size of iod being embedded in the request payload
302 */
303 #define NVME_INT_PAGES 2
304 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
305
306 /*
307 * Will slightly overestimate the number of pages needed. This is OK
308 * as it only leads to a small amount of wasted memory for the lifetime of
309 * the I/O.
310 */
311 static int nvme_npages(unsigned size, struct nvme_dev *dev)
312 {
313 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
314 dev->ctrl.page_size);
315 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
316 }
317
318 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
319 unsigned int size, unsigned int nseg)
320 {
321 return sizeof(__le64 *) * nvme_npages(size, dev) +
322 sizeof(struct scatterlist) * nseg;
323 }
324
325 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
326 {
327 return sizeof(struct nvme_iod) +
328 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
329 }
330
331 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332 unsigned int hctx_idx)
333 {
334 struct nvme_dev *dev = data;
335 struct nvme_queue *nvmeq = dev->queues[0];
336
337 WARN_ON(hctx_idx != 0);
338 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
339 WARN_ON(nvmeq->tags);
340
341 hctx->driver_data = nvmeq;
342 nvmeq->tags = &dev->admin_tagset.tags[0];
343 return 0;
344 }
345
346 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
347 {
348 struct nvme_queue *nvmeq = hctx->driver_data;
349
350 nvmeq->tags = NULL;
351 }
352
353 static int nvme_admin_init_request(struct blk_mq_tag_set *set,
354 struct request *req, unsigned int hctx_idx,
355 unsigned int numa_node)
356 {
357 struct nvme_dev *dev = set->driver_data;
358 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
359 struct nvme_queue *nvmeq = dev->queues[0];
360
361 BUG_ON(!nvmeq);
362 iod->nvmeq = nvmeq;
363 return 0;
364 }
365
366 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
367 unsigned int hctx_idx)
368 {
369 struct nvme_dev *dev = data;
370 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
371
372 if (!nvmeq->tags)
373 nvmeq->tags = &dev->tagset.tags[hctx_idx];
374
375 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
376 hctx->driver_data = nvmeq;
377 return 0;
378 }
379
380 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
381 unsigned int hctx_idx, unsigned int numa_node)
382 {
383 struct nvme_dev *dev = set->driver_data;
384 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
385 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
386
387 BUG_ON(!nvmeq);
388 iod->nvmeq = nvmeq;
389 return 0;
390 }
391
392 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
393 {
394 struct nvme_dev *dev = set->driver_data;
395
396 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
397 }
398
399 /**
400 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
401 * @nvmeq: The queue to use
402 * @cmd: The command to send
403 *
404 * Safe to use from interrupt context
405 */
406 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
407 struct nvme_command *cmd)
408 {
409 u16 tail = nvmeq->sq_tail;
410
411 if (nvmeq->sq_cmds_io)
412 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
413 else
414 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
415
416 if (++tail == nvmeq->q_depth)
417 tail = 0;
418 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
419 nvmeq->dbbuf_sq_ei))
420 writel(tail, nvmeq->q_db);
421 nvmeq->sq_tail = tail;
422 }
423
424 static __le64 **iod_list(struct request *req)
425 {
426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
428 }
429
430 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
431 {
432 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
433 int nseg = blk_rq_nr_phys_segments(rq);
434 unsigned int size = blk_rq_payload_bytes(rq);
435
436 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
437 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
438 if (!iod->sg)
439 return BLK_MQ_RQ_QUEUE_BUSY;
440 } else {
441 iod->sg = iod->inline_sg;
442 }
443
444 iod->aborted = 0;
445 iod->npages = -1;
446 iod->nents = 0;
447 iod->length = size;
448
449 return BLK_MQ_RQ_QUEUE_OK;
450 }
451
452 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
453 {
454 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
455 const int last_prp = dev->ctrl.page_size / 8 - 1;
456 int i;
457 __le64 **list = iod_list(req);
458 dma_addr_t prp_dma = iod->first_dma;
459
460 if (iod->npages == 0)
461 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
462 for (i = 0; i < iod->npages; i++) {
463 __le64 *prp_list = list[i];
464 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
465 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
466 prp_dma = next_prp_dma;
467 }
468
469 if (iod->sg != iod->inline_sg)
470 kfree(iod->sg);
471 }
472
473 #ifdef CONFIG_BLK_DEV_INTEGRITY
474 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
475 {
476 if (be32_to_cpu(pi->ref_tag) == v)
477 pi->ref_tag = cpu_to_be32(p);
478 }
479
480 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
481 {
482 if (be32_to_cpu(pi->ref_tag) == p)
483 pi->ref_tag = cpu_to_be32(v);
484 }
485
486 /**
487 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
488 *
489 * The virtual start sector is the one that was originally submitted by the
490 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
491 * start sector may be different. Remap protection information to match the
492 * physical LBA on writes, and back to the original seed on reads.
493 *
494 * Type 0 and 3 do not have a ref tag, so no remapping required.
495 */
496 static void nvme_dif_remap(struct request *req,
497 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
498 {
499 struct nvme_ns *ns = req->rq_disk->private_data;
500 struct bio_integrity_payload *bip;
501 struct t10_pi_tuple *pi;
502 void *p, *pmap;
503 u32 i, nlb, ts, phys, virt;
504
505 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
506 return;
507
508 bip = bio_integrity(req->bio);
509 if (!bip)
510 return;
511
512 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
513
514 p = pmap;
515 virt = bip_get_seed(bip);
516 phys = nvme_block_nr(ns, blk_rq_pos(req));
517 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
518 ts = ns->disk->queue->integrity.tuple_size;
519
520 for (i = 0; i < nlb; i++, virt++, phys++) {
521 pi = (struct t10_pi_tuple *)p;
522 dif_swap(phys, virt, pi);
523 p += ts;
524 }
525 kunmap_atomic(pmap);
526 }
527 #else /* CONFIG_BLK_DEV_INTEGRITY */
528 static void nvme_dif_remap(struct request *req,
529 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
530 {
531 }
532 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
533 {
534 }
535 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
536 {
537 }
538 #endif
539
540 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
541 {
542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 struct dma_pool *pool;
544 int length = blk_rq_payload_bytes(req);
545 struct scatterlist *sg = iod->sg;
546 int dma_len = sg_dma_len(sg);
547 u64 dma_addr = sg_dma_address(sg);
548 u32 page_size = dev->ctrl.page_size;
549 int offset = dma_addr & (page_size - 1);
550 __le64 *prp_list;
551 __le64 **list = iod_list(req);
552 dma_addr_t prp_dma;
553 int nprps, i;
554
555 length -= (page_size - offset);
556 if (length <= 0)
557 return true;
558
559 dma_len -= (page_size - offset);
560 if (dma_len) {
561 dma_addr += (page_size - offset);
562 } else {
563 sg = sg_next(sg);
564 dma_addr = sg_dma_address(sg);
565 dma_len = sg_dma_len(sg);
566 }
567
568 if (length <= page_size) {
569 iod->first_dma = dma_addr;
570 return true;
571 }
572
573 nprps = DIV_ROUND_UP(length, page_size);
574 if (nprps <= (256 / 8)) {
575 pool = dev->prp_small_pool;
576 iod->npages = 0;
577 } else {
578 pool = dev->prp_page_pool;
579 iod->npages = 1;
580 }
581
582 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
583 if (!prp_list) {
584 iod->first_dma = dma_addr;
585 iod->npages = -1;
586 return false;
587 }
588 list[0] = prp_list;
589 iod->first_dma = prp_dma;
590 i = 0;
591 for (;;) {
592 if (i == page_size >> 3) {
593 __le64 *old_prp_list = prp_list;
594 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
595 if (!prp_list)
596 return false;
597 list[iod->npages++] = prp_list;
598 prp_list[0] = old_prp_list[i - 1];
599 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
600 i = 1;
601 }
602 prp_list[i++] = cpu_to_le64(dma_addr);
603 dma_len -= page_size;
604 dma_addr += page_size;
605 length -= page_size;
606 if (length <= 0)
607 break;
608 if (dma_len > 0)
609 continue;
610 BUG_ON(dma_len < 0);
611 sg = sg_next(sg);
612 dma_addr = sg_dma_address(sg);
613 dma_len = sg_dma_len(sg);
614 }
615
616 return true;
617 }
618
619 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
620 struct nvme_command *cmnd)
621 {
622 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
623 struct request_queue *q = req->q;
624 enum dma_data_direction dma_dir = rq_data_dir(req) ?
