]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/nvme/host/pci.c
nvme: split a new struct nvme_ctrl out of struct nvme_dev
[mirror_ubuntu-artful-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/list_sort.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/pr.h>
43 #include <scsi/sg.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include <uapi/linux/nvme_ioctl.h>
48 #include "nvme.h"
49
50 #define NVME_MINORS (1U << MINORBITS)
51 #define NVME_Q_DEPTH 1024
52 #define NVME_AQ_DEPTH 256
53 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
55 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
56
57 unsigned char admin_timeout = 60;
58 module_param(admin_timeout, byte, 0644);
59 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
60
61 unsigned char nvme_io_timeout = 30;
62 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
63 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
64
65 static unsigned char shutdown_timeout = 5;
66 module_param(shutdown_timeout, byte, 0644);
67 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
68
69 static int nvme_major;
70 module_param(nvme_major, int, 0);
71
72 static int nvme_char_major;
73 module_param(nvme_char_major, int, 0);
74
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0);
77
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0644);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81
82 static DEFINE_SPINLOCK(dev_list_lock);
83 static LIST_HEAD(dev_list);
84 static struct task_struct *nvme_thread;
85 static struct workqueue_struct *nvme_workq;
86 static wait_queue_head_t nvme_kthread_wait;
87
88 static struct class *nvme_class;
89
90 struct nvme_dev;
91 struct nvme_queue;
92
93 static int __nvme_reset(struct nvme_dev *dev);
94 static int nvme_reset(struct nvme_dev *dev);
95 static void nvme_process_cq(struct nvme_queue *nvmeq);
96 static void nvme_dead_ctrl(struct nvme_dev *dev);
97
98 struct async_cmd_info {
99 struct kthread_work work;
100 struct kthread_worker *worker;
101 struct request *req;
102 u32 result;
103 int status;
104 void *ctx;
105 };
106
107 /*
108 * Represents an NVM Express device. Each nvme_dev is a PCI function.
109 */
110 struct nvme_dev {
111 struct list_head node;
112 struct nvme_queue **queues;
113 struct blk_mq_tag_set tagset;
114 struct blk_mq_tag_set admin_tagset;
115 u32 __iomem *dbs;
116 struct device *dev;
117 struct dma_pool *prp_page_pool;
118 struct dma_pool *prp_small_pool;
119 unsigned queue_count;
120 unsigned online_queues;
121 unsigned max_qid;
122 int q_depth;
123 u32 db_stride;
124 u32 ctrl_config;
125 struct msix_entry *entry;
126 void __iomem *bar;
127 struct list_head namespaces;
128 struct kref kref;
129 struct device *device;
130 struct work_struct reset_work;
131 struct work_struct probe_work;
132 struct work_struct scan_work;
133 bool subsystem;
134 u32 max_hw_sectors;
135 u32 stripe_size;
136 u32 page_size;
137 void __iomem *cmb;
138 dma_addr_t cmb_dma_addr;
139 u64 cmb_size;
140 u32 cmbsz;
141
142 struct nvme_ctrl ctrl;
143 };
144
145 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
146 {
147 return container_of(ctrl, struct nvme_dev, ctrl);
148 }
149
150 /*
151 * An NVM Express queue. Each device has at least two (one for admin
152 * commands and one for I/O commands).
153 */
154 struct nvme_queue {
155 struct device *q_dmadev;
156 struct nvme_dev *dev;
157 char irqname[24]; /* nvme4294967295-65535\0 */
158 spinlock_t q_lock;
159 struct nvme_command *sq_cmds;
160 struct nvme_command __iomem *sq_cmds_io;
161 volatile struct nvme_completion *cqes;
162 struct blk_mq_tags **tags;
163 dma_addr_t sq_dma_addr;
164 dma_addr_t cq_dma_addr;
165 u32 __iomem *q_db;
166 u16 q_depth;
167 s16 cq_vector;
168 u16 sq_head;
169 u16 sq_tail;
170 u16 cq_head;
171 u16 qid;
172 u8 cq_phase;
173 u8 cqe_seen;
174 struct async_cmd_info cmdinfo;
175 };
176
177 /*
178 * The nvme_iod describes the data in an I/O, including the list of PRP
179 * entries. You can't see it in this data structure because C doesn't let
180 * me express that. Use nvme_alloc_iod to ensure there's enough space
181 * allocated to store the PRP list.
182 */
183 struct nvme_iod {
184 unsigned long private; /* For the use of the submitter of the I/O */
185 int npages; /* In the PRP list. 0 means small pool in use */
186 int offset; /* Of PRP list */
187 int nents; /* Used in scatterlist */
188 int length; /* Of data, in bytes */
189 dma_addr_t first_dma;
190 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
191 struct scatterlist sg[0];
192 };
193
194 /*
195 * Check we didin't inadvertently grow the command struct
196 */
197 static inline void _nvme_check_size(void)
198 {
199 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
204 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
205 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
206 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
208 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
209 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
210 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
211 }
212
213 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
214 struct nvme_completion *);
215
216 struct nvme_cmd_info {
217 nvme_completion_fn fn;
218 void *ctx;
219 int aborted;
220 struct nvme_queue *nvmeq;
221 struct nvme_iod iod[0];
222 };
223
224 /*
225 * Max size of iod being embedded in the request payload
226 */
227 #define NVME_INT_PAGES 2
228 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
229 #define NVME_INT_MASK 0x01
230
231 /*
232 * Will slightly overestimate the number of pages needed. This is OK
233 * as it only leads to a small amount of wasted memory for the lifetime of
234 * the I/O.
235 */
236 static int nvme_npages(unsigned size, struct nvme_dev *dev)
237 {
238 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
239 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
240 }
241
242 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
243 {
244 unsigned int ret = sizeof(struct nvme_cmd_info);
245
246 ret += sizeof(struct nvme_iod);
247 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
248 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
249
250 return ret;
251 }
252
253 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
254 unsigned int hctx_idx)
255 {
256 struct nvme_dev *dev = data;
257 struct nvme_queue *nvmeq = dev->queues[0];
258
259 WARN_ON(hctx_idx != 0);
260 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
261 WARN_ON(nvmeq->tags);
262
263 hctx->driver_data = nvmeq;
264 nvmeq->tags = &dev->admin_tagset.tags[0];
265 return 0;
266 }
267
268 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
269 {
270 struct nvme_queue *nvmeq = hctx->driver_data;
271
272 nvmeq->tags = NULL;
273 }
274
275 static int nvme_admin_init_request(void *data, struct request *req,
276 unsigned int hctx_idx, unsigned int rq_idx,
277 unsigned int numa_node)
278 {
279 struct nvme_dev *dev = data;
280 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
281 struct nvme_queue *nvmeq = dev->queues[0];
282
283 BUG_ON(!nvmeq);
284 cmd->nvmeq = nvmeq;
285 return 0;
286 }
287
288 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
289 unsigned int hctx_idx)
290 {
291 struct nvme_dev *dev = data;
292 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
293
294 if (!nvmeq->tags)
295 nvmeq->tags = &dev->tagset.tags[hctx_idx];
296
297 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
298 hctx->driver_data = nvmeq;
299 return 0;
300 }
301
302 static int nvme_init_request(void *data, struct request *req,
303 unsigned int hctx_idx, unsigned int rq_idx,
304 unsigned int numa_node)
305 {
306 struct nvme_dev *dev = data;
307 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
308 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
309
310 BUG_ON(!nvmeq);
311 cmd->nvmeq = nvmeq;
312 return 0;
313 }
314
315 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
316 nvme_completion_fn handler)
317 {
318 cmd->fn = handler;
319 cmd->ctx = ctx;
320 cmd->aborted = 0;
321 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
322 }
323
324 static void *iod_get_private(struct nvme_iod *iod)
325 {
326 return (void *) (iod->private & ~0x1UL);
327 }
328
329 /*
330 * If bit 0 is set, the iod is embedded in the request payload.
331 */
332 static bool iod_should_kfree(struct nvme_iod *iod)
333 {
334 return (iod->private & NVME_INT_MASK) == 0;
335 }
336
337 /* Special values must be less than 0x1000 */
338 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
339 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
340 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
341 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
342
343 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
344 struct nvme_completion *cqe)
345 {
346 if (ctx == CMD_CTX_CANCELLED)
347 return;
348 if (ctx == CMD_CTX_COMPLETED) {
349 dev_warn(nvmeq->q_dmadev,
350 "completed id %d twice on queue %d\n",
351 cqe->command_id, le16_to_cpup(&cqe->sq_id));
352 return;
353 }
354 if (ctx == CMD_CTX_INVALID) {
355 dev_warn(nvmeq->q_dmadev,
356 "invalid id %d completed on queue %d\n",
357 cqe->command_id, le16_to_cpup(&cqe->sq_id));
358 return;
359 }
360 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
361 }
362
363 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
364 {
365 void *ctx;
366
367 if (fn)
368 *fn = cmd->fn;
369 ctx = cmd->ctx;
370 cmd->fn = special_completion;
371 cmd->ctx = CMD_CTX_CANCELLED;
372 return ctx;
373 }
374
375 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
376 struct nvme_completion *cqe)
377 {
378 u32 result = le32_to_cpup(&cqe->result);
379 u16 status = le16_to_cpup(&cqe->status) >> 1;
380
381 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
382 ++nvmeq->dev->ctrl.event_limit;
383 if (status != NVME_SC_SUCCESS)
384 return;
385
386 switch (result & 0xff07) {
387 case NVME_AER_NOTICE_NS_CHANGED:
388 dev_info(nvmeq->q_dmadev, "rescanning\n");
389 schedule_work(&nvmeq->dev->scan_work);
390 default:
391 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
392 }
393 }
394
395 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
396 struct nvme_completion *cqe)
397 {
398 struct request *req = ctx;
399
400 u16 status = le16_to_cpup(&cqe->status) >> 1;
401 u32 result = le32_to_cpup(&cqe->result);
402
403 blk_mq_free_request(req);
404
405 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
406 ++nvmeq->dev->ctrl.abort_limit;
407 }
408
409 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
410 struct nvme_completion *cqe)
411 {
412 struct async_cmd_info *cmdinfo = ctx;
413 cmdinfo->result = le32_to_cpup(&cqe->result);
414 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
415 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
416 blk_mq_free_request(cmdinfo->req);
417 }
418
419 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
420 unsigned int tag)
421 {
422 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
423
424 return blk_mq_rq_to_pdu(req);
425 }
426
427 /*
428 * Called with local interrupts disabled and the q_lock held. May not sleep.
429 */
430 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
431 nvme_completion_fn *fn)
432 {
433 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
434 void *ctx;
435 if (tag >= nvmeq->q_depth) {
436 *fn = special_completion;
437 return CMD_CTX_INVALID;
438 }
439 if (fn)
440 *fn = cmd->fn;
441 ctx = cmd->ctx;
442 cmd->fn = special_completion;
443 cmd->ctx = CMD_CTX_COMPLETED;
444 return ctx;
445 }
446
447 /**
448 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
449 * @nvmeq: The queue to use
450 * @cmd: The command to send
451 *
452 * Safe to use from interrupt context
453 */
454 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
455 struct nvme_command *cmd)
456 {
457 u16 tail = nvmeq->sq_tail;
458
459 if (nvmeq->sq_cmds_io)
460 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
461 else
462 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
463
464 if (++tail == nvmeq->q_depth)
465 tail = 0;
466 writel(tail, nvmeq->q_db);
467 nvmeq->sq_tail = tail;
468 }
469
470 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
471 {
472 unsigned long flags;
473 spin_lock_irqsave(&nvmeq->q_lock, flags);
474 __nvme_submit_cmd(nvmeq, cmd);
475 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
476 }
477
478 static __le64 **iod_list(struct nvme_iod *iod)
479 {
480 return ((void *)iod) + iod->offset;
481 }
482
483 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
484 unsigned nseg, unsigned long private)
485 {
486 iod->private = private;
487 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
488 iod->npages = -1;
489 iod->length = nbytes;
490 iod->nents = 0;
491 }
492
493 static struct nvme_iod *
494 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
495 unsigned long priv, gfp_t gfp)
496 {
497 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
498 sizeof(__le64 *) * nvme_npages(bytes, dev) +
499 sizeof(struct scatterlist) * nseg, gfp);
500
501 if (iod)
502 iod_init(iod, bytes, nseg, priv);
503
504 return iod;
505 }
506
507 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
508 gfp_t gfp)
509 {
510 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
511 sizeof(struct nvme_dsm_range);
512 struct nvme_iod *iod;
513
514 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
515 size <= NVME_INT_BYTES(dev)) {
516 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
517
518 iod = cmd->iod;
519 iod_init(iod, size, rq->nr_phys_segments,
520 (unsigned long) rq | NVME_INT_MASK);
521 return iod;
522 }
523
524 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
525 (unsigned long) rq, gfp);
526 }
527
528 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
529 {
530 const int last_prp = dev->page_size / 8 - 1;
531 int i;
532 __le64 **list = iod_list(iod);
533 dma_addr_t prp_dma = iod->first_dma;
534
535 if (iod->npages == 0)
536 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
537 for (i = 0; i < iod->npages; i++) {
538 __le64 *prp_list = list[i];
539 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
540 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
541 prp_dma = next_prp_dma;
542 }
543
544 if (iod_should_kfree(iod))
545 kfree(iod);
546 }
547
548 static int nvme_error_status(u16 status)
549 {
550 switch (status & 0x7ff) {
551 case NVME_SC_SUCCESS:
552 return 0;
553 case NVME_SC_CAP_EXCEEDED:
554 return -ENOSPC;
555 default:
556 return -EIO;
557 }
558 }
559
560 #ifdef CONFIG_BLK_DEV_INTEGRITY
561 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
562 {
563 if (be32_to_cpu(pi->ref_tag) == v)
564 pi->ref_tag = cpu_to_be32(p);
565 }
566
567 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
568 {
569 if (be32_to_cpu(pi->ref_tag) == p)
570 pi->ref_tag = cpu_to_be32(v);
571 }
572
573 /**
574 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
575 *
576 * The virtual start sector is the one that was originally submitted by the
577 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
578 * start sector may be different. Remap protection information to match the
579 * physical LBA on writes, and back to the original seed on reads.