625 DMA_TO_DEVICE : DMA_FROM_DEVICE;
626 int ret = BLK_MQ_RQ_QUEUE_ERROR;
627
628 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
629 iod->nents = blk_rq_map_sg(q, req, iod->sg);
630 if (!iod->nents)
631 goto out;
632
633 ret = BLK_MQ_RQ_QUEUE_BUSY;
634 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
635 DMA_ATTR_NO_WARN))
636 goto out;
637
638 if (!nvme_setup_prps(dev, req))
639 goto out_unmap;
640
641 ret = BLK_MQ_RQ_QUEUE_ERROR;
642 if (blk_integrity_rq(req)) {
643 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
644 goto out_unmap;
645
646 sg_init_table(&iod->meta_sg, 1);
647 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
648 goto out_unmap;
649
650 if (rq_data_dir(req))
651 nvme_dif_remap(req, nvme_dif_prep);
652
653 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
654 goto out_unmap;
655 }
656
657 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
658 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
659 if (blk_integrity_rq(req))
660 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
661 return BLK_MQ_RQ_QUEUE_OK;
662
663 out_unmap:
664 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
665 out:
666 return ret;
667 }
668
669 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
670 {
671 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
672 enum dma_data_direction dma_dir = rq_data_dir(req) ?
673 DMA_TO_DEVICE : DMA_FROM_DEVICE;
674
675 if (iod->nents) {
676 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
677 if (blk_integrity_rq(req)) {
678 if (!rq_data_dir(req))
679 nvme_dif_remap(req, nvme_dif_complete);
680 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
681 }
682 }
683
684 nvme_cleanup_cmd(req);
685 nvme_free_iod(dev, req);
686 }
687
688 /*
689 * NOTE: ns is NULL when called on the admin queue.
690 */
691 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
692 const struct blk_mq_queue_data *bd)
693 {
694 struct nvme_ns *ns = hctx->queue->queuedata;
695 struct nvme_queue *nvmeq = hctx->driver_data;
696 struct nvme_dev *dev = nvmeq->dev;
697 struct request *req = bd->rq;
698 struct nvme_command cmnd;
699 int ret = BLK_MQ_RQ_QUEUE_OK;
700
701 /*
702 * If formated with metadata, require the block layer provide a buffer
703 * unless this namespace is formated such that the metadata can be
704 * stripped/generated by the controller with PRACT=1.
705 */
706 if (ns && ns->ms && !blk_integrity_rq(req)) {
707 if (!(ns->pi_type && ns->ms == 8) &&
708 !blk_rq_is_passthrough(req)) {
709 blk_mq_end_request(req, -EFAULT);
710 return BLK_MQ_RQ_QUEUE_OK;
711 }
712 }
713
714 ret = nvme_setup_cmd(ns, req, &cmnd);
715 if (ret != BLK_MQ_RQ_QUEUE_OK)
716 return ret;
717
718 ret = nvme_init_iod(req, dev);
719 if (ret != BLK_MQ_RQ_QUEUE_OK)
720 goto out_free_cmd;
721
722 if (blk_rq_nr_phys_segments(req))
723 ret = nvme_map_data(dev, req, &cmnd);
724
725 if (ret != BLK_MQ_RQ_QUEUE_OK)
726 goto out_cleanup_iod;
727
728 blk_mq_start_request(req);
729
730 spin_lock_irq(&nvmeq->q_lock);
731 if (unlikely(nvmeq->cq_vector < 0)) {
732 ret = BLK_MQ_RQ_QUEUE_ERROR;
733 spin_unlock_irq(&nvmeq->q_lock);
734 goto out_cleanup_iod;
735 }
736 __nvme_submit_cmd(nvmeq, &cmnd);
737 nvme_process_cq(nvmeq);
738 spin_unlock_irq(&nvmeq->q_lock);
739 return BLK_MQ_RQ_QUEUE_OK;
740 out_cleanup_iod:
741 nvme_free_iod(dev, req);
742 out_free_cmd:
743 nvme_cleanup_cmd(req);
744 return ret;
745 }
746
747 static void nvme_pci_complete_rq(struct request *req)
748 {
749 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
750
751 nvme_unmap_data(iod->nvmeq->dev, req);
752 nvme_complete_rq(req);
753 }
754
755 /* We read the CQE phase first to check if the rest of the entry is valid */
756 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
757 u16 phase)
758 {
759 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
760 }
761
762 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
763 {
764 u16 head, phase;
765
766 head = nvmeq->cq_head;
767 phase = nvmeq->cq_phase;
768
769 while (nvme_cqe_valid(nvmeq, head, phase)) {
770 struct nvme_completion cqe = nvmeq->cqes[head];
771 struct request *req;
772
773 if (++head == nvmeq->q_depth) {
774 head = 0;
775 phase = !phase;
776 }
777
778 if (tag && *tag == cqe.command_id)
779 *tag = -1;
780
781 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
782 dev_warn(nvmeq->dev->ctrl.device,
783 "invalid id %d completed on queue %d\n",
784 cqe.command_id, le16_to_cpu(cqe.sq_id));
785 continue;
786 }
787
788 /*
789 * AEN requests are special as they don't time out and can
790 * survive any kind of queue freeze and often don't respond to
791 * aborts. We don't even bother to allocate a struct request
792 * for them but rather special case them here.