580 *
581 * Type 0 and 3 do not have a ref tag, so no remapping required.
582 */
583 static void nvme_dif_remap(struct request *req,
584 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
585 {
586 struct nvme_ns *ns = req->rq_disk->private_data;
587 struct bio_integrity_payload *bip;
588 struct t10_pi_tuple *pi;
589 void *p, *pmap;
590 u32 i, nlb, ts, phys, virt;
591
592 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
593 return;
594
595 bip = bio_integrity(req->bio);
596 if (!bip)
597 return;
598
599 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
600
601 p = pmap;
602 virt = bip_get_seed(bip);
603 phys = nvme_block_nr(ns, blk_rq_pos(req));
604 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
605 ts = ns->disk->queue->integrity.tuple_size;
606
607 for (i = 0; i < nlb; i++, virt++, phys++) {
608 pi = (struct t10_pi_tuple *)p;
609 dif_swap(phys, virt, pi);
610 p += ts;
611 }
612 kunmap_atomic(pmap);
613 }
614
615 static void nvme_init_integrity(struct nvme_ns *ns)
616 {
617 struct blk_integrity integrity;
618
619 switch (ns->pi_type) {
620 case NVME_NS_DPS_PI_TYPE3:
621 integrity.profile = &t10_pi_type3_crc;
622 break;
623 case NVME_NS_DPS_PI_TYPE1:
624 case NVME_NS_DPS_PI_TYPE2:
625 integrity.profile = &t10_pi_type1_crc;
626 break;
627 default:
628 integrity.profile = NULL;
629 break;
630 }
631 integrity.tuple_size = ns->ms;
632 blk_integrity_register(ns->disk, &integrity);
633 blk_queue_max_integrity_segments(ns->queue, 1);
634 }
635 #else /* CONFIG_BLK_DEV_INTEGRITY */
636 static void nvme_dif_remap(struct request *req,
637 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
638 {
639 }
640 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
641 {
642 }
643 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
644 {
645 }
646 static void nvme_init_integrity(struct nvme_ns *ns)
647 {
648 }
649 #endif
650
651 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
652 struct nvme_completion *cqe)
653 {
654 struct nvme_iod *iod = ctx;
655 struct request *req = iod_get_private(iod);
656 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
657 u16 status = le16_to_cpup(&cqe->status) >> 1;
658 bool requeue = false;
659 int error = 0;
660
661 if (unlikely(status)) {
662 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
663 && (jiffies - req->start_time) < req->timeout) {
664 unsigned long flags;
665
666 requeue = true;
667 blk_mq_requeue_request(req);
668 spin_lock_irqsave(req->q->queue_lock, flags);
669 if (!blk_queue_stopped(req->q))
670 blk_mq_kick_requeue_list(req->q);
671 spin_unlock_irqrestore(req->q->queue_lock, flags);
672 goto release_iod;
673 }
674
675 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
676 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
677 error = -EINTR;
678 else
679 error = status;
680 } else {
681 error = nvme_error_status(status);
682 }
683 }
684
685 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
686 u32 result = le32_to_cpup(&cqe->result);
687 req->special = (void *)(uintptr_t)result;
688 }
689
690 if (cmd_rq->aborted)
691 dev_warn(nvmeq->dev->dev,
692 "completing aborted command with status:%04x\n",
693 error);
694
695 release_iod:
696 if (iod->nents) {
697 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
698 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
699 if (blk_integrity_rq(req)) {
700 if (!rq_data_dir(req))
701 nvme_dif_remap(req, nvme_dif_complete);
702 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
703 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
704 }
705 }
706 nvme_free_iod(nvmeq->dev, iod);
707
708 if (likely(!requeue))
709 blk_mq_complete_request(req, error);
710 }
711
712 /* length is in bytes. gfp flags indicates whether we may sleep. */
713 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
714 int total_len, gfp_t gfp)
715 {
716 struct dma_pool *pool;
717 int length = total_len;
718 struct scatterlist *sg = iod->sg;
719 int dma_len = sg_dma_len(sg);
720 u64 dma_addr = sg_dma_address(sg);
721 u32 page_size = dev->page_size;
722 int offset = dma_addr & (page_size - 1);
723 __le64 *prp_list;
724 __le64 **list = iod_list(iod);
725 dma_addr_t prp_dma;
726 int nprps, i;
727
728 length -= (page_size - offset);
729 if (length <= 0)
730 return total_len;
731
732 dma_len -= (page_size - offset);
733 if (dma_len) {
734 dma_addr += (page_size - offset);
735 } else {
736 sg = sg_next(sg);
737 dma_addr = sg_dma_address(sg);
738 dma_len = sg_dma_len(sg);
739 }
740
741 if (length <= page_size) {
742 iod->first_dma = dma_addr;
743 return total_len;
744 }
745
746 nprps = DIV_ROUND_UP(length, page_size);
747 if (nprps <= (256 / 8)) {
748 pool = dev->prp_small_pool;
749 iod->npages = 0;
750 } else {
751 pool = dev->prp_page_pool;
752 iod->npages = 1;
753 }
754
755 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
756 if (!prp_list) {
757 iod->first_dma = dma_addr;
758 iod->npages = -1;
759 return (total_len - length) + page_size;
760 }
761 list[0] = prp_list;
762 iod->first_dma = prp_dma;
763 i = 0;
764 for (;;) {
765 if (i == page_size >> 3) {
766 __le64 *old_prp_list = prp_list;
767 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
768 if (!prp_list)
769 return total_len - length;
770 list[iod->npages++] = prp_list;
771 prp_list[0] = old_prp_list[i - 1];
772 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
773 i = 1;
774 }
775 prp_list[i++] = cpu_to_le64(dma_addr);
776 dma_len -= page_size;
777 dma_addr += page_size;
778 length -= page_size;
779 if (length <= 0)
780 break;
781 if (dma_len > 0)
782 continue;
783 BUG_ON(dma_len < 0);
784 sg = sg_next(sg);
785 dma_addr = sg_dma_address(sg);
786 dma_len = sg_dma_len(sg);
787 }
788
789 return total_len;
790 }
791
792 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
793 struct nvme_iod *iod)
794 {
795 struct nvme_command cmnd;
796
797 memcpy(&cmnd, req->cmd, sizeof(cmnd));
798 cmnd.rw.command_id = req->tag;
799 if (req->nr_phys_segments) {
800 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
801 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
802 }
803
804 __nvme_submit_cmd(nvmeq, &cmnd);
805 }
806
807 /*
808 * We reuse the small pool to allocate the 16-byte range here as it is not
809 * worth having a special pool for these or additional cases to handle freeing
810 * the iod.
811 */
812 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
813 struct request *req, struct nvme_iod *iod)
814 {
815 struct nvme_dsm_range *range =
816 (struct nvme_dsm_range *)iod_list(iod)[0];
817 struct nvme_command cmnd;
818
819 range->cattr = cpu_to_le32(0);
820 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
821 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
822
823 memset(&cmnd, 0, sizeof(cmnd));
824 cmnd.dsm.opcode = nvme_cmd_dsm;
825 cmnd.dsm.command_id = req->tag;
826 cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
827 cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
828 cmnd.dsm.nr = 0;
829 cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
830
831 __nvme_submit_cmd(nvmeq, &cmnd);
832 }
833
834 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
835 int cmdid)
836 {
837 struct nvme_command cmnd;
838
839 memset(&cmnd, 0, sizeof(cmnd));
840 cmnd.common.opcode = nvme_cmd_flush;
841 cmnd.common.command_id = cmdid;
842 cmnd.common.nsid = cpu_to_le32(ns->ns_id);
843
844 __nvme_submit_cmd(nvmeq, &cmnd);
845 }
846
847 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
848 struct nvme_ns *ns)
849 {
850 struct request *req = iod_get_private(iod);
851 struct nvme_command cmnd;
852 u16 control = 0;
853 u32 dsmgmt = 0;
854
855 if (req->cmd_flags & REQ_FUA)
856 control |= NVME_RW_FUA;
857 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
858 control |= NVME_RW_LR;
859
860 if (req->cmd_flags & REQ_RAHEAD)
861 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
862
863 memset(&cmnd, 0, sizeof(cmnd));
864 cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
865 cmnd.rw.command_id = req->tag;
866 cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
867 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
868 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
869 cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
870 cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
871
872 if (ns->ms) {
873 switch (ns->pi_type) {
874 case NVME_NS_DPS_PI_TYPE3:
875 control |= NVME_RW_PRINFO_PRCHK_GUARD;
876 break;
877 case NVME_NS_DPS_PI_TYPE1:
878 case NVME_NS_DPS_PI_TYPE2:
879 control |= NVME_RW_PRINFO_PRCHK_GUARD |
880 NVME_RW_PRINFO_PRCHK_REF;
881 cmnd.rw.reftag = cpu_to_le32(
882 nvme_block_nr(ns, blk_rq_pos(req)));
883 break;
884 }
885 if (blk_integrity_rq(req))
886 cmnd.rw.metadata =
887 cpu_to_le64(sg_dma_address(iod->meta_sg));
888 else
889 control |= NVME_RW_PRINFO_PRACT;
890 }
891
892 cmnd.rw.control = cpu_to_le16(control);
893 cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
894
895 __nvme_submit_cmd(nvmeq, &cmnd);
896
897 return 0;
898 }
899
900 /*
901 * NOTE: ns is NULL when called on the admin queue.
902 */
903 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
904 const struct blk_mq_queue_data *bd)
905 {
906 struct nvme_ns *ns = hctx->queue->queuedata;
907 struct nvme_queue *nvmeq = hctx->driver_data;
908 struct nvme_dev *dev = nvmeq->dev;
909 struct request *req = bd->rq;
910 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
911 struct nvme_iod *iod;
912 enum dma_data_direction dma_dir;
913
914 /*
915 * If formated with metadata, require the block layer provide a buffer
916 * unless this namespace is formated such that the metadata can be
917 * stripped/generated by the controller with PRACT=1.
918 */
919 if (ns && ns->ms && !blk_integrity_rq(req)) {
920 if (!(ns->pi_type && ns->ms == 8) &&
921 req->cmd_type != REQ_TYPE_DRV_PRIV) {
922 blk_mq_complete_request(req, -EFAULT);
923 return BLK_MQ_RQ_QUEUE_OK;
924 }
925 }
926
927 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
928 if (!iod)
929 return BLK_MQ_RQ_QUEUE_BUSY;
930
931 if (req->cmd_flags & REQ_DISCARD) {
932 void *range;
933 /*
934 * We reuse the small pool to allocate the 16-byte range here
935 * as it is not worth having a special pool for these or
936 * additional cases to handle freeing the iod.
937 */
938 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
939 &iod->first_dma);
940 if (!range)
941 goto retry_cmd;
942 iod_list(iod)[0] = (__le64 *)range;
943 iod->npages = 0;
944 } else if (req->nr_phys_segments) {
945 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
946
947 sg_init_table(iod->sg, req->nr_phys_segments);
948 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
949 if (!iod->nents)
950 goto error_cmd;
951
952 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
953 goto retry_cmd;
954
955 if (blk_rq_bytes(req) !=
956 nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
957 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
958 goto retry_cmd;
959 }
960 if (blk_integrity_rq(req)) {
961 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1) {
962 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
963 dma_dir);
964 goto error_cmd;
965 }
966
967 sg_init_table(iod->meta_sg, 1);
968 if (blk_rq_map_integrity_sg(
969 req->q, req->bio, iod->meta_sg) != 1) {
970 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
971 dma_dir);
972 goto error_cmd;
973 }
974
975 if (rq_data_dir(req))
976 nvme_dif_remap(req, nvme_dif_prep);
977
978 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir)) {
979 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
980 dma_dir);
981 goto error_cmd;
982 }
983 }
984 }
985
986 nvme_set_info(cmd, iod, req_completion);
987 spin_lock_irq(&nvmeq->q_lock);
988 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
989 nvme_submit_priv(nvmeq, req, iod);
990 else if (req->cmd_flags & REQ_DISCARD)
991 nvme_submit_discard(nvmeq, ns, req, iod);
992 else if (req->cmd_flags & REQ_FLUSH)
993 nvme_submit_flush(nvmeq, ns, req->tag);
994 else
995 nvme_submit_iod(nvmeq, iod, ns);
996
997 nvme_process_cq(nvmeq);
998 spin_unlock_irq(&nvmeq->q_lock);
999 return BLK_MQ_RQ_QUEUE_OK;
1000
1001 error_cmd:
1002 nvme_free_iod(dev, iod);
1003 return BLK_MQ_RQ_QUEUE_ERROR;
1004 retry_cmd:
1005 nvme_free_iod(dev, iod);
1006 return BLK_MQ_RQ_QUEUE_BUSY;
1007 }
1008
1009 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
1010 {
1011 u16 head, phase;
1012
1013 head = nvmeq->cq_head;
1014 phase = nvmeq->cq_phase;
1015
1016 for (;;) {
1017 void *ctx;
1018 nvme_completion_fn fn;
1019 struct nvme_completion cqe = nvmeq->cqes[head];
1020 if ((le16_to_cpu(cqe.status) & 1) != phase)
1021 break;
1022 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
1023 if (++head == nvmeq->q_depth) {
1024 head = 0;
1025 phase = !phase;
1026 }
1027 if (tag && *tag == cqe.command_id)
1028 *tag = -1;
1029 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
1030 fn(nvmeq, ctx, &cqe);
1031 }
1032
1033 /* If the controller ignores the cq head doorbell and continuously
1034 * writes to the queue, it is theoretically possible to wrap around
1035 * the queue twice and mistakenly return IRQ_NONE. Linux only
1036 * requires that 0.1% of your interrupts are handled, so this isn't
1037 * a big problem.
1038 */
1039 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
1040 return;
1041
1042 if (likely(nvmeq->cq_vector >= 0))
1043 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1044 nvmeq->cq_head = head;
1045 nvmeq->cq_phase = phase;
1046
1047 nvmeq->cqe_seen = 1;
1048 }
1049
1050 static void nvme_process_cq(struct nvme_queue *nvmeq)
1051 {
1052 __nvme_process_cq(nvmeq, NULL);
1053 }
1054
1055 static irqreturn_t nvme_irq(int irq, void *data)
1056 {
1057 irqreturn_t result;
1058 struct nvme_queue *nvmeq = data;
1059 spin_lock(&nvmeq->q_lock);
1060 nvme_process_cq(nvmeq);
1061 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1062 nvmeq->cqe_seen = 0;
1063 spin_unlock(&nvmeq->q_lock);
1064 return result;
1065 }
1066
1067 static irqreturn_t nvme_irq_check(int irq, void *data)
1068 {
1069 struct nvme_queue *nvmeq = data;
1070 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1071 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1072 return IRQ_NONE;
1073 return IRQ_WAKE_THREAD;
1074 }
1075
1076 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1077 {
1078 struct nvme_queue *nvmeq = hctx->driver_data;
1079
1080 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
1081 nvmeq->cq_phase) {
1082 spin_lock_irq(&nvmeq->q_lock);
1083 __nvme_process_cq(nvmeq, &tag);
1084 spin_unlock_irq(&nvmeq->q_lock);
1085
1086 if (tag == -1)
1087 return 1;
1088 }
1089
1090 return 0;
1091 }
1092
1093 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1094 {
1095 struct nvme_queue *nvmeq = dev->queues[0];
1096 struct nvme_command c;
1097 struct nvme_cmd_info *cmd_info;
1098 struct request *req;
1099
1100 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1101 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
1102 if (IS_ERR(req))
1103 return PTR_ERR(req);
1104
1105 req->cmd_flags |= REQ_NO_TIMEOUT;
1106 cmd_info = blk_mq_rq_to_pdu(req);
1107 nvme_set_info(cmd_info, NULL, async_req_completion);
1108
1109 memset(&c, 0, sizeof(c));
1110 c.common.opcode = nvme_admin_async_event;
1111 c.common.command_id = req->tag;
1112
1113 blk_mq_free_request(req);
1114 __nvme_submit_cmd(nvmeq, &c);
1115 return 0;
1116 }
1117
1118 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1119 struct nvme_command *cmd,
1120 struct async_cmd_info *cmdinfo, unsigned timeout)
1121 {
1122 struct nvme_queue *nvmeq = dev->queues[0];
1123 struct request *req;
1124 struct nvme_cmd_info *cmd_rq;
1125
1126 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
1127 if (IS_ERR(req))
1128 return PTR_ERR(req);
1129
1130 req->timeout = timeout;
1131 cmd_rq = blk_mq_rq_to_pdu(req);
1132 cmdinfo->req = req;
1133 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1134 cmdinfo->status = -EINTR;
1135
1136 cmd->common.command_id = req->tag;
1137
1138 nvme_submit_cmd(nvmeq, cmd);
1139 return 0;
1140 }
1141
1142 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1143 {
1144 struct nvme_command c;
1145
1146 memset(&c, 0, sizeof(c));
1147 c.delete_queue.opcode = opcode;
1148 c.delete_queue.qid = cpu_to_le16(id);
1149
1150 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1151 }
1152
1153 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1154 struct nvme_queue *nvmeq)
1155 {
1156 struct nvme_command c;
1157 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1158
1159 /*
1160 * Note: we (ab)use the fact the the prp fields survive if no data
1161 * is attached to the request.
1162 */
1163 memset(&c, 0, sizeof(c));
1164 c.create_cq.opcode = nvme_admin_create_cq;
1165 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1166 c.create_cq.cqid = cpu_to_le16(qid);
1167 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1168 c.create_cq.cq_flags = cpu_to_le16(flags);
1169 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1170
1171 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1172 }
1173
1174 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1175 struct nvme_queue *nvmeq)
1176 {
1177 struct nvme_command c;
1178 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1179
1180 /*
1181 * Note: we (ab)use the fact the the prp fields survive if no data
1182 * is attached to the request.
1183 */
1184 memset(&c, 0, sizeof(c));
1185 c.create_sq.opcode = nvme_admin_create_sq;
1186 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1187 c.create_sq.sqid = cpu_to_le16(qid);
1188 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1189 c.create_sq.sq_flags = cpu_to_le16(flags);
1190 c.create_sq.cqid = cpu_to_le16(qid);
1191
1192 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1193 }
1194
1195 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1196 {
1197 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1198 }
1199
1200 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1201 {
1202 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1203 }
1204
1205 /**
1206 * nvme_abort_req - Attempt aborting a request
1207 *
1208 * Schedule controller reset if the command was already aborted once before and
1209 * still hasn't been returned to the driver, or if this is the admin queue.
1210 */
1211 static void nvme_abort_req(struct request *req)
1212 {
1213 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1214 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1215 struct nvme_dev *dev = nvmeq->dev;
1216 struct request *abort_req;
1217 struct nvme_cmd_info *abort_cmd;
1218 struct nvme_command cmd;
1219
1220 if (!nvmeq->qid || cmd_rq->aborted) {
1221 spin_lock(&dev_list_lock);
1222 if (!__nvme_reset(dev)) {
1223 dev_warn(dev->dev,
1224 "I/O %d QID %d timeout, reset controller\n",
1225 req->tag, nvmeq->qid);
1226 }
1227 spin_unlock(&dev_list_lock);
1228 return;
1229 }
1230
1231 if (!dev->ctrl.abort_limit)
1232 return;
1233
1234 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1235 BLK_MQ_REQ_NOWAIT);
1236 if (IS_ERR(abort_req))
1237 return;
1238
1239 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1240 nvme_set_info(abort_cmd, abort_req, abort_completion);
1241
1242 memset(&cmd, 0, sizeof(cmd));
1243 cmd.abort.opcode = nvme_admin_abort_cmd;
1244 cmd.abort.cid = req->tag;
1245 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1246 cmd.abort.command_id = abort_req->tag;
1247
1248 --dev->ctrl.abort_limit;
1249 cmd_rq->aborted = 1;
1250
1251 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1252 nvmeq->qid);
1253 nvme_submit_cmd(dev->queues[0], &cmd);
1254 }
1255
1256 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1257 {
1258 struct nvme_queue *nvmeq = data;
1259 void *ctx;
1260 nvme_completion_fn fn;
1261 struct nvme_cmd_info *cmd;
1262 struct nvme_completion cqe;
1263
1264 if (!blk_mq_request_started(req))
1265 return;
1266
1267 cmd = blk_mq_rq_to_pdu(req);
1268
1269 if (cmd->ctx == CMD_CTX_CANCELLED)
1270 return;
1271
1272 if (blk_queue_dying(req->q))
1273 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1274 else
1275 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1276
1277
1278 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1279 req->tag, nvmeq->qid);
1280 ctx = cancel_cmd_info(cmd, &fn);
1281 fn(nvmeq, ctx, &cqe);
1282 }
1283
1284 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1285 {
1286 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1287 struct nvme_queue *nvmeq = cmd->nvmeq;
1288
1289 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1290 nvmeq->qid);
1291 spin_lock_irq(&nvmeq->q_lock);
1292 nvme_abort_req(req);
1293 spin_unlock_irq(&nvmeq->q_lock);
1294
1295 /*
1296 * The aborted req will be completed on receiving the abort req.
1297 * We enable the timer again. If hit twice, it'll cause a device reset,
1298 * as the device then is in a faulty state.
1299 */
1300 return BLK_EH_RESET_TIMER;
1301 }
1302
1303 static void nvme_free_queue(struct nvme_queue *nvmeq)
1304 {
1305 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1306 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1307 if (nvmeq->sq_cmds)
1308 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1309 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1310 kfree(nvmeq);
1311 }
1312
1313 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1314 {
1315 int i;
1316
1317 for (i = dev->queue_count - 1; i >= lowest; i--) {
1318 struct nvme_queue *nvmeq = dev->queues[i];
1319 dev->queue_count--;
1320 dev->queues[i] = NULL;
1321 nvme_free_queue(nvmeq);
1322 }
1323 }
1324
1325 /**
1326 * nvme_suspend_queue - put queue into suspended state
1327 * @nvmeq - queue to suspend
1328 */
1329 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1330 {
1331 int vector;
1332
1333 spin_lock_irq(&nvmeq->q_lock);
1334 if (nvmeq->cq_vector == -1) {
1335 spin_unlock_irq(&nvmeq->q_lock);
1336 return 1;
1337 }
1338 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1339 nvmeq->dev->online_queues--;
1340 nvmeq->cq_vector = -1;
1341 spin_unlock_irq(&nvmeq->q_lock);
1342
1343 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1344 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1345
1346 irq_set_affinity_hint(vector, NULL);
1347 free_irq(vector, nvmeq);
1348
1349 return 0;
1350 }
1351
1352 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1353 {
1354 spin_lock_irq(&nvmeq->q_lock);
1355 if (nvmeq->tags && *nvmeq->tags)
1356 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1357 spin_unlock_irq(&nvmeq->q_lock);
1358 }
1359
1360 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1361 {
1362 struct nvme_queue *nvmeq = dev->queues[qid];
1363
1364 if (!nvmeq)
1365 return;
1366 if (nvme_suspend_queue(nvmeq))
1367 return;
1368
1369 /* Don't tell the adapter to delete the admin queue.