793 */
794 if (unlikely(nvmeq->qid == 0 &&
795 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
796 nvme_complete_async_event(&nvmeq->dev->ctrl,
797 cqe.status, &cqe.result);
798 continue;
799 }
800
801 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
802 nvme_end_request(req, cqe.status, cqe.result);
803 }
804
805 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
806 return;
807
808 if (likely(nvmeq->cq_vector >= 0))
809 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
810 nvmeq->dbbuf_cq_ei))
811 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
812 nvmeq->cq_head = head;
813 nvmeq->cq_phase = phase;
814
815 nvmeq->cqe_seen = 1;
816 }
817
818 static void nvme_process_cq(struct nvme_queue *nvmeq)
819 {
820 __nvme_process_cq(nvmeq, NULL);
821 }
822
823 static irqreturn_t nvme_irq(int irq, void *data)
824 {
825 irqreturn_t result;
826 struct nvme_queue *nvmeq = data;
827 spin_lock(&nvmeq->q_lock);
828 nvme_process_cq(nvmeq);
829 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
830 nvmeq->cqe_seen = 0;
831 spin_unlock(&nvmeq->q_lock);
832 return result;
833 }
834
835 static irqreturn_t nvme_irq_check(int irq, void *data)
836 {
837 struct nvme_queue *nvmeq = data;
838 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
839 return IRQ_WAKE_THREAD;
840 return IRQ_NONE;
841 }
842
843 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
844 {
845 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
846 spin_lock_irq(&nvmeq->q_lock);
847 __nvme_process_cq(nvmeq, &tag);
848 spin_unlock_irq(&nvmeq->q_lock);
849
850 if (tag == -1)
851 return 1;
852 }
853
854 return 0;
855 }
856
857 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
858 {
859 struct nvme_queue *nvmeq = hctx->driver_data;
860
861 return __nvme_poll(nvmeq, tag);
862 }
863
864 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
865 {
866 struct nvme_dev *dev = to_nvme_dev(ctrl);
867 struct nvme_queue *nvmeq = dev->queues[0];
868 struct nvme_command c;
869
870 memset(&c, 0, sizeof(c));
871 c.common.opcode = nvme_admin_async_event;
872 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
873
874 spin_lock_irq(&nvmeq->q_lock);
875 __nvme_submit_cmd(nvmeq, &c);
876 spin_unlock_irq(&nvmeq->q_lock);
877 }
878
879 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
880 {
881 struct nvme_command c;
882
883 memset(&c, 0, sizeof(c));
884 c.delete_queue.opcode = opcode;
885 c.delete_queue.qid = cpu_to_le16(id);
886
887 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
888 }
889
890 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
891 struct nvme_queue *nvmeq)
892 {
893 struct nvme_command c;
894 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
895
896 /*
897 * Note: we (ab)use the fact the the prp fields survive if no data
898 * is attached to the request.
899 */
900 memset(&c, 0, sizeof(c));
901 c.create_cq.opcode = nvme_admin_create_cq;
902 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
903 c.create_cq.cqid = cpu_to_le16(qid);
904 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
905 c.create_cq.cq_flags = cpu_to_le16(flags);
906 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
907
908 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
909 }
910
911 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
912 struct nvme_queue *nvmeq)
913 {
914 struct nvme_command c;
915 int flags = NVME_QUEUE_PHYS_CONTIG;
916
917 /*
918 * Note: we (ab)use the fact the the prp fields survive if no data
919 * is attached to the request.
920 */
921 memset(&c, 0, sizeof(c));
922 c.create_sq.opcode = nvme_admin_create_sq;
923 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
924 c.create_sq.sqid = cpu_to_le16(qid);
925 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
926 c.create_sq.sq_flags = cpu_to_le16(flags);
927 c.create_sq.cqid = cpu_to_le16(qid);
928
929 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
930 }
931
932 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
933 {
934 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
935 }
936
937 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
938 {
939 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
940 }
941
942 static void abort_endio(struct request *req, int error)
943 {
944 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
945 struct nvme_queue *nvmeq = iod->nvmeq;
946
947 dev_warn(nvmeq->dev->ctrl.device,
948 "Abort status: 0x%x", nvme_req(req)->status);
949 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
950 blk_mq_free_request(req);
951 }
952
953 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
954 {
955 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
956 struct nvme_queue *nvmeq = iod->nvmeq;
957 struct nvme_dev *dev = nvmeq->dev;
958 struct request *abort_req;
959 struct nvme_command cmd;
960
961 /*
962 * Did we miss an interrupt?
963 */
964 if (__nvme_poll(nvmeq, req->tag)) {
965 dev_warn(dev->ctrl.device,
966 "I/O %d QID %d timeout, completion polled\n",
967 req->tag, nvmeq->qid);
968 return BLK_EH_HANDLED;
969 }
970
971 /*
972 * Shutdown immediately if controller times out while starting. The
973 * reset work will see the pci device disabled when it gets the forced
974 * cancellation error. All outstanding requests are completed on
975 * shutdown, so we return BLK_EH_HANDLED.
976 */
977 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
978 dev_warn(dev->ctrl.device,
979 "I/O %d QID %d timeout, disable controller\n",
980 req->tag, nvmeq->qid);
981 nvme_dev_disable(dev, false);
982 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
983 return BLK_EH_HANDLED;
984 }
985
986 /*
987 * Shutdown the controller immediately and schedule a reset if the
988 * command was already aborted once before and still hasn't been
989 * returned to the driver, or if this is the admin queue.
990 */
991 if (!nvmeq->qid || iod->aborted) {
992 dev_warn(dev->ctrl.device,
993 "I/O %d QID %d timeout, reset controller\n",
994 req->tag, nvmeq->qid);
995 nvme_dev_disable(dev, false);
996 nvme_reset(dev);
997
998 /*
999 * Mark the request as handled, since the inline shutdown
1000 * forces all outstanding requests to complete.
1001 */
1002 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1003 return BLK_EH_HANDLED;
1004 }
1005
1006 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1007 atomic_inc(&dev->ctrl.abort_limit);
1008 return BLK_EH_RESET_TIMER;
1009 }
1010 iod->aborted = 1;
1011
1012 memset(&cmd, 0, sizeof(cmd));
1013 cmd.abort.opcode = nvme_admin_abort_cmd;
1014 cmd.abort.cid = req->tag;
1015 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1016
1017 dev_warn(nvmeq->dev->ctrl.device,
1018 "I/O %d QID %d timeout, aborting\n",
1019 req->tag, nvmeq->qid);
1020
1021 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1022 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1023 if (IS_ERR(abort_req)) {
1024 atomic_inc(&dev->ctrl.abort_limit);
1025 return BLK_EH_RESET_TIMER;
1026 }
1027
1028 abort_req->timeout = ADMIN_TIMEOUT;
1029 abort_req->end_io_data = NULL;
1030 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1031
1032 /*
1033 * The aborted req will be completed on receiving the abort req.
1034 * We enable the timer again. If hit twice, it'll cause a device reset,
1035 * as the device then is in a faulty state.