1370 * Don't tell a removed adapter to delete IO queues. */
1371 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1372 adapter_delete_sq(dev, qid);
1373 adapter_delete_cq(dev, qid);
1374 }
1375
1376 spin_lock_irq(&nvmeq->q_lock);
1377 nvme_process_cq(nvmeq);
1378 spin_unlock_irq(&nvmeq->q_lock);
1379 }
1380
1381 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1382 int entry_size)
1383 {
1384 int q_depth = dev->q_depth;
1385 unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1386
1387 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1388 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1389 mem_per_q = round_down(mem_per_q, dev->page_size);
1390 q_depth = div_u64(mem_per_q, entry_size);
1391
1392 /*
1393 * Ensure the reduced q_depth is above some threshold where it
1394 * would be better to map queues in system memory with the
1395 * original depth
1396 */
1397 if (q_depth < 64)
1398 return -ENOMEM;
1399 }
1400
1401 return q_depth;
1402 }
1403
1404 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1405 int qid, int depth)
1406 {
1407 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1408 unsigned offset = (qid - 1) *
1409 roundup(SQ_SIZE(depth), dev->page_size);
1410 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1411 nvmeq->sq_cmds_io = dev->cmb + offset;
1412 } else {
1413 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1414 &nvmeq->sq_dma_addr, GFP_KERNEL);
1415 if (!nvmeq->sq_cmds)
1416 return -ENOMEM;
1417 }
1418
1419 return 0;
1420 }
1421
1422 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1423 int depth)
1424 {
1425 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1426 if (!nvmeq)
1427 return NULL;
1428
1429 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1430 &nvmeq->cq_dma_addr, GFP_KERNEL);
1431 if (!nvmeq->cqes)
1432 goto free_nvmeq;
1433
1434 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1435 goto free_cqdma;
1436
1437 nvmeq->q_dmadev = dev->dev;
1438 nvmeq->dev = dev;
1439 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1440 dev->ctrl.instance, qid);
1441 spin_lock_init(&nvmeq->q_lock);
1442 nvmeq->cq_head = 0;
1443 nvmeq->cq_phase = 1;
1444 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1445 nvmeq->q_depth = depth;
1446 nvmeq->qid = qid;
1447 nvmeq->cq_vector = -1;
1448 dev->queues[qid] = nvmeq;
1449
1450 /* make sure queue descriptor is set before queue count, for kthread */
1451 mb();
1452 dev->queue_count++;
1453
1454 return nvmeq;
1455
1456 free_cqdma:
1457 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1458 nvmeq->cq_dma_addr);
1459 free_nvmeq:
1460 kfree(nvmeq);
1461 return NULL;
1462 }
1463
1464 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1465 const char *name)
1466 {
1467 if (use_threaded_interrupts)
1468 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1469 nvme_irq_check, nvme_irq, IRQF_SHARED,
1470 name, nvmeq);
1471 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1472 IRQF_SHARED, name, nvmeq);
1473 }
1474
1475 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1476 {
1477 struct nvme_dev *dev = nvmeq->dev;
1478
1479 spin_lock_irq(&nvmeq->q_lock);
1480 nvmeq->sq_tail = 0;
1481 nvmeq->cq_head = 0;
1482 nvmeq->cq_phase = 1;
1483 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1484 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1485 dev->online_queues++;
1486 spin_unlock_irq(&nvmeq->q_lock);
1487 }
1488
1489 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1490 {
1491 struct nvme_dev *dev = nvmeq->dev;
1492 int result;
1493
1494 nvmeq->cq_vector = qid - 1;
1495 result = adapter_alloc_cq(dev, qid, nvmeq);
1496 if (result < 0)
1497 return result;
1498
1499 result = adapter_alloc_sq(dev, qid, nvmeq);
1500 if (result < 0)
1501 goto release_cq;
1502
1503 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1504 if (result < 0)
1505 goto release_sq;
1506
1507 nvme_init_queue(nvmeq, qid);
1508 return result;
1509
1510 release_sq:
1511 adapter_delete_sq(dev, qid);
1512 release_cq:
1513 adapter_delete_cq(dev, qid);
1514 return result;
1515 }
1516
1517 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1518 {
1519 unsigned long timeout;
1520 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1521
1522 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1523
1524 while ((readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_RDY) != bit) {
1525 msleep(100);
1526 if (fatal_signal_pending(current))
1527 return -EINTR;
1528 if (time_after(jiffies, timeout)) {
1529 dev_err(dev->dev,
1530 "Device not ready; aborting %s\n", enabled ?
1531 "initialisation" : "reset");
1532 return -ENODEV;
1533 }
1534 }
1535
1536 return 0;
1537 }
1538
1539 /*
1540 * If the device has been passed off to us in an enabled state, just clear
1541 * the enabled bit. The spec says we should set the 'shutdown notification
1542 * bits', but doing so may cause the device to complete commands to the
1543 * admin queue ... and we don't know what memory that might be pointing at!
1544 */
1545 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1546 {
1547 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1548 dev->ctrl_config &= ~NVME_CC_ENABLE;
1549 writel(dev->ctrl_config, dev->bar + NVME_REG_CC);
1550
1551 return nvme_wait_ready(dev, cap, false);
1552 }
1553
1554 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1555 {
1556 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1557 dev->ctrl_config |= NVME_CC_ENABLE;
1558 writel(dev->ctrl_config, dev->bar + NVME_REG_CC);
1559
1560 return nvme_wait_ready(dev, cap, true);
1561 }
1562
1563 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1564 {
1565 unsigned long timeout;
1566
1567 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1568 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1569
1570 writel(dev->ctrl_config, dev->bar + NVME_REG_CC);
1571
1572 timeout = SHUTDOWN_TIMEOUT + jiffies;
1573 while ((readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_SHST_MASK) !=
1574 NVME_CSTS_SHST_CMPLT) {
1575 msleep(100);
1576 if (fatal_signal_pending(current))
1577 return -EINTR;
1578 if (time_after(jiffies, timeout)) {
1579 dev_err(dev->dev,
1580 "Device shutdown incomplete; abort shutdown\n");
1581 return -ENODEV;
1582 }
1583 }
1584
1585 return 0;
1586 }
1587
1588 static struct blk_mq_ops nvme_mq_admin_ops = {
1589 .queue_rq = nvme_queue_rq,
1590 .map_queue = blk_mq_map_queue,
1591 .init_hctx = nvme_admin_init_hctx,
1592 .exit_hctx = nvme_admin_exit_hctx,
1593 .init_request = nvme_admin_init_request,
1594 .timeout = nvme_timeout,
1595 };
1596
1597 static struct blk_mq_ops nvme_mq_ops = {
1598 .queue_rq = nvme_queue_rq,
1599 .map_queue = blk_mq_map_queue,
1600 .init_hctx = nvme_init_hctx,
1601 .init_request = nvme_init_request,
1602 .timeout = nvme_timeout,
1603 .poll = nvme_poll,
1604 };
1605
1606 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1607 {
1608 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1609 blk_cleanup_queue(dev->ctrl.admin_q);
1610 blk_mq_free_tag_set(&dev->admin_tagset);
1611 }
1612 }
1613
1614 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1615 {
1616 if (!dev->ctrl.admin_q) {
1617 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1618 dev->admin_tagset.nr_hw_queues = 1;
1619 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1620 dev->admin_tagset.reserved_tags = 1;
1621 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1622 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1623 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1624 dev->admin_tagset.driver_data = dev;
1625
1626 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1627 return -ENOMEM;
1628
1629 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1630 if (IS_ERR(dev->ctrl.admin_q)) {
1631 blk_mq_free_tag_set(&dev->admin_tagset);
1632 return -ENOMEM;
1633 }
1634 if (!blk_get_queue(dev->ctrl.admin_q)) {
1635 nvme_dev_remove_admin(dev);
1636 dev->ctrl.admin_q = NULL;
1637 return -ENODEV;
1638 }
1639 } else
1640 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1641
1642 return 0;
1643 }
1644
1645 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1646 {
1647 int result;
1648 u32 aqa;
1649 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1650 struct nvme_queue *nvmeq;
1651 /*
1652 * default to a 4K page size, with the intention to update this
1653 * path in the future to accomodate architectures with differing
1654 * kernel and IO page sizes.
1655 */
1656 unsigned page_shift = 12;
1657 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1658
1659 if (page_shift < dev_page_min) {
1660 dev_err(dev->dev,
1661 "Minimum device page size (%u) too large for "
1662 "host (%u)\n", 1 << dev_page_min,
1663 1 << page_shift);
1664 return -ENODEV;
1665 }
1666
1667 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1668 NVME_CAP_NSSRC(cap) : 0;
1669
1670 if (dev->subsystem &&
1671 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1672 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1673
1674 result = nvme_disable_ctrl(dev, cap);
1675 if (result < 0)
1676 return result;
1677
1678 nvmeq = dev->queues[0];
1679 if (!nvmeq) {
1680 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1681 if (!nvmeq)
1682 return -ENOMEM;
1683 }
1684
1685 aqa = nvmeq->q_depth - 1;
1686 aqa |= aqa << 16;
1687
1688 dev->page_size = 1 << page_shift;
1689
1690 dev->ctrl_config = NVME_CC_CSS_NVM;
1691 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1692 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1693 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1694
1695 writel(aqa, dev->bar + NVME_REG_AQA);
1696 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1697 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1698
1699 result = nvme_enable_ctrl(dev, cap);
1700 if (result)
1701 goto free_nvmeq;
1702
1703 nvmeq->cq_vector = 0;
1704 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1705 if (result) {
1706 nvmeq->cq_vector = -1;
1707 goto free_nvmeq;
1708 }
1709
1710 return result;
1711
1712 free_nvmeq:
1713 nvme_free_queues(dev, 0);
1714 return result;
1715 }
1716
1717 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1718 {
1719 struct nvme_dev *dev = to_nvme_dev(ns->ctrl);
1720 struct nvme_user_io io;
1721 struct nvme_command c;
1722 unsigned length, meta_len;
1723 int status, write;
1724 dma_addr_t meta_dma = 0;
1725 void *meta = NULL;
1726 void __user *metadata;
1727
1728 if (copy_from_user(&io, uio, sizeof(io)))
1729 return -EFAULT;
1730
1731 switch (io.opcode) {
1732 case nvme_cmd_write:
1733 case nvme_cmd_read:
1734 case nvme_cmd_compare:
1735 break;
1736 default:
1737 return -EINVAL;
1738 }
1739
1740 length = (io.nblocks + 1) << ns->lba_shift;
1741 meta_len = (io.nblocks + 1) * ns->ms;
1742 metadata = (void __user *)(uintptr_t)io.metadata;
1743 write = io.opcode & 1;
1744
1745 if (ns->ext) {
1746 length += meta_len;
1747 meta_len = 0;
1748 }
1749 if (meta_len) {
1750 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1751 return -EINVAL;
1752
1753 meta = dma_alloc_coherent(dev->dev, meta_len,
1754 &meta_dma, GFP_KERNEL);
1755
1756 if (!meta) {
1757 status = -ENOMEM;
1758 goto unmap;
1759 }
1760 if (write) {
1761 if (copy_from_user(meta, metadata, meta_len)) {
1762 status = -EFAULT;
1763 goto unmap;
1764 }
1765 }
1766 }
1767
1768 memset(&c, 0, sizeof(c));
1769 c.rw.opcode = io.opcode;
1770 c.rw.flags = io.flags;
1771 c.rw.nsid = cpu_to_le32(ns->ns_id);
1772 c.rw.slba = cpu_to_le64(io.slba);
1773 c.rw.length = cpu_to_le16(io.nblocks);
1774 c.rw.control = cpu_to_le16(io.control);
1775 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1776 c.rw.reftag = cpu_to_le32(io.reftag);
1777 c.rw.apptag = cpu_to_le16(io.apptag);
1778 c.rw.appmask = cpu_to_le16(io.appmask);
1779 c.rw.metadata = cpu_to_le64(meta_dma);
1780
1781 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1782 (void __user *)(uintptr_t)io.addr, length, NULL, 0);
1783 unmap:
1784 if (meta) {
1785 if (status == NVME_SC_SUCCESS && !write) {
1786 if (copy_to_user(metadata, meta, meta_len))
1787 status = -EFAULT;
1788 }
1789 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1790 }
1791 return status;
1792 }
1793
1794 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1795 struct nvme_passthru_cmd __user *ucmd)
1796 {
1797 struct nvme_passthru_cmd cmd;
1798 struct nvme_command c;
1799 unsigned timeout = 0;
1800 int status;
1801
1802 if (!capable(CAP_SYS_ADMIN))
1803 return -EACCES;
1804 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1805 return -EFAULT;
1806
1807 memset(&c, 0, sizeof(c));
1808 c.common.opcode = cmd.opcode;
1809 c.common.flags = cmd.flags;
1810 c.common.nsid = cpu_to_le32(cmd.nsid);
1811 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1812 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1813 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1814 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1815 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1816 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1817 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1818 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1819
1820 if (cmd.timeout_ms)
1821 timeout = msecs_to_jiffies(cmd.timeout_ms);
1822
1823 status = __nvme_submit_sync_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1824 NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1825 &cmd.result, timeout);
1826 if (status >= 0) {
1827 if (put_user(cmd.result, &ucmd->result))
1828 return -EFAULT;
1829 }
1830
1831 return status;
1832 }
1833
1834 static int nvme_subsys_reset(struct nvme_dev *dev)
1835 {
1836 if (!dev->subsystem)
1837 return -ENOTTY;
1838
1839 writel(0x4E564D65, dev->bar + NVME_REG_NSSR); /* "NVMe" */
1840 return 0;
1841 }
1842
1843 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1844 unsigned long arg)
1845 {
1846 struct nvme_ns *ns = bdev->bd_disk->private_data;
1847
1848 switch (cmd) {
1849 case NVME_IOCTL_ID:
1850 force_successful_syscall_return();
1851 return ns->ns_id;
1852 case NVME_IOCTL_ADMIN_CMD:
1853 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1854 case NVME_IOCTL_IO_CMD:
1855 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1856 case NVME_IOCTL_SUBMIT_IO:
1857 return nvme_submit_io(ns, (void __user *)arg);
1858 case SG_GET_VERSION_NUM:
1859 return nvme_sg_get_version_num((void __user *)arg);
1860 case SG_IO:
1861 return nvme_sg_io(ns, (void __user *)arg);
1862 default:
1863 return -ENOTTY;
1864 }
1865 }
1866
1867 #ifdef CONFIG_COMPAT
1868 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1869 unsigned int cmd, unsigned long arg)
1870 {
1871 switch (cmd) {
1872 case SG_IO:
1873 return -ENOIOCTLCMD;
1874 }
1875 return nvme_ioctl(bdev, mode, cmd, arg);
1876 }
1877 #else
1878 #define nvme_compat_ioctl NULL
1879 #endif
1880
1881 static void nvme_free_dev(struct kref *kref);
1882 static void nvme_free_ns(struct kref *kref)
1883 {
1884 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1885 struct nvme_dev *dev = to_nvme_dev(ns->ctrl);
1886
1887 if (ns->type == NVME_NS_LIGHTNVM)
1888 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
1889
1890 spin_lock(&dev_list_lock);
1891 ns->disk->private_data = NULL;
1892 spin_unlock(&dev_list_lock);
1893
1894 kref_put(&dev->kref, nvme_free_dev);
1895 put_disk(ns->disk);
1896 kfree(ns);
1897 }
1898
1899 static int nvme_open(struct block_device *bdev, fmode_t mode)
1900 {
1901 int ret = 0;
1902 struct nvme_ns *ns;
1903
1904 spin_lock(&dev_list_lock);
1905 ns = bdev->bd_disk->private_data;
1906 if (!ns)
1907 ret = -ENXIO;
1908 else if (!kref_get_unless_zero(&ns->kref))
1909 ret = -ENXIO;
1910 spin_unlock(&dev_list_lock);
1911
1912 return ret;
1913 }
1914
1915 static void nvme_release(struct gendisk *disk, fmode_t mode)
1916 {
1917 struct nvme_ns *ns = disk->private_data;
1918 kref_put(&ns->kref, nvme_free_ns);
1919 }
1920
1921 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1922 {
1923 /* some standard values */
1924 geo->heads = 1 << 6;
1925 geo->sectors = 1 << 5;
1926 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1927 return 0;
1928 }
1929
1930 static void nvme_config_discard(struct nvme_ns *ns)
1931 {
1932 u32 logical_block_size = queue_logical_block_size(ns->queue);
1933 ns->queue->limits.discard_zeroes_data = 0;
1934 ns->queue->limits.discard_alignment = logical_block_size;
1935 ns->queue->limits.discard_granularity = logical_block_size;
1936 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
1937 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1938 }
1939
1940 static int nvme_revalidate_disk(struct gendisk *disk)
1941 {
1942 struct nvme_ns *ns = disk->private_data;
1943 struct nvme_dev *dev = to_nvme_dev(ns->ctrl);
1944 struct nvme_id_ns *id;
1945 u8 lbaf, pi_type;
1946 u16 old_ms;
1947 unsigned short bs;
1948
1949 if (nvme_identify_ns(&dev->ctrl, ns->ns_id, &id)) {
1950 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
1951 dev->ctrl.instance, ns->ns_id);
1952 return -ENODEV;
1953 }
1954 if (id->ncap == 0) {
1955 kfree(id);
1956 return -ENODEV;
1957 }
1958
1959 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
1960 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
1961 dev_warn(dev->dev,
1962 "%s: LightNVM init failure\n", __func__);
1963 kfree(id);
1964 return -ENODEV;
1965 }
1966 ns->type = NVME_NS_LIGHTNVM;
1967 }
1968
1969 old_ms = ns->ms;
1970 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1971 ns->lba_shift = id->lbaf[lbaf].ds;
1972 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1973 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1974
1975 /*
1976 * If identify namespace failed, use default 512 byte block size so
1977 * block layer can use before failing read/write for 0 capacity.
1978 */
1979 if (ns->lba_shift == 0)
1980 ns->lba_shift = 9;
1981 bs = 1 << ns->lba_shift;
1982
1983 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1984 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1985 id->dps & NVME_NS_DPS_PI_MASK : 0;
1986
1987 blk_mq_freeze_queue(disk->queue);
1988 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1989 ns->ms != old_ms ||
1990 bs != queue_logical_block_size(disk->queue) ||
1991 (ns->ms && ns->ext)))
1992 blk_integrity_unregister(disk);
1993
1994 ns->pi_type = pi_type;
1995 blk_queue_logical_block_size(ns->queue, bs);
1996
1997 if (ns->ms && !ns->ext)
1998 nvme_init_integrity(ns);
1999
2000 if ((ns->ms && !(ns->ms == 8 && ns->pi_type) &&
2001 !blk_get_integrity(disk)) ||
2002 ns->type == NVME_NS_LIGHTNVM)
2003 set_capacity(disk, 0);
2004 else
2005 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2006
2007 if (dev->ctrl.oncs & NVME_CTRL_ONCS_DSM)
2008 nvme_config_discard(ns);
2009 blk_mq_unfreeze_queue(disk->queue);
2010
2011 kfree(id);
2012 return 0;
2013 }
2014
2015 static char nvme_pr_type(enum pr_type type)
2016 {
2017 switch (type) {
2018 case PR_WRITE_EXCLUSIVE:
2019 return 1;
2020 case PR_EXCLUSIVE_ACCESS:
2021 return 2;
2022 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2023 return 3;
2024 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2025 return 4;
2026 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2027 return 5;
2028 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2029 return 6;
2030 default:
2031 return 0;
2032 }
2033 };
2034
2035 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2036 u64 key, u64 sa_key, u8 op)
2037 {
2038 struct nvme_ns *ns = bdev->bd_disk->private_data;
2039 struct nvme_command c;
2040 u8 data[16] = { 0, };
2041
2042 put_unaligned_le64(key, &data[0]);
2043 put_unaligned_le64(sa_key, &data[8]);
2044
2045 memset(&c, 0, sizeof(c));
2046 c.common.opcode = op;
2047 c.common.nsid = cpu_to_le32(ns->ns_id);
2048 c.common.cdw10[0] = cpu_to_le32(cdw10);
2049
2050 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2051 }
2052
2053 static int nvme_pr_register(struct block_device *bdev, u64 old,
2054 u64 new, unsigned flags)
2055 {
2056 u32 cdw10;
2057
2058 if (flags & ~PR_FL_IGNORE_KEY)
2059 return -EOPNOTSUPP;
2060
2061 cdw10 = old ? 2 : 0;
2062 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2063 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2064 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2065 }
2066
2067 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2068 enum pr_type type, unsigned flags)
2069 {
2070 u32 cdw10;
2071
2072 if (flags & ~PR_FL_IGNORE_KEY)
2073 return -EOPNOTSUPP;
2074
2075 cdw10 = nvme_pr_type(type) << 8;
2076 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2077 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2078 }
2079
2080 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2081 enum pr_type type, bool abort)
2082 {
2083 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
2084 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2085 }
2086
2087 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2088 {
2089 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2090 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2091 }
2092
2093 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2094 {
2095 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
2096 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2097 }
2098
2099 static const struct pr_ops nvme_pr_ops = {
2100 .pr_register = nvme_pr_register,
2101 .pr_reserve = nvme_pr_reserve,
2102 .pr_release = nvme_pr_release,
2103 .pr_preempt = nvme_pr_preempt,
2104 .pr_clear = nvme_pr_clear,
2105 };
2106
2107 static const struct block_device_operations nvme_fops = {
2108 .owner = THIS_MODULE,
2109 .ioctl = nvme_ioctl,
2110 .compat_ioctl = nvme_compat_ioctl,
2111 .open = nvme_open,
2112 .release = nvme_release,
2113 .getgeo = nvme_getgeo,
2114 .revalidate_disk= nvme_revalidate_disk,
2115 .pr_ops = &nvme_pr_ops,
2116 };
2117
2118 static int nvme_kthread(void *data)
2119 {
2120 struct nvme_dev *dev, *next;
2121
2122 while (!kthread_should_stop()) {
2123 set_current_state(TASK_INTERRUPTIBLE);
2124 spin_lock(&dev_list_lock);
2125 list_for_each_entry_safe(dev, next, &dev_list, node) {
2126 int i;
2127 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2128
2129 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2130 csts & NVME_CSTS_CFS) {
2131 if (!__nvme_reset(dev)) {
2132 dev_warn(dev->dev,
2133 "Failed status: %x, reset controller\n",
2134 readl(dev->bar + NVME_REG_CSTS));
2135 }
2136 continue;
2137 }
2138 for (i = 0; i < dev->queue_count; i++) {
2139 struct nvme_queue *nvmeq = dev->queues[i];
2140 if (!nvmeq)
2141 continue;
2142 spin_lock_irq(&nvmeq->q_lock);
2143 nvme_process_cq(nvmeq);
2144
2145 while (i == 0 && dev->ctrl.event_limit > 0) {
2146 if (nvme_submit_async_admin_req(dev))
2147 break;
2148 dev->ctrl.event_limit--;
2149 }
2150 spin_unlock_irq(&nvmeq->q_lock);
2151 }
2152 }
2153 spin_unlock(&dev_list_lock);
2154 schedule_timeout(round_jiffies_relative(HZ));
2155 }
2156 return 0;
2157 }
2158
2159 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2160 {
2161 struct nvme_ns *ns;
2162 struct gendisk *disk;
2163 int node = dev_to_node(dev->dev);
2164
2165 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2166 if (!ns)
2167 return;
2168
2169 ns->queue = blk_mq_init_queue(&dev->tagset);
2170 if (IS_ERR(ns->queue))
2171 goto out_free_ns;
2172 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2173 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2174 ns->ctrl = &dev->ctrl;
2175 ns->queue->queuedata = ns;
2176
2177 disk = alloc_disk_node(0, node);
2178 if (!disk)
2179 goto out_free_queue;
2180
2181 kref_init(&ns->kref);
2182 ns->ns_id = nsid;
2183 ns->disk = disk;
2184 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2185 list_add_tail(&ns->list, &dev->namespaces);
2186
2187 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2188 if (dev->max_hw_sectors) {
2189 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2190 blk_queue_max_segments(ns->queue,
2191 (dev->max_hw_sectors / (dev->page_size >> 9)) + 1);
2192 }
2193 if (dev->stripe_size)
2194 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2195 if (dev->ctrl.vwc & NVME_CTRL_VWC_PRESENT)
2196 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2197 blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
2198
2199 disk->major = nvme_major;
2200 disk->first_minor = 0;
2201 disk->fops = &nvme_fops;
2202 disk->private_data = ns;
2203 disk->queue = ns->queue;
2204 disk->driverfs_dev = dev->device;
2205 disk->flags = GENHD_FL_EXT_DEVT;
2206 sprintf(disk->disk_name, "nvme%dn%d", dev->ctrl.instance, nsid);
2207
2208 /*
2209 * Initialize capacity to 0 until we establish the namespace format and
2210 * setup integrity extentions if necessary. The revalidate_disk after
2211 * add_disk allows the driver to register with integrity if the format
2212 * requires it.