1036 */
1037 return BLK_EH_RESET_TIMER;
1038 }
1039
1040 static void nvme_free_queue(struct nvme_queue *nvmeq)
1041 {
1042 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1043 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1044 if (nvmeq->sq_cmds)
1045 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1046 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1047 kfree(nvmeq);
1048 }
1049
1050 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1051 {
1052 int i;
1053
1054 for (i = dev->queue_count - 1; i >= lowest; i--) {
1055 struct nvme_queue *nvmeq = dev->queues[i];
1056 dev->queue_count--;
1057 dev->queues[i] = NULL;
1058 nvme_free_queue(nvmeq);
1059 }
1060 }
1061
1062 /**
1063 * nvme_suspend_queue - put queue into suspended state
1064 * @nvmeq - queue to suspend
1065 */
1066 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1067 {
1068 int vector;
1069
1070 spin_lock_irq(&nvmeq->q_lock);
1071 if (nvmeq->cq_vector == -1) {
1072 spin_unlock_irq(&nvmeq->q_lock);
1073 return 1;
1074 }
1075 vector = nvmeq->cq_vector;
1076 nvmeq->dev->online_queues--;
1077 nvmeq->cq_vector = -1;
1078 spin_unlock_irq(&nvmeq->q_lock);
1079
1080 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1081 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1082
1083 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1084
1085 return 0;
1086 }
1087
1088 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1089 {
1090 struct nvme_queue *nvmeq = dev->queues[0];
1091
1092 if (!nvmeq)
1093 return;
1094 if (nvme_suspend_queue(nvmeq))
1095 return;
1096
1097 if (shutdown)
1098 nvme_shutdown_ctrl(&dev->ctrl);
1099 else
1100 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1101 dev->bar + NVME_REG_CAP));
1102
1103 spin_lock_irq(&nvmeq->q_lock);
1104 nvme_process_cq(nvmeq);
1105 spin_unlock_irq(&nvmeq->q_lock);
1106 }
1107
1108 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1109 int entry_size)
1110 {
1111 int q_depth = dev->q_depth;
1112 unsigned q_size_aligned = roundup(q_depth * entry_size,
1113 dev->ctrl.page_size);
1114
1115 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1116 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1117 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1118 q_depth = div_u64(mem_per_q, entry_size);
1119
1120 /*
1121 * Ensure the reduced q_depth is above some threshold where it
1122 * would be better to map queues in system memory with the
1123 * original depth
1124 */
1125 if (q_depth < 64)
1126 return -ENOMEM;
1127 }
1128
1129 return q_depth;
1130 }
1131
1132 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1133 int qid, int depth)
1134 {
1135 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1136 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1137 dev->ctrl.page_size);
1138 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1139 nvmeq->sq_cmds_io = dev->cmb + offset;
1140 } else {
1141 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1142 &nvmeq->sq_dma_addr, GFP_KERNEL);
1143 if (!nvmeq->sq_cmds)
1144 return -ENOMEM;
1145 }
1146
1147 return 0;
1148 }
1149
1150 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1151 int depth, int node)
1152 {
1153 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1154 node);
1155 if (!nvmeq)
1156 return NULL;
1157
1158 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1159 &nvmeq->cq_dma_addr, GFP_KERNEL);
1160 if (!nvmeq->cqes)
1161 goto free_nvmeq;
1162
1163 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1164 goto free_cqdma;
1165
1166 nvmeq->q_dmadev = dev->dev;
1167 nvmeq->dev = dev;
1168 spin_lock_init(&nvmeq->q_lock);
1169 nvmeq->cq_head = 0;
1170 nvmeq->cq_phase = 1;
1171 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1172 nvmeq->q_depth = depth;
1173 nvmeq->qid = qid;
1174 nvmeq->cq_vector = -1;
1175 dev->queues[qid] = nvmeq;
1176 dev->queue_count++;
1177
1178 return nvmeq;
1179
1180 free_cqdma:
1181 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1182 nvmeq->cq_dma_addr);
1183 free_nvmeq:
1184 kfree(nvmeq);
1185 return NULL;
1186 }
1187
1188 static int queue_request_irq(struct nvme_queue *nvmeq)
1189 {
1190 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1191 int nr = nvmeq->dev->ctrl.instance;
1192
1193 if (use_threaded_interrupts) {
1194 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1195 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1196 } else {
1197 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1198 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1199 }
1200 }
1201
1202 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1203 {
1204 struct nvme_dev *dev = nvmeq->dev;
1205
1206 spin_lock_irq(&nvmeq->q_lock);
1207 nvmeq->sq_tail = 0;
1208 nvmeq->cq_head = 0;
1209 nvmeq->cq_phase = 1;
1210 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1211 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1212 nvme_dbbuf_init(dev, nvmeq, qid);
1213 dev->online_queues++;
1214 spin_unlock_irq(&nvmeq->q_lock);
1215 }
1216
1217 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1218 {
1219 struct nvme_dev *dev = nvmeq->dev;
1220 int result;
1221
1222 nvmeq->cq_vector = qid - 1;
1223 result = adapter_alloc_cq(dev, qid, nvmeq);
1224 if (result < 0)
1225 return result;
1226
1227 result = adapter_alloc_sq(dev, qid, nvmeq);
1228 if (result < 0)
1229 goto release_cq;
1230
1231 result = queue_request_irq(nvmeq);
1232 if (result < 0)
1233 goto release_sq;
1234
1235 nvme_init_queue(nvmeq, qid);
1236 return result;
1237
1238 release_sq:
1239 adapter_delete_sq(dev, qid);
1240 release_cq:
1241 adapter_delete_cq(dev, qid);
1242 return result;
1243 }
1244
1245 static const struct blk_mq_ops nvme_mq_admin_ops = {
1246 .queue_rq = nvme_queue_rq,
1247 .complete = nvme_pci_complete_rq,
1248 .init_hctx = nvme_admin_init_hctx,
1249 .exit_hctx = nvme_admin_exit_hctx,
1250 .init_request = nvme_admin_init_request,
1251 .timeout = nvme_timeout,
1252 };
1253
1254 static const struct blk_mq_ops nvme_mq_ops = {
1255 .queue_rq = nvme_queue_rq,
1256 .complete = nvme_pci_complete_rq,
1257 .init_hctx = nvme_init_hctx,
1258 .init_request = nvme_init_request,
1259 .map_queues = nvme_pci_map_queues,
1260 .timeout = nvme_timeout,
1261 .poll = nvme_poll,
1262 };
1263
1264 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1265 {
1266 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1267 /*
1268 * If the controller was reset during removal, it's possible
1269 * user requests may be waiting on a stopped queue. Start the
1270 * queue to flush these to completion.
1271 */
1272 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1273 blk_cleanup_queue(dev->ctrl.admin_q);
1274 blk_mq_free_tag_set(&dev->admin_tagset);
1275 }
1276 }
1277
1278 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1279 {
1280 if (!dev->ctrl.admin_q) {
1281 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1282 dev->admin_tagset.nr_hw_queues = 1;
1283
1284 /*
1285 * Subtract one to leave an empty queue entry for 'Full Queue'
1286 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1287 */
1288 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1289 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1290 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1291 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1292 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1293 dev->admin_tagset.driver_data = dev;
1294
1295 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1296 return -ENOMEM;
1297
1298 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1299 if (IS_ERR(dev->ctrl.admin_q)) {
1300 blk_mq_free_tag_set(&dev->admin_tagset);
1301 return -ENOMEM;
1302 }
1303 if (!blk_get_queue(dev->ctrl.admin_q)) {
1304 nvme_dev_remove_admin(dev);
1305 dev->ctrl.admin_q = NULL;
1306 return -ENODEV;
1307 }
1308 } else
1309 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1310
1311 return 0;
1312 }
1313
1314 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1315 {
1316 int result;
1317 u32 aqa;
1318 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1319 struct nvme_queue *nvmeq;
1320
1321 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1322 NVME_CAP_NSSRC(cap) : 0;
1323
1324 if (dev->subsystem &&
1325 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1326 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1327
1328 result = nvme_disable_ctrl(&dev->ctrl, cap);
1329 if (result < 0)
1330 return result;
1331
1332 nvmeq = dev->queues[0];
1333 if (!nvmeq) {
1334 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1335 dev_to_node(dev->dev));
1336 if (!nvmeq)
1337 return -ENOMEM;
1338 }
1339
1340 aqa = nvmeq->q_depth - 1;
1341 aqa |= aqa << 16;
1342
1343 writel(aqa, dev->bar + NVME_REG_AQA);
1344 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1345 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1346
1347 result = nvme_enable_ctrl(&dev->ctrl, cap);
1348 if (result)
1349 return result;
1350
1351 nvmeq->cq_vector = 0;
1352 result = queue_request_irq(nvmeq);
1353 if (result) {
1354 nvmeq->cq_vector = -1;
1355 return result;
1356 }
1357
1358 return result;
1359 }
1360
1361 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1362 {
1363
1364 /* If true, indicates loss of adapter communication, possibly by a
1365 * NVMe Subsystem reset.