2213 */
2214 set_capacity(disk, 0);
2215 if (nvme_revalidate_disk(ns->disk))
2216 goto out_free_disk;
2217
2218 kref_get(&dev->kref);
2219 if (ns->type != NVME_NS_LIGHTNVM) {
2220 add_disk(ns->disk);
2221 if (ns->ms) {
2222 struct block_device *bd = bdget_disk(ns->disk, 0);
2223 if (!bd)
2224 return;
2225 if (blkdev_get(bd, FMODE_READ, NULL)) {
2226 bdput(bd);
2227 return;
2228 }
2229 blkdev_reread_part(bd);
2230 blkdev_put(bd, FMODE_READ);
2231 }
2232 }
2233 return;
2234 out_free_disk:
2235 kfree(disk);
2236 list_del(&ns->list);
2237 out_free_queue:
2238 blk_cleanup_queue(ns->queue);
2239 out_free_ns:
2240 kfree(ns);
2241 }
2242
2243 /*
2244 * Create I/O queues. Failing to create an I/O queue is not an issue,
2245 * we can continue with less than the desired amount of queues, and
2246 * even a controller without I/O queues an still be used to issue
2247 * admin commands. This might be useful to upgrade a buggy firmware
2248 * for example.
2249 */
2250 static void nvme_create_io_queues(struct nvme_dev *dev)
2251 {
2252 unsigned i;
2253
2254 for (i = dev->queue_count; i <= dev->max_qid; i++)
2255 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2256 break;
2257
2258 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2259 if (nvme_create_queue(dev->queues[i], i)) {
2260 nvme_free_queues(dev, i);
2261 break;
2262 }
2263 }
2264
2265 static int set_queue_count(struct nvme_dev *dev, int count)
2266 {
2267 int status;
2268 u32 result;
2269 u32 q_count = (count - 1) | ((count - 1) << 16);
2270
2271 status = nvme_set_features(&dev->ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
2272 &result);
2273 if (status < 0)
2274 return status;
2275 if (status > 0) {
2276 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2277 return 0;
2278 }
2279 return min(result & 0xffff, result >> 16) + 1;
2280 }
2281
2282 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2283 {
2284 u64 szu, size, offset;
2285 u32 cmbloc;
2286 resource_size_t bar_size;
2287 struct pci_dev *pdev = to_pci_dev(dev->dev);
2288 void __iomem *cmb;
2289 dma_addr_t dma_addr;
2290
2291 if (!use_cmb_sqes)
2292 return NULL;
2293
2294 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2295 if (!(NVME_CMB_SZ(dev->cmbsz)))
2296 return NULL;
2297
2298 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2299
2300 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2301 size = szu * NVME_CMB_SZ(dev->cmbsz);
2302 offset = szu * NVME_CMB_OFST(cmbloc);
2303 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2304
2305 if (offset > bar_size)
2306 return NULL;
2307
2308 /*
2309 * Controllers may support a CMB size larger than their BAR,
2310 * for example, due to being behind a bridge. Reduce the CMB to
2311 * the reported size of the BAR
2312 */
2313 if (size > bar_size - offset)
2314 size = bar_size - offset;
2315
2316 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2317 cmb = ioremap_wc(dma_addr, size);
2318 if (!cmb)
2319 return NULL;
2320
2321 dev->cmb_dma_addr = dma_addr;
2322 dev->cmb_size = size;
2323 return cmb;
2324 }
2325
2326 static inline void nvme_release_cmb(struct nvme_dev *dev)
2327 {
2328 if (dev->cmb) {
2329 iounmap(dev->cmb);
2330 dev->cmb = NULL;
2331 }
2332 }
2333
2334 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2335 {
2336 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2337 }
2338
2339 static int nvme_setup_io_queues(struct nvme_dev *dev)
2340 {
2341 struct nvme_queue *adminq = dev->queues[0];
2342 struct pci_dev *pdev = to_pci_dev(dev->dev);
2343 int result, i, vecs, nr_io_queues, size;
2344
2345 nr_io_queues = num_possible_cpus();
2346 result = set_queue_count(dev, nr_io_queues);
2347 if (result <= 0)
2348 return result;
2349 if (result < nr_io_queues)
2350 nr_io_queues = result;
2351
2352 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2353 result = nvme_cmb_qdepth(dev, nr_io_queues,
2354 sizeof(struct nvme_command));
2355 if (result > 0)
2356 dev->q_depth = result;
2357 else
2358 nvme_release_cmb(dev);
2359 }
2360
2361 size = db_bar_size(dev, nr_io_queues);
2362 if (size > 8192) {
2363 iounmap(dev->bar);
2364 do {
2365 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2366 if (dev->bar)
2367 break;
2368 if (!--nr_io_queues)
2369 return -ENOMEM;
2370 size = db_bar_size(dev, nr_io_queues);
2371 } while (1);
2372 dev->dbs = dev->bar + 4096;
2373 adminq->q_db = dev->dbs;
2374 }
2375
2376 /* Deregister the admin queue's interrupt */
2377 free_irq(dev->entry[0].vector, adminq);
2378
2379 /*
2380 * If we enable msix early due to not intx, disable it again before
2381 * setting up the full range we need.
2382 */
2383 if (!pdev->irq)
2384 pci_disable_msix(pdev);
2385
2386 for (i = 0; i < nr_io_queues; i++)
2387 dev->entry[i].entry = i;
2388 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2389 if (vecs < 0) {
2390 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2391 if (vecs < 0) {
2392 vecs = 1;
2393 } else {
2394 for (i = 0; i < vecs; i++)
2395 dev->entry[i].vector = i + pdev->irq;
2396 }
2397 }
2398
2399 /*
2400 * Should investigate if there's a performance win from allocating
2401 * more queues than interrupt vectors; it might allow the submission
2402 * path to scale better, even if the receive path is limited by the
2403 * number of interrupts.
2404 */
2405 nr_io_queues = vecs;
2406 dev->max_qid = nr_io_queues;
2407
2408 result = queue_request_irq(dev, adminq, adminq->irqname);
2409 if (result) {
2410 adminq->cq_vector = -1;
2411 goto free_queues;
2412 }
2413
2414 /* Free previously allocated queues that are no longer usable */
2415 nvme_free_queues(dev, nr_io_queues + 1);
2416 nvme_create_io_queues(dev);
2417
2418 return 0;
2419
2420 free_queues:
2421 nvme_free_queues(dev, 1);
2422 return result;
2423 }
2424
2425 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2426 {
2427 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2428 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2429
2430 return nsa->ns_id - nsb->ns_id;
2431 }
2432
2433 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2434 {
2435 struct nvme_ns *ns;
2436
2437 list_for_each_entry(ns, &dev->namespaces, list) {
2438 if (ns->ns_id == nsid)
2439 return ns;
2440 if (ns->ns_id > nsid)
2441 break;
2442 }
2443 return NULL;
2444 }
2445
2446 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2447 {
2448 return (!dev->bar ||
2449 readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_CFS ||
2450 dev->online_queues < 2);
2451 }
2452
2453 static void nvme_ns_remove(struct nvme_ns *ns)
2454 {
2455 bool kill = nvme_io_incapable(to_nvme_dev(ns->ctrl)) &&
2456 !blk_queue_dying(ns->queue);
2457
2458 if (kill)
2459 blk_set_queue_dying(ns->queue);
2460 if (ns->disk->flags & GENHD_FL_UP)
2461 del_gendisk(ns->disk);
2462 if (kill || !blk_queue_dying(ns->queue)) {
2463 blk_mq_abort_requeue_list(ns->queue);
2464 blk_cleanup_queue(ns->queue);
2465 }
2466 list_del_init(&ns->list);
2467 kref_put(&ns->kref, nvme_free_ns);
2468 }
2469
2470 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2471 {
2472 struct nvme_ns *ns, *next;
2473 unsigned i;
2474
2475 for (i = 1; i <= nn; i++) {
2476 ns = nvme_find_ns(dev, i);
2477 if (ns) {
2478 if (revalidate_disk(ns->disk))
2479 nvme_ns_remove(ns);
2480 } else
2481 nvme_alloc_ns(dev, i);
2482 }
2483 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2484 if (ns->ns_id > nn)
2485 nvme_ns_remove(ns);
2486 }
2487 list_sort(NULL, &dev->namespaces, ns_cmp);
2488 }
2489
2490 static void nvme_set_irq_hints(struct nvme_dev *dev)
2491 {
2492 struct nvme_queue *nvmeq;
2493 int i;
2494
2495 for (i = 0; i < dev->online_queues; i++) {
2496 nvmeq = dev->queues[i];
2497
2498 if (!nvmeq->tags || !(*nvmeq->tags))
2499 continue;
2500
2501 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2502 blk_mq_tags_cpumask(*nvmeq->tags));
2503 }
2504 }
2505
2506 static void nvme_dev_scan(struct work_struct *work)
2507 {
2508 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2509 struct nvme_id_ctrl *ctrl;
2510
2511 if (!dev->tagset.tags)
2512 return;
2513 if (nvme_identify_ctrl(&dev->ctrl, &ctrl))
2514 return;
2515 nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2516 kfree(ctrl);
2517 nvme_set_irq_hints(dev);
2518 }
2519
2520 /*
2521 * Return: error value if an error occurred setting up the queues or calling
2522 * Identify Device. 0 if these succeeded, even if adding some of the
2523 * namespaces failed. At the moment, these failures are silent. TBD which
2524 * failures should be reported.
2525 */
2526 static int nvme_dev_add(struct nvme_dev *dev)
2527 {
2528 struct pci_dev *pdev = to_pci_dev(dev->dev);
2529 int res;
2530 struct nvme_id_ctrl *ctrl;
2531 int shift = NVME_CAP_MPSMIN(lo_hi_readq(dev->bar + NVME_REG_CAP)) + 12;
2532
2533 res = nvme_identify_ctrl(&dev->ctrl, &ctrl);
2534 if (res) {
2535 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2536 return -EIO;
2537 }
2538
2539 dev->ctrl.oncs = le16_to_cpup(&ctrl->oncs);
2540 dev->ctrl.abort_limit = ctrl->acl + 1;
2541 dev->ctrl.vwc = ctrl->vwc;
2542 memcpy(dev->ctrl.serial, ctrl->sn, sizeof(ctrl->sn));
2543 memcpy(dev->ctrl.model, ctrl->mn, sizeof(ctrl->mn));
2544 memcpy(dev->ctrl.firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2545 if (ctrl->mdts)
2546 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2547 else
2548 dev->max_hw_sectors = UINT_MAX;
2549 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2550 (pdev->device == 0x0953) && ctrl->vs[3]) {
2551 unsigned int max_hw_sectors;
2552
2553 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2554 max_hw_sectors = dev->stripe_size >> (shift - 9);
2555 if (dev->max_hw_sectors) {
2556 dev->max_hw_sectors = min(max_hw_sectors,
2557 dev->max_hw_sectors);
2558 } else
2559 dev->max_hw_sectors = max_hw_sectors;
2560 }
2561 kfree(ctrl);
2562
2563 if (!dev->tagset.tags) {
2564 dev->tagset.ops = &nvme_mq_ops;
2565 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2566 dev->tagset.timeout = NVME_IO_TIMEOUT;
2567 dev->tagset.numa_node = dev_to_node(dev->dev);
2568 dev->tagset.queue_depth =
2569 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2570 dev->tagset.cmd_size = nvme_cmd_size(dev);
2571 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2572 dev->tagset.driver_data = dev;
2573
2574 if (blk_mq_alloc_tag_set(&dev->tagset))
2575 return 0;
2576 }
2577 schedule_work(&dev->scan_work);
2578 return 0;
2579 }
2580
2581 static int nvme_dev_map(struct nvme_dev *dev)
2582 {
2583 u64 cap;
2584 int bars, result = -ENOMEM;
2585 struct pci_dev *pdev = to_pci_dev(dev->dev);
2586
2587 if (pci_enable_device_mem(pdev))
2588 return result;
2589
2590 dev->entry[0].vector = pdev->irq;
2591 pci_set_master(pdev);
2592 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2593 if (!bars)
2594 goto disable_pci;
2595
2596 if (pci_request_selected_regions(pdev, bars, "nvme"))
2597 goto disable_pci;
2598
2599 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2600 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2601 goto disable;
2602
2603 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2604 if (!dev->bar)
2605 goto disable;
2606
2607 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2608 result = -ENODEV;
2609 goto unmap;
2610 }
2611
2612 /*
2613 * Some devices don't advertse INTx interrupts, pre-enable a single
2614 * MSIX vec for setup. We'll adjust this later.