1366 */
1367 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1368
1369 /* If there is a reset ongoing, we shouldn't reset again. */
1370 if (work_busy(&dev->reset_work))
1371 return false;
1372
1373 /* We shouldn't reset unless the controller is on fatal error state
1374 * _or_ if we lost the communication with it.
1375 */
1376 if (!(csts & NVME_CSTS_CFS) && !nssro)
1377 return false;
1378
1379 /* If PCI error recovery process is happening, we cannot reset or
1380 * the recovery mechanism will surely fail.
1381 */
1382 if (pci_channel_offline(to_pci_dev(dev->dev)))
1383 return false;
1384
1385 return true;
1386 }
1387
1388 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1389 {
1390 /* Read a config register to help see what died. */
1391 u16 pci_status;
1392 int result;
1393
1394 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1395 &pci_status);
1396 if (result == PCIBIOS_SUCCESSFUL)
1397 dev_warn(dev->dev,
1398 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1399 csts, pci_status);
1400 else
1401 dev_warn(dev->dev,
1402 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1403 csts, result);
1404 }
1405
1406 static void nvme_watchdog_timer(unsigned long data)
1407 {
1408 struct nvme_dev *dev = (struct nvme_dev *)data;
1409 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1410
1411 /* Skip controllers under certain specific conditions. */
1412 if (nvme_should_reset(dev, csts)) {
1413 if (!nvme_reset(dev))
1414 nvme_warn_reset(dev, csts);
1415 return;
1416 }
1417
1418 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1419 }
1420
1421 static int nvme_create_io_queues(struct nvme_dev *dev)
1422 {
1423 unsigned i, max;
1424 int ret = 0;
1425
1426 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1427 /* vector == qid - 1, match nvme_create_queue */
1428 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1429 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1430 ret = -ENOMEM;
1431 break;
1432 }
1433 }
1434
1435 max = min(dev->max_qid, dev->queue_count - 1);
1436 for (i = dev->online_queues; i <= max; i++) {
1437 ret = nvme_create_queue(dev->queues[i], i);
1438 if (ret)
1439 break;
1440 }
1441
1442 /*
1443 * Ignore failing Create SQ/CQ commands, we can continue with less
1444 * than the desired aount of queues, and even a controller without
1445 * I/O queues an still be used to issue admin commands. This might
1446 * be useful to upgrade a buggy firmware for example.
1447 */
1448 return ret >= 0 ? 0 : ret;
1449 }
1450
1451 static ssize_t nvme_cmb_show(struct device *dev,
1452 struct device_attribute *attr,
1453 char *buf)
1454 {
1455 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1456
1457 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1458 ndev->cmbloc, ndev->cmbsz);
1459 }
1460 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1461
1462 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1463 {
1464 u64 szu, size, offset;
1465 resource_size_t bar_size;
1466 struct pci_dev *pdev = to_pci_dev(dev->dev);
1467 void __iomem *cmb;
1468 dma_addr_t dma_addr;
1469
1470 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1471 if (!(NVME_CMB_SZ(dev->cmbsz)))
1472 return NULL;
1473 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1474
1475 if (!use_cmb_sqes)
1476 return NULL;
1477
1478 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1479 size = szu * NVME_CMB_SZ(dev->cmbsz);
1480 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1481 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1482
1483 if (offset > bar_size)
1484 return NULL;
1485
1486 /*
1487 * Controllers may support a CMB size larger than their BAR,
1488 * for example, due to being behind a bridge. Reduce the CMB to
1489 * the reported size of the BAR
1490 */
1491 if (size > bar_size - offset)
1492 size = bar_size - offset;
1493
1494 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1495 cmb = ioremap_wc(dma_addr, size);
1496 if (!cmb)
1497 return NULL;
1498
1499 dev->cmb_dma_addr = dma_addr;
1500 dev->cmb_size = size;
1501 return cmb;
1502 }
1503
1504 static inline void nvme_release_cmb(struct nvme_dev *dev)
1505 {
1506 if (dev->cmb) {
1507 iounmap(dev->cmb);
1508 dev->cmb = NULL;
1509 }
1510 }
1511
1512 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1513 {
1514 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1515 }
1516
1517 static int nvme_setup_io_queues(struct nvme_dev *dev)
1518 {
1519 struct nvme_queue *adminq = dev->queues[0];
1520 struct pci_dev *pdev = to_pci_dev(dev->dev);
1521 int result, nr_io_queues, size;
1522
1523 nr_io_queues = num_online_cpus();
1524 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1525 if (result < 0)
1526 return result;
1527
1528 if (nr_io_queues == 0)
1529 return 0;
1530
1531 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1532 result = nvme_cmb_qdepth(dev, nr_io_queues,
1533 sizeof(struct nvme_command));
1534 if (result > 0)
1535 dev->q_depth = result;
1536 else
1537 nvme_release_cmb(dev);
1538 }
1539
1540 size = db_bar_size(dev, nr_io_queues);
1541 if (size > 8192) {
1542 iounmap(dev->bar);
1543 do {
1544 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1545 if (dev->bar)
1546 break;
1547 if (!--nr_io_queues)
1548 return -ENOMEM;
1549 size = db_bar_size(dev, nr_io_queues);
1550 } while (1);
1551 dev->dbs = dev->bar + 4096;
1552 adminq->q_db = dev->dbs;
1553 }
1554
1555 /* Deregister the admin queue's interrupt */
1556 pci_free_irq(pdev, 0, adminq);
1557
1558 /*
1559 * If we enable msix early due to not intx, disable it again before
1560 * setting up the full range we need.
1561 */
1562 pci_free_irq_vectors(pdev);
1563 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1564 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1565 if (nr_io_queues <= 0)
1566 return -EIO;
1567 dev->max_qid = nr_io_queues;
1568
1569 /*
1570 * Should investigate if there's a performance win from allocating
1571 * more queues than interrupt vectors; it might allow the submission
1572 * path to scale better, even if the receive path is limited by the
1573 * number of interrupts.
1574 */
1575
1576 result = queue_request_irq(adminq);
1577 if (result) {
1578 adminq->cq_vector = -1;
1579 return result;
1580 }
1581 return nvme_create_io_queues(dev);
1582 }
1583
1584 static void nvme_del_queue_end(struct request *req, int error)
1585 {
1586 struct nvme_queue *nvmeq = req->end_io_data;
1587
1588 blk_mq_free_request(req);
1589 complete(&nvmeq->dev->ioq_wait);
1590 }
1591
1592 static void nvme_del_cq_end(struct request *req, int error)
1593 {
1594 struct nvme_queue *nvmeq = req->end_io_data;
1595
1596 if (!error) {
1597 unsigned long flags;
1598
1599 /*
1600 * We might be called with the AQ q_lock held
1601 * and the I/O queue q_lock should always
1602 * nest inside the AQ one.
1603 */
1604 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1605 SINGLE_DEPTH_NESTING);
1606 nvme_process_cq(nvmeq);
1607 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1608 }
1609
1610 nvme_del_queue_end(req, error);
1611 }
1612
1613 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1614 {
1615 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1616 struct request *req;
1617 struct nvme_command cmd;
1618
1619 memset(&cmd, 0, sizeof(cmd));
1620 cmd.delete_queue.opcode = opcode;
1621 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1622
1623 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1624 if (IS_ERR(req))
1625 return PTR_ERR(req);
1626
1627 req->timeout = ADMIN_TIMEOUT;
1628 req->end_io_data = nvmeq;
1629
1630 blk_execute_rq_nowait(q, NULL, req, false,
1631 opcode == nvme_admin_delete_cq ?
1632 nvme_del_cq_end : nvme_del_queue_end);
1633 return 0;
1634 }
1635
1636 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1637 {
1638 int pass;
1639 unsigned long timeout;
1640 u8 opcode = nvme_admin_delete_sq;
1641
1642 for (pass = 0; pass < 2; pass++) {
1643 int sent = 0, i = queues;
1644
1645 reinit_completion(&dev->ioq_wait);
1646 retry:
1647 timeout = ADMIN_TIMEOUT;
1648 for (; i > 0; i--, sent++)
1649 if (nvme_delete_queue(dev->queues[i], opcode))
1650 break;
1651
1652 while (sent--) {
1653 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1654 if (timeout == 0)
1655 return;
1656 if (i)
1657 goto retry;
1658 }
1659 opcode = nvme_admin_delete_cq;
1660 }
1661 }
1662
1663 /*
1664 * Return: error value if an error occurred setting up the queues or calling
1665 * Identify Device. 0 if these succeeded, even if adding some of the
1666 * namespaces failed. At the moment, these failures are silent. TBD which
1667 * failures should be reported.
1668 */
1669 static int nvme_dev_add(struct nvme_dev *dev)
1670 {
1671 if (!dev->ctrl.tagset) {
1672 dev->tagset.ops = &nvme_mq_ops;
1673 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1674 dev->tagset.timeout = NVME_IO_TIMEOUT;
1675 dev->tagset.numa_node = dev_to_node(dev->dev);
1676 dev->tagset.queue_depth =
1677 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1678 dev->tagset.cmd_size = nvme_cmd_size(dev);
1679 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1680 dev->tagset.driver_data = dev;
1681
1682 if (blk_mq_alloc_tag_set(&dev->tagset))
1683 return 0;
1684 dev->ctrl.tagset = &dev->tagset;
1685
1686 nvme_dbbuf_set(dev);
1687 } else {
1688 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1689
1690 /* Free previously allocated queues that are no longer usable */
1691 nvme_free_queues(dev, dev->online_queues);
1692 }
1693
1694 return 0;
1695 }
1696
1697 static int nvme_pci_enable(struct nvme_dev *dev)
1698 {
1699 u64 cap;
1700 int result = -ENOMEM;
1701 struct pci_dev *pdev = to_pci_dev(dev->dev);
1702
1703 if (pci_enable_device_mem(pdev))
1704 return result;
1705
1706 pci_set_master(pdev);
1707
1708 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1709 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1710 goto disable;
1711
1712 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1713 result = -ENODEV;
1714 goto disable;
1715 }
1716
1717 /*
1718 * Some devices and/or platforms don't advertise or work with INTx
1719 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1720 * adjust this later.
1721 */
1722 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1723 if (result < 0)
1724 return result;
1725
1726 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1727
1728 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1729 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1730 dev->dbs = dev->bar + 4096;
1731
1732 /*
1733 * Temporary fix for the Apple controller found in the MacBook8,1 and
1734 * some MacBook7,1 to avoid controller resets and data loss.
1735 */
1736 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1737 dev->q_depth = 2;
1738 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1739 "queue depth=%u to work around controller resets\n",
1740 dev->q_depth);
1741 }
1742
1743 /*
1744 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1745 * populate sysfs if a CMB is implemented. Note that we add the
1746 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1747 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1748 * NULL as final argument to sysfs_add_file_to_group.
1749 */
1750
1751 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1752 dev->cmb = nvme_map_cmb(dev);
1753
1754 if (dev->cmbsz) {
1755 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1756 &dev_attr_cmb.attr, NULL))
1757 dev_warn(dev->dev,
1758 "failed to add sysfs attribute for CMB\n");
1759 }
1760 }
1761
1762 pci_enable_pcie_error_reporting(pdev);
1763 pci_save_state(pdev);
1764 return 0;
1765
1766 disable:
1767 pci_disable_device(pdev);
1768 return result;
1769 }
1770
1771 static void nvme_dev_unmap(struct nvme_dev *dev)
1772 {
1773 if (dev->bar)
1774 iounmap(dev->bar);
1775 pci_release_mem_regions(to_pci_dev(dev->dev));
1776 }
1777
1778 static void nvme_pci_disable(struct nvme_dev *dev)
1779 {
1780 struct pci_dev *pdev = to_pci_dev(dev->dev);
1781
1782 pci_free_irq_vectors(pdev);
1783
1784 if (pci_is_enabled(pdev)) {
1785 pci_disable_pcie_error_reporting(pdev);
1786 pci_disable_device(pdev);
1787 }
1788 }
1789
1790 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1791 {
1792 int i, queues;
1793 bool dead = true;
1794 struct pci_dev *pdev = to_pci_dev(dev->dev);
1795
1796 del_timer_sync(&dev->watchdog_timer);
1797
1798 mutex_lock(&dev->shutdown_lock);
1799 if (pci_is_enabled(pdev)) {
1800 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1801
1802 if (dev->ctrl.state == NVME_CTRL_LIVE)
1803 nvme_start_freeze(&dev->ctrl);
1804 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1805 pdev->error_state != pci_channel_io_normal);
1806 }
1807
1808 /*
1809 * Give the controller a chance to complete all entered requests if
1810 * doing a safe shutdown.
1811 */
1812 if (!dead && shutdown)
1813 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1814 nvme_stop_queues(&dev->ctrl);
1815
1816 queues = dev->online_queues - 1;
1817 for (i = dev->queue_count - 1; i > 0; i--)
1818 nvme_suspend_queue(dev->queues[i]);
1819
1820 if (dead) {
1821 /* A device might become IO incapable very soon during
1822 * probe, before the admin queue is configured. Thus,
1823 * queue_count can be 0 here.
1824 */
1825 if (dev->queue_count)
1826 nvme_suspend_queue(dev->queues[0]);
1827 } else {
1828 nvme_disable_io_queues(dev, queues);
1829 nvme_disable_admin_queue(dev, shutdown);
1830 }
1831 nvme_pci_disable(dev);
1832
1833 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1834 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1835
1836 /*
1837 * The driver will not be starting up queues again if shutting down so
1838 * must flush all entered requests to their failed completion to avoid
1839 * deadlocking blk-mq hot-cpu notifier.