2615 */
2616 if (!pdev->irq) {
2617 result = pci_enable_msix(pdev, dev->entry, 1);
2618 if (result < 0)
2619 goto unmap;
2620 }
2621
2622 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2623
2624 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2625 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2626 dev->dbs = dev->bar + 4096;
2627 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
2628 dev->cmb = nvme_map_cmb(dev);
2629
2630 return 0;
2631
2632 unmap:
2633 iounmap(dev->bar);
2634 dev->bar = NULL;
2635 disable:
2636 pci_release_regions(pdev);
2637 disable_pci:
2638 pci_disable_device(pdev);
2639 return result;
2640 }
2641
2642 static void nvme_dev_unmap(struct nvme_dev *dev)
2643 {
2644 struct pci_dev *pdev = to_pci_dev(dev->dev);
2645
2646 if (pdev->msi_enabled)
2647 pci_disable_msi(pdev);
2648 else if (pdev->msix_enabled)
2649 pci_disable_msix(pdev);
2650
2651 if (dev->bar) {
2652 iounmap(dev->bar);
2653 dev->bar = NULL;
2654 pci_release_regions(pdev);
2655 }
2656
2657 if (pci_is_enabled(pdev))
2658 pci_disable_device(pdev);
2659 }
2660
2661 struct nvme_delq_ctx {
2662 struct task_struct *waiter;
2663 struct kthread_worker *worker;
2664 atomic_t refcount;
2665 };
2666
2667 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2668 {
2669 dq->waiter = current;
2670 mb();
2671
2672 for (;;) {
2673 set_current_state(TASK_KILLABLE);
2674 if (!atomic_read(&dq->refcount))
2675 break;
2676 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2677 fatal_signal_pending(current)) {
2678 /*
2679 * Disable the controller first since we can't trust it
2680 * at this point, but leave the admin queue enabled
2681 * until all queue deletion requests are flushed.
2682 * FIXME: This may take a while if there are more h/w
2683 * queues than admin tags.
2684 */
2685 set_current_state(TASK_RUNNING);
2686 nvme_disable_ctrl(dev,
2687 lo_hi_readq(dev->bar + NVME_REG_CAP));
2688 nvme_clear_queue(dev->queues[0]);
2689 flush_kthread_worker(dq->worker);
2690 nvme_disable_queue(dev, 0);
2691 return;
2692 }
2693 }
2694 set_current_state(TASK_RUNNING);
2695 }
2696
2697 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2698 {
2699 atomic_dec(&dq->refcount);
2700 if (dq->waiter)
2701 wake_up_process(dq->waiter);
2702 }
2703
2704 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2705 {
2706 atomic_inc(&dq->refcount);
2707 return dq;
2708 }
2709
2710 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2711 {
2712 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2713 nvme_put_dq(dq);
2714
2715 spin_lock_irq(&nvmeq->q_lock);
2716 nvme_process_cq(nvmeq);
2717 spin_unlock_irq(&nvmeq->q_lock);
2718 }
2719
2720 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2721 kthread_work_func_t fn)
2722 {
2723 struct nvme_command c;
2724
2725 memset(&c, 0, sizeof(c));
2726 c.delete_queue.opcode = opcode;
2727 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2728
2729 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2730 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2731 ADMIN_TIMEOUT);
2732 }
2733
2734 static void nvme_del_cq_work_handler(struct kthread_work *work)
2735 {
2736 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2737 cmdinfo.work);
2738 nvme_del_queue_end(nvmeq);
2739 }
2740
2741 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2742 {
2743 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2744 nvme_del_cq_work_handler);
2745 }
2746
2747 static void nvme_del_sq_work_handler(struct kthread_work *work)
2748 {
2749 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2750 cmdinfo.work);
2751 int status = nvmeq->cmdinfo.status;
2752
2753 if (!status)
2754 status = nvme_delete_cq(nvmeq);
2755 if (status)
2756 nvme_del_queue_end(nvmeq);
2757 }
2758
2759 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2760 {
2761 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2762 nvme_del_sq_work_handler);
2763 }
2764
2765 static void nvme_del_queue_start(struct kthread_work *work)
2766 {
2767 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2768 cmdinfo.work);
2769 if (nvme_delete_sq(nvmeq))
2770 nvme_del_queue_end(nvmeq);
2771 }
2772
2773 static void nvme_disable_io_queues(struct nvme_dev *dev)
2774 {
2775 int i;
2776 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2777 struct nvme_delq_ctx dq;
2778 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2779 &worker, "nvme%d", dev->ctrl.instance);
2780
2781 if (IS_ERR(kworker_task)) {
2782 dev_err(dev->dev,
2783 "Failed to create queue del task\n");
2784 for (i = dev->queue_count - 1; i > 0; i--)
2785 nvme_disable_queue(dev, i);
2786 return;
2787 }
2788
2789 dq.waiter = NULL;
2790 atomic_set(&dq.refcount, 0);
2791 dq.worker = &worker;
2792 for (i = dev->queue_count - 1; i > 0; i--) {
2793 struct nvme_queue *nvmeq = dev->queues[i];
2794
2795 if (nvme_suspend_queue(nvmeq))
2796 continue;
2797 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2798 nvmeq->cmdinfo.worker = dq.worker;
2799 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2800 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2801 }
2802 nvme_wait_dq(&dq, dev);
2803 kthread_stop(kworker_task);
2804 }
2805
2806 /*
2807 * Remove the node from the device list and check
2808 * for whether or not we need to stop the nvme_thread.
2809 */
2810 static void nvme_dev_list_remove(struct nvme_dev *dev)
2811 {
2812 struct task_struct *tmp = NULL;
2813
2814 spin_lock(&dev_list_lock);
2815 list_del_init(&dev->node);
2816 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2817 tmp = nvme_thread;
2818 nvme_thread = NULL;
2819 }
2820 spin_unlock(&dev_list_lock);
2821
2822 if (tmp)
2823 kthread_stop(tmp);
2824 }
2825
2826 static void nvme_freeze_queues(struct nvme_dev *dev)
2827 {
2828 struct nvme_ns *ns;
2829
2830 list_for_each_entry(ns, &dev->namespaces, list) {
2831 blk_mq_freeze_queue_start(ns->queue);
2832
2833 spin_lock_irq(ns->queue->queue_lock);
2834 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2835 spin_unlock_irq(ns->queue->queue_lock);
2836
2837 blk_mq_cancel_requeue_work(ns->queue);
2838 blk_mq_stop_hw_queues(ns->queue);
2839 }
2840 }
2841
2842 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2843 {
2844 struct nvme_ns *ns;
2845
2846 list_for_each_entry(ns, &dev->namespaces, list) {
2847 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2848 blk_mq_unfreeze_queue(ns->queue);
2849 blk_mq_start_stopped_hw_queues(ns->queue, true);
2850 blk_mq_kick_requeue_list(ns->queue);
2851 }
2852 }
2853
2854 static void nvme_dev_shutdown(struct nvme_dev *dev)
2855 {
2856 int i;
2857 u32 csts = -1;
2858
2859 nvme_dev_list_remove(dev);
2860
2861 if (dev->bar) {
2862 nvme_freeze_queues(dev);
2863 csts = readl(dev->bar + NVME_REG_CSTS);
2864 }
2865 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2866 for (i = dev->queue_count - 1; i >= 0; i--) {
2867 struct nvme_queue *nvmeq = dev->queues[i];
2868 nvme_suspend_queue(nvmeq);
2869 }
2870 } else {
2871 nvme_disable_io_queues(dev);
2872 nvme_shutdown_ctrl(dev);
2873 nvme_disable_queue(dev, 0);
2874 }
2875 nvme_dev_unmap(dev);
2876
2877 for (i = dev->queue_count - 1; i >= 0; i--)
2878 nvme_clear_queue(dev->queues[i]);
2879 }
2880
2881 static void nvme_dev_remove(struct nvme_dev *dev)
2882 {
2883 struct nvme_ns *ns, *next;
2884
2885 list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2886 nvme_ns_remove(ns);
2887 }
2888
2889 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2890 {
2891 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2892 PAGE_SIZE, PAGE_SIZE, 0);
2893 if (!dev->prp_page_pool)
2894 return -ENOMEM;
2895
2896 /* Optimisation for I/Os between 4k and 128k */
2897 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2898 256, 256, 0);
2899 if (!dev->prp_small_pool) {
2900 dma_pool_destroy(dev->prp_page_pool);
2901 return -ENOMEM;
2902 }
2903 return 0;
2904 }
2905
2906 static void nvme_release_prp_pools(struct nvme_dev *dev)
2907 {
2908 dma_pool_destroy(dev->prp_page_pool);
2909 dma_pool_destroy(dev->prp_small_pool);
2910 }
2911
2912 static DEFINE_IDA(nvme_instance_ida);
2913
2914 static int nvme_set_instance(struct nvme_dev *dev)
2915 {
2916 int instance, error;
2917
2918 do {
2919 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2920 return -ENODEV;
2921
2922 spin_lock(&dev_list_lock);
2923 error = ida_get_new(&nvme_instance_ida, &instance);
2924 spin_unlock(&dev_list_lock);
2925 } while (error == -EAGAIN);
2926
2927 if (error)
2928 return -ENODEV;
2929
2930 dev->ctrl.instance = instance;
2931 return 0;
2932 }
2933
2934 static void nvme_release_instance(struct nvme_dev *dev)
2935 {
2936 spin_lock(&dev_list_lock);
2937 ida_remove(&nvme_instance_ida, dev->ctrl.instance);
2938 spin_unlock(&dev_list_lock);
2939 }
2940
2941 static void nvme_free_dev(struct kref *kref)
2942 {
2943 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2944
2945 put_device(dev->dev);
2946 put_device(dev->device);
2947 nvme_release_instance(dev);
2948 if (dev->tagset.tags)
2949 blk_mq_free_tag_set(&dev->tagset);
2950 if (dev->ctrl.admin_q)
2951 blk_put_queue(dev->ctrl.admin_q);
2952 kfree(dev->queues);
2953 kfree(dev->entry);
2954 kfree(dev);
2955 }
2956
2957 static int nvme_dev_open(struct inode *inode, struct file *f)
2958 {
2959 struct nvme_dev *dev;
2960 int instance = iminor(inode);
2961 int ret = -ENODEV;
2962
2963 spin_lock(&dev_list_lock);
2964 list_for_each_entry(dev, &dev_list, node) {
2965 if (dev->ctrl.instance == instance) {
2966 if (!dev->ctrl.admin_q) {
2967 ret = -EWOULDBLOCK;
2968 break;
2969 }
2970 if (!kref_get_unless_zero(&dev->kref))
2971 break;
2972 f->private_data = dev;
2973 ret = 0;
2974 break;
2975 }
2976 }
2977 spin_unlock(&dev_list_lock);
2978
2979 return ret;
2980 }
2981
2982 static int nvme_dev_release(struct inode *inode, struct file *f)
2983 {
2984 struct nvme_dev *dev = f->private_data;
2985 kref_put(&dev->kref, nvme_free_dev);
2986 return 0;
2987 }
2988
2989 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2990 {
2991 struct nvme_dev *dev = f->private_data;
2992 struct nvme_ns *ns;
2993
2994 switch (cmd) {
2995 case NVME_IOCTL_ADMIN_CMD:
2996 return nvme_user_cmd(&dev->ctrl, NULL, (void __user *)arg);
2997 case NVME_IOCTL_IO_CMD:
2998 if (list_empty(&dev->namespaces))
2999 return -ENOTTY;
3000 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
3001 return nvme_user_cmd(&dev->ctrl, ns, (void __user *)arg);
3002 case NVME_IOCTL_RESET:
3003 dev_warn(dev->dev, "resetting controller\n");
3004 return nvme_reset(dev);
3005 case NVME_IOCTL_SUBSYS_RESET:
3006 return nvme_subsys_reset(dev);
3007 default:
3008 return -ENOTTY;
3009 }
3010 }
3011
3012 static const struct file_operations nvme_dev_fops = {
3013 .owner = THIS_MODULE,
3014 .open = nvme_dev_open,
3015 .release = nvme_dev_release,
3016 .unlocked_ioctl = nvme_dev_ioctl,
3017 .compat_ioctl = nvme_dev_ioctl,
3018 };
3019
3020 static void nvme_probe_work(struct work_struct *work)
3021 {
3022 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3023 bool start_thread = false;
3024 int result;
3025
3026 result = nvme_dev_map(dev);
3027 if (result)
3028 goto out;
3029
3030 result = nvme_configure_admin_queue(dev);
3031 if (result)
3032 goto unmap;
3033
3034 spin_lock(&dev_list_lock);
3035 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
3036 start_thread = true;
3037 nvme_thread = NULL;
3038 }
3039 list_add(&dev->node, &dev_list);
3040 spin_unlock(&dev_list_lock);
3041
3042 if (start_thread) {
3043 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
3044 wake_up_all(&nvme_kthread_wait);
3045 } else
3046 wait_event_killable(nvme_kthread_wait, nvme_thread);
3047
3048 if (IS_ERR_OR_NULL(nvme_thread)) {
3049 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
3050 goto disable;
3051 }
3052
3053 nvme_init_queue(dev->queues[0], 0);
3054 result = nvme_alloc_admin_tags(dev);
3055 if (result)
3056 goto disable;
3057
3058 result = nvme_setup_io_queues(dev);
3059 if (result)
3060 goto free_tags;
3061
3062 dev->ctrl.event_limit = 1;
3063
3064 /*
3065 * Keep the controller around but remove all namespaces if we don't have
3066 * any working I/O queue.