1840 */
1841 if (shutdown)
1842 nvme_start_queues(&dev->ctrl);
1843 mutex_unlock(&dev->shutdown_lock);
1844 }
1845
1846 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1847 {
1848 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1849 PAGE_SIZE, PAGE_SIZE, 0);
1850 if (!dev->prp_page_pool)
1851 return -ENOMEM;
1852
1853 /* Optimisation for I/Os between 4k and 128k */
1854 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1855 256, 256, 0);
1856 if (!dev->prp_small_pool) {
1857 dma_pool_destroy(dev->prp_page_pool);
1858 return -ENOMEM;
1859 }
1860 return 0;
1861 }
1862
1863 static void nvme_release_prp_pools(struct nvme_dev *dev)
1864 {
1865 dma_pool_destroy(dev->prp_page_pool);
1866 dma_pool_destroy(dev->prp_small_pool);
1867 }
1868
1869 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1870 {
1871 struct nvme_dev *dev = to_nvme_dev(ctrl);
1872
1873 nvme_dbbuf_dma_free(dev);
1874 put_device(dev->dev);
1875 if (dev->tagset.tags)
1876 blk_mq_free_tag_set(&dev->tagset);
1877 if (dev->ctrl.admin_q)
1878 blk_put_queue(dev->ctrl.admin_q);
1879 kfree(dev->queues);
1880 free_opal_dev(dev->ctrl.opal_dev);
1881 kfree(dev);
1882 }
1883
1884 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1885 {
1886 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1887
1888 kref_get(&dev->ctrl.kref);
1889 nvme_dev_disable(dev, false);
1890 if (!schedule_work(&dev->remove_work))
1891 nvme_put_ctrl(&dev->ctrl);
1892 }
1893
1894 static void nvme_reset_work(struct work_struct *work)
1895 {
1896 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1897 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1898 int result = -ENODEV;
1899
1900 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1901 goto out;
1902
1903 /*
1904 * If we're called to reset a live controller first shut it down before
1905 * moving on.
1906 */
1907 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1908 nvme_dev_disable(dev, false);
1909
1910 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1911 goto out;
1912
1913 result = nvme_pci_enable(dev);
1914 if (result)
1915 goto out;
1916
1917 result = nvme_configure_admin_queue(dev);
1918 if (result)
1919 goto out;
1920
1921 nvme_init_queue(dev->queues[0], 0);
1922 result = nvme_alloc_admin_tags(dev);
1923 if (result)
1924 goto out;
1925
1926 result = nvme_init_identify(&dev->ctrl);
1927 if (result)
1928 goto out;
1929
1930 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1931 if (!dev->ctrl.opal_dev)
1932 dev->ctrl.opal_dev =
1933 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1934 else if (was_suspend)
1935 opal_unlock_from_suspend(dev->ctrl.opal_dev);
1936 } else {
1937 free_opal_dev(dev->ctrl.opal_dev);
1938 dev->ctrl.opal_dev = NULL;
1939 }
1940
1941 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
1942 result = nvme_dbbuf_dma_alloc(dev);
1943 if (result)
1944 dev_warn(dev->dev,
1945 "unable to allocate dma for dbbuf\n");
1946 }
1947
1948 result = nvme_setup_io_queues(dev);
1949 if (result)
1950 goto out;
1951
1952 /*
1953 * A controller that can not execute IO typically requires user
1954 * intervention to correct. For such degraded controllers, the driver
1955 * should not submit commands the user did not request, so skip
1956 * registering for asynchronous event notification on this condition.
1957 */
1958 if (dev->online_queues > 1)
1959 nvme_queue_async_events(&dev->ctrl);
1960
1961 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1962
1963 /*
1964 * Keep the controller around but remove all namespaces if we don't have
1965 * any working I/O queue.
1966 */
1967 if (dev->online_queues < 2) {
1968 dev_warn(dev->ctrl.device, "IO queues not created\n");
1969 nvme_kill_queues(&dev->ctrl);
1970 nvme_remove_namespaces(&dev->ctrl);
1971 } else {
1972 nvme_start_queues(&dev->ctrl);
1973 nvme_wait_freeze(&dev->ctrl);
1974 nvme_dev_add(dev);
1975 nvme_unfreeze(&dev->ctrl);
1976 }
1977
1978 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1979 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1980 goto out;
1981 }
1982
1983 if (dev->online_queues > 1)
1984 nvme_queue_scan(&dev->ctrl);
1985 return;
1986
1987 out:
1988 nvme_remove_dead_ctrl(dev, result);
1989 }
1990
1991 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1992 {
1993 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1994 struct pci_dev *pdev = to_pci_dev(dev->dev);
1995
1996 nvme_kill_queues(&dev->ctrl);
1997 if (pci_get_drvdata(pdev))
1998 device_release_driver(&pdev->dev);
1999 nvme_put_ctrl(&dev->ctrl);
2000 }
2001
2002 static int nvme_reset(struct nvme_dev *dev)
2003 {
2004 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2005 return -ENODEV;
2006 if (work_busy(&dev->reset_work))
2007 return -ENODEV;
2008 if (!queue_work(nvme_workq, &dev->reset_work))
2009 return -EBUSY;
2010 return 0;
2011 }
2012
2013 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2014 {
2015 *val = readl(to_nvme_dev(ctrl)->bar + off);
2016 return 0;
2017 }
2018
2019 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2020 {
2021 writel(val, to_nvme_dev(ctrl)->bar + off);
2022 return 0;
2023 }
2024
2025 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2026 {
2027 *val = readq(to_nvme_dev(ctrl)->bar + off);
2028 return 0;
2029 }
2030
2031 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2032 {
2033 struct nvme_dev *dev = to_nvme_dev(ctrl);
2034 int ret = nvme_reset(dev);
2035
2036 if (!ret)
2037 flush_work(&dev->reset_work);
2038 return ret;
2039 }
2040
2041 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2042 .name = "pcie",
2043 .module = THIS_MODULE,
2044 .reg_read32 = nvme_pci_reg_read32,
2045 .reg_write32 = nvme_pci_reg_write32,
2046 .reg_read64 = nvme_pci_reg_read64,
2047 .reset_ctrl = nvme_pci_reset_ctrl,
2048 .free_ctrl = nvme_pci_free_ctrl,
2049 .submit_async_event = nvme_pci_submit_async_event,
2050 };
2051
2052 static int nvme_dev_map(struct nvme_dev *dev)
2053 {
2054 struct pci_dev *pdev = to_pci_dev(dev->dev);
2055
2056 if (pci_request_mem_regions(pdev, "nvme"))
2057 return -ENODEV;
2058
2059 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2060 if (!dev->bar)
2061 goto release;
2062
2063 return 0;
2064 release:
2065 pci_release_mem_regions(pdev);
2066 return -ENODEV;
2067 }
2068
2069 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2070 {
2071 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2072 /*
2073 * Several Samsung devices seem to drop off the PCIe bus
2074 * randomly when APST is on and uses the deepest sleep state.
2075 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2076 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2077 * 950 PRO 256GB", but it seems to be restricted to two Dell
2078 * laptops.
2079 */
2080 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2081 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2082 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2083 return NVME_QUIRK_NO_DEEPEST_PS;
2084 }
2085
2086 return 0;
2087 }
2088
2089 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2090 {
2091 int node, result = -ENOMEM;
2092 struct nvme_dev *dev;
2093 unsigned long quirks = id->driver_data;
2094
2095 node = dev_to_node(&pdev->dev);
2096 if (node == NUMA_NO_NODE)
2097 set_dev_node(&pdev->dev, first_memory_node);
2098
2099 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2100 if (!dev)
2101 return -ENOMEM;
2102 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2103 GFP_KERNEL, node);
2104 if (!dev->queues)
2105 goto free;
2106
2107 dev->dev = get_device(&pdev->dev);
2108 pci_set_drvdata(pdev, dev);
2109
2110 result = nvme_dev_map(dev);
2111 if (result)
2112 goto free;
2113
2114 INIT_WORK(&dev->reset_work, nvme_reset_work);
2115 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2116 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2117 (unsigned long)dev);
2118 mutex_init(&dev->shutdown_lock);
2119 init_completion(&dev->ioq_wait);
2120
2121 result = nvme_setup_prp_pools(dev);
2122 if (result)
2123 goto put_pci;
2124
2125 quirks |= check_dell_samsung_bug(pdev);
2126
2127 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2128 quirks);
2129 if (result)
2130 goto release_pools;
2131
2132 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2133
2134 queue_work(nvme_workq, &dev->reset_work);
2135 return 0;
2136
2137 release_pools:
2138 nvme_release_prp_pools(dev);
2139 put_pci:
2140 put_device(dev->dev);
2141 nvme_dev_unmap(dev);
2142 free:
2143 kfree(dev->queues);
2144 kfree(dev);
2145 return result;
2146 }
2147
2148 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2149 {
2150 struct nvme_dev *dev = pci_get_drvdata(pdev);
2151
2152 if (prepare)
2153 nvme_dev_disable(dev, false);
2154 else
2155 nvme_reset(dev);
2156 }
2157
2158 static void nvme_shutdown(struct pci_dev *pdev)
2159 {
2160 struct nvme_dev *dev = pci_get_drvdata(pdev);
2161 nvme_dev_disable(dev, true);
2162 }
2163
2164 /*
2165 * The driver's remove may be called on a device in a partially initialized
2166 * state. This function must not have any dependencies on the device state in
2167 * order to proceed.
2168 */
2169 static void nvme_remove(struct pci_dev *pdev)
2170 {
2171 struct nvme_dev *dev = pci_get_drvdata(pdev);
2172
2173 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2174
2175 pci_set_drvdata(pdev, NULL);
2176
2177 if (!pci_device_is_present(pdev)) {
2178 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2179 nvme_dev_disable(dev, false);
2180 }
2181
2182 flush_work(&dev->reset_work);
2183 nvme_uninit_ctrl(&dev->ctrl);
2184 nvme_dev_disable(dev, true);
2185 nvme_dev_remove_admin(dev);
2186 nvme_free_queues(dev, 0);
2187 nvme_release_cmb(dev);
2188 nvme_release_prp_pools(dev);
2189 nvme_dev_unmap(dev);
2190 nvme_put_ctrl(&dev->ctrl);
2191 }
2192
2193 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2194 {
2195 int ret = 0;
2196
2197 if (numvfs == 0) {
2198 if (pci_vfs_assigned(pdev)) {
2199 dev_warn(&pdev->dev,
2200 "Cannot disable SR-IOV VFs while assigned\n");
2201 return -EPERM;
2202 }
2203 pci_disable_sriov(pdev);
2204 return 0;
2205 }
2206
2207 ret = pci_enable_sriov(pdev, numvfs);
2208 return ret ? ret : numvfs;
2209 }
2210
2211 #ifdef CONFIG_PM_SLEEP
2212 static int nvme_suspend(struct device *dev)
2213 {
2214 struct pci_dev *pdev = to_pci_dev(dev);
2215 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2216
2217 nvme_dev_disable(ndev, true);
2218 return 0;
2219 }
2220
2221 static int nvme_resume(struct device *dev)
2222 {
2223 struct pci_dev *pdev = to_pci_dev(dev);
2224 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2225
2226 nvme_reset(ndev);
2227 return 0;
2228 }
2229 #endif
2230
2231 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2232
2233 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2234 pci_channel_state_t state)
2235 {
2236 struct nvme_dev *dev = pci_get_drvdata(pdev);
2237
2238 /*
2239 * A frozen channel requires a reset. When detected, this method will
2240 * shutdown the controller to quiesce. The controller will be restarted
2241 * after the slot reset through driver's slot_reset callback.
2242 */
2243 switch (state) {
2244 case pci_channel_io_normal:
2245 return PCI_ERS_RESULT_CAN_RECOVER;
2246 case pci_channel_io_frozen:
2247 dev_warn(dev->ctrl.device,
2248 "frozen state error detected, reset controller\n");
2249 nvme_dev_disable(dev, false);
2250 return PCI_ERS_RESULT_NEED_RESET;
2251 case pci_channel_io_perm_failure:
2252 dev_warn(dev->ctrl.device,
2253 "failure state error detected, request disconnect\n");
2254 return PCI_ERS_RESULT_DISCONNECT;
2255 }
2256 return PCI_ERS_RESULT_NEED_RESET;
2257 }
2258
2259 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2260 {
2261 struct nvme_dev *dev = pci_get_drvdata(pdev);
2262
2263 dev_info(dev->ctrl.device, "restart after slot reset\n");
2264 pci_restore_state(pdev);
2265 nvme_reset(dev);
2266 return PCI_ERS_RESULT_RECOVERED;
2267 }
2268
2269 static void nvme_error_resume(struct pci_dev *pdev)
2270 {
2271 pci_cleanup_aer_uncorrect_error_status(pdev);
2272 }
2273
2274 static const struct pci_error_handlers nvme_err_handler = {
2275 .error_detected = nvme_error_detected,
2276 .slot_reset = nvme_slot_reset,
2277 .resume = nvme_error_resume,
2278 .reset_notify = nvme_reset_notify,
2279 };
2280
2281 static const struct pci_device_id nvme_id_table[] = {
2282 { PCI_VDEVICE(INTEL, 0x0953),
2283 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2284 NVME_QUIRK_DEALLOCATE_ZEROES, },
2285 { PCI_VDEVICE(INTEL, 0x0a53),
2286 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2287 NVME_QUIRK_DEALLOCATE_ZEROES, },
2288 { PCI_VDEVICE(INTEL, 0x0a54),
2289 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2290 NVME_QUIRK_DEALLOCATE_ZEROES, },
2291 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2292 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2293 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2294 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2295 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2296 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2297 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2298 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2299 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2300 { 0, }
2301 };
2302 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2303
2304 static struct pci_driver nvme_driver = {
2305 .name = "nvme",
2306 .id_table = nvme_id_table,
2307 .probe = nvme_probe,
2308 .remove = nvme_remove,
2309 .shutdown = nvme_shutdown,
2310 .driver = {
2311 .pm = &nvme_dev_pm_ops,
2312 },
2313 .sriov_configure = nvme_pci_sriov_configure,
2314 .err_handler = &nvme_err_handler,
2315 };
2316
2317 static int __init nvme_init(void)
2318 {
2319 int result;
2320
2321 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2322 if (!nvme_workq)
2323 return -ENOMEM;
2324
2325 result = pci_register_driver(&nvme_driver);
2326 if (result)
2327 destroy_workqueue(nvme_workq);
2328 return result;
2329 }
2330
2331 static void __exit nvme_exit(void)
2332 {
2333 pci_unregister_driver(&nvme_driver);
2334 destroy_workqueue(nvme_workq);
2335 _nvme_check_size();
2336 }
2337
2338 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2339 MODULE_LICENSE("GPL");
2340 MODULE_VERSION("1.0");
2341 module_init(nvme_init);
2342 module_exit(nvme_exit);