3067 */
3068 if (dev->online_queues < 2) {
3069 dev_warn(dev->dev, "IO queues not created\n");
3070 nvme_dev_remove(dev);
3071 } else {
3072 nvme_unfreeze_queues(dev);
3073 nvme_dev_add(dev);
3074 }
3075
3076 return;
3077
3078 free_tags:
3079 nvme_dev_remove_admin(dev);
3080 blk_put_queue(dev->ctrl.admin_q);
3081 dev->ctrl.admin_q = NULL;
3082 dev->queues[0]->tags = NULL;
3083 disable:
3084 nvme_disable_queue(dev, 0);
3085 nvme_dev_list_remove(dev);
3086 unmap:
3087 nvme_dev_unmap(dev);
3088 out:
3089 if (!work_busy(&dev->reset_work))
3090 nvme_dead_ctrl(dev);
3091 }
3092
3093 static int nvme_remove_dead_ctrl(void *arg)
3094 {
3095 struct nvme_dev *dev = (struct nvme_dev *)arg;
3096 struct pci_dev *pdev = to_pci_dev(dev->dev);
3097
3098 if (pci_get_drvdata(pdev))
3099 pci_stop_and_remove_bus_device_locked(pdev);
3100 kref_put(&dev->kref, nvme_free_dev);
3101 return 0;
3102 }
3103
3104 static void nvme_dead_ctrl(struct nvme_dev *dev)
3105 {
3106 dev_warn(dev->dev, "Device failed to resume\n");
3107 kref_get(&dev->kref);
3108 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3109 dev->ctrl.instance))) {
3110 dev_err(dev->dev,
3111 "Failed to start controller remove task\n");
3112 kref_put(&dev->kref, nvme_free_dev);
3113 }
3114 }
3115
3116 static void nvme_reset_work(struct work_struct *ws)
3117 {
3118 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3119 bool in_probe = work_busy(&dev->probe_work);
3120
3121 nvme_dev_shutdown(dev);
3122
3123 /* Synchronize with device probe so that work will see failure status
3124 * and exit gracefully without trying to schedule another reset */
3125 flush_work(&dev->probe_work);
3126
3127 /* Fail this device if reset occured during probe to avoid
3128 * infinite initialization loops. */
3129 if (in_probe) {
3130 nvme_dead_ctrl(dev);
3131 return;
3132 }
3133 /* Schedule device resume asynchronously so the reset work is available
3134 * to cleanup errors that may occur during reinitialization */
3135 schedule_work(&dev->probe_work);
3136 }
3137
3138 static int __nvme_reset(struct nvme_dev *dev)
3139 {
3140 if (work_pending(&dev->reset_work))
3141 return -EBUSY;
3142 list_del_init(&dev->node);
3143 queue_work(nvme_workq, &dev->reset_work);
3144 return 0;
3145 }
3146
3147 static int nvme_reset(struct nvme_dev *dev)
3148 {
3149 int ret;
3150
3151 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
3152 return -ENODEV;
3153
3154 spin_lock(&dev_list_lock);
3155 ret = __nvme_reset(dev);
3156 spin_unlock(&dev_list_lock);
3157
3158 if (!ret) {
3159 flush_work(&dev->reset_work);
3160 flush_work(&dev->probe_work);
3161 return 0;
3162 }
3163
3164 return ret;
3165 }
3166
3167 static ssize_t nvme_sysfs_reset(struct device *dev,
3168 struct device_attribute *attr, const char *buf,
3169 size_t count)
3170 {
3171 struct nvme_dev *ndev = dev_get_drvdata(dev);
3172 int ret;
3173
3174 ret = nvme_reset(ndev);
3175 if (ret < 0)
3176 return ret;
3177
3178 return count;
3179 }
3180 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3181
3182 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3183 {
3184 *val = readl(to_nvme_dev(ctrl)->bar + off);
3185 return 0;
3186 }
3187
3188 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3189 .reg_read32 = nvme_pci_reg_read32,
3190 };
3191
3192 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3193 {
3194 int node, result = -ENOMEM;
3195 struct nvme_dev *dev;
3196
3197 node = dev_to_node(&pdev->dev);
3198 if (node == NUMA_NO_NODE)
3199 set_dev_node(&pdev->dev, 0);
3200
3201 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3202 if (!dev)
3203 return -ENOMEM;
3204 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3205 GFP_KERNEL, node);
3206 if (!dev->entry)
3207 goto free;
3208 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3209 GFP_KERNEL, node);
3210 if (!dev->queues)
3211 goto free;
3212
3213 INIT_LIST_HEAD(&dev->namespaces);
3214 INIT_WORK(&dev->reset_work, nvme_reset_work);
3215 dev->dev = get_device(&pdev->dev);
3216 pci_set_drvdata(pdev, dev);
3217
3218 dev->ctrl.ops = &nvme_pci_ctrl_ops;
3219 dev->ctrl.dev = dev->dev;
3220
3221 result = nvme_set_instance(dev);
3222 if (result)
3223 goto put_pci;
3224
3225 result = nvme_setup_prp_pools(dev);
3226 if (result)
3227 goto release;
3228
3229 kref_init(&dev->kref);
3230 dev->device = device_create(nvme_class, &pdev->dev,
3231 MKDEV(nvme_char_major, dev->ctrl.instance),
3232 dev, "nvme%d", dev->ctrl.instance);
3233 if (IS_ERR(dev->device)) {
3234 result = PTR_ERR(dev->device);
3235 goto release_pools;
3236 }
3237 get_device(dev->device);
3238 dev_set_drvdata(dev->device, dev);
3239
3240 result = device_create_file(dev->device, &dev_attr_reset_controller);
3241 if (result)
3242 goto put_dev;
3243
3244 INIT_LIST_HEAD(&dev->node);
3245 INIT_WORK(&dev->scan_work, nvme_dev_scan);
3246 INIT_WORK(&dev->probe_work, nvme_probe_work);
3247 schedule_work(&dev->probe_work);
3248 return 0;
3249
3250 put_dev:
3251 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
3252 put_device(dev->device);
3253 release_pools:
3254 nvme_release_prp_pools(dev);
3255 release:
3256 nvme_release_instance(dev);
3257 put_pci:
3258 put_device(dev->dev);
3259 free:
3260 kfree(dev->queues);
3261 kfree(dev->entry);
3262 kfree(dev);
3263 return result;
3264 }
3265
3266 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3267 {
3268 struct nvme_dev *dev = pci_get_drvdata(pdev);
3269
3270 if (prepare)
3271 nvme_dev_shutdown(dev);
3272 else
3273 schedule_work(&dev->probe_work);
3274 }
3275
3276 static void nvme_shutdown(struct pci_dev *pdev)
3277 {
3278 struct nvme_dev *dev = pci_get_drvdata(pdev);
3279 nvme_dev_shutdown(dev);
3280 }
3281
3282 static void nvme_remove(struct pci_dev *pdev)
3283 {
3284 struct nvme_dev *dev = pci_get_drvdata(pdev);
3285
3286 spin_lock(&dev_list_lock);
3287 list_del_init(&dev->node);
3288 spin_unlock(&dev_list_lock);
3289
3290 pci_set_drvdata(pdev, NULL);
3291 flush_work(&dev->probe_work);
3292 flush_work(&dev->reset_work);
3293 flush_work(&dev->scan_work);
3294 device_remove_file(dev->device, &dev_attr_reset_controller);
3295 nvme_dev_remove(dev);
3296 nvme_dev_shutdown(dev);
3297 nvme_dev_remove_admin(dev);
3298 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
3299 nvme_free_queues(dev, 0);
3300 nvme_release_cmb(dev);
3301 nvme_release_prp_pools(dev);
3302 kref_put(&dev->kref, nvme_free_dev);
3303 }
3304
3305 /* These functions are yet to be implemented */
3306 #define nvme_error_detected NULL
3307 #define nvme_dump_registers NULL
3308 #define nvme_link_reset NULL
3309 #define nvme_slot_reset NULL
3310 #define nvme_error_resume NULL
3311
3312 #ifdef CONFIG_PM_SLEEP
3313 static int nvme_suspend(struct device *dev)
3314 {
3315 struct pci_dev *pdev = to_pci_dev(dev);
3316 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3317
3318 nvme_dev_shutdown(ndev);
3319 return 0;
3320 }
3321
3322 static int nvme_resume(struct device *dev)
3323 {
3324 struct pci_dev *pdev = to_pci_dev(dev);
3325 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3326
3327 schedule_work(&ndev->probe_work);
3328 return 0;
3329 }
3330 #endif
3331
3332 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3333
3334 static const struct pci_error_handlers nvme_err_handler = {
3335 .error_detected = nvme_error_detected,
3336 .mmio_enabled = nvme_dump_registers,
3337 .link_reset = nvme_link_reset,
3338 .slot_reset = nvme_slot_reset,
3339 .resume = nvme_error_resume,
3340 .reset_notify = nvme_reset_notify,
3341 };
3342
3343 /* Move to pci_ids.h later */
3344 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
3345
3346 static const struct pci_device_id nvme_id_table[] = {
3347 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3348 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3349 { 0, }
3350 };
3351 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3352
3353 static struct pci_driver nvme_driver = {
3354 .name = "nvme",
3355 .id_table = nvme_id_table,
3356 .probe = nvme_probe,
3357 .remove = nvme_remove,
3358 .shutdown = nvme_shutdown,
3359 .driver = {
3360 .pm = &nvme_dev_pm_ops,
3361 },
3362 .err_handler = &nvme_err_handler,
3363 };
3364
3365 static int __init nvme_init(void)
3366 {
3367 int result;
3368
3369 init_waitqueue_head(&nvme_kthread_wait);
3370
3371 nvme_workq = create_singlethread_workqueue("nvme");
3372 if (!nvme_workq)
3373 return -ENOMEM;
3374
3375 result = register_blkdev(nvme_major, "nvme");
3376 if (result < 0)
3377 goto kill_workq;
3378 else if (result > 0)
3379 nvme_major = result;
3380
3381 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3382 &nvme_dev_fops);
3383 if (result < 0)
3384 goto unregister_blkdev;
3385 else if (result > 0)
3386 nvme_char_major = result;
3387
3388 nvme_class = class_create(THIS_MODULE, "nvme");
3389 if (IS_ERR(nvme_class)) {
3390 result = PTR_ERR(nvme_class);
3391 goto unregister_chrdev;
3392 }
3393
3394 result = pci_register_driver(&nvme_driver);
3395 if (result)
3396 goto destroy_class;
3397 return 0;
3398
3399 destroy_class:
3400 class_destroy(nvme_class);
3401 unregister_chrdev:
3402 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3403 unregister_blkdev:
3404 unregister_blkdev(nvme_major, "nvme");
3405 kill_workq:
3406 destroy_workqueue(nvme_workq);
3407 return result;
3408 }
3409
3410 static void __exit nvme_exit(void)
3411 {
3412 pci_unregister_driver(&nvme_driver);
3413 unregister_blkdev(nvme_major, "nvme");
3414 destroy_workqueue(nvme_workq);
3415 class_destroy(nvme_class);
3416 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3417 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3418 _nvme_check_size();
3419 }
3420
3421 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3422 MODULE_LICENSE("GPL");
3423 MODULE_VERSION("1.0");
3424 module_init(nvme_init);
3425 module_exit(nvme_exit